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ABSTRACT 

 
 

Type 1 Diabetes is an autoimmune disease characterized by chronic hyperglycemia that results 

from a selective loss of insulin secreting pancreatic beta cells. The aetiology of T1D often 

involves both genetic and environmental factors like viral infections. In T1D, insulin is regarded 

as primary autoantigen that becomes one of the targets of autoimmune attack and is found to be 

expressed in both pancreatic islets and the thymus. Mechanisms behind the induction of central 

tolerance in governed by the thymus as it expresses tissue specific self-antigens.  Here, we study 

the role of Maf transcription factors in T1D susceptibility due to its widespread role in 

transcriptional regulation of insulin and other beta cell factors that also act as islet autoantigens.  

Recent data suggest that variations in the Maf levels may cause susceptibility to viral infections 

that potentially trigger autoimmune response to self-tissues. Our previous studies have shown 

that deficiency of Maf transcription factors leads to the development of inflammation adjacent to 

islets. Infiltration of immune cells can be triggered by defects in the systemic immune system 

and/or in beta cells. The first project was designed to distinguish between these possibilities and 

evaluate the effect of changes in Maf levels on the development of autoimmune reaction. Here 

we examine if the T1D symptoms observed in the Maf mutant mice are caused by a systemic or 

local defect in beta cells. The second project focuses on defining the specific roles of Maf in 

intrathymic regulation of major autoantigens at the E18.5. 
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REVIEW OF THE LITERATURE 

 

1. DIABETES MELLITUS 

1.1 Overview 

Diabetes mellitus is a life-long disease characterized by high blood sugar levels in the affected 

individuals as a result of insulin deficiency and/or resistance/insensitivity. This condition is 

referred to as chronic hyperglycemic state which causes disturbances in the metabolism of 

carbohydrates, fats and proteins due to the combined or individual defects in insulin secretion 

(abnormal cyclicity, diminished pulse frequency), insulin action and dysfunctional response to 

glucose levels [1],(1). This impairment in glucose homeostasis is one of the primary causes of 

morbidity and mortality in humans. 

In healthy individuals, glucose uptake from the bloodstream and storage in the liver and 

peripheral tissues is controlled by insulin. Depending on the body energy requirements, glycogen 

becomes metabolized by gluconeogenesis and glycolysis. Thus insulin acts like a key for the 

cells that facilitates the movement/absorption of glucose by opening gated channels (2). 

Disturbances in the process of insulin secretion, lack of insulin producing beta (β) cells and 

abnormality in insulin sensitivity are broadly the reasons for the development of diabetes. 

1.2 Symptoms 

Classic diabetes symptoms are Hyperglycemia (high blood sugar levels), polydipsia (increased 

thirst), polyuria (excess urine production), polyphagia (hunger), unexplained weight loss, fatigue, 

blurry vision, recurrent infections etc. Serious health problems can arise in long term, if left 

untreated, including atherosclerosis, retinopathy, neuropathy, kidney failure, cardiovascular and 
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gastrointestinal defects. Diabetes management or maintenance of good glycemic levels becomes 

highly necessary for avoiding the above listed complications of long-term diabetes. With a tight 

diet regulation, administration of insulin or hyperglycemic agents and controlled physical 

activity, metabolic imbalances can be kept in check in diabetic patients for years. 

1.3 Major forms of diabetes 

Type 1 Diabetes (T1D) 

T1D is the most severe form of diabetes, characterized by absolute insulin deficiency. It is a 

chronic cell-mediated immune disease characterized by the selective loss of insulin secreting 

pancreatic β cells, which most likely results from a slowly acting autoimmune process, 

depending on the presence of both genetic and environmental factors [2-4]. Manifestation of this 

disease often commences in early life beginning from infants and the development of full form 

clinical T1D can take from a few months to several years, with the incidence of new T1D cases 

doubling in children younger than 5 years according to current figures and a possible 70% 

increase in the number of cases in children younger than 15 years between 2005-2020 [5]. A 

more than fivefold rise in the T1D incidence rate has been recorded in Finland over the last 50 

years [6]. In T1D patients, it is vital to compensate for the loss of endogenous insulin by daily 

monitored insulin injections.  

Type 2 Diabetes (T2D) 

This is the most prevalent form of diabetes and accounts for about 90 % of all diabetes cases. It 

is also known as noninsulin-dependent diabetes or adult-onset diabetes. It is caused by impaired 

β cell function and peripheral insulin resistance i.e. the body cannot effectively respond to the 

insulin that is produced [2]. Treatment involves diet, exercise and oral drug administration and 
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rarely requires external insulin injections for survival. T2D progresses slowly and shows milder 

forms of hyperglycemia. In adults its usually develops after the age of forty and is associated 

with inactive life style and obesity. 

2. TYPE 1 DIABETES: BROADER ASPECTS 

 2.1 Endocrine pancreas: 

The pancreas plays an essential role in secreting and synthesizing hormones and enzymes that 

maintain the metabolic and nutritional homeostasis [7]. Different tissue components of this organ 

include the acinar, ductal, and endocrine portion. Endocrine cells form a close and compact, 

circular structure of cluster of cells termed islet of Langerhans after the name of the German 

scientist, Paul Langerhans, who identified them in pancreatic tissue in 1869 (3). Endocrine tissue 

forms the smallest volume in the entire organ accounting for the total of 1-2%. About 1 million 

islets are dispersed throughout the human endocrine pancreas. Islets numbers varies from dozens 

to hundreds in murine animal models and is easily distinguishable from other portions of similar 

looking tissues within the pancreas due to its ovoid and compact structure. Islet clusters are 

specialized micro-organs comprised of five cell sub-types called alpha (α), beta (β), delta (δ), 

epsilon (ε) and PP cells. Insulin secreting β cells account for 70-80% of islet cells whereas α cells 

which produces the insulin antagonist glucagon, occupies mostly the islet periphery and 

comprise 20-25% of islet cells. δ (~5%), ε (< 1%) and PP (~1%) cells secrete somatostatin, 

ghrelin and pancreatic polypeptide, respectively.  



9 

 

2.2 Insulin: Manager of Glucose Homeostasis 

The mysterious factor controlling the blood glucose level was discovered in the early 1920’s by 

the collective efforts of Dr. Frederick Banting and Prof. John Macleod at Toronto University, 

who isolated insulin, for which they received the Nobel Prize in Medicine in 1923 (3).  

Insulin is a globular protein belonging to a peptide hormone family, consisting of two chains, A 

and B which are 21 and 30 residues respectively [8]. Preproinsulin is the precursor of insulin 

which results from transcription of the insulin gene (INS) that lies on human chromosome 11. 

Preproinsulin contains a leader sequence marked by a 24-amino acid (a.a.) N-terminus and is 

cleaved immediately to generate proinsulin on translocation into the endoplasmic reticulum from 

the nucleus [8]. It is further processed in the endoplasmic reticulum to yield proinsulin 

polypeptide composed of A and B chains and a connecting C-peptide. During transport into 

Golgi apparatus, further proinsulin becomes converted into insulin and C-peptide (31 a.a.) via 

proteolytic cleavage [8]. Finally both C-peptide and insulin are stored in secretory 

granules/vesicles [8]. Insulin and C-peptide are released to the portal circulation as a reaction to 

the rise in the blood glucose level whereby insulin dissociates into active insulin monomers and 

C- peptide that are released in equimolar amounts. Thus C-peptide can be used as a marker of 

endogenous insulin secretion and β cell function [8].  

Insulin plays a central role in glucose metabolism through its actions in the liver and is 

predominantly expressed by the pancreatic β cells and in low copy number in the thymus. In the 

mouse, two nonallelic INS gene copies, Insulin 1 (Ins1) and Insulin 2 (Ins2) on chromosome 19 

and 7, respectively are present and transcripts from both genes are found in the pancreas whereas 

only Ins2 is expressed in the thymus. Its role in the thymus is discussed later. Preproinsulin and 
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proinsulin precursors including the final insulin product have been identified to be a key antigen 

in the autoimmune destruction of β cells by immune cells and autoantibodies [9-11]. 

2.3 Aetiology of T1D 

Both genetic and environmental factors have been attributed to play a role in initiation and 

progression of T1D.  

Genetic factors linked with T1D 

In T1D, strong clustering of susceptibility genes is found particularly in the human leukocyte 

antigen (HLA) region on Chromosome 6p21, specifically in the HLA-DRB1-DQB1 haplotypes. 

Other genetic loci associated with T1D are variable number of tandem repeats near the insulin 

gene (INS-VNTR); Cytotoxic T lymphocyte-associated antigen-4 (CTLA4); and Protein tyrosine 

phosphatase non-receptor-type 22 (PTPN22) [12]. Protein products of these genes play a crucial 

role in defining the major interactions between antigen presenting cells (APCs) and T cells and 

presumably effect the development and function of autoreactive T cells. Hereditary disease 

development is 6% in T1D patient sibling and in monozygotic twins concordance rate is found to 

be between 30-50% [13]. 

Environmental factors associated with T1D 

The role of environmental factors is highlighted by the increase in the number of cases in the 

past few years. This is faster than what can be accounted for by genetic change alone. Viral 

infections (Encephalomyocarditis [14], Coxsackie B [15, 16], Rubella [17] and Parvovirus [18]), 

toxins, chemicals and dietary factors like vitamin D deficiency, exposure to milk protein casein 

and wheat protein gluten [19] may enhance the risk of T1D development/progression by either 

direct effects on β cells or by modulation of intermediate molecules and cells .  
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2.4 Role of immunity in T1D 

Research in the past few years has asserted that autoimmune abnormalities are involved in cases 

of T1D. However it’s still not clear how exactly these autoimmune abnormalities are associated 

with pancreatic β cell damage. If these are the sole causative factor, a reason in part, the end 

result or just a marker, it is still to be known. Thus understanding every aspect of the 

autoimmune response in T1D becomes necessary and calls for extensive research in finding key 

factors involved in T1D susceptibility.  

 Introduction to the immune system 

The immune system guards our body from foreign pathogenic agents like bacteria, parasites, 

fungi, toxins etc. It involves a highly complex network of cells, tissues and organs working in 

dynamic and corporate manner to generate cascades of immune responses against invading 

microbes, infected cells and tumors while ignoring the self-healthy tissues. This phenomenon 

eradicates the majority of infectious threats and provides a healthy internal body environment. 

Recognition of self-tissues (self-antigens) leads to the development of autoimmune diseases like 

T1D, Grave’s disease, Rheumatoid arthritis etc. 

Innate Immunity 

Innate immunity provides a first line of defence by monocytes and granulocytes including 

neutrophils that are activated in the initial phase of inflammation. Monocytes later differentiate 

into macrophages which enhances the infection signal. Macrophages act on the microorganisms 

by either engulfing or by releasing chemotactic cytokines. These act like messengers to attract 

other immune cells that bear receptors for specific chemokines/cytokines and initiate a cascade 

of immune subjected inflammatory process. Another major player in enhancing the immune 

reactivity against an infection are dendritic cells, that are the main APCs, as their primary 
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function is to present antigens and play a crucial role in the induction/activation of adaptive 

immune responses (T lymphocytes). Innate immunity lacks the capability of establishing long 

term memory and lots of pathogens adapt and gain the ability to surpass these innate immune 

mechanisms. This enables the second part of immune response to take the initiative i.e. adaptive 

immune response which fights back pathogenesis. 

Adaptive Immunity 

Components of the adaptive immune system are lymphocytes including T and B cells. These 

have the ability to specialize and recognize foreign or non self-antigens specifically and 

neglecting other self-antigens (own body cells). T cells are responsible for cell-mediated 

immunity and B cells act by producing antigen-specific antibodies. They also have the ability to 

develop long term memory cells that can initiate quick response on similar or same repeated 

infections in the future. 

2.5 Autoimmunity in T1D 

 Immune cells implicated in T1D 

A number of immune cells are known to populate the pancreatic infiltrate and draining lymph 

node of T1D patients and mouse models like Macrophages, Natural killer cells (NK), NK-T 

cells, B cells and Dendritic cells. Dendritic cells are the major APCs that may process and 

present β cell specific self-proteins to cytotoxic T cells. Its capability of activating T cells and 

production of cytokines have been shown to have a pathogenic role in enhancement of 

autoimmune reaction [20]. In addition several studies have identified activated NK cells in the 

T1D patients, suggesting a role in β cell destruction [21]. Functionally NK cells are cytotoxic 

and secrets cytokines like interferon γ, tumor necrosis factor etc. that induces cell death in 
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infected cells and tumors. Furthermore it has been reported that the killing of virus-infected β 

cells is NK cell-mediated and independent of T cells [22]. Role of B cells in the disease 

progression have also been studied due to the presence of autoantibodies in T1D susceptible 

individuals. Studies have shown that B cell depletion in NOD (non obese diabetic) mice prevents 

autoreactive T cell interaction with self–antigens and reduction of autoantibodies, suggesting 

their extra role as APCs besides autoantibody production [23-25]. All of these immune cells 

individually and/or collectively contribute to destruction of β cells in T1D. In the current project, 

our preliminary focus was on the T cell infiltration in pancreatic tissue. 

  Direct role of T cells in T1D progression 

Interactions between infectious agents and immune cells can influence the activation of T cells 

and enhance tolerance. But this process is obstructed in individuals that carry mutations in T1D 

susceptibility alleles. 

All T cells express the surface antigen CD3 (cluster of differentiation) that is a member of the 

immunoglobulin superfamily, composed of five polypeptide chains (4). T cells can be further 

classified into various subclasses depending on their expression of CD4 and CD8. T helper (Th) 

cells and regulatory T cells (Treg) develop from CD4+ T cells whereas cytotoxic T cells are the 

differentiated product of CD8+ T cells. 

In T1D, β cells might be destroyed by islet antigen-specific T cells via their interaction through 

processed antigens on APCs through major histocompatibility complex (MHC) class I molecules 

[26]. Production of pro-inflammatory cytokines (interferon-γ, interleukin-1β, tumor necrosis 

factor etc.) can further elevate immune responses by activating macrophages. Also, these 

cytokines can induce reactive oxygen species that can mediate β cell apoptosis [20]. 
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 With the above mentioned pathogenicity of T cells, there is evidence of presence of T cells that 

might have a protective role in controlling the onset of T1D. These are the CD4+ regulatory T  

(Treg) cells that are known to maintain the immune tolerance and help to protect the self from an 

unwanted unnatural autoimmune destruction [27]. 

 Thymus: School of thymocyte education 

The thymus is often referred to as a primary or central lymphoid organ due to its capability to 

express many tissue-specific self-antigens [28]. Self/non-self discrimination by the immune 

system is a prerequisite for survival of multicellular organisms [28, 29], as it directs varied and 

powerful defense mechanisms against foreign antigens/pathogens while maintaining 

tolerance/nonresponsiveness towards self-antigens [28]. The thymus plays a pivotal role in the 

maturation of T-cells from hematopoietic precursors [30]. Large receptor diversity of about 25 

million specificities [31] are established in the T-cell repertoire through random differential gene 

rearrangements including the generation of self-reactive T-cells [32]. Self-reactive T cells pose 

an immediate threat of autoimmunity [33]. T cells that carry receptors specific for autoantigens 

are eliminated (negative selection) by an intense screening procedure (clonal deletion; clonal 

anergy) [28, 30] and only those developing T cells that show allowable (low) affinity between T 

cell receptors and self-peptide-MHC (major histocompatibility complex) are selected (positive 

selection) [28]. Those cells which survive screening procedures mature and migrate from the 

thymus to the peripheral lymphatic organs, where they can be activated in response to 

recognition of peptides through interaction with MHC-peptide complexes on APCs [28, 30]. 

Less appropriate amount of relevant autoantigen in the thymus may affect the elimination 

procedure of self-reactive T cells in the thymus. Similarly in T1D, low expression of 
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autoantigens like insulin in the thymus may let self-reactive T cells bypass stringent selection 

mechanisms and pose a direct risk to initiate autoimmune damage. 

Major autoantigens predicted in T1D            

Immune reactivity against self-antigens makes them fall in the category of autoantigens and a 

possible threat of autoimmunity. The phenomenon of epitope spreading may result in the 

recognition of multiple antigens presented on islet cells in the overall progression of immune 

reactivity in T1D [19]. Many of these have been listed in the pathogenesis of T1D. Presence of 

autoantibodies marks the first detectable signs of autoimmunity against β cells in clinical T1D. 

Studies have shown five main disease related autoantibodies, that are ICA (islet cell antibody), 

IAA (insulin autoantibodies), GAD65 (65kD isoform of glutamic acid decarboxylase), IA-2 

(protein tyrosine phosphatase-related islet antigen-2 molecule) and IGRP/G6pc2 (islet specific 

G6Pase catalytic subunit-related protein) [19]. Recently ZnT8 (zinc transporter Slc30A8) has 

been recognized as a T1D autoantigen [34]. Presence of more than one autoantibody increases 

the possibility T1D development. Molecular mimicry mechanisms have also been thought to 

induce autoreactivity against initial self-antigen epitopes, where self-antigens can mistakenly be 

confused with processed foreign antigens (like bacterial or viral proteins) due to structural 

similarities and cause confusion between self and non-self that leads to cross-reactivity and 

autoimmune destruction of self tissues [19].    
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INTRODUCTION 

 

3. PROJECT DESCRIPTION 

Disease progression leading to the development of T1D is highly affected by the selective 

autoimmune destruction of β cells by autoreactive T cells. More than 80% of β cells are 

destroyed by the time T1D is detected clinically. Today the role of innate and adaptive immune 

cells involvement in the autoimmune destruction of β cells is clearly known. Thymocyte 

education to distinguish between self and non-self in the thymus is also very important for the 

generation of central tolerance and the very fact that impairment in this selection procedure may 

lead to the escape of autoreactive T cells in the peripheral lymphatic system, poses an immediate 

threat in generating an autoimmune response against β cells, thereby leading to T1D.  

To be able to develop or design possible diabetes treatment strategies like generating β cell 

sources through de novo β cell differentiation, it becomes important to understand the molecular 

pathways underlying β cell development and function, as defects in its function will ultimately 

affect individuals to maintain healthy glycemic control. Understanding of the immune responses 

against β cells in both T1D and health status of isolated islets used for transplantation and 

characterization of islet cells enriched transcription factors involved in β cell development, 

maturation and function will be of high value. There are many key transcription factors / 

regulators like Pdx1, Nkx6.1, NeuroD1, Ngn3, Pax6 etc., which are important for pancreatic islet 

cell formation during development and activity in the adult [35]. Maf (musculoaponeurotic 

fibrosarcoma) transcription factors (TFs), do not only control the maturation of islet pancreatic 

cells but are also needed for their effective functional maintenance like glucose induced insulin 
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transcription [36]. Their embryonic expression has significant effect in guiding the 

differentiation of embryonic islet cell types and function. 

The large Maf proteins are basic leucine zipper transcription factors with a transactivation 

domain and a DNA binding domain that recognises Maf-recognition DNA element (MARE) and 

target genes like INS [37, 38]. They are known to regulate diverse biological events like lens 

differentiation, segmentation of hind brain and hematopoiesis [39] including macrophage 

development [40] , T-cell development [41], and pancreatic alpha (α) and beta (β) cell 

development [42-46].  

In our study we focus on the two Maf TFs MafA and MafB, due to their significance in islet cell 

maturation and function. These factors regulate key islet cell genes like Glut2, Pdx1, Nkx6.1, 

Pax6 etc. in a sequential and cooperative manner [44]. 

Recent data suggest that elevated large Maf protein levels in β cells cause susceptibility to viral 

infection and subsequent inflammation and T1D [47]. Also deficiency in large Maf proteins is 

likely to alter the composition of the immune system which may lead to an increase in local 

and/or systemic autoimmune inflammations and can lead to a gradual loss of β cells [47]. This is 

the scientific foundation for design of project 1, where we study the role of Maf factors in 

development of inflammatory symptoms in T1D susceptible mouse models.  

Project 1: Analyzing the specific role of beta cells and the immune system in the Type 1 

Diabetes symptoms observed in Maf deficient animals. 

Results from previous studies in our group showed that 6 month old MafA-/-MafB+/- mice 

(systemic model) developed peri-insulitis, with inflammation detected around the islets (7% of 

all islets). These inflammatory cells were found to be condensed and expressed CD3, a T cell 
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marker. This model represented a study system with very low Maf levels as MafA from the 

entire genetic set up was completely deleted and only one copy of MafB was present. Occurrence 

of inflammation in this model may be caused by the absence of Maf proteins in the immune 

system or alternatively in β cells or a combination of defects in both may lead to autoimmune 

reactions against β cells. To distinguish between these possibilities project 1 was designed where 

loss of MafA and MafB expression in β cells and the immune system were studied further. To 

evaluate the role of Mafs in the development of T1D like symptoms in the systemic model two 

other model systems were designed namely a hematopoietic cell-specific system and a β cell-

specific system, where MafA was conditionally [48] removed from the entire hematopoietic cell 

lineage (MafA
KOhp

) or β cells (MafA
KOβ

), respectively. Mouse models for this project were 

generated by crossing MafA
fl/fl 

mice [42] with transgenic mice expressing Cre recombinase 

under the control of regulatory regions from VAV (guanine nucleotide exchange factor) and RIP 

(rat insulin promoter) promoters, respectively. The Vav gene is almost exclusively restricted to 

hematopoietic cells, whereas RIP expression is restricted to β cells only. Thus use of VAV- and 

RIP-CRE transgenic mice [49, 50] results in conditional deletion of the MafA gene in 

hematopoietic cell lineage (entire immune system) or β cells, respectively. 

To determine if a deficiency in Maf TFs alters the leukocyte cell population and leads to the 

infiltration of T cells in pancreatic tissue, pancreata of six month old Vav-Cre 

MafA
KOhp

MafB+/+, MafA
KOhp

MafB+/- and Rip-Cre MafA
KOβ

MafB+/+, MafA
KOβ

MafB+/- 

mutant mice with their respective wild-type (WT) controls were collected and stained with 

antibody specific for the T cell marker CD3, insulin and a nuclear marker DAPI using 

immunohistochemistry. In total seventeen pancreata were studied with three mice in each 

genotype category except two in Rip-Cre controls (S.Table 1). 
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With these two model systems we were able to study the role of Maf deficiency specifically in 

the lymphocytes and in the pancreatic β cells. In this study, TID symptoms were observed in two 

out of three MafA
KOhp

MafB+/- Vav-Cre mice, showing condensed clusters of T cells around the 

islets (peri-insulitis) and in the islet vicinity. This highlights the importance of Maf TFs to the 

cells of immune system. The absence of T cell infiltration in the RIP-CRE model system 

suggests that low Maf levels in β cells are not sufficient to induce the development of T1D 

symptoms.  

3.2 Project 2: Regulation of intra-thymic autoantigens expression by Maf transcription 

factors  

Mechanisms involved in the interplay between the central and the peripheral tolerance provide 

the remarkable ability to protect against pathogenic invaders and autoimmunity. Defects in either 

or both of the tolerance mechanisms may cause development of autoimmune diseases like T1D. 

Previous studies have shown that impaired thymic expression of autoantigens results in 

susceptibility to autoimmune diseases [28, 51]. Lack of tolerance or autoreactivity can be 

attributed to the low levels of antigens [30, 33, 52]. Thymic levels of the autoantigen insulin may 

be one of the crucial factors affecting the development of T1D as it has already been shown that 

insulin is expressed in the human thymic medulla
 
[51].  

Insulin is the primary T1D antigen that is expressed in both, pancreatic β cells and in rare cells of 

the thymic medulla [53, 54].  MafA and MafB are known to regulate Insulin expression in β-cells 

[37, 43] and previous studies suggest that MafA regulates Ins2 expression in the thymus
 
[51]. It 

has been hypothesized that loss or reduced MafA function can lead to impaired deletion of 

insulin specific autoreactive T cells and increased susceptibility to T1D [51]. In the developing β 
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cell MafB expression precedes MafA and MafB has a more significant role in Insulin 

transcription [36, 42, 44]. 

Here we evaluate if MafB has a similar role in the regulation of thymic Ins2 transcription and 

also if we can reproduce results presented by Noso et al, which suggest that MafA regulates Ins2 

expression in the thymus [51]. Analyses of other autoantigens like Glut-2, G6pc2, IA-2 and 

Slc30A8 indicated in T1D susceptibility were also studied to assess a possible role of Maf TFs in 

their regulation in the thymus. As controls, AIRE and thyroglobulin gene expression were 

studied. 

Here, Thymi from MafA and MafB mutant mouse embryos at embryonic day 18.5 (E18.5) were 

isolated and analyzed through quantitative-polymerase chain reaction (Q-PCR) to detect mRNA 

expression of MafA, MafB, Ins2, AIRE, IA-2, Slc30A8, G6pc2, Glut2 and Thyroglobulin. E18.5 

was chosen since MafB deficient mice die at birth due to central apnea and/or renal failure [44]. 

Data obtained from this current study suggests that Maf expression in E18.5 thymus is not 

required for the expression of Ins2. Ins2 expression is maintained even in the absence of MafA 

and MafB. However, expressions of other autoantigens are affected by the alterations in MafA 

levels but not by MafB. Suggesting the role of Maf proteins specifically MafA in an intra-thymic 

regulation of other autoantigens at E18.5. 
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RESEARCH DESIGN AND METHODS 

 

PROJECT 1 

Mice 

Vav-Cre and Rip-Cre mice strains including wild-type (WT) controls, with the following 

genotype were used in the study respectively: MafA
KOhp

MafB+/+, MafA
KOhp

MafB+/-; 

MafA
KOβ

MafB+/+ and MafA
KOβ

MafB+/-. Animals were housed and bred in accordance with 

regulations for the protection of laboratory animals, after approval from a local ethical 

committee. 

Immunohistochemistry analysis 

Pancreata from 6 month old mice with the above mentioned genotypes were collected. Serial 

sections throughout the entire pancreas were made and immunostained at 120µm section depth 

(interval). Sections were analysed microscopically and the total numbers of islets with- and 

without- inflammation were recorded. 

Fixation and Paraffin imbedding: 

Pancreata were fixed overnight in 4 % paraformaldehyde (SIGMA) at 4°C. Successively 

pancreata were washed in phosphate buffered saline (PBS, GIBCO), dehydrated in 70% ethanol 

(3*10 min), 100% ethanol (1*60 and 2*30 min) (Kemetyl), tissue clear (2*30 min) (Histolab) 

and paraffin (SIGMA) (2*60 min). Fixed and processed pancreata were embedded in paraffin 

block. 
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Sectioning via microtome: 

6µm sections were cut using a microtome (MICROM, HM355S), mounted on glass slides 

(Thermo SCIENTIFIC) and kept overnight on a glass warmer (LABLINE) at 37°C to fix the 

tissues to the slides. Sections were stored at 4°C until further usage. 

Paraffin removal: 

Paraffin sections were de-waxed in the following solutions, tissue clear (2*5 min); 100% ethanol 

(2*5 min); 75% ethanol (1*4 min); 50% ethanol (1*4 min) and distilled water (1*5 min). 

Antigen retrieval treatment: 

De-waxed and dehydrated tissue sections on slides were heated in 10mM TEG buffer 

(Trizmabase, EGTA (SIGMA); pH-9.0) for 7.5 min at 90 volts in a microwave (Whirlpool). 

Slides were kept at room temperature for 25-30 minutes for cooling. 

Immunostainings: 

Slides were washed in PBS (3*5min) and sections were covered with a blocking solution (5% 

donkey serum in 1 % bovine serum albumin (BSA) (Jackson ImmunoResearch Laboratories) in 

PBS) in a humidified slide holder for 60 minutes.  

Primary antibodies:  

Rabbit anti-CD3 (Abcam) and guinea pig anti-insulin (Linco) at dilutions of 1:200 and 1:2,000 

respectively were diluted in 5% donkey serum in 1 % BSA in PBS. 80µl of primary antibodies 

mixture was used to cover each section. Slides were incubated overnight at room temperature 

(RT) in a humidified slide holder. 
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Secondary antibodies: 

After washing with PBS, secondary antibodies with Cy3- and Cy2-conjugated anti-rabbit and 

anti-guinea pig antibodies (Jackson ImmunoResearch Laboratories) were used respectively at a 

dilution of 1:500. 80µl of secondary antibody mixture was used to cover each section. Sections 

were incubated for 120 minutes at RT in a humidified slide holder. 

Nucleus staining: 

DAPI (Invitrogen) in 1 % BSA in PBS at dilution of 1:6000 was applied on the PBS washed 

sections for 10 min at RT. 

Mounting sections: 

Finally sections were covered with fluorescent mounting medium (DAKO) and a glass cover 

slip. Immunostained slides were kept in light protective cardboard holders. 

Microscopy and Data analysis: 

The number of islets in each section was counted and recorded. Immunofluorescence images of 

all sections with CD3+ cells around or in vicinity of islet cell were collected with Zeiss Axioplan 

2 imaging (Zeiss, Germany) at a magnification of 20X in AxioVision Rel 4.9 software and 

saved. Total number of CD3+ cells were counted and used for final calculations and result 

interpretations. 
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PROJECT 2 

Mice  

MafA+/-MafB+/- mice were bred to generate total WT, MafA-/-MafB+/+; MafA-/-MafB+/- and 

MafA+/+MafB-/- littermates.  

Thymus collection 

Thymi were dissected from E18.5 embryos in ice cold PBS (GIBCO) and stored in RNA 

stabilizing solution (RNA later, Ambion) at -20°C.  

Genomic DNA extraction from mice embryo tails 

Genomic DNA was extracted from embryo tail tissue for genotyping (S. Data 1). 

Genotyping assay 

a. Genomic DNA was amplified by PCR using red taq DNA polymerase (SIGMA-ALDRICH), 

2X bufferD (Epicentre) with four sets of primers (PCR primers and programmes are listed in S. 

Table 3-4). 

b. PCR products were separated by agarose gel electrophoresis. 1.5% agarose gels (Ultra Pure) 

were prepared in TBE buffer (1M Tris/0.9M Boric acid/0.01M EDTA; PH8.0; Sigma). Gel red 

nucleic acid stain (Biotium) was used to stain the gel. To assess the DNA band size 100bp and 

1kb DNA ladders (Thermo scientific; Fermentas life sciences resp.) were used. 

c. Gels were visualized by an ultraviolet illuminator (Kodak) and the gel pictures were captured 

by a Kodak camera. DNA band assessments in all the samples lead to the detection of specific 

genotypes (S. Table 5). 
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RNA extraction 

Total RNA from E18.5 mouse thymus was prepared using the RNeasy mini kit (Qiagen) and 

treated with RNase free DNaseI set (Qiagen). Eluted RNA was dissolved in RNase free water 

and stored at -80°C (S. Data 2).  

RNA quality assessment 

RNA was analysed with an Agilent 2100 bioanalyzer. Only RNA samples with RIN (RNA 

integrity number) higher than 7 were used for cDNA synthesis. RNA concentrations were 

measured with a Nano Drop ND-1000 spectrophotometer, and RNA concentrations were 

equalised for cDNA synthesis.  

cDNA synthesis 

cDNA was prepared with superscript III reverse transcriptase (RT), oligo (dT) primer, 5X first 

strand buffer, 0.1M DTT (Invitrogen), RNase OUT ribonuclease inhibitor (Recombinant). 

Controls were prepared without superscript III RT (RT negative control). 

Quantitative PCR (Q-PCR)  

Q-PCR measurements were performed using a Step One Plus real-time PCR system (Applied 

Biosystems). 20µl reaction mixture containing 10.5µl Fast SYBR Green master mix (Applied 

Biosystems), 2µl of 10nM forward-reverse primer mix, 5µl milli-Q water and 2.5µl cDNA 

template were used. (Q-PCR programme and Primer sequences are listed in the S. Table 6-7). 

For each run, RT negative control, Q-PCR negative control (blank) and a reference sample 

(HPRT) were included. Each sample was measured in triplicates and average CT values were 

used for gene expression analysis. Gene expression data were normalized against HPRT 

expression. Q-PCR data were analysed by the comparative Ct method (∆CT method).  
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RESULTS & DISCUSSION 

 

Project 1: Analyzing the specific role of beta cells and the immune system in the 

Type 1 Diabetes symptoms observed in Maf deficient animals. 

 

Immunohistochemical analysis of CD3+ T cells to detect inflammation adjacent to islets (peri-

insulitis) and/or inside the islet (insulitis) in six month old Maf mutant pancreata (Vav-Cre and 

Rip-Cre) were performed. In total 17 pancreata samples were analyzed including mutants with 

their respective controls (S.Table 1). In all pancreata sections analyzed, lymph nodes for the 

assurance of CD3 staining were checked and no sign of T cell infiltration was observed in 

control samples (Fig 1). Islets with more than twenty CD3+ T cells infiltration (inflammation 

symptoms) were analyzed and further categorized into two groups i.e. condensed cluster of 

CD3+ T cells in contact with an islet; and condensed cluster of CD3+ T cells not in contact 

with an islet (Fig 2.1-2).  

MafA
KOhp

MafB+/- Vav-Cre animals develop symptoms of an autoimmune response to β 

cells 

Development of peri-insulitis: Filtration of CD3+T cells  

The presence of activated β cell specific T cells in pancreatic tissue is well evident in T1D 

autoimmunity. Exact mechanisms and factors leading to this invasive reaction by the T cells 

remains unexplained. Our focus in this project was to determine how the loss of Maf 

transcription factors affects β cells as well as the immune system in generating T1D symptoms 
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(T cell infiltration),  as reduction in Maf TFs, particularly in MafA may produce defects in β 

cells and the immune system or both.  

 

   

Figure 1: Immunohistochemical detection of islet (wild-type) with insulin staining (green) and nucleus (white) with DAPI 

staining (left), shows no sign of inflammation. CD3+ T cells with CD3 staining (red) in lymph node (right). 

 

The VAV-CRE model system, where MafA was conditionally removed from the entire 

hematopoietic system, showed signs of CD3+T cells infiltration in MafA
KOhp

MafB+/- mutants 

(Fig 2.1-2). This was observed in two out of the three Vav-Cre mutant samples with 2.4% of 

islets with peri-islet inflammation (Fig 2.3). Nonoccurrence of this phenotype in the third mutant 

may be due the possibility of inefficient conditional deletion of MafA from hematopoietic cells. 

Penetrance efficiency of Vav-Cre in these models will be checked in the future by analysis of β-

galactosidase activity from a R26R reporter allele [55, 56] . 

During the microscopic analysis of immunostained sections, CD3+ T cell infiltration was clearly 

seen in association with an islet, suggesting the importance of autoantigens of islet cells in 

Controls: No sign of CD3+ T cells infiltration in wild-type islets whereas CD3+ T cells 

in the lymph node were present  
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Figure 2.1 Immunohistochemical detection of mutant islet with insulin (green), T cells with CD3 (red) and nucleus (white) with 

DAPI staining (Arrows point to the condensed cluster of CD3+ T cells in contact with islets). 

 

   

 

Figure 2.2: Immunohistochemical detection of mutant islet with insulin (green), T cells with CD3 (red) and nucleus (white) with 

DAPI staining (Arrows point to the condensed cluster of CD3+ T cells in vicinity of islets). 

 

 

 

CD3+ T cells infiltration in MafA
KOhp

MafB+/- islets (VAV-CRE model system) 
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regulating the autoimmune response by T cells whereas, the non-islet pancreatic tissue region 

looked normal without any sign of T cell infiltration. 

Inflammation in the vicinity of islets also reflects the importance of Mafs in affecting the 

repertoire of autoreactive T cells (Fig 2.2). Reduction in Maf levels in the hematopoietic cell 

lineage may affect the T cell development and its maturation process in the thymus and/or its 

activation pace in the peripheral lymphatic pool upon recognition of an autoantigen. Thus, Mafs 

deficiency in immune system may have the potential to alter it and may be one of the causative 

factors in generating T1D symptoms in Vav-Cre mutants. 

 

Figure 2.3:  Total number of islets and islets with more than twenty CD3+ T cells around or in vicinity were counted. Data 

represent number of islets with inflammation among the total number of non affected islets.  

 

 

97,62% 

1,30% 

1,10% 

2,40% 

Inflammatory status in MafAKOhpMafB+/-  

VAV-CRE model system 

% of islets without peri-insulitis

% of islets with cluster of CD3+ T cells (>20) (condensed & in-contact)

% of islets with cluster of CD3+ T cells (>20) (condensed & not in contact)
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 Loss of insulin+ cells in MafA
KOhp

MafB+/- Vav-Cre animals 

T1D results from the loss of insulin producing β cells. The same phenomenon we observed in 

our Vav-Cre mutants where islets with CD3+T cell infiltration showed signs of loss of insulin+ 

cells/ β cell mass (Fig 2.4). This observation suggests the role of autoreactive T cells in 

autoimmune destruction of β cells. 

 

 

    

 

Figure 2.4: Signs of islet destruction that may correspond to autoimmune attack (Arrows point to the site of damage within 

                  islets). 

 

No signs of T cell infiltration in RIP-CRE model system 

In MafA
KOβ

MafB+/+ and MafA
KOβ

MafB+/-  Rip-Cre mice, none of the six samples analyzed 

displayed signs of T cell infiltration, reflecting no role of Maf TFs in producing β cells that are 

defective. This indicates that Maf reduction in β cells is not sufficient to induce autoimmune 

attack/reaction. 

Loss of insulin+ cells in MafA
KOhp

MafB+/- islets (VAV-CRE model system) 
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Therefore, the knowledge gained from the current analysis suggests that the development of peri-

insulitis in MafA-/-MafB+/- systemic model system is most likely a result of defects in the 

immune system and not in the β cells. Thus, Maf deficiency in the leukocyte cell population 

alone may be responsible for the activation of autoimmune response against islet antigens that 

may eventually lead to the development of T1D. 

Project 2: Regulation of intra-thymic autoantigens expression by Maf transcription 

factors 

Q-PCR analysis of MafA, MafB, Insulin2, AIRE, IA-2, Slc30A8, G6pc2, Glut2 and Thyroglobulin 

was performed on thymic cDNA of E18.5 Maf mutants and wild-types. 

Ins2 mRNA levels were not affected by loss of MafA and MafB expression 

To study if loss of MafA and/or MafB affects Ins2 expression in the thymus, the transcription of 

MafA, MafB and Ins2 were studied in MafA and MafB single knockout mice (Fig 3). As 

expected MafA expression was much reduced in the homozygous knock-out mice (MafA-/-) 

compared to the wild-type mice, nevertheless small levels of MafA expression were still 

observed in the MafA-/- mutants (Fig 3a). For ruling out the possibility of genomic DNA 

contamination and/or MafA primer efficacy in this case, control samples with no reverse 

transcriptase (RT negative control) were analyzed. CT values from control samples appeared very 

late with more than 5-6 cycle number difference with reference to CT values from MafA 

expression in Maf mutants, which rules out the possibility of false positive detection due to non-

specific amplification signal. MafA primer sequence, its binding efficiency to the target sequence 

and probability of primer dimer formation were also checked via bioinformatics tools, analysis of 

amplification plot and melt curve of amplified products in wild-type and mutant samples 

respectively. These analyses inferred no problems with the MafA primer design. Another reason 
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could have been due to sample (with different genotypes) contamination via aerosol transfer 

during the 96 well plate pipetting procedure and this was checked by repeating the Q-PCR 

experiment with similar genotype run at the same time, this resulted in a complete loss of MafA 

amplification in MafA-/- mutants (Fig 3.1a). Thus this problem was resolved.  

 

Figure 3: Ins2 transcription is unaffected by the loss of MafA or MafB in E18.5 mice embryos. Q-PCR analysis of MafA 

(3a), MafB (3b) and Insulin2 (3c) transcription in the thymus of Wild-type and Maf mutant cDNA samples according to their 

relative gene expression levels normalized to HPRT and wild-types that was set as 1, are depicted here. Data in chart is expressed 

with means ± standard error. 

 

Maf A Maf B Insulin 2

WT 1 1 1

MafA+/+ Maf B-/- 1,20 0,03 1,36

MafA-/-Maf B+/+ 0,17 1,63 0,91

MafA-/-Maf B+/- 0,53 0,99 0,84
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Figure 3.1: MafA downregulation in MafA-/-MafB+/+ mutant E18.5 embryos. Q-PCR analysis of expression of MafA (3.1a) 

and MafB (3.1b) in the thymus of Wild-type and Maf cDNA samples according to their relative gene expression levels 

normalized to HPRT and wild-types that was set as 1, are depicted here. Data in chart is expressed with means ± standard error. 

(P<0.05) 

 

MafB expression was maintained in MafA-/- mice and was completely lost in the MafB-/- 

sample (Fig 3b). Ins2 expression in all the genotypes was complementary to each other. 

Strikingly Ins2 expression was not significantly reduced in MafA-/- mutant, as previously shown 

by Noso et al (Fig 3c). This may be due to different age of the samples tested, since the time 

point of sample collection was not provided in this study [51]. No significant alterations in Ins2 

levels in different mutant cDNA samples, suggest that Maf expression at this time point (E18.5) 

is not required for Ins2 transcription in the thymus in contrast to the described roles in β cell 

function and maturation in both developing and adult animals. 

Larger error bars/variation in the normalized Q-PCR data might be the result of variations in the 

age of the different litters or due to variability of RNA templates or difference in the number of 

Maf A Maf B

WT 1 1

MafA-/-Maf B+/+ 0,02 1,39

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

R
e

la
ti

ve
 m

R
N

A
 e

xp
re

ss
io

n
  

(F
o

ld
 C

h
an

ge
) 

 
 

Relative expression of MafA and MafB with their normalized vaules to wild-type in the 
table 

WT

MafA-/-Maf B+/+

                    Fig 3.1a                                             Fig 3.1b 

      **  



34 

 

gene expressing cells (APCs). Also the lack of statistical significance of our results may be due 

to the low sample size (S.Table 2). Nevertheless, CT and final normalized values generated for 

each gene under each mutant category was highly consistent which suggests that the assay 

design, methodology and data analysis were appropriate. To further evaluate a possible role of 

Maf factors in Ins2 transcription in the thymus, postnatal (P) mRNA expression analysis will be 

performed on one week (P7) and/or two week (P14) old Maf mutant mice.  

MafB does not regulate other autoantigens involved in the susceptibility of T1D. 

 

Expression of IA-2, Slc30A8, G6pc2 and Glut-2 genes were examined by Q-PCR to test if Maf 

TFs are important for the transcription/regulation of these T1D autoantigens (Fig 4). These genes 

have been examined here since they all represent key β-cell genes involved in normal maturation 

and functioning of islet cells and because of their primary role as autoantigens in T1D [57]. 

Previous studies have shown that MafB regulates Glut-2, Slc30A8 and G6pc2 expression in the 

pancreas [42, 44, 45]. Here we examined if Maf TFs are also important for their transcription in 

the thymus.   

Glut-2 (Glucose transporter) enables passive glucose movement across the cell membrane and is 

mainly expressed in the liver and β-cells. Previous studies have shown that Glut-2 transcription 

is depended on MafB since loss of MafB results in low Glut-2 expression in β cells [10, 12].   

IA-2 (Islet Antigen) is regarded as a primary autoantigen in T1D [27] and its deletion results in 

impaired glucose induced insulin secretion. Thus it acts as a positive regulator of insulin 

secretion. Similarly another major component of T1D autoimmunity is Slc30A8 (Zinc 

transporter) which is important for insulin storage and secretion in β cells [58]. Both these genes 
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appeared in the Q-PCR analysis between cycle numbers 26-28 approximately in all wildtype 

samples but appeared 3-4 cycle numbers late in MafA-/- mutants.  

G6pc2 (Glucose-6-phosphatase) regulates the glucose sensing mechanism within pancreatic islet 

cells by converting glucose-6-phosphate back to glucose. Studies have reported that it is also a 

specific target of cell-mediated autoimmunity in T1D [10].  

 

Figure 4: Gene expression profile of other important autoantigens. Q-PCR analysis of expression of Glut2 (4a), Slc30A8 

(4b), IA-2 (4c) and G6pc2 (4d) in the thymus of Wild-type and Maf mutant cDNA samples according to their relative gene 

expression levels normalized to HPRT and wild-types that was set as 1, are depicted here. Data in chart is expressed with means 
± standard error . 

  

Results here strongly indicate that in the presence of MafA (Wildtype and MafA+/+MafB-/-), 

expression of all autoantigens is maintained whereas in MafA-/- mutants, more than 50% 

reduction in Slc30A8 and IA-2 levels were observed (Fig 4b-c). This implies that expression of 
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these autoantigens might be dependent on MafA. Also reduced Glut-2 and G6pc2 expression in 

MafA deficient mutant highlights the importance of MafA in their regulation in both β cells as 

well as in the thymus (Fig 4a, 4c). 

In contrast to the role of MafB in the pancreas, MafB doesn’t have a specific role in regulation of 

these autoantigens at E18.5 stage, as its absence does not affect their expression in MafB-/- 

mutants. Instead MafA demonstrates its specific role in regulating their expression in the thymus 

at E18.5. Variation in the gene expression from different genotype samples is not significant and 

this may be caused by low sample size and/or age variation between different litters.  

Autoimmune regulators are not regulated by Maf transcription factors. 

 

AIRE (Autoimmune regulator) acts as a transcriptional co-regulator and is required for the intra-

thymic expression of numerous tissue-restricted self-antigens expressed in medullary thymic 

epithelial cells (mTEC) [59]. Here AIRE was used as a marker to represent the number of APCs. 

Therefore, AIRE expression was assessed to determine if changes in the insulin and other 

autoantigens expression level were caused by alterations in the number of thymic epithelial cells. 

AIRE expression was not affected in any of the genotypes considered (Fig 5a); suggesting the 

reduction of other autoantigens levels in MafA deficient mice was not due to a loss of AIRE 

expression, indicating the presence of similar numbers of APCs in Maf mutant thymus. 

Thyroglobulin is an autoantigen associated with thyroiditis, another organ specific autoimmune 

disease [60]. In the present study it was used as a positive control to show that the expression of 

other/non related self-antigens were not affected by the loss of Maf transcription factors. 

Thyroglobulin expression was observed to be consistent and unaffected in all genotypes except 

in MafB-/- mutant embryos (Fig 5b). Thyroglobulin was observed very late between cycle 
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numbers 31-33 which reflects its lower expression in the thymus. This may lead to an expression 

pattern that is more susceptible to variations and may be the reason for much lower thyroglobulin 

expression in MafB-/- mutant.  

 

Figure 5: Gene expression profile of autoimmune regulators in the thymus. Q-PCR analysis of expression of AIRE (5a) and 

Thyroglobulin (5b) in the thymus of Wild-type and Maf cDNA samples according to their relative gene expression levels 

normalized to HPRT and wild-types that was set as 1, are depicted here.  Data in chart is expressed with means ± standard error. 
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CONCLUSION 

 

Multidisciplinary research at different levels has to be focused for the understanding of 

molecular pathogenesis and designing of preventive therapies for T1D. The ultimate 

goal/challenge will be to generate β cells in-vitro for the transplantation purposes in T1D 

patients. Identifying the functional role of factors involved in embryonic and adult β cells 

development and the disease-related factors in protecting or provoking the autoimmune response 

will be of key importance in reviving natural and newly transplanted β cells from the 

autoimmune destruction and controlling the pathogenicity of immune cells. 

In Project 1, we observed that the absence of Maf factors in the β cell-specific system was not 

sufficient to induce T1D like symptoms as none of the mice studied showed signs of T cell 

infiltration. Whereas in the hematopoietic cell-specific system, condensed cluster of T cells were 

observed around and in vicinity of islets, suggesting the potential of Maf TFs in altering the 

leucocyte cell population and the risk of T1D development. This deficiency in Maf proteins may 

alter the composition of the immune system through their function in hematopoiesis, particularly 

in development and maturation of T cells, NK cells, macrophages and other antigen presenting 

cells. Additionally, role of Maf TFs as autoantigen regulators in the thymus may also play an 

important role in the induction of central tolerance, as observed in Project 2 by MafA in affecting 

the expression of major autoantigens marked in T1D susceptibility. 

Overall data from both the projects suggest that alterations in the expression of Maf TFs in the 

pancreas and the organs of immune system may increase the susceptibility for T1D development 

by an autoimmune destruction of islet β cells. 
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SUPPLEMENTARY DATA 

 

Supplementary Tables 

Total number of islets per pancreata sample analysed (Project 1) (S.Table 1). 

 

 

Total number of E18.5 embryos analysed under each genotype category (Project 2) 

(S.Table 2) 

Genotype  Total number of samples 

MafA+/+ MafB+/+ 

(WT) 5 

MafA+/+ Maf B-/- 6 

MafA-/- Maf B+/+ 3 

MafA-/- Maf B+/- 2 

  Vav-Cre Mice (MafA
KOhp

) Non Vav-Cre Mice 

  MafA
KOhp

MafB+/- MafA
KOhp

MafB+/+  CONTROL 

Sample No. V:1 V:2 V:3 V:4 V:6 V:7 C:V:1 C:V:2 C:V:3 

Total islets  342 322 517 491 610 397 958 449 428 

Total number 

of islets with 

CD3+ T cell 

infiltration  12 4 0 0 0 0 0 0 0 

Total number 

of CD3+ T 

cells 443 213 0 0 0 0 0 0 0 

        

   

      

  Rip-Cre Mice (MafA
KOβ

) Non Rip-Cre Mice 

                       MafA
KOβ

MafB+/- MafA
KOβ

MafB+/+  CONTROL 

Sample No. R:1 R:2 R:3 R:4 R:5 R:6 C:R:1 C:R:2 C:R:3 

Total islets  319 326 321 277 278 171 405 380         -NA- 

Total number 

of islets with 

CD3+ T cell 

infiltration  0 0 0 0 0 0 0 0          -NA- 
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Primer list for genotyping (Project 2) (S.Table 3) 

 

PCR programmes used for genotyping (Project 2) (S.Table 4) 

Genotype PCR programme 

MafA -/- 

1) 94°C -5min., 2) 94°C - 30sec., 3) 62°C -30sec., 4) 68°C - 45sec., 5)  Repeat step 2-4 

34 times, 6) 70°C -10min., 7) 8°C - ∞ 

MafA Floxed 

1) 94°C -5min., 2) 94°C - 30sec., 3) 62°C -30sec., 4) 68°C - 45sec., 5)  Repeat step 2-4 

34 times, 6) 70°C -10min., 7) 8°C - ∞ 

MafB +/+ 

1) 95°C -5min., 2) 95°C - 30sec., 3) 65°C -30sec., 4) 68°C - 45sec., 5)  Repeat step 2-4 

30 times, 6) 68°C -10min., 7) 8°C - ∞ 

MafB-GFP 

1) 94°C -5min., 2) 94°C - 30sec., 3) 60°C -30sec., 4) 68°C - 45sec., 5)  Repeat step 2-4 

34 times, 6) 68°C -10min., 7) 8°C - ∞ 

Genotype selection based 

on the product amplified 

from following primers 

Forward & Reverse primer sequence 

MafA -/- 5’-AGC AAG GCET CCT CCA AAC CCC-3’ 

5’-CAG AAC TGC GCT CCA CGT CTC-3’ 

MafA Wildtype (Floxed) 5’-AGC AAG GCT CCT CCA AAC CGC CCT-3’ 

5’-GTA CTC CTT CGG TGT CTC AGA TCC-3’ 

MafB +/+ 5’-CTG GCC CAG ACT CCC TAT TC-3’ 

5’-TTA CTC CCG GAC CTC GCA C-3’ 

MafB-GFP  5’-GGA GAG GGT GAA GGA GAT GCT-3’ 

5’-GAC AGG GCC ATC GCC AAT TGG-3’ 
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Genotype determination based on bands retrieved on agarose gel. Broad black lines 

represent bands corresponding to genotypes marked in first column (Project 2) (S.Table 5) 

 

PCR programme used in Q-PCR analysis (Project 2) (S.Table 6) 

Holding stage: 50°C – 2min., 95°C – 2min. 

Extension stage: 95°C – 15sec., 60°C – 25sec.,73°C – 30sec. (45 cycles) 

Melt curve stage: 95°C – 15sec., 70°C – 15sec., 98°C – 15sec. 

 

 

 

 

Genotype MafA-/- MafA Floxed MafB-GFP MafB+/+ 

MafA WT     

MafA -/+     

MafA -/-     

MafB WT     

MafB +/-     

MafB -/-     
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Primer sequences used in Q-PCR (Project 2) (S.Table 7) 

Gene 

product 
Name of the gene Forward & Reverse primer sequence 

MafA v-maf musculoaponeurotic fibrosarcoma 

oncogene family, protein A 

 

5’-GAGGAGGTCATCCGACTGAAA-3’ 

5’-GCACTTCTCGCTCTCCAGAAT-3’ 

 

MafB v-maf musculoaponeurotic fibrosarcoma 

oncogene family, protein B 

 

5’-GGCAACTAACGCTGCAACTCT-3’ 

5’-CAACGGAAGGGACTTGAACAC-3’ 

 

Insulin2 
Insulin 2 RT 

 

5’-GGCTTCTTCTACACACCCAT-3’ 

5’-CCAAGGTCTGAAGGTCACCT-3’ 

 

Glut-2 
Glucose transporter 2 

 

5’-CTCCAGGAAGGGTGCTAAACC-3’ 

5’-TGCTCCCTATCCGTTCTTCAA-3’ 

 

IA-2 
Islet autoantigen 

 

5’-GTGGCAAGATGACTATACCCAGC-3’ 

5’-ATGGTCTATCCTAGAGTGTGCAT-3’ 

 

Slc30A8 
Zinc transporter 

 

5’-CAGAGAACTTCGACAGAAGCC-3’ 

5’-CTTGCTTGCTCGACCTGTT-3’ 

 

G6pc2 Beta-cell specific protein islet glucose-6- 

phosphatase catalytic subunit-related protein 

 

5’-AGGTGACCCTAAGCCGGAC-3’ 

5’-TCT TTGGGTAGAAGACCATCCC-3’ 

 

AIRE 

(Control) 
Autoimmune regulator 

 

5’-CAGCAACTCTGGCCTCAAAG-3’ 

5’-CTTCGAACTTGTTGGGTGTATAA-3’ 

 

Thyroglob

ulin 

(Control) 

Thyroid antigen 

 

5’-TCAGGAAGGCACTGCTTATGG-3’ 

5’-GCCCTCTCTGGGCTGATAATT-3’ 

 

HPRT 

(Reference 

gene) 

Hypoxanthine phosphoribosyl transferase 

 

5’-AGCCCCAAAATGGTTAAGGT-3’ 

5’-CAAGGGCATATCCAACAACA-3’ 
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Other major protocols followed in Project 2 

DNA extraction protocol (S. Data 1) 

1. Add 300µl of tail buffer (100mM Tris-HCl pH 8.0, 200mM NaCl, 5mM EDTA, 0.2% SDS) with 3µl of 

Proteinase K (10µl of Proteinase K per 1ml of the tail buffer) 

2. Incubate at 56°C overnight. 

3. Add 100 µl of Potassium acetate, shake gently. 

4. Spin for 20 min at 14,000 rpm at 4°C. 

5. Keep supernatant, add 500 µl of Isopropanol, shake gently. 

6. Spin for 20 min at 14,000 rpm. 

7. Throw away the supernatant, keep the pellet. 

8. Add 200 µl of 70% Ethanol. 

9. Spin for 5 minutes at 14,000 rpm. 

10. Throw away the supernatant, keep the pellet. 

11. Air dry the pellet for 20-30 minutes. 

12. Dissolve pellet in 50-100 µl of water or 10mM Tris. 

13. Incubate at 37°C overnight. 

 

RNA extraction protocol (adapted from RNeasy Mini QIAGEN guide book) (S. Data 2) 

1. Put the thymus sample in a mixture of 600µl of RLT buffer (lysis buffer) and 6µl of β-mercaptoethanol. 

2. Disrupt the tissue with needle and a syringe. Homogenize by passing the lysate at least 5 times through a 

blunt-gauge needle fitted to an RNase-free syringe. 

3. Pipette the lysate onto Qia shedder column. 

4. Centrifuge the lysate for 3 minutes at full speed. 

5. Transfer the supernatant to a new microcentrifuge tube. 

6. Add one volume of 70% ethanol to the cleared lysate and mix immediately by pipetting. 

7. Transfer upto 700µl of the lysate to RNeasy spin column placed in a 2 ml collection tube. 

8. Centrifuge for 15 seconds (s) at full speed. 

9. Repeat step 7 & 8 if sample volume of lysate exceeds 700µl. Discard the flow through. 

10. Reuse the collection tube in next step. 

11. Add 300µl buffer RW1 (washing buffer) to the RNeasy spin column. 

12. Centrifuge for 15s at 10,000 rpm and discard the flow through. 

13. Add 80µl DnaseI incubation mix(10µl DnaseI stock solution + 70µl buffer RDD) directly to the RNeasy 

spin column. 

14. Place the column on the benchtop (20-30°C) for 15 min. 

15. Add 350µl buffer RW1 to the RNeasy spin column and centrifuge for 15s at 10,000 rpm. 

16. Discard the flow through. 

17. Add 500µl buffer RPE to the RNeasy spin column. 

18. Centrifuge for 15s at 10,000 rpm. Discard the flow through. 

19. Add 500µl buffer RPE to the RNeasy spin column. 

20. Centrifuge for 2 min. at 10,000 rpm to wash the spin column membrane. 

21. Place the Rneasy spin column in a new 1.5 ml collection tube and add 40µl Rnase free water. 

22. Centrifuge at full speed to elude the RNA and store RNA at -80°C until further usage.  

 



49 

 

 


	cover page TS
	Page 2

	Tania Singh Master Thesis after corrections Final copy 2013.pdf

