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Abstract

Investigating the dynamics of blood flow is essential to understanding the car-
diovascular system and its pathologies. Phase Contrast Magnetic Resonance
Imaging (PC-MRI) enables acquisition of 4-dimensional time resolved velocity
experiments. Slice-by-slice analysis of the data is time consuming and cumber-
some. In this master thesis a simple but effective algorithm for fully automatic
visualization of the entire cardiovascular tree based on 4D PC-MRI velocity
data. The achieved visualization portrays the cardiovascular vessel tree.The
purposed segmentation algorithm is implemented in MATLAB and combined
with the existing software Segment and Fourflow for visualization. Clinical data
shows very promising visualization of the cardiovascular tree.
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Chapter 1

Introduction

Over the years many different forms of medical imaging have been developed;
Ultrasound, Computed Tomopgraphy (CT) and Magnetic Resonance Imaging
(MRI). All of these are capable of presenting tremendous amount of information.
Finding internal hemorrhaging, infarction or a life threatening aneurysm can
now be done within minutes completely noninvasive without risking harm to
the patient.

L Wigström [1] introduced three-dimensional Phase Contrast MRI (PC-
MRI) with which time resolved, three dimensional velocity data can be acquired.
The acquisition technique of such data is relatively established, but analysis of
the data in order to use it for diagnostics or research is still inadequate.

Manual segmentation is time consuming and operator dependent. Therefore,
introducing automatic segmentation in images can be of great clinical use to
achieve consistent and complete assessment of the data. When studying flow
images there is a need to display the cardiovascular tree and flow simultaneously.
Automatic visualization of the entire cardiovascular tree from flow data would
be of great value.

Previous methods [2] have focused on segmentation of single vessels and have
not made full use of the characteristics of cardiovascular flow. Therefore, the
aim of this thesis is to attempt to visualize the entire cardiovascular tree using
flow properties in 4D PC-MRI flow data.

In this thesis a straightforward algorithm to create a three dimensional visu-
alization of the cardiovascular tree using flow properties of velocity magnitude
and direction in PC-MRI flow images is developed.
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Chapter 2

Background

2.1 Magnetic Resonance Imaging

In 1952, Felix Bloch and Edward M. Purcell [3] were awarded the Nobel Prize
in Physics for their discovery of the nuclear magnetic resonance phenomenon.
The fact that nuclei possess a spin and an angular momentum was later used as
a source for image construction [4]. This angular momentum creates a magnetic
moment when affected by an external magnetic field, Bo, see Figure 2.1. The
angular velocity ω0 is given by [5]

ω0 = γB0 (2.1)

where γ is the gyromatic ratio for the nucleus and B0 is the external field. The
frequency at which the nuclei precess is called the Larmour frequency.

Figure 2.1: A proton precessing around the axis of precession. Adopted from
[6]

The nuclei align themselves with the external magnetic field B0. Parallel
alignment takes less energy than anti parallel, thus slightly more nuclei choose

7



the parallel state. On a macroscopic scale the summation of all the magnetic
moments within the volume yields a net magnetization vector Mz in the same
direction as B0, usually referred to as the z-axis.

As the nuclei have a specific Larmor frequency we can excite them with
a radio-frequency (RF) signal. If the RF signal frequency coincides with the
Larmor frequency of the nuclei they will absorb energy and their magnetization
vector will flip 90 (degrees) to the transverse xy-plane. This results in a reduc-
tion of the longitudinal magnetization Mz and the occurrence of a transversal
magnetization Mxy as seen in Figure 2.2.

Figure 2.2: The RF pulse flips the longitudal magnetization Mz and creates a
transversal magnetization Mxy. [7]

When the RF signal is turned off the longitudinal magnetization Mz starts
to go back to its initial value and Mxy fades away due to the nuclei realigning
themselves to B0. The time it takes for Mz to return to 63% of its original value
is called T1, while the time for Mxy to dissipate to 37% of its largest value is
called T2. During this realignment process, called the relaxation period, a RF
signal is sent out which induces a signal in a coil within the MRI machine which
is the source MR signal which yields the actual images.

T1 and T2 are tissue specific and alteration in the imaging process can be
used to adjust the contrast of the images acquired. This possibility of adjusted
contrast in order to highlight certain types of tissue preprocessing is one of the
strengths with MRI.

In order to record the released MR signal from the nuclei the exact origin of
this particular signal needs to be matched with a location within the volume.
This is done by introducing three gradient fields; Gz, Gy, Gx. The first of
these gradients applies a linear gradient along the Gz-axis. The result of this
is that a certain position along the z-axis will correspond to a certain Larmor
frequency, essentially this is the slice selection. Gy, called the phase encoding
gradient, desynch the phase of the nuclei within the slice so that each position
along the y-axis corresponds to a certain phase. Finally Gx, called the frequency
encoding gradient, yields a certain frequency return of the signal for each step
in x-direction. This is illustrated in Figure 2.3.

1. The RF signal is sent while the Gz gradient selects the slice.
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2. Gy encodes the phase within the slice.

3. Gx encodes the frequency within the slice and the received signal is recorded.

Figure 2.3: The most common pulse sequence for MRI-imaging [8]

With the use of these gradients each voxel is bound to a certain phase and
frequency of the received signal. The received RF signal is the inverse Fourier
transformed into a complex number. These complex numbers in each voxel
represent the image, see Figure 2.4. Notice in this image the same four chambers
of the heart illustrated by Figure 2.6. In general the modulus is used for imaging
but the phase of the image can also be used, particularly to observe flow within
the volume.

2.2 Phase contrast MRI

A uniform motion of protons along a magnetic field gradient results in a change
of the MR signal phase, φ. This change is proportional to the velocity of the
tissue, v. Using this phase shift it is possible to construct an image detailing
the velocity in any specified direction and slice. The phase of the received signal
from a single voxel is given by [5]:



Figure 2.4: The most common image representation is the magnitude image in
the through plane direction. This is the 4 chamber view of the heart.

φ(r, T ) = γB0T + γv ·
∫ T

0

G(r, t)tdt (2.2)

= γB0T + γv ·G (2.3)

where γ is the gyromagnetic ratio, T is the time, B0 is the external magnetic
field and G(r, t) is the magnetic field gradient. By applying gradient pairs,
which sequentially dephase and rephase, two datasets with different phases de-
pending on how far the tissue has moved during the recording are acquired. By
subtracting these phases

φ1 − φ2 = γv · (G1 −G2) (2.4)

the velocity along the (G1 −G2)-gradient direction is attained. The gradient
pairs are usually applied to produce velocity information in the x-, y- and z-
direction. This way the 3D velocity for each individual voxel in one slice is
recorded simultaneously.

The collected data from PC-MRI scans presents us with a multidimensional
data set; for each slice in the volume there are three different phase images,
one for each gradient direction, where the amplitude of the image shows the
velocity. See Figure 2.5. Furthermore, these images are time resolved and thus
we have a fourth dimension, 3D + T. The size of these type of dataset is large
and handling them can be cumbersome. This is visualized by Figure 2.5.
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Figure 2.5: Schematic image of PC-MRI data. Each slice within the volume
contains four time resolved images: The magnitude image and one phase image
for each direction.



2.3 The Human heart

At the centre of our circulatory system sits the human heart. This self regulating
biological pump is a wonder of nature. It is divided into four separate chambers;
left atrium (LA), right atrium (RA), left ventricle (LV) and right ventricle (RV).
Between the atria and ventricles are valves. These valves allow blood to flow in
one direction without flowing back. The mitral valve separates LA from LV and
the tricuspid valves the right side. The pulmonary valve controls the outlet of
blood from RV to the lungs and the aortic valve the outlet from the LV to the
body. A schematic view of the heart is displayed in Figure 2.6.

Figure 2.6: The human heart. Black boxes: Vessels visualized by algorithm.
Red Boxes: Atria and ventricles. Green boxes: Valves. Adopted from [9]

The compression of the heart leads to flow in the blood vessels throughout
the body. The flow follows the same pattern each cycle and can be broken down
into a few steps. Starting in the right atrium:

1. Deoxygenated blood flows in from the body into the RA.

2. The blood flows into the RV through the tricuspid valve.

3. The heart contracts and the blood is pumped into the lungs where it
deposits carbon dioxide and absorbs oxygen.

4. The oxygenated blood flows into the LA through the pulmonary valves.

5. The blood flows down into the LV through the mitral valve.
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6. Finally the oxygenated blood is pumped out to the body.

7. Back too step 1.

2.3.1 Systole and diastole

During systole the ventricles in the heart contract, pumping blood in left and
right ventricles out into the body and lungs. The relaxing part of the cardiovas-
cular cycle is called diastole where blood flows into the left and right atria and
ventricles. In general in the cardiovascular system, the velocities are high during
systole and low during diastole. An important assumption in this thesis is the
fact that during systole the flow is high within the blood vessels compared to
surrounding tissue, while the flow during diastole is similar in the blood vessels
and tissue. This means that distinguishing whether or not an arbitrary flow in a
certain point is within a blood vessel or tissue is difficult during diastole. In this
thesis flow information during systole is used to achieve a 3D visualization of
the cardiovascular tree. Important to note is that this means that visualization
will not be a 100 % correct representation of the cardiovascular tree during a
certain point of the cardiovascular cycle. In reality the vessels differ both in size
and position during the heartbeat, [10]. For the sake of calculation the duration
of systole is approximated to 300 ms. This is more or less true in the case of
increased heart rate, in which case the diastole is shortened. Furthermore 4D
flow cardiac MRI is performed at rest. Figure 2.7 shows measured flow within
the aorta accompanied by division of the cardiac cycle into systole and diastole.

Figure 2.7: Measured flow in aorta ascending shows the dynamics of flow in
blood vessels during the heartbeat.



2.4 Vessel segmentation

There is a need for automatic segmentation of blood vessels from flow data.
This segmentation can be useful to analyse the data. There are many different
methods presented for segmentation of blood vessels in PC-MRI data. Level set
functions [2], snakes and active contours [11] have been proposed but these are
often limited by initialization parameters, thus only semi automatic, and only
to one or two blood vessels. Using streamlines [12] it is possible to visualize
the flow, but this does not effectively segment the entire cardiovascular tree and
requires a lot of user input.

2.5 Segment

In this thesis the software package Segment was used. Segment [13] is a large
open source software developed in MATLAB by Einar Heiberg and co workers
Lund Cardiac MR Group at the Department of Clinical Physiology at Lund
University and in collaboration with Medviso AB [14] under the supervision of
Einar Heiberg.

The software is capable of analysing and quantifying data from many dif-
ferent medical images; MRI, CT, SPECT and PET. The tools in this software
include features such as quantification of MRI flow and segmentation of the left
ventricle. The source code for the software is available on the project homepage
http://segment.heiberg.se for research or educational purposes.

Figure 2.8: Segment with 4D PC-MRI data loaded
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2.6 Fourflow

Fourflow [15] is an open source software for quantification and visualization of
4D PC-MRI data that enables development of new quantitative analysis tools.
It was developed by Christopher Green in Lund Cardiac MR Group at the
Department of Clinical Physiology at Lund University. Like Segment, this soft-
ware and its source code is available for download on the project homepage
http://heiberg.se/fourflow.
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Chapter 3

Aim

The aim of this thesis is to automatically visualize the full cardiovascular tree
in 3D PC-MRI images in order to simplify clinical research and studies in 4D
flow images.

The specific aims are the following:

1. Develop an automatic method for detecting the cardiovascular vessel tree
from 4D PC-MRI flow images.

2. Implement the algorithm in an existing clinical research program (Seg-
ment).

3. Export detected blood vessel data to a dedicated visualization software
(Fourflow).

4. Evaluate the performance by comparing with previous existing methods.
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Chapter 4

Method

The noise introduced in the phase images by air in the lungs and around the
body presents a problem when trying to identify coherent flow in the data. To
filter out this noise the application of a simple low pass filter seemed to be an
easy solution. Although in theory the noise presented by air in phase images
should be close to white noise this was not applicable in clinical data. This is
most likely due to the fact that the number of time frames in the datasets is
small. The number of time frames range between 19 and 40 frames covering
one cardiac cycle. Therefore, several preprocessing methods were tested and
although only a few are used in the final algorithm several of these methods will
be explained below to help further studies in this area.

The central idea was that with sufficient preprocessing of the data filtering
out noise and tissue in the phase images would lead to segmentation of cardio-
vascular flow. Since most of the essential flow dynamics occur during the systolic
part of the heart cycle only these time frames, Ts, were used to visualize the
cardiovascular tree.

4.1 Notations

1. x - Notation of scalars using lower case italic characters.

2. x̂ - Notation of scalar field using lower case italic hat characters.

3. H - Upper case bold characters are filters.

4. ~v - Notation for vectors.

5. ~v - Vector fields are denoted by bold face letters.
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4.2 Definition

The velocity in a voxel in the dataset is defined by

D ⊂ R4 (4.1)

v̂g : D → [0, 1] (4.2)

v̂g(x, y, z, t) ∈ [0, 1] (4.3)

g = G1, G2, G2 (4.4)

the velocity v̂g = v̂g(x, y, z, t), where z is the coordinate of a particular slice.
For each iteration of the features z is kept fixed. v̂g is the voxel intensity in the
four dimensional space D corresponding to a gradient direction g.

4.3 Local features

4.3.1 Local Deviation

The first proposed feature was observing local deviations around each pixel in
a separate phase image. This was to identify the erratic behaviour of noise.
The spatial resolution of the neighbourhood was 3 × 3 pixels while temporal
resolution was 3 time frames. The value of each pixel in the 3 × 3 × 3 volume
was compared to the mean of the volume in order to express local deviation
around the pixel.

M̂avg = H ∗ v̂g (4.5)

p̂ld(x, y, t) =

n∑
i=1

|M̂avg(x, y, t)− v̂g(xi, yi, t)| (4.6)

where H is an average filter of size 3×3, ∗ denotes convolution, n is the number
of pixels in the neighbourhood. The local deviation, pld(x, y, t) in each pixel is
given by Eq (4.6). This process is repeated for each pixel and averaged over
systole in the phase image vg.

4.3.2 3D flow vector analysis

By combining the three phase images, G1, G2, G3, the velocity can be expressed
in vector form ~v = (vG1

, vG2
, vG3

).The magnitude of the velocity is expressed
by

|v| =
√
v2G1

+ v2G2
+ v2G3

(4.7)

Both the magnitude and direction of this velocity field tell us important in-
formation about what is coherent flow and what is not. The noise in phase
images may present some similar linear components to the flow, but in general
the vector field in these areas shows a larger angular spread and less coherent
magnitude. With the assumption that coherent flow will have a more uniform
vector field in both direction and magnitude than tissue and noise in the image
three different coherence measures were tested.
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Angular Spread

By creating a 3× 3× 3 voxel neighbourhood around each voxel and comparing
the angle of each individual 3D vector with the median angle of the 3D vector
neighbourhood an expression for the angular spread is achieved. The angles
seen in Figure 4.1 are calculated b taking the arcustangens of the x, y and z
directions. The angular spread is defined by:

Figure 4.1: α and β angles

~vgC = H ∗ ~vg (4.8)

~vC = (~vG1C , ~vG2C , ~vG3C) (4.9)

p̂ang(x, y, t) =
1

n

n∑
i=1

|ang(α, β)| (4.10)

where H is a two dimensional mean filter, ∗ denotes the convolution, ~vC is the
filter output for all three gradient directions, n is the number of pixels in the
neighbourhood, ˆangv(α, β) is defined as the angles for each 3D vector within the
neighbourhood as presented by Fig. (4.1), z is kept fixed for each iteration. This
process is repeated for each pixel in each slice of the dataset. The normalized
sum for systole of this neighbourhood around each voxel is used as an indicator
of whether or not the voxel is part of coherent blood flow. In order to follow



the suit of other features where a larger value means a larger probability for
coherent flow the values of p̂ang where modified as follows:

p̂ang(x, y, t) = |p̂ang −
√

2π| (4.11)

Structure tensor

By constructing a structure tensor and evaluating its eigenvalues and corre-
sponding eigenvectors it is possible to derive information about what direction
of flow within a volume is most prominent. Mv is a positive semi definite matrix
as defined by:

Mv = ~v~vT =

vG1

vG2

vG3

 [vG1
vG2

vG3

]
=

 v2G1
vG1vG2 vG1vG3

vG1vG2 v2G2
vG2vG3

vG1vG3 vG2vG3 v2G3

 (4.12)

M̂v = H ∗Mv (4.13)

where ∗ denotes the convolution, H is an average filter, z and t is fixed for each
iteration. M̂v has 3 eigenvalues; λ1, λ2, λ3, one for each direction in space. The
size of the eigenvalue is directly related to the amount of flow in the direction of
its eigenvector. If all flow would flow in the same direction there would only be
one large eigenvalue, λ1 = 1 and its eigenvector would be in the direction of the
flow. However there is usually flow in more than one direction, but in general
one eigenvalue is larger than the others.

For this method the largest eigenvalue was assessed as this corresponds to
the most dominant direction for flow within the neighbourhood. If there no
dominant direction in the neighbourhood the value of all eigenvalues will be
low, approximately 0.4. If there is coherent flow in the neighbourhood a single
direction should be more dominant than the others. This will yield one eigen-
value much higher than the others. Thus, voxels with coherent flow will yield a
higher max eigenvalue than a voxel with incoherent flow.

p̂tens =
1

n

n∑
i=1

max(eig(M̂v)) (4.14)

where n is the size of the neighbourhood. The value for this eigenvalue was
averaged during systole for each pixel within the slice. This is then repeated for
each pixel for each slice. A larger value of the feature indicates coherent flow.

Projected Velocity Magnitude

The last and most successful feature uses a combination of angle and magni-
tude. By letting all the 3D vectors within the neighbourhood project on the
median vector of the same neighbourhood an expression for projected velocity
magnitude, p̂proj(x, y, t), is achieved which is an indication of coherent flow.
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~vgC = H ∗ ~vg (4.15)

~vC = (~vG1C , ~vG2C , ~vG3C) (4.16)

p̂proj(x, y, t) =
1

n

n∑
i=1

~vi · ~vC (4.17)

where H is a two dimensional mean filter, ∗ denotes the convolution, ~vCn is
the filter output for all three gradient directions, n is the number of pixels in
the neighbourhood, ~vi is the a vector in the neighbourhood, ~vC is the median
3D vector and · denotes the scalar product of two vectors. This process is
afterwards repeated for all pixels and averaged over systole. If many of the
vectors within the neighbourhood are aligned in a similar direction they will all
project much of their magnitude on the median vector direction. However if
vectors within a neighbourhood are spread in different directions most of these
will project poorly onto the median vector and thus resulting a small output
for p̂proj . During systole the magnitude of the coherent flow within vessels is
large compared to its surroundings which further increases the effectiveness of
the feature.

4.4 Implementation of final algorithm

In the algorithm used for visualization the product of the projected velocity
magnitude feature and the actual magnitude image is used to finalize a proba-
bility map of the cardiovascular tree. It runs through all the slices of the input
dataset and returns a new dataset. Figure 4.2 illustrates the data flow.

Figure 4.2: Figure demonstrating the data flow through the different interfaces.
Starting from the left data is loaded into segment. In the middle the Vessel
Probability Module has been run creating a probability map. In the last picture
the data has been exported to the software Fourflow where and isosurface has
been applied to finalize visualization.

After the raw data has been acquired by the MR scanner three phase images
and one magnitude image are loaded into Segment [?]. Segment unwraps the
data and does some background correction of the images. The Vessel Probability
Module, which has been developed with this thesis, is a plugin to Segment.
When the data is loaded into Segment the plugin has two menu options:

1. Probability Map - This generates a new image stack with probability map
for vessel visualization.

2. Export to Fourflow - This option exports the data for vessel visualization
and subsequent quantification.



The first option initializes the velocity probability calculations. This calcu-
lates the product of the projected velocity magnitude feature and the magnitude
image. These are combined into a probability map, created in a new image stack
within the dataset. Once this is done running the second option, ”Export to
Fourflow”, runs a script to export the data into a format that fits Fourflow. Note
that both the velocity data from the three phase images and the probability map
is exported.

In Fourflow a simple isosurface is applied to the probability map in order to
visualize it in 3D space. The user can adjust the isosurface value up or down
depending on how important visualization of smaller blood vessels. A higher
value will allow visualization of small blood vessels within the lungs, however it
might lead bigger blood vessels to be visualized as joined together. For further
details see Section 5.3.2. Transparency of the visualized blood vessels can also
be altered and coloured in many ways if the operator chooses to.

With the visualization at hand further quantification of the flow data can be
done by for example simulating streamlines or particles within the volume at a
certain time and letting them follow the flow introduced by the velocity data.
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Figure 4.3: Schematic figure of the implementation showing the data flow from
start to finish. This thesis developed parts in red borders.
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Chapter 5

Results

5.1 Features

The results in this section are all show from the same clinical data from a healthy
volunteer and where possible the same slice and time frame. The size of the
data was 80× 80× 48, 48 being the number of slices in the dataset. Temporally
there are 15 time frames. The data was acquired at Lund University Hospital
from healthy volunteers with a 1.5 Tesla MRI machine with a voxel resolution
of 3× 3× 3 mm.

5.1.1 Local deviation

The local deviation was used primarily as an attempt to identify noise. Figure
(5.2) shows the noise in lungs and around the patient being highlighted with the
sum of deviations during diastole. In Figure 5.3 the maximum deviation during
systole is displayed. The low resolution causes the blood vessels to be included
along with the noise since the deviation in magnitude between 3 frames during
systole is huge, see Figure 2.5 in the section 2.2. These images are from the
phase image in z-direction.

27



Figure 5.1: Original phase image in z-direction. Notice the substantial noise in
the lungs and on the edges in the picture. This noise occurs because it is air.
The most noticeable vessel is the aorta. Both the ascending and descending
part of the aorta are marked with the white arrows.

Figure 5.2: The sum of deviations during diastole. The noise in the lungs and
around the patient caused by air is highlighted by the feature without including
any of the blood vessels.
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Figure 5.3: The max deviation during systole. The low time resolution leads
the aorta to be included when observing max deviation during systole, marked
by whit arrows.



5.1.2 Angular spread

When visualizing this feature in Fourflow an isosurface threshold of 0.9 was
used. It is clearly visible in Figure 5.5 that this feature introduces a lot of noise
due to flow within tissue.

Figure 5.4: Illustration of the angular spread feature. Left: A higher lower value
corresponds to a coherent flow. Right:original magnitude image.

Figure 5.5: Visualisation in Fourflow using the angular spread feature. Notice
the hollow points in aorta marked by the arrows. Isosurface is 0.9

30



CHAPTER 5. RESULTS 31

5.1.3 Tensor

As with angular spread, visualizing this feature in Fourflow an isosurface thresh-
old of 0.9 was used. This feature yields a much smoother visualization than the
angular spread feature. However, it is filled with noise introduced by flow in
tissue. Notice how the pectoral musculature is visible to the left and that the
cardiac musculature around the ventricles is visualized, Figure 5.7.

Figure 5.6: Left: Image displaying the tensor feature. A higher value corre-
sponds to a coherent flow. Right: The original magnitude image

Figure 5.7: Visualisation in Fourflow using the tensor feature. Isosurface is 0.9.
Notice visualization of vessel and the noise from pectoral (white) and cardiac
tissue (red).



5.1.4 Projected velocity magnitude

By projecting onto the mean direction within a neighbourhood the projected
velocity magnitude feature identifies the cardiovascular vessel tree. The isosur-
face for this feature is set to 0.1 which is considerably lower than the angular
spread and tensor features. Notice how the noise from surrounding tissue has
been eliminated and the cardiovascular tree is clearly visualized.

Figure 5.8: Left: Image displaying the tensor feature. A higher value corre-
sponds to a coherent flow. Right: The original magnitude image.

Figure 5.9: Visualisation in Fourflow using the projected velocity magnitude
feature. Isosurface is set to 0.1.
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5.2 Final algorithm

For the final algorithm the projected velocity magnitude feature is comple-
mented by combining it with information from the magnitude image. The result
is further filtering of visual artefacts introduced by tissue and noise. Although
the spatial resolution is similar for all datasets, the time resolution can vary to a
much higher degree. Using the algorithm on datasets with higher time resolution
yields much better visualization of the smaller vessels within the lungs.

Figure 5.10: Top: Projected velocity magnitude weighted down with informa-
tion from the magnitude image. Bottom: Projected velocity magnitude feature.



Figure 5.11: Comparing different features. Top left is visualization with angular
spread. Top Right is visualization with tensor feature. Bottom right is visual-
ization with the final algorithm and the Bottom left is the previous method.
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5.3 Validation

5.3.1 Time resolution

A larger time resolution yields better results with low isosurface values. Below
is an image of the same patient data but with different temporal resolution.
The low resolution had a time window of 15 while the high resolution data had
40 time frames. Spatial resolution 80× 80× 48.

Figure 5.12: Data with low temporal resolution. Isosurface set to 0.03

Figure 5.13: Data with high temporal resolution. Isosurface set to 0.03



5.3.2 Isosurface values

It is possible to decide in how much detail of the cardiovascular tree gets vi-
sualized by setting different thresholds. Lowering the value will lead to more
information gathered by the vessel probability algorithm to be included in the
visualization. Lowering this value makes it possible to identify small bloodvessel,
but the image can feel bloated.

Figure 5.14: The same data with different values of the isosurface.
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5.3.3 Previous method

The previous visualization utilized an isosurface with a threshold set to the
square sum of the phase images. The user would then find an appropriate
time frame and isosurface threshold, usually during systole, to try and achieve
visualization. Below are images acquired with this method that have been
tweaked to the best possible visualization regarding isosurface threshold and
time selection.

Figure 5.15: Previous visualization in Fourflow. Isosurface is set to 0.1 and the
time is the peak of systole.

Figure 5.16: Previous visualization in Fourflow. Isosurface is set to 0.1 and the
time is the peak of systole.



5.3.4 Applications

It is often of great use to use transparent visualization of the cardiovascular tree
in conjunction with flow quantification tools within Fourflow. Streamlines can
be introduced which will be influenced by the flow data. Using this tool shows
how all the flow is moving within the visualized blood vessels.

Figure 5.17: Visualizing streamlines within the cardiovascular tree during one
systole timeframe
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Figure 5.18: Top: Projected velocity magnitude feature. The marked red area
is the left atrium which is not visualized. Bottom: Tensor feature in green
showing more noise but a more pronounced visualisation of flow in the atrium
and the connecting veins from the lungs
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Chapter 6

Discussion and Conclusions

6.1 Discussion

The previous method of using the magnitude of the combined phase, Figure
5.15-16, manages to visualize parts of the aorta and pulmonaris, but there is a
substantial amount of noise making identification and orientation difficult. The
algorithm developed in this thesis manages to automatically visualize the entire
vessel tree to an acceptable accuracy.

However the algorithm has some weak spots. Being restricted to measuring
during systole certain vessels which don’t see much flow during this time are
not very prominent. Looking at results from the tensor feature in Figure 5.18 it
shows a more clear visualization of the pulmonary veins than the final algorithm.
However, it performs much worse for the rest of the cardiovascular system as
seen in Figure 5.7.

6.1.1 Different features

Several of the different features introduced in this thesis show some interest-
ing results. The simple local deviation feature failed to identify coherent flow.
However it did succeed rather well in identifying noise introduced by air in the
images when applied during diastole. This could be used as a pre-preprocessing
method to further improve visualization.

All of the 3D vector analysis methods show rather promising results. They
all effectively identify the blood vessels to a varying degree. It is clear that the
helical flow within the aorta presents an issue when using the angular spread
feature as the resulting visualization is hollowed out in the aorta descending.
However the angular spread and tensor features have tenancies to include tissue.
These two features only take the direction of flow into account. Inside tissue
there is some sort of coherent flow which is most likely the reason they show up
with these methods.

Projected velocity magnitude works well because it also takes the amplitude
of the flow into account. During systole there is a large amount of flow within
the blood vessels. While there is still coherent flow within surrounding tissue
the magnitude of this flow is but a fraction of that within the blood vessels. This
way the simple feature makes use of two of the main identifying characteristics
of flow within the blood vessels.
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6.1.2 Accuracy of final visualization

The results shown in this thesis presents a fairly complete visualization of the
cardiovascular tree. When the sensitivity of the isosurface is high even the
smaller branches of the pulmonary arteries and veins are visible. Although these
visualizations do not give a fully accurate image due the fact that it freezes the
time frame this is acceptable considering the purpose is only to automatically
visualize the cardiovascular tree. These visualizations themselves are not a
direct part of any quantitative analysis and thus the fact that the vessels at a
certain part of the cardiac cycle might not be at the exact same location and
size of the visualization is irrelevant.

6.1.3 Further improvement

Combining features

By combining several of the features the vessel probability map might be im-
proved. The local deviation could be used to subdue noise prior to preprocessing.
The tensor feature shows a higher sensitivity to noise and an ability to more
easily visualize vessels that do not have any prominent flow during systole. A
combination of the tensor and projected velocity magnitude features could lead
to better visualization of smaller blood vessels, but it would require to remove
noise from the tensor feature introduced by surrounding tissue. However the
combination of features would also lead to a substantial increase in computation
time. The possible gain from combining features has to outweigh the increase
in computation time.

Computation time

The biggest weakness of the algorithm is the computation time. For a dataset
with time resolution of 15 frames it takes roughly 4.5 minutes to run the algo-
rithm. The data in this dataset is gathered prospectively. If the data is gathered
retro prospectively you have up to 40 time frames. this almost triples the size
of the dataset and the computation time for a dataset this large takes around
12 min. The code of the algorithm can optimized for faster execution and less
memory consumption. It is written completely in MATLAB and if one was op-
timize the code in for example C or any other lower level language computation
time would probably be reduced significantly.

User interface

At the moment the user has to:

1. Load data into Segment and run the Vessel Probability Module.

2. Export the probability map created in Segment new Fourflow compatible
files.

3. Load data and apply the isosurface.

It would be beneficial to include the Vessel Probability module and file ex-
portation in Fourflow to avoid having to use two different programs. The final

42



CHAPTER 6. DISCUSSION AND CONCLUSIONS 43

visualization is used to aid the user in Fourflow and thus the commands to
achieve visualization should be within Fourflow. This is doable without too
much work, but something that there was not time to implement with this
thesis.

6.2 Conclusion

The algorithm developed in this thesis shows great potential in visualization of
the cardiovascular tree from 4D PC-MRI images. From Figure 5.13 all of the
major vessels can be located and identified. This visual information allows the
user to fast and accurately focus on regions of interest for further quantification
and analysis of flow data. Further work may include combining features and
optimizing the code for optimal performance.
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