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Abstract

A signal with harmonic structure is often characterized by its fundamental fre-
quency, or pitch. This single parameter contain vital information of a range of
applications such as musical transcription, tuning of stringed instruments, speech
processing and more. Some signal sources, for instance a stiff vibrating string, ex-
hibit waveforms with slightly deviating harmonic structure. This phenomenon is
known as inharmonicity and it complicates the matter of estimating the fundamen-
tal frequency. If several signals with this inharmonic structure are added together,
for instance for a musical chord from a stringed instrument, we arrive at the prob-
lem formulation of this work. How does one estimate the fundamental frequency of
a multi-pitch signal containing inharmonicities?

In this work we present a multi-pitch estimator able to handle inharmonic sig-
nals. This algorithm uses a source separating technique in order to apply a single
pitch estimator to the resulting sub-problems. The performance of the estimator is
evaluated and compared to other multi-pitch estimators with good results.
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Chapter 1

INTRODUCTION

Signal processing is the mathematical field where signals of various kind are ma-
nipulated and analyzed for different purposes. A common type of signals within
this field are the periodic ones. An example of such a signal can be seen in figure
1.1.a. A periodic signal repeats itself after an period time 7 and with a repetitive
frequency f = % Areas where these signals occur are for instance recordings of
sound, data from medical applications and information from radar experiments. In
each of these examples, the desired information lies within the signal and it is this

data that needs to be extracted in a structured and reproducible way.
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Figure 1.1. A periodic signal consisting of four components with f; = 200 and
f2 =400, f3 =600 and f, = 800 Hz.

This thesis deals with signals with a certain structure which is common for
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2 Introduction  Chapter 1

instance in music and speech. This signal has the property that all periodic com-
ponents in the waveform can be identified to have a frequency which is a integer
multiple of some fundamental frequency, fy, known as pitch. This situation is called
the single-pitch problem. A signal consisting of two or more pitch sources with this
structure is known as multi-pitch problems [1] [2]. This occur for instance when
two people speak at the same time or when more than one string is sounding in a
musical chord.

There are a lot of methods for estimating the fundamental frequency in the sin-
gle pitch case, and many of these do so very well. However, for the multi-pitch case
there are fewer... Some of these methods are presented in [1] and rely on different
approaches such as filtering methods, orthogonality of subspaces of covariance ma-
trix and more. In this work, a methodology has been developed which iteratively
approximate the multi-pitch problem into separate single-pitch problems. By doing
so, a powerful method for single-pitch estimation can be applied for each of the
subproblem in order to extract this valuable information.

1.1 Single-pitch

The signals treated in this work will all have a certain structure, as mentioned
earlier, known as harmonic signals. Firstly there will be a lowest frequency called
fundamental frequency or pitch and is denoted fy. Then there will be higher
frequency components, f;, which are called harmonics. These harmonics will have
a frequency which is a multiple of the pitch

Ji=fol (1.1.1)
or expressed in angular frequency

w; = wol (112)
where wg = fo2m and [ € [1,2,...,L]. The number of harmonics, L, is termed the

model order. This parameter is determined by the physical properties of the source.
These type of signals are, as mentioned before, common in speech and music since
vibrating strings [3] and glottis [5] which produce sound with this specific structure.
A typical spectrum of a vibrating string is shown in figure 1.1(b) where the harmonic
structure is obvious.

A commonly used model to represent a harmonic signal at a sampling instance
is [1]

L
z(n) = Zalej“”" +e(n) (1.1.3)
1=1
where n is the index of a certain time sample in the range n € [1,2,... N], N is

the number of samples, a; = A;e’? is the complex amplitude containing phase ¢
and amplitude A; information of the [th component and e(n) is white Gaussian
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noise with variance o2. The signal is uniformly sampled with a sampling rate f;.
By taking a sub vector with length M of the sampled data and putting them in a
vector, the model can be extended to include M consecutive samples

x(n) = [z(n)---x(n+ M - 1)) (1.1.4)

where (-)7 dentoes the transpose operator. These samples can be expressed in a
simple form using the matrices z € CM*! Z ¢ CM*L q € CI*! and D € CL*E
defined as

Zw)=[1 e* ... ewr-1 )7 (1.1.5)
Z=[z2w) - zwL)] (1.1.6)
a=|a - ar ]T (1.1.7)

elwn 0
D= (1.1.8)
0 ejwnl

The specific structure of Z is known as a Vandermonde structure. Now the vector,
x(n), from eq. (1.1.4) containing the sums defined in (1.1.3), can be expressed as

z(n) = ZD(n)a + e(n) = Za(n) + e(n) (1.1.9)

where the time variation along the sampling vector has been included in the ampli-
tude term a(n) = D(n)a. This model can now be used to represent a single pitch
signal with start at sample n through sample n + M — 1.

1.2 Multi-pitch

The multi-pitch case, as mentioned earlier, occurs when more then one source is
present in a signal at the same time. A typical spectrum of this situation is depicted
in figure 1.2. The model presented in section 1.1 can be expanded to include any
number of K sources. It could be for instance K persons speaking or K vibrating
strings. The corresponding multi-pitch model of (1.1.3) is

K Ly

z(n) = Z Zalvkej“”*’“” + e(n) (1.2.1)

k=11=1

where Ly, is the model order of source k, k is in the interval [1, K], a; 1 is the complex
amplitude of the [th component of source k and wy j is the pitch of source k. This
model can be expressed with matrices in a similar way to (1.1.9)

a(n) =2, ... Zglla(n)" ... ax()T]" + e(n) (1.2.2)
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In the general situation some or all model parameter a;, wor, Ly and K are
unknown. The presented models will be used as a generic structure which will
be fitted to data via parameter estimation using different algorithms, presented in
chapter 2.

0.9-
0.8+

0.71

051

Power

0.4

0.1r

O Il L
0 200 400 600 800 1000

Frequency(Hz)

Figure 1.2. Spectrum of a signal containing two sources. The black source contains
fo =150, f1 =300, fo =450, and f3 = 600H z. The blue source contains fy = 200,
f1 =400, fo =600, and f3 = 800.

1.3 Inharmonicity

The models described in sections 1.1 and 1.2 rely on perfect harmonic structure,
i.e., the harmonics are perfect multiples of the pitch. However, there are excep-
tions, common for instance in sound where a small deviation from each harmonic is
present. This phenomenon is known as inharmonicity. One example when these
deviations are present is when the signal source is a vibrating string [3], occurring
for instance in music containing stringed instruments. In this case, the deviations
are due to stiffness of the string. The size of the deviation can be modeled using
a physical parameter B which is determined by the dimensions of string k. The
shifted frequency can be calculated as

wlﬁk(wo,k, Bk) = lwo/ 1+ 2By, (131)

where the parameter By, is the inharmonicity coefficient of string K and is typically
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in the range [107°,1073] [4]. A more general model, including a deviation with
unknown structure, is

Wik (wok, Ark) = worl + Ag g (1.3.2)

where A, denotes the deviation of the {th harmonic of source k and is assumed
small; meaning it gives a slight change to the original signal. (1.3.2) can now be
substituted into (1.1.3) or (1.2.1) to give a model of a signal with slightly deviating
harmonics. To give a feeling of the impact of the inharmonicity caused by a inhar-
monicity coefficient B = 0.0005, the deviation of the harmonics corresponding to
the pitches 200,400, 600, 800 and 1000 is depicted in figure 1.3. In this picture it is
easy to see that this phenomena grows fast for higher model orders.
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Figure 1.3. The impact of the inharmonicity coefficient B = 0.0005 with respect
to different harmonics for five pitches, 200, 400, 600, 800 and 1000Hz.

1.4 Aim of the thesis

A drawback of a lot of the existing multi-pitch estimators is that they rely on a
perfect harmonic structure of the signal. Therefore, when the inharmonicities are
present, problems occur. The produced estimates risks being biased or even not
close to the true pitches [6]. The aim of this thesis is to introduce a multi-pitch
estimator which is able to estimate the number of sources K, their pitches wg ; and
the corresponding model order L from an inharmonic signal. Different properties
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of the estimator will be evaluated such as source detection, model order detection,
robustness to noisy environments and more. Comparison with existing multi-pitch
estimators will be performed to give a picture of the difficulties that arise when
inharmonics are present and how the proposed algorithm overcome them.



Chapter 2

THE PROPOSED
ALGORITHM

2.1 Outline of the proposed algorithm

In this chapter, the proposed algorithm is presented. The aim of the method is to
estimate the unknown pitches, wp x, of a inharmonic multi-pitch signal. In order
to do so, the other unknown parameters in (1.2.1), a;x, Ly and K, will also be
estimated along the way.

The proposed method for multi-pitch estimation consists of five different sub-
algorithms. The theory behind each of these algorithms will be explained in sections
2.2-2.6. However, to set the reader into context before going into details, a outline
of the proposed estimator will now be presented. The sub-algorithms used will
be treated as blackbox-models in this outline, i.e., for a given input, some desired
output is provided. The details of how this output is generated is not presented
initially, rather only the purpose of each block is outlined. A flowchart of the
proposed method can be seen in Figure 2.1. The different steps from input to
output of the proposed method will now be described:

1. The first step is based on the recently introduced PFE BS-algorithm. This al-
gorithm takes the signal to be analyzed as input and output a set of estimates
of candidate pitches, wp , and their respective model orders, L;. Candidate
pitches refer to frequencies that might be a possible true pitch. PEBS do
not give any attention to the inharmonicity. This phenomenon will be ac-
counted for in step 3. Therefore, the result of this step can be viewed as
initial estimates, which are to be refined.

2. Next is to decide which of the frequencies in the candidate set from the pre-
vious step that are likely to be true pitches of the signal. This is done with a
BIC-based criterion. This step takes the estimated set of candidate frequen-
cies and their model orders as input and outputs a statement about which
pitches might be the true fundamental frequencies.

3. The third step in the proposed method is to take the coarse estimates of the

7
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Figure 2.1. Flowchart of the proposed algorithm.

assumed true pitches from previous step and refine them using the RELAX
and RC P-algorithms in a iterative combination with each other. RCP is an
algorithm which estimates the pitch of a single source signal suffering from
inharmonicity. The RELAX step is used to approximate the multi-pitch prob-
lem as a set of single-pitch problems. This source separation procedure will
yield better results if good estimates of the pitch and harmonics are available.
The iterations starts out by separating the different sources, using RELAX
with the rough initial estimates from step 2. Thereafter, RC'P is applied to
the resulting sub-problems in order to extract their pitch information. The
first iteration is now done. Next iteration is carried out in the same way, but
with the new refined pitch estimations from previous step as initial values
which gives a more accurate separation procedure, yielding better conditions
for RCP to improve the estimates further. These iterations goes on until
some convergence criterion is met.

4. A last step of narrow range gradient search is performed to refine the esti-
mates further. The input is the estimated pitches from step 3 and output is
refined estimates.

Note that it is not until step 3 that the inharmonicity is given any attention.

2.2 Step 1 - Estimate candidate pitches using PEBS

The PEBS (Pitch Estimation using Block Sparsity) algorithm was recently intro-
duced in [7]. The idea of the algorithm is to, given a set of test frequencies, create a
sparse solution to some cost function that indicates which sources that are present
in the signal, i.e., the algorithm should be able to select a few pitches from a set
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of test frequencies which is capturing dominant properties in the waveform. The
solution is obtained via minimization over the amplitudes, corresponding to every
pitch candidate in the test set and corresponding harmonics, using the following
optimization problem

P
1
min >y — Wal3 + Mlalls + a Y VA a2 (2.2.1)
@ 2 k=1
where y is the observed data, || - ||, denotes the p-norm, A and « are tuning pa-

rameters which decides how the penalties are weighted, P is the number of test
frequencies, W is a matrix containing blocks of Vandermonde matrices, Zj, which
represent each pitch and its harmonics in the test set, Zj is the block corresponding
to test frequency wy. To meet the Nyquist criterion for the harmonics, the block
size of blocks corresponding to higher pitch candidates will decrease. This decaying
block size will give a disadvantage to higher pitch frequencies since fewer harmonics
can be fitted in the cost function in (2.2.1). Therefore, the penalty /Ay is intro-
duced to even out this drawback, where Ay is the number of harmonics in block
k. Lastly, a is a vector with sub vectors containing amplitudes of corresponding
Z-block. Thus,

Zy=[ z(wp) -+ z(wil) | (2.2.2)
W=[2, - Zp] (2.2.3)
a=[af - ab]" (2.2.4)

The result after minimization of the cost function (2.2.1) can be visualized to the
user as a pseudo spectrum formed by taking the 2-norm of every amplitude block,
aj, and plot it against the corresponding test frequency value. An example of such
a spectrum can be seen in Figure 2.2. A true pitch is likely to be close to the pitch
candidate, wy, corresponding to block a; when its 2-norm yields a large value.

A very nice feature of the PEBS-algorithm is that it estimates the model or-
der, Lg, of each source very well. The estimation is performed by looking at the
estimates, a; j, of each amplitude block, aj, and approve all elements above some
threshold as a harmonic. The model order of each block is then estimated as the
number of elements that satisfies this condition, i.e.,

Lyax

L= ula, — 0.01 max(ay) (2.2.5)
=1
where L, 4, is the number of columns in Zj, and uz] is the indicator function taking
the value 1 if x > Oand zero otherwise. The threshold is set to a hundredth of the
maximum value within each block.
The minimization in 2.2.1 can be solved using ADM M (Alternating Directions
Method of Multipliers). For more details on how the optimization problem is solved,
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Figure 2.2. A typical resulting pseudo spectrum after pitch estimation with
PEBS.

the reader is referred to [7] and [9]. In this work the tuning parameters where set
toc=1/3, x =0.2, « = ¢x and A = (1 — ¢)x in accordance with [7].
Lastly, it is worth noting that the maximal number of harmonics is restricted

by
Li < M or W (2.2.6)

fO wo

since all harmonics must fit into the normalized frequencies interval [-0.5 0.5] in
order to avoid aliasing effects.

2.3 Step 2 - Select the number of sources using BIC

The algorithm presented in section 2.2 gives a set of pitch candidates and their model
orders, Li. To be able to determine the actual number of sources in the signal, i.e.,
which of the candidates should be considered true pitches, this work uses a BIC-
like criterion [14,17], proposed in [8]. BIC (Bayesian Information Criterion) is used
for model order estimation in a range of statistical applications, such as control
theory [18] and time series analysis [14]. The desired model order in this case is
the number of sources, K. This should not be confused with the model order of
each source, which is Ly, which was estimated in section 2.2. The criterion, in its
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general form, is used to estimate the unknown model order for some signal with
known structure. The criterion is [14]

BIC(n) = —2In(pn(y,0")) +In(|Iy, |) (2.3.1)

where n is the assumed model order, y is the data vector with length N, p,(y, Hn)
is the probability density function of y with parameter vector 0" of size n and Iy,
is the Fisher Information (FI). Now this criterion can be applied to a range
parameter vector sizes n € [1,7], where 7 is the maximum assumed number of
unknown parameters. The n that minimize (2.3.1) is chosen as the model order.
The general criterion in (2.3.1) can be applied to the model of a periodic signal
(for details of how this is done, the reader is referred to [17]). Doing this, the
BIC-function takes the following form

BIC(n.) = 2Nn(o3) + (5n. + 1)In(N) (2.3.2)

where n. is the number of periodic components in the signal, 012/ is the variance

of the signal after the first n. periodic components has been removed. Here, the
main interest lies in estimating the number of sources. To do so, we proceed as
follows: Instead of subtracting a single component, a pitch and all corresponding
harmonics is removed at the same time, ¢.e., eliminating a whole source. This would
suggest that in order to estimate the number of sources, one may form the following
BIC-function

BIC(K) =2Nn(o,) + (5Hx + 1)In(N) (2.3.3)

where Hg = 22(21 L. Using this methodology, the estimated number of sources,
K is given as the minimum of (2.3.3). Figure 2.3 gives an example of such a BIC-
curve in the case of K = 2 sources, clearly showing that the curve is minimized for
the correct number of sources. The performance of the suggested method will be
further investigated in chapter 3.

When evaluating the BIC-function for different model orders, ai needs to be
calculated from the reduced original signal, y. How to obtain the reduced signal
will now be explained. Firstly, the amplitudes of the components to be subtracted
must be estimated. The estimation is done using Least Squares(LS) [11]. The idea
of LS is to find the estimates of the complex amplitude a that minimizes the error
norm between the signal and a model, i.e.,

lellz = lly — Zal2 (2.3.4)

for a certain vector of frequencies w, entering in the structure matrix Z(w). The
estimates of a is found as [11]

a=(z"z)"'z"y (2.3.5)
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where @ is the estimated complex amplitudes and (-)¥ is the complex transpose.
The reduced signal can now be calculated in the following way

Yreduced =Y — Za (236)
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Figure 2.3. A BIC-curve showing the evaluated cost function for different number
of sources. In this case, there are two pitches present in the signal, indicated by the
location of the minimum of the curve.

2.4 Preliminaries of step 3 - Accounting for inharmonicity using
RCP

The RCP (Robust Covariance fitting for Pitch estimation) algorithm is a convex
optimization technique used to find the pitch and harmonics of a single source signal
suffering from inharmonicity of the form (1.3.2). This algorithm is introduced in
this section, and will be used in step 3, presented section 2.5. Since this estimator
only applies to single pitch problems, all source indexing will be dropped in this
section, i.e., k and K will be omitted.

The formulation of the convex optimization problem, leading to the frequency
estimates, will now be presented. For more details on how the optimization problem
is solved, the reader referred to [8]. The idea of the algorithm is to find the pitch
and harmonics which maximally explains the observed signal power defined as [8]
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log(det(R)) = log(det(E(y(n)y(n)?))) = log(det(ZaPZY + 521)) (2.4.1)

where R is the covariance matrix of the signal y estimated as

1 N-—M
P _ H
R = N_M+1 T;) y(n)y" (n) (24.2)

Further, E(+) is the expectation value operator, P = diag(|A;|?...|AL|?), 02 is the
noise variance, Za € CM*L is the Vandermonde-structured matrix from (1.1.6)
with a small deviation 4A; added to each frequency argument w;, such that

Za = [2(wi + A1) z(wr + AL (2.4.3)

The maximization problem (2.4.1) will be be subjected to three constraints in order
to ensure a valid solution:

First constraint : The purpose of the first constraint is to set a bound on how
large the deviations from the initial points can be, i.e., how much the pitch
and each harmonic is allowed to be altered during the optimization. This is
regulated by some ¢;, restricting the size of the deviation via the 2-norm of
the difference between the initial and the optimized point. This constraint
can be written in a mathematical form as

(ZA — Zinit)elll2 < a (2.4.4)

where Z;ni € CM*L is again a Vandermonde-structured matrix, now con-
stituting the initial point of the optimization

Zi'n,it = [z(wl) s -z(wL)] (245)

and e; is the lth column vector of the L x L identity matrix. ¢ should be
chosen to reflect the assumed level of inharmonicity.

Second constraint : Next constraint ensures that the optimized parameters pre-

serve the positive semi-definiteness property, which is necessary for a valid
covariance matrix [14]

ZAPZT + 02T < R (2.4.6)

with A < B denoting that B — A is positive semidefinite.
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Third constraint : The last constraint ensures the positiveness of each estimated
amplitude and the diagonality the the matrix P which is necessary for the
decomposition of the covariance matrix to be valid, i.e.,

P=PoI=0 (2.4.7)

where [ is the L x L identity matrix and ® is the Schur — Hadamard element
wise operator.

Finally, the convex optimization problem can be formulated as

max log(det(ZAPZY + 021))

ZA,P,o?

subject to ZAPZZI + 02T = R (2.4.8)
[(Za — Z)el < &
P=PoI>o0

As mentioned earlier, for details on how this optimization problem is solved, the
reader is referred to [8].

2.5 Step 3 - RELAX-based iterations with RCP

We now proceed to present the proposed RELAX-based estimation scheme with
purpose of transforming the multi-pitch problem into separate single-pitch prob-
lems. These sub-problems can thereafter be treated with the single-pitch estimation
algorithm RC P, presented in section 2.4. The method is inspired by the RELAX-
algorithm used in [10].

To help the reader grasp the concept of the following section, an algorithmic
presentation of step 3 can be seen in Algorithm 1. After step 2, presented in section
2.3, coarse estimates of the true pitches and their model orders are given. The idea
of the this step is to subtract all but one of these sources from the signal to obtain
a approximately single-pitch problem (the procedure of subtracting a source from
the signal is described in section 2.3). The frequency content of this reduced signal
is estimated with the single-pitch estimator RCP. The same procedure is applied
to all sources. These estimates are assumed to be better than the rough initial esti-
mates. Now the first iteration of the algorithm is finished. The following iterations
is performed in the same way, but with the new refined frequency estimates in the
source removal process. Since the refined estimates ought to be closer to the true
pitches, the source removal procedure should exhibit a better approximation of the
multi to single-pitch problem, giving better conditions for the RC P-algorithm to
produce better estimates.

In order to know if the algorithm has converged, a stopping or convergence
criterion is needed. The one used is the following, proposed in [10],

| ”yi—lH - ||y1|| \

<e (2.5.1)
lyi—all
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where y; and y;_1 are the original signals with pitches and corresponding harmonics,
found after iteration i respective i — 1, removed. The idea of this criterion is to
indicate the degree of change between every iteration. If the change is smaller
than some ¢, then the algorithm is assumed to have found some stationary points
hopefully close to the true pitches. In this work, € was chosen as 0.01.

Algorithm 1 Step 3; refine rough estimates.

Initialize with rough estimates of pitches formed using PEBS
while not converged do
for k=1 to K do
Subtract all but source k from the signal
Estimate wo ; and wy g, I, € [l,ﬁk] using RC' P
end for
end while

2.6 Step 4 - Gradient search

As a final step of the proposed algorithm, a gradient search [12], is performed
to enhance the estimates of the pitches further. This step is applied to each of
the approximated single-pitch problems after the convergence criterion of RELAX
explained in section 2.5, has been meet, i.e., the best possible approximation of the
multi to single-pitch transformation. Therefore, all source indexing is omitted in
this section.

The general idea of gradient search is to evaluate some cost function for a set of
parameter values in the vicinity of a initial point. The parameter value in this set
that yields the maximum or minimum (whatever is desired) of the cost function is
taken as the new parameter value. In this thesis, the estimated pitches wq x, from
previous step, will be taken as initial points and the 2-norm of the difference between
the observed signal y and the estimated model Za, denoted e, will constitute the
cost function

lell3 = lly — Zal3 = (y — Za)" (y — Za) (26.1)

If the model resembles the true content of the signal, then (2.6.1) should be close
to zero. The aim is to find a pitch within a set &g, defined below, that exhibit the
lowest value of the cost function.

There are different approaches to choose the set of values in the vicinity of the
initial point, at which the cost function is evaluated. In this work the set is selected
as the values along the direction of the negative gradient of (2.6.1), d. This choice
is known as steepest decent [12]. The set is now constituted by

@0 = wo + dO (2.6.2)
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where 0 is a tight equidistant grid (in this work, 6 consists of 200 values with
spacing 10~8) and the direction d

d=—Vulellz = ~Vu, |y = Zalz = ~Vu,(y — Za)" (y — Za) (2.6.3)

To write the expression for d in a compact form, the following vectors are used

Y=[0 i -+ i(M~-1)] (2.6.4)

z(w) =[1ev... guM=1T (2.6.5)

where (2.6.5) is the same vector defined in (1.1.5). Now, (2.6.3) may be expanded
into

Vaolele = Vo, Wy — vy Za — a® Z"y + ' 2" Za) (2.6.6)

yielding the gradients

Vo (¥ y) =0 (2.6.7)
Vo W7 Za) = a1 Yy © z(wp) (2.6.8)
Vo (@ ZHy) = —a, Yy © z(—wo) (2.6.9)

L L
Vo (1 Z7 Ax) = —al Z @Y z(w; —wop) + a1 Z al'Yz(wo —w;)  (2.6.10)
1=2 1=2

The gradient, d, is calculated as the sum of the expressions (2.6.7) - (2.6.10). Now,
the value 6,,;,, in @ which exhibits the minimum, in combination with the direction
d and the initial point wyp, gives the refined estimate wy via

(I)O = wp + demzn (2611)



Chapter 3

TESTING OF THE
DIFFERENT SUB
ALGORITHMS

In this chapter, the performance of vital parts of the proposed algorithm will be
investigated. Some advantages and disadvantages of the different parts will be
pointed out and discussed.

3.1 PEBS

3.1.1 Estimate model order

The rate at which the algorithm is able to find the right model order, Ly, is in-
vestigated via simulations. The experiment is performed for different number of
sources to show how the rate differs with respect to K. A total of 250 simula-
tions are made for each number of sources from K = 1 to 5. The number of
harmonics corresponding to each pitch is a random integer U € [3,9]. The result is
calculated as the percentage of the different deviations from the true model order,
e.g., if the deviation Ly — Li = 1 occurs 50 times for K = 2, the percentage is
50/(250 * 2) = 0.1 * 100% since there are a total of 250 * 2 model orders to be
estimated. The result can be seen in Figure 3.1. From this figure, one can see that
when the number of sources increase, the accuracy of the algorithm decrease. This
makes sense since more sources will give a more messy signal in contrast to the
single pitch case (K'=1) when the model order is well estimated.

The ability to estimate the model order perfectly every time would of course be
a very nice feature. This is unfortunately not achieved with the proposed algorithm
which can be seen from the simulations in Figure 3.1. However, in most of the
signals observed during this work, the amplitudes of the higher harmonics are just
a small fraction of the pitches amplitudes. If the model order is slightly off, this
will not have any major impact on the final result since the missed out components
have minor impact on the signal. From Figure 3.1 it can be seen that the density

17
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of the estimated model orders lies in 41 from the true value.
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Figure 3.1. Percentage of difference between true and estimated model order, as
the number of sources grow from one, at the top, to five, at the bottom.

3.1.2 Peak-splittings for large inharmonicities

When signals deviate from the perfect harmonic structure, presented in section 1.1,
PEBS will exhibit some problems. A simulation of a signal containing two pitches,
both with inharmonicity coefficient B = 0.0005 and L = 8, is performed to illustrate
the consequences. The result can be seen in the lower part of figure 3.2, in which it
can be seen that where there should be one peak, indicating a pitch, is now multiple
peaks. This might now be interpreted as multiple pitches, which is incorrect. The
splitting is due to the fact that when the location of the harmonics drift, more
frequencies in the test set will fit better into the cost function (2.2.1). To avoid
this problem when estimating pitch candidates, the number of frequencies in the
test set is decreased, making the set more sparse. In this work, 40 data points in
the normalized frequency range [0.02 0.045] were used. The result of doing this can
be seen in the upper part of figure 3.2. Decreasing the resolution is no problem
since this step of the algorithm is supposed only to give a coarse estimation of the
pitches.



Section 3.2. BIC 19

15

10f
5,
. ‘ AN

0 . .
120 130 14 150 160 170 180 190 200 210

15

10+ 1
5F 4

0 : s s ‘ s s s
120 130 14 150 160 170 180 190 200 210
Frequency(Hz)

Figure 3.2. A peak, indicating a pitch, splits into two peaks when large in-
harmonics are present in the signal.

3.1.3 Halvlings

When PEBS is used to estimate pitch candidates, there are some test frequencies
that are more likely to get wrongly favored than others by the cost function in
(2.2.1). One particular false pitch candidate that occur more often then others are
called halvlings which have a frequency half of the true pitch. The reason is that
this candidate frequency share every other harmonic, starting from the second of
the true pitch, with the true fundamental frequency. Therefore, the halvlings will
have a good fit into the minimization criterion (2.2.1). In Figure 3.3, a typical
situation can be seen where a halvling is located at 80Hz and the true pitch at
160Hz. At a first glance, one would wrongly mistake the former peak for a pitch.
This error can be avoided by studying the estimated complex amplitudes in the
a;. vector described in chapter 2, section 2.2. If the first element of this vector
is considerably smaller then the second element, then the peak is likely to be a
halvling. In this work, a peak was assumed to be a halvling if the first element was
less than a hundredth of the second one.

3.2 BIC

To evaluate the proposed BIC-based model order estimator’s ability to find the
right number of pitch sources, 250 simulations are performed for each number of
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Figure 3.3. A case where the problem of halvlings occur. The true pitch is located
at 160H z and the halvling at 80H z.

sources, K, in the interval [1,5]. In every simulation, the deviation of K from
the true value, K, is calculated in a similar fashion to how the estimation of Ly
was evaluated in section 3.1.1. The outcome of the experiment is displayed as the
percentage of each deviation occurring for every K. The test signal suffers from
inharmonicity with an inharmonicity coefficient, B, which is U € [0,0.0005]. The
number of harmonics of each pitch is U € [3,9] . The result can be seen in figure
3.4. The conclusion from this test is that it is easier to find the right number of
sources if they are fewer.

3.3 RELAX and RCP

3.3.1 Source separation

The purpose of the RELAX-algorithm is, as mentioned before, to separate a multi-
pitch case into separate single-pitch cases. In Figure 3.5 the original spectrum of a
recording of a guitar playing a C' chord, containing 3 sources, and their separations
are depicted. The three sources, constituting the C chord, is C = 130.8Hz, E =
164.8Hz and G = 196.0Hz. It can be seen that a busy multi-pitch problem has
been divided into three sub problems where the dominant harmonic structure of
each single pitch is obvious. After the source separation procedure, there are still
some residuals of other sources left, as can be seen in the pictures. However, the
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Figure 3.4. Evaluation of BIC criterion as the number of sources grows from single-
source, at the top, to five sources, at the bottom. On the x-axis, the deviation from
the true number of sources and on the y-axis percentage of each deviation.

aim is to remove dominant characteristics of other sources and that each pitch is
separated in a satisfying way.

3.3.2 Convergence to the true pitches

Throughout the RELAX-based iterations, the estimated pitches will ideally con-
verge towards the true fundamental frequencies. This convergence typically starts
out with a large step from the initial value, given by PEBS, towards the true pitch.
The following iterations are typically smaller, adjusting the pitch until the conver-
gence criterion (2.5.1) is met. In Figure 3.6 two typical convergence curves are
displayed for a signal containing two pitches, showing how the estimates converges
towards the true fundamental frequencies. In the upper figure, the first iteration
yield a small improvement in the estimate of wg ;. However, in the second itera-
tion, the sources separation procedure has been improved since a better estimate
of wp,2 is provided from the first step, now allowing wgy,; to be estimated more
accurate. There is a possibility that wg ; could be refined further by performing
more iterations. However, since the convergence criterion is met after iteration 4,
the procedure is terminated. To obtain more accurate estimates, the user parame-
ter controlling the level of change between iterations, ¢, in (2.5.1) can be lowered,
yielding better estimates but a longer execution time.
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Chapter 4

EVALUATION OF RIME

The algorithm developed in this work is given the name RIM E (Robust Inharmonicity-
based M ulti-pitch Estimator). In this chapter, the proposed algorithm will be tested
on real and simulated signals to evaluate its performance.

4.1 Stationary signals

In the ideal case, the signals analyzed in this work should be stationary. Station-
arity means that the data which is to be analyzed should have the same properties
throughout the whole data sequence. For a strict definition of stationarity, the
reader is referred to [13]. These kind of signals can easily be achieved when one
is working with simulated data. However, when working with real signals, things
change continuously, and there is no guarantee that the frequency or any other pa-
rameter is constant over time. Actually, it is more likely that things do change, e.g.,
a musician changes notes or a person doesn’t speak with a perfect monotonic voice,
pronouncing only the same vowel continuously. The way this problem is approached
is to divide the data into smaller sets which have a size that hopefully exhibit a
stationary behavior. This size depends heavily on the nature of the source. For
instance, is it common to play more then 20 notes per second on a guitar or piano?
If not, maybe 50ms data segments will work well. A new problem that arises in
this area is how to decide the time instance when a new note is struck, ¢.e., when
does the 50ms data window that does exhibit stationarity start? A few different
methods for this problem are proposed in [15].

4.2 Simulated signals

In this section, simulations will be performed to investigate the performance of
RIME. Different properties are examined via Monte Carlo simulations in order
to statistically verify the estimator. This is done by performing a number of J
simulations with each having a random phase, amplitude and noise components for
every j € [1, J]. Thereafter, the Root Mean Square Error is calculated to give a
measure of the deviation of the estimated frequency from the true pitch

23
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where wo , and @ Wo . are the true respective the estimated frequency of source £ in
run j. For all experiments, in the following sections, J = 250, K = 2, L, € UJ[3,9],
the amplitudes and phases are U € [0,1] and U € [0,2n], respective, with one
exception in that a;;1 = max(rand(10)), which gives the largest values out of 10
random numbers in the interval [0, 1] to ensure no ambiguity in pitch location. The
properties of the noise sequences is different in the various experiments, therefore
details of this matter is explained in the different sections.

In section 4.2.1, a comparison with existing multi-pitch estimators is performed
with respect to the level of inharmonicity present. In sections 4.2.2, the proposed
estimators ability to estimate the fundamental frequencies when different levels of
noise is present will be examined.

4.2.1 Performance with respect to different levels of inharmonic-
ity

In this section, comparison of RI M FE with other multi-pitch estimators will be per-
formed. Some strengths and weaknesses of RIME will be pointed out. The com-
peting estimators are the ordinary PEBS(with dense pitch candidate set and not
the sparse set, as explained in section 3.1.2) and two algorithms, Optimal Filtering
and MUSIC, taken from the software package provided with [1]. These algorithms
are briefly described as:

Optimal filtering : This method creates a notch filter with stop band at a pitch
candidate and its harmonics. This filter is applied to the signal and the
power of the resulting waveform is calculated. The same procedure is applied
for a set of candidate pitches. If the a pitch candidate in the test set is
close to a true pitch, then the signal power will decrease significantly since
dominant components has been filtered out. The resulting power vector is
plotted against the corresponding frequencies. Where such a figure has a
valley, a pitch is assumed to be located.

MUSIC : (MUltiple SIgnal Classification) This method rely on the orthogonal-
ity between the noise subspace of a signals covariance matrix R and the
Vandermonde matrix Z(wp), where wp is the true pitch and Z(wp) is of the
from (1.1.6). The noise subspace of R is denoted U. For a true pitch, wp, the
orthogonality gives || ZH (wo)U||% = 0. This expression is evaluated for a set
of test frequencies w. The frequencies in w that exhibits most orthogonality,
.e., gives values close to zero of the frobenius-norm, is chosen as the pitch
estimates.
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Both of these methods demand prior knowledge of the number of sources, K, and
their model orders, Li. In the following simulations, these numbers are given to
Optimal Filtering, MUSIC and the dense PEBS, while RIMFE only gets prior
knowledge of the number of sources to ensure no ambiguity in the calculation of the
RMSE. Note that in the real case scenario, it is an additional problem to estimate
these parameters, which the proposed estimator deals with.

The experiment is carried out with J = 250 simulations for different values of
the inharmonicity coefficient in (1.3.1). These values are B = [0 107> 10~* 1073].
Data length is 500 samples. For every j, two pitches are randomly selected in the
range [0.020.045]Hz/sample of normalized frequencies. PEBS, Optimal filtering
and MUSIC are given a set of 200 data points in this range. This yields a reso-
lution of 1.25 x 10~*Hz/sample. The noise is set to a level which corresponds to
SNR = 25. The result can be seen in figure 4.1. One can see that the MUSIC),
Optimal filtering and the ordinary PEBS methods fail as soon as the harmonics
starts to deviate due to the increase in the inharmonicity coefficients. However,
RIME is able to maintain a low RMSE even for larger values of B.
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Figure 4.1. Simulation with different inharmonicity coefficients. The blue line is
the proposed RIME, red is Optimal filtering, pink is MUSIC and black is the
dense version of PEBS.
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4.2.2 Performance with respect to different levels of noise

In this section, RIM E will be exposed to different levels of noise to see how well it
is performing under less optimal circumstances. The performance of the competing
esitmators, presented in section 4.2.1, will also be evaluated to see how they perform
compared to RI M E with respect to noise. The noise level is regulated via the SINR
(signal to noise ratio) [13]. This number is defined as

Psi na
SNR = ~Sional (4.2.2)
where the power P of the signal is measured as
T
P= Zytyf (4.2.3)
t=1
with the sample sequence y = [y; ... yr| with samples having sampling index ¢ in

the range [1,7]. When the power of the signal is known, a noise sequence with the
right power can be added to meet the SINR criterion. The different SN R values
used are [1 5 10 15 20]. The signal contain inharmonicity, with a inharmonicity
coefficient By, € U[00.0005]. The resulting RMSFE can be seen in Figure 4.2.
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Figure 4.2. RMSE for the SNR values [1 5 10 15 20]. The blue line is the proposed
RIME, red is Optimal filtering, pink is MUSIC and black is the dense version
of PEBS.
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As can be seen in Figure 4.2, RIMF is somewhat sensitive to high levels of noise.
However, it is still able to perform better then the competing estimators.

4.3 Real signals

The purpose of all algorithms are eventually to solve some real problem. Therefore,
the proposed algorithm is subjected to sound recordings of vibrating strings, in this
case, a guitar. It is the pitch of a certain source that decides what musical note
is sounding. By estimating this pitch, one could make a statement of what the
musician is doing. A common file format, used in this work, for storing recorded
sound on a computer is .wav with a sampling frequency f; = 44100Hz. The
experiment will be carried out in the following way. Firstly, the signal will be down-
sampled with a factor 5. This means taking out every fifth sample and decrease
fs to 44100/5 = 8820H z. By doing so, the signal is less dense and the estimated
normalized frequencies are not as close to the lower region at 0, where frequency
estimation is known to be more troublesome. When this is done, the signal is
divided into short sub-vectors containing 500 samples assumed to be approximately
stationary, which is necessary as mentioned in section 4.1. Each of these sub vectors
are then analyzed with RIME.

In section 4.2, the signals were generated with known parameters and the se-
quences was perfectly stationary. Therefore, it was easy to compare the estimations
of the proposed algorithm with the true parameter values. However, when recorded
sound is used, it is hard to obtain the true parameter values with a high enough pre-
cision to make this comparison. Therefore, in this section the attention will mainly
be on the first parts of the algorithm which are PEBS and BIC for estimation
of the number of sources, K. The reason for this is that pitch correction made by
RELAX and RCP might drown in the uncertainty of the true pitch values.

All recordings are created and owned by the author. The test signal is a mixture
of different number of sources. There are zero, one, two, or three sources at different
time instance. In order to illustrate the performance of the proposed algorithm
the spectrogram and the estimated pitches using RIME are plotted in Figure 4.3
and Figure 4.4. The recording starts out with a single note, then a 2-note chord.
Thereafter, it is a break followed by a single note and the recording is finished with
a 3-note chord. As can be seen in figure 4.4, the proposed algorithm is able to find
the musical structure just described in a satisfying way.
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DISCUSSION

5.1 Conclusions

In this thesis, a method for high resolution frequency estimation of multi-pitch
signals suffering from inharmonicities has been suggested. The estimator has been
evaluated via Monte Carlo simulations with satisfying results. The method is able
to estimate the number of sources, K, the pitches, wp , and their corresponding
model orders, Ly.

Throughout this work, signals with inharmonicites have been given a lot of
attention. However, the estimator is of course able to handle waveforms with perfect
harmonic structure as well, since this is a special case of the inharmonic structure,
i.e., inharmonicity coefficient By, = 0 in (1.3.1) of A, =0 in (1.3.2).

An advantage of the algorithm is that it can handle a signal without any prior
knowledge of the number of sources and model orders. These parameters are very
rarely known beforehand, which makes the method very general and applicable.

5.2 Possible improvements and future work

The proposed algorithm gives satisfying results. However, there are always room
for improvements. Some of these will now be addressed.

No attention during the work has been given to computational complexity of the
proposed algorithm. This aspect is of great concern when the application is of real-
time character. The most computationally heavy part of the proposed algorithm is
the RCP since is has to be executed in every iteration of step 3 until convergence
of the RELAX-based iterations. Also the number of executions increase with the
number of present sources in the signal since the pitch has to be estimated for every
source in every iteration.

Some of the sub algorithms uses user defined parameters to set weights for opti-
mization problems, convergence criterion and more. The choice of these parameters
has not been given much attention. A larger study of these choices might exhibit
even better results of the proposed estimator.

Lastly, it is worth noting that the core of the proposed algorithm is the proce-
dure of transforming the multi-pitch problem into separate single-pitch problems.

29
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This methodology is not unique to RCP, i.e., future development in single-pitch
estimation of signals suffering from inharmonicity can be applied to the proposed
estimator, yielding even better results.
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