

ATC Airport Builder

- A shapefile tool for simulation purposes.

LTH School of Engineering at Campus Helsingborg

Computer Science

Bachelor thesis:
Anna Di Julio
Mikael Karlsson

 Copyright Anna Di Julio, Mikael Karlsson

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
E-husets tryckeri
Lunds universitet
Lund 2013

Abstract
Saab supplies the global market with products, services and solutions ranging

from military defense to civil security. One of their many offices is located in

Helsingborg where a new product for training air traffic controllers (Saab

ATC training solution) is developed. This product offers air traffic control

students a realistic 3d environment where they may go through a variety of

supervised air traffic control scenarios. In order to stay ahead of competitors,

Saab strives to continuously improve their products. Today, it is possible to

add airports to the Saab ATC training solution; however, this is a tedious

process. Another area of improvement is the way in which map information is

utilised in the simulator. Currently, the simulator knows very little about

airport environments. By utilising existing map data, the simulator can make

more intelligent decisions inside airport areas. This thesis describes how map

information in existing shapefiles can be used to enhance airport simulation.

In addition, this thesis, describe how the existing 3d engine can benefit from

shapefile data.

A prototype, ATC AirportBuilder, has been created to prepare map

information for further use by the Saab ATC training solution. ATC

AirportBuilder imports shape file data, adapts and exports it to a database. An

analysis has also been conducted where several integration possibilities with

the simulator and the 3d engine have been evaluated.

Keywords: Shapefile, GIS, Air Traffic Control, SharpMap, GDAL, Simulator

Sammanfattning
Saab förser den globala marknaden med världsledande lösningar, produkter

och tjänster som sträcker sig från militärt försvar till civil säkerhet. Ett av

Saabs många kontor ligger i Helsingborg, där en ny produkt för träning av

flygledare (Saab ATC training solution) utvecklas. Produkten erbjuder

flygledarelever en verklighetstrogen 3d-miljö i vilken de kan genomgå olika

kontrollerade flygledarscenarion. För att ligga steget före konkurrenter vill

Saab kontinuerligt förbättra sina produkter. I nuläget är det möjligt att lägga

till nya flygplatser till Saab ATC training solution men det är en tidskrävande

process. Ett annat förbättringsområde är hur kartinformation utnyttjas i

simulatorn. Simulatorn vet i dagsläget väldigt lite om flygplatsmiljön. Genom

att utnyttja befintlig kartdata skulle simulatorn kunna ta mer intelligenta beslut

inom flygplatsområdet. Detta examensarbete undersöker hur kartinformation i

redan existerande shapefiler kan utnyttjas för att förbättra flygplatssimulering.

Därförutom beskrivs i detta examensarbete hur den befintliga 3d motorn kan

utnyttja shapefile data.

En prototyp, ATC AirportBuilder, har skapats för att förbereda

kartinformationen för att användas vidare i ATC training solution. ATC

AirportBuilder importerar shapefile data, anpassar samt exporterar den till en

databas. En analys har även genomförts där olika integrationsmöjligheter med

simulator och 3d-engine utretts.

Nyckelord: Shapefile, GIS, Air Traffic Control, SharpMap, GDAL, Simulator

Foreword
This thesis project was conducted by two students at Lund University, LTH

School of Engineering. The thesis and associated prototype are the result of a

project initiated by Saab in Helsingborg.

We would like to thank our examiner at LTH, Christin Lindholm for

continuous support. The employees at Saab deserve our thanks for all

questions answered, doors opened, and encouraging conversations. Foremost,

we would like to thank our main advisor, Mathias Lubera, whose ideas have

contributed greatly to this thesis. In addition, his helpful discussions and

guidance throughout the entire thesis project has enhanced the quality of this

work.

Finally, we would like to thank Victor Sandberg and Daniel Thunberg for

many interesting conversations on related topics.

List of contents

1 Background ... 1

1.1 Air traffic control ... 1

1.2 Saab, technology & systems ... 2

1.2.1 Saab ATC solution ... 2

1.2.2 Windows Presentation Foundation 3

1.2.3 WISE .. 4

1.2.4 ATSsim ... 5

1.2.5 3D engine ... 6

1.3 Geographic Information Systems (GIS) 6

1.3.1 ESRI shapefiles .. 7

1.3.2 Falken .. 8

1.3.3 GDAL/OGR .. 8

1.3.4 SharpMap ... 8

2 Problem description .. 8

2.1 Visions ... 9

2.2 Scope ... 10

2.2.1 Design of ATC AirportBuilder database 10

2.2.2 Design and implementation of the ATC AirportBuilder Wizard
 .. 10

2.2.3 Performance test of shapefile display technology 10

2.3 Limitations ... 10

3 Method ... 11

3.1 Project model .. 11

3.2 Project structure ... 13

3.2.1 Shapefile Analysis .. 13

3.2.2 Database model and data analysis 13

3.2.3 Implementation of ATC AirportBuilder Wizard 13

3.2.4 Performance ... 14

3.2.5 Integration .. 14

3.2.6 Information gathering ... 14

3.3 Source criticism .. 15

4 Analysis ... 15

4.1 Shapefile Analysis .. 15

4.2 Database model and data analysis .. 20

4.2.1 Airport-related data ... 20

4.2.2 Area-related data .. 21

4.3 Implementation ... 22

4.3.1 Examining libraries ... 23

4.3.2 Graphical user interface ... 23

4.3.3 Library integration .. 24

4.3.4 Database handler and data model 26

4.3.5 Spatial references and coordinate transformation 27

4.4 Performance analysis ... 27

4.5 Integration analysis .. 30

4.5.1 ATSsim integration ... 30

4.5.2 3D engine integration ... 32

5 Results ... 32

5.1 Shapefile results ... 32

5.2 Database model and data results .. 33

5.2.1 Tables .. 33

5.2.1.1 Airport-related data tables .. 33

5.2.1.2 Area-related data tables... 34

5.3 Implementation results and possible future work 35

5.4 Performance results ... 39

5.5 Integration results and possible future work 40

6 Conclusion .. 41

7 Terminology .. 43

8 Appendix ... 44

8.1 Falken object types .. 44

8.2 Data table relationships ... 45

1

1 Background

Saab supplies the global market with a multitude of different world-leading

solutions, products and services, ranging from military defense to civil

security. In order to stay sharp Saab constantly develops, adopts and improves

new technology to meet customers’ changing needs on all continents.
1

In this thesis the development of a prototype made to improve such

technology is discussed and evaluated. Saab develops management systems

for training and simulation. Within this field Saab has recently launched a new

product for training of air traffic controllers. (Saab ATC solution). This system

consists of several different parts. Two out of which are a simulator

(ATSsim)where scenarios can be created and a 3d engine providing the

students with 3d environments of airports. A customer need that has been

brought into light is the possibility to add new airports to their system. This

can be done today but the process is cumbersome as it requires manual

modelling of airport data to create corresponding 3d environments.
2

This is where this thesis fits in as it discusses a method in which the modeling

of airport data can be simplified. A prototype is made for viewing and

modifying airport data in a simple manner, preparing this data for possible

future automatic 3d mapping.

1.1 Air traffic control

Air traffic control (ATC), a service providing directions to aircrafts on the

ground or through controlled airspace. The main purpose of this service,

provided by ground-based controllers is to keep distances between aircrafts in

the system. Apart from collision avoidance, the ATC system is to make more

efficient use of airspace and provide additional service to pilots. Such services

may be navigational assistance or weather avoidance.

The ATC services provided may vary in different countries, where some

provide no ATC services at all. Definitions for different airspace operations

and classes of which aircrafts may operate have been defined by The

1
 SAAB AB, 2013. Saab in brief, http://www.saabgroup.com/en/About-Saab/Company-profile/Saab-in-

brief/(Accessed 2013-05-21).
2
 Lubera, Mathias; Software Engineer, Saab Training and Simulation. WISE connectivity, lecture, 2013-04-

04.

http://www.saabgroup.com/en/About-Saab/Company-profile/Saab-in-brief/
http://www.saabgroup.com/en/About-Saab/Company-profile/Saab-in-brief/

2

International Civil Aviation Organization (ICAO). These very specific

guidelines help unite differences between different nations.
3

1.2 Saab, technology & systems

Saab (Svenska Aeroplan AB) was founded in 1937 in the city of Trollhättan

where the production of flight military units starts. In 1944 Saab expanded its

marketing targets with civil aircrafts and two years later (1946) the first Saab

car project saw daylight. In the 1950
th
 as aircrafts became continuously more

complex in terms of their systems. Saab’s focus lay now not only on airframes

but also on control systems, autopilots navigation and sighting equipment etc.
4

Today Saab Security & Defense Solutions Training & Simulation in

Helsingborg is one of Saab’s many branches, developing training solutions,

mostly for military training. Still, some of their solutions are intended for civil

use, one of which is their air traffic control training system, Saab ATC

solution.

1.2.1 Saab ATC solution
The Saab ATC solution (Figure 1) is a training system in which air traffic

control students may practice in a realistic, simulated environment. The

student is seated at a desk inside the ATC trainer TWR that simulates the

environment surrounding the air traffic control tower. Throughout an exercise

the air traffic control tower student takes on the responsibilities of an air traffic

controller. This means that the student has to react to situations like changing

weather conditions and airplanes wanting to land. He or she must provide

pilots with necessary information and direct them to avoid accidents and make

efficient use of airspace.

During a training session, a number of IATS Clients are used. These are

controlled by teachers or students that control airplanes and other scenario

related entities throughout the scenario. It is with these teachers and students

the air traffic control tower student communicates throughout the exercise as

though they were the actual pilots.

The scenarios that students are to work through are first created by an air

traffic control teacher in the scenario management. It is in the scenario

management that new taxi routes are created and weather conditions can be

defined. Once scenarios have been created in the manager a session can start

for a student in the ATC Trainer TWR. These scenarios are saved for future

use.

3
 Wise, John. Hopkin, David and Garland Daniel. Handbook of Aviation Human Factors, Second Edition.

CRC Press 2009. http://theblackswaninvestmentclub.com/flight_manuals/human%20factors.pdf pg. 20-2

(Accessed 2013-05-21)
4
 SAAB AB. 2013, Saab Historic Milestones, http://www.saabgroup.com/en/About-Saab/Saab-

History/Timeline/ (Accessed 2013-05-21)

http://theblackswaninvestmentclub.com/flight_manuals/human%20factors.pdf
http://www.saabgroup.com/en/About-Saab/Saab-History/Timeline/
http://www.saabgroup.com/en/About-Saab/Saab-History/Timeline/

3

It is the ATC Simulator (ATSsim) that holds the most intelligence in the Saab

ATC training solution. ATSsim keeps track of the location of all aircrafts in a

scenario and calculates their movements depending on speed, direction and

other parameters.

WISE is the database that ties all these different parts together ensuring

smooth communication between them.

Figure 1: SAAB ATC solution

1.2.2 Windows Presentation Foundation
Today much of the Saab development in Helsingborg is done in .NET. For

graphical interfaces Windows Presentation Foundation (WPF) is often used.
2

WPF is a Windows client based system for development of graphical .NET

applications. Developing in WPF involves the creation of XAML (extensible

application markup language) markup code, the backbone of the graphical

elements and the creation of the underlying .NET code (in this case C#). One

of the advantages of WPF is this division making it easier to divide work

between a developer/designer specialized in the creation of user interfaces and

the .NET developer. Visible user interface elements may be created in the

XAML markup (the .xaml file) while all the run-time logic is created in

separate files linked to markup objects.
5
 XAML is in many ways similar to

other markup languages such as HTML in combination with CSS allowing the

developer/designer to use styles to change several graphical elements in one

5
 Garofalo, R. Applied WPF 4 in context. Berkley: APress, 2011.

http://link.springer.com.ludwig.lub.lu.se/content/pdf/10.1007%2F978-1-4302-3471-5_1.pdf (Accessed 2013-

05-21)

http://link.springer.com.ludwig.lub.lu.se/content/pdf/10.1007%2F978-1-4302-3471-5_1.pdf

4

place. Separating appearance-specific markup and underlying code may also

reduce maintenance time as changes in one may not interfere with the other.

Another advantage is the speed in which graphical interfaces can be created

and modified with the help of XAML. WPF has default controls and

containers with predefined graphical looks that can be used and/or modified

with just a few lines of XAML code. This gives the developer/designer much

freedom but also the tools to quickly create graphical interfaces.
6

1.2.3 WISE
Widely Integrated Systems Environment (WISE) is an information-centric

integration architecture combining the numerous applications within Saab

(Figure 1). Before the development of WISE, the integration principle of

SAAB training systems was application-centric, meaning that only two

systems were involved and directly connected to one another. (Figure 2) This

required both systems to be adapted to the same protocol. As the need to

integrate more systems arose, so did the need for new integration architecture.

The first step was to use one shared protocol through which data could be

exchanged. This protocol-centric integration principle allowed for more

systems to be integrated but at the cost of flexibility. Each application’s end

was connected to the integration system through one common protocol. Thus

changes at one end of the system often resulted in necessary adoptions

throughout all endpoints of the applications.
7

6
 Microsoft, 2013, Introduction to WPF, http://msdn.microsoft.com/en-us/library/aa970268.aspx (Accessed

2013-05-21)
7
 SAAB AB,

http://www.saabgroup.com/Global/Documents%20and%20Images/Land/Collaborative%20Training/pdf%20a

nd%20thumbnails/Saab_WISE_Concept.pdf (Accessed 2012-05-21)

http://msdn.microsoft.com/en-us/library/aa970268.aspx
http://www.saabgroup.com/Global/Documents%20and%20Images/Land/Collaborative%20Training/pdf%20and%20thumbnails/Saab_WISE_Concept.pdf
http://www.saabgroup.com/Global/Documents%20and%20Images/Land/Collaborative%20Training/pdf%20and%20thumbnails/Saab_WISE_Concept.pdf

5

8
Figure 2: WISE evolution

In 2005 Tobias Almén at Saab Helsingborg started the process of taking the

integration architecture of the system to yet another level. The result, released

the same year became known as WISE. It is an information-centric integration

architecture allowing for data exchange throughout the system regardless of

the different application technologies. By moving the integration points away

from the application into the information infrastructure, integration was no

longer dependent on the specific technologies of the applications. Instead

integration was dealt with through drivers at the WISE server allowing for

enhanced system development.
2

1.2.4 ATSsim
The ATSsim is the aircraft simulator of Saab’s air traffic control training

system written in C++. It contains no graphical interface as its main task is to

simulate aircraft movement. Every tic (one second), the simulator performs all

necessary calculations to find the current position of an aircraft depending on

parameters, such as speed and direction in the WISE database. In reality, a tic

may be divided into even smaller units where different calculations and checks

take place. The ATSsim is aware of ground height, available landing points

and positions of all aircraft. It has functionality to detect collision between

aircrafts. That is as far as the ATSsim intelligence goes in terms of knowledge

of spatial reference. The ATSsim can for example not detect a collision with a

building, and allows takeoffs from oceans.
9

8
 SAAB AB, [online image]

http://www.saabgroup.com/Global/Documents%20and%20Images/Land/Collaborative%20Training/pdf%20a

nd%20thumbnails/Saab_WISE_Concept.pdf (Accessed 2012-05-21)
9
 Lubera, Mathias; Software Engineer, Saab Training and Simulation. ATSsim, informal conversation, 2013-

05-13.

http://www.saabgroup.com/Global/Documents%20and%20Images/Land/Collaborative%20Training/pdf%20and%20thumbnails/Saab_WISE_Concept.pdf
http://www.saabgroup.com/Global/Documents%20and%20Images/Land/Collaborative%20Training/pdf%20and%20thumbnails/Saab_WISE_Concept.pdf

6

1.2.5 3D engine
Saab’s air traffic control training system 3d engine communicates with the

system through WISE. It is the part of the system responsible for generating

3d environments. The 3d environment in the 3d engine must first be modelled

manually by a 3d modeller (for example a SAAB employee or SAAB

customer). This model within the 3d engine is separated from the 2d world

rendered in the client. Hence, if the 2d world is changed, the 3d world within

the 3d engine needs manual adjustments accordingly.
2

1.3 Geographic Information Systems (GIS)

Geographic information has been stored for centuries as content on maps or

observation records on paper. As geographic information was later also

handled digitally on computers, providing possibilities for quicker processing

and more precise computations, the interest in digital geographic information

systems arose. In the mid-1960s GIS was created to achieve just this.
10

The purpose of Geographic information systems is to describe the known

positions of geographic objects on earth’s surface. To define these positions in

a uniform manner a coordinate system is used. Geographic coordinate systems

specify a position by a set of numbers or letters, typically longitude and

latitude and height. Latitude (φ) represents the north-south position and ranges

from -90˚ to +90˚ where 0˚ is along the equator and longitude (λ) represents

the west-east position and ranges from -180˚ to +180˚ where 0˚ is along the

prime meridian (usually the plane through Greenwich but can be any arbitrary

meridian).
11

As a position is always relative to a reference, geodetic reference systems are

used to specify this relationship. The ability to specify different reference

systems allow for more precise measurements where needed, e.g. on local

levels. It would however be ideal if the same system could be used world-

wide.

The two-dimensional reference system RT90, which is based on the ellipsoid

Bessel 1841 and the Gauss-Krüger conformal cylindrical projection, was the

standard reference system in Sweden up until 2006, and is since being phased

out.
12

 The three-dimensional reference system SWEREF 99 replaced RT90 in

10

 Goodchild, M. F. International Encyclopedia of Human Geography, Santa Barbara, Elsevier, 2009, pp.

526-531, Available from scienceDirect (Accessed 2013-04-11)
11

 Eklundh, Lars. Geografisk informationsbehandling: Metoder och Tillämpningar, Västerås, formas, 2003

pp. 67-89.
12

 Lantmäteriet, 2013, RT 90-Lantmäteriet, http://www.lantmateriet.se/Kartor-och-geografisk-

information/GPS-och-geodetisk-matning/Referenssystem/Tvadimensionella-system/RT-90/ (Accessed 2013-

05-08)

http://www.lantmateriet.se/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/Referenssystem/Tvadimensionella-system/RT-90/
http://www.lantmateriet.se/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/Referenssystem/Tvadimensionella-system/RT-90/

7

2007. It deviates approximately 0.5 metres from WGS84, the reference system

used by the Global Positioning System, and can therefore be regarded as

identical in many applications considering the fact that the uncertainty of

WGS84 generally is about 10 metres.

To transfer geodetic coordinates to a flat surface, map projection techniques

are used as described in
13

 Unfortunately, it is theoretically impossible to create

a perfect projection of an ellipsoid on a flat surface and therefore the result of

all map projections is distorted in shape, area or distance. The coordinates are

usually transformed using complex mathematical functions, but can generally

be described as:

Where φ represents geodetic latitude and λ geodetic longitude, and x, y are

coordinates in the flat projection plane.

One of the iconic concepts of GIS, is the principle of layers which allows for

data to be thematically organized in different layers. Another is the concept of

vector schemes identifying each feature on a map. Each feature is categorized

as either a point (represented by a pair of coordinates), lines/polylines

(represented by a sequence of pints connected by straight-line segments) or

polygons (represented by an area created by similar sequences connected in

loops).
10

1.3.1 ESRI shapefiles
The ESRI shapefile, which model was introduced in the late 1980’s, stores

spatial data features as points, polylines or polygons as well as their associated

attributes.
10

Today the ESRI shapefile is the most common shapefile standard. Each

“shape file” is composed of several files out of which the three files .shp, .shx

and .dbf, are mandatory.
14

A more thorough analysis of the ESRI shapefile structure can be found in

section 3.2.1.

13

 Lantmäteriet, 2013, Kartprojektionens grunder-Lantmäteriet, http://www.lantmateriet.se/Kartor-och-

geografisk-information/GPS-och-geodetisk-matning/Om-geodesi/Kartprojektioner/Kartprojektionens-

grunder/ (Accessed 2013-05-08)

14

 ESRI, ESRI Shapefile Technical Description http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

(Accessed 2013-04-11)

http://www.lantmateriet.se/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/Om-geodesi/Kartprojektioner/Kartprojektionens-grunder/
http://www.lantmateriet.se/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/Om-geodesi/Kartprojektioner/Kartprojektionens-grunder/
http://www.lantmateriet.se/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/Om-geodesi/Kartprojektioner/Kartprojektionens-grunder/
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

8

1.3.2 Falken
Falken is a standard with specific instructions on how map data (for example

the data in the ESRI .dbf shapefile) may be organized. The Falken1 document

consists of specifications regarding map data, used by SAAB training system

AB. The specifications have been gathered from several different sources out

of which luftfartsverket AIP, HKV/Luftfart, Anläggningar(TBANK),

FMV:Infosyst(GSD) are a few. Some of these specifications are relevant for

this work.

The map data is divided into different layers where each layer has been

assigned one shapefile. For each original layer only one kind of object is

allowed. The name of the file is to reflect this object type. Sometimes these

filenames are changed upon delivery to target system in order to reflect the

facility, rather than object type.
15

The different object types listed in Falken1 can be found in section 8.1.

1.3.3 GDAL/OGR
The Geospatial Data Abstraction Library (GDAL/OGR) released by the Open

Source Geospatial Foundation is a cross platform C++ library for raster

(GDAL) and vector (OGR) geospatial data formats. The library provides an

abstract data model that is shared between the supported formats. Although

the library is written in C++, the GDAL project also maintains generated C#

bindings for use with the .NET languages. OGR supports over 20 vector

formats.
16

1.3.4 SharpMap
SharpMap is an open source C# library based on the .NET 4.0 framework that

gives applications the possibility to access many types of GIS data and

provides the ability to execute spatial queries on said data. The library also

enables applications to render maps by providing developers with easy-to-use

controls for this purpose.
17

2 Problem description

The purpose of this thesis project is to find and test a solution in which data

from 2d shapefiles can be displayed and modified in a way that it may later

automatically create 2d airports in Saab’s air traffic control training client. The

15

 Combitech, Grundstruktur för kartdata i FALKEN1, 2006
16

 OSGeo, 2013, GDAL/OGR Info Sheet | OSGeo.org, http://www.osgeo.org/gdal_ogr (Accessed 2013-05-

08)
17

 Microsoft, 2013, SharpMap-Geospatial Application Framework for the CLR
http://sharpmap.codeplex.com/ (Accessed 2013-05-08)

http://www.osgeo.org/gdal_ogr
http://sharpmap.codeplex.com/

9

idea is that this data, modified in the thesis project prototype should be

integrated with the ATSsim (described in section 1.2.4) for more intelligent

aircraft simulations. Another vision is to also integrate this prototype with the

3d engine (described in section 1.2.5) in which by the help of further studies

3d environments may be generated through this data.

This involves a study of the structure of the ESRI shapefile to determine what

data can be used in the ATSsim and 3d engines. In order to sort out what data

is needed an understanding of the ATSsim, the 3d engine and airport

management is necessary. Another aspect of this work is decisions in how to

sort and store data gathered from the shapefiles.

Furthermore a graphical interface allowing users to view and modify shapefile

data is to be implemented in a WPF (described in section 1.2.2) based .NET

environment. This involves not only decisions on what libraries provide the

best support for this implementation, but also the implementation itself. This

graphical interface will from hereon be referred to as the ATC AirportBuilder

Wizard. The ATC AirportBuilder Wizard and all modifications in

communicating systems will be referred to as the ATC AirportBuilder.

Lastly, an analysis of how this graphical interface could best be integrated

with the ATSsim will be made.

The following questions will be answered in this thesis:

 What data is contained within a shapefile? Which of this data can be

used in the ATSsim and 3d engine?

 What data tables will be needed in the prototype to store airport related

shapefile data?

 How can shapefile data be viewed and modified? How CPU-demanding

is the method chosen for viewing shapefiles? What sort of modifications

may be necessary?

 How can the extracted information from shapefile data be integrated

with ATSsim?

2.1 Visions

By automating the process of airport creation in the 3d engine much time can

be saved. This is a feature that could enhance the Saab products giving them a

stronger stance among competitors. Also, the simulator ATSsim could benefit

as shapefile data could be used for better scenario management. Saab wants to

investigate how the ATSsim and 3d engine can benefit from the information

stored in shapefiles and how it can be incorporated into their products.

10

Their vision is to use data in existing shapefiles to generate 3d airport

environments. Another vision of theirs is to take advantage of shapefile data in

the ATSsim to enhance simulator intelligence. Saab hopes for these visions to,

in the future materialize into solutions for world-wide use.

2.2 Scope

2.2.1 Design of ATC AirportBuilder database
This thesis project will involve the design and implementation of the ATC

AirportBuilder database.

This database shall fulfil the following criteria:

 Be able to store all information found in a shapefile that may be of use

to the ATSsim and 3d engine.

 Store data that has been prepared to facilitate future integrations with

the ATSsim and 3d engine.

 Be adaptable to meet a global market.

2.2.2 Design and implementation of the ATC AirportBuilder Wizard
This thesis project will involve the design and implementation of the ATC

AirportBuilder Wizard.

This wizard shall fulfil the following criteria:

 Be able to graphically display the spatial content from shapefiles.

 Be able to manually modify area information (e.g. area type,

description, height) through a user friendly interface.

 Be able to sort areas in a logical manner.

 Be able to prepare, store, retrieve and delete information in the ATC

AirportBuilder database.

2.2.3 Performance test of shapefile display technology
This thesis project will involve a performance test in which the ATC

AirportBuilder Wizard’s shapefile display technology is tested.

This test shall fulfil the following criteria:

 Be able to determine how much CPU is needed by the technology to

display 400 moving points.

2.3 Limitations

The ATC AirportBuilder shall serve as a prototype and not as a finished

product. With future developments that lay outside the scope of this thesis, a

commercial product may be finalized.

This thesis project does for example not involve the integration between ATC

AirportBuilder Wizard, ATSsim and 3d engine. Nor does it provide specific

11

specifications for how it should be integrated. Instead it gives some broader

guidelines of how the integration task could be approached.

In the future it would be desirable to be able to modify the spatial data of an

area within the ATC AirportBuilder Wizard. This feature lay outside the scope

of this thesis project as well.

The performance test conducted in this thesis project is not to provide a

comparison between different similar technologies. However it does provide

some idea of how well or even if the technology would suffice when used in

more demanding circumstances.

3 Method

3.1 Project model

Since the scope of this thesis project involves many, to the authors, new

concepts, the thesis project is divided into smaller, more manageable tasks.

These tasks allow for flexible decision making where choices regarding the

next upcoming part can be made based on results of previous ones. Hence,

many pitfalls may be avoided.

12

Figure 3: Project Model chart

In order not to spend time on one task for too long a project model is created.

(Figure 3) This is also a way to gain an overview of the thesis project. The

thesis project is carried through with a quick iteration through each task

leaving flaws and unfinished issues. One final polishing cycle (The circle of

large blue arrows in Figure 3), iterating through the entire thesis project,

leaves room for corrections and smaller changes. This workflow allows for

some errors and mistakes that can be corrected during the final iteration. Being

able to use methods of “trial and error” is crucial when breaking new ground

and trying techniques unknown to the authors.

Another important part of the model chosen is the daily use of notebooks in

which thoughts, problems and decisions are noted in an informal manner.

These notes are composed by both authors individually. They are saved for

future reference, and also to create a platform for discussion and reflection.

Through daily meetings based on these notes, short and long term tasks are

prioritised and revised.

13

3.2 Project structure

The structure in which this project has been performed is divided into five

tasks;

1. The analysis of the shapefile.

2. The database model and data analysis.

3. The implementation of the ATC AirportBuilder Wizard.

4. The analysis of the ATC AirportBuilder Wizard technology

performance.

5. The analysis of the integration between the ATC AirportBuilder

Wizard, the ATSsim and 3dengine.

Each task requires information gathering which is performed before the start

of each new phase. As the need arises for more information during a phase,

occasional breaks in the process can be made to fill these gaps.

The tasks are ordered in chronological order of when they are to be performed

(with the exception of task 3 and task 4 that are performed in parallel to one

another). This is done because of the dependence relationship between them

where each task is dependent on the results of the previous one (Again, with

the exception of task 3 and 4 that have a mutual dependency relationship). It is

these dependences that lay the boundaries for the order of prioritisations of the

project. Since most tasks are dependent on previous tasks, a prioritisation

scheme congruent to chronological order becomes an obvious choice.

3.2.1 Shapefile Analysis
The first task is to find a way to access all data in a shapefile. The analysis

also involves some research in terms of how the spatial data is stored within

the file to ensure correctness of future data interpretation. Furthermore, the

remaining shapefile data is to be investigated to bring light to useful data.

3.2.2 Database model and data analysis
The database model is dependent on both the data in the shapefiles and the

information gathered regarding airports and the ATSsim and 3d engine. When

the information needed is gathered and after a discussion with the advisor at

Saab a database is created in Microsoft SQL server. This database contains

tables for those data from the shapefiles needed in the ATSsim and 3d engine.

3.2.3 Implementation of ATC AirportBuilder Wizard
This part of the thesis project is the most time consuming as it involves the

implementation of a prototype (ATC AirportBuilder Wizard). It also answers

the third question that links most of the other answers together. The ATC

AirportBuilder Wizard provides an interface to fill in possible gaps where

shapefile data is inadequate to meet the needs of future components.

14

This task involves many steps starting with viewing the graphical information

contained in a shapefile inside a .NET WPF application.

It also involves the making of a graphical .NET interface in which the

information in shapefiles can be modified and stored to the database. This

means decision making in terms of what sort of shapefile modifications may

be necessary and how this data is best stored to the database. Decisions

regarding what libraries to use for these modifications also have to be finalised

at this stage.

On top of this Saab also wants an estimation of how CPU-demanding the

method of choice is for viewing shapefiles. This demands the setup of a test-

case where performance of the graphical interface is tested at different

workloads.

3.2.4 Performance
The performance of the chosen method for viewing shapefiles is important to

take into account, firstly because it needs to be fast enough for use inside the

ATC AirportBuilder Wizard, but it is also important from a broader

perspective. It is important to Saab to see if the chosen method is performing

sufficiently well to be reusable in future applications.

This demands the setup of a test-case where performance of the method is

tested at different workloads.

3.2.5 Integration
One vision of this thesis project is to enable future automatic 3d mapping from

shapefile data to the air traffic control training systems. This requires the ATC

AirportBuilder to be integrated with not only the simulator but also the 3d

engine. Such implementation of the prototype lies outside the scope of this

thesis project. However, a smaller analysis of how this implementation could

be done in the future is done during the integration part of the thesis project.

3.2.6 Information gathering
At the start of the thesis project a class is taken on the basics of air control

management. It provides some of the necessary understanding of how air

traffic control management works, hence what parts are important in a training

simulation program. The class also provides an understanding of the domain

specific terms linked to air traffic control management.

The material listed in the footnotes is read throughout the project as the need

arises. At times the Saab advisor and other employees at Saab are consulted

for advice and further insights. This information provides the backbone for

decision making in the thesis project.

15

Also a lecture is given by Mathias Lubera, the advisor at Saab, about WISE

and how it is connected to the reset of Saab’s ATC solution. Notes from this

occasion provide valuable help in understanding the basics of the system

communications.

Throughout the entire thesis project, Lubera and other Saab employees have

provided valuable input through discussions and by answering questions.

3.3 Source criticism

In this thesis project the aim has been to use many reliable and independent

sources and to when possible check primary sources. Also, when possible,

information from different independent sources has been compared to ensure

reliability. Unfortunately this has not always been achievable. This thesis

contains much information from a variety of fields ranging from air traffic

control to the specifications of the ESRI shapefile. Some of these fields being

rather narrow, finding several sources provided by independent objective

sources proved at times not possible. It is worth noting that some of the

documentation that has been used was provided by larger commercial

corporations such as Microsoft and Saab. Organisations, corporations and

other sometimes bias groups/individuals may according to Kristina

Alexanderson produce facts where their own interests are incorporated,

thereby weakening the reliability of the facts.
18

 This is something that has

been kept in mind throughout each research phase of the thesis project. While

awareness may help to avoid unreliable facts from slipping through, it is no

guarantee.

Another observation that may bring some concern is that the vast majority of

sources in this thesis are gathered from internet sources.

4 Analysis

4.1 Shapefile Analysis

Since the common shapefile standard is created by ESRI the search for ways

to examine these files started with ESRIs own products. Free trial versions of

the software ArcMap and ArcCatalog were used to open and view shapefiles

from one of Saab’s fabricated, virtual airports; VIRUM.

Some research was done concurrently for a better understanding of what was

seen. Some of these findings are discussed in this section.

18

 Kristina Alexanderson. 2012. Källkritik på Internet, https://iis.se/docs/Kallkritik-pa-Internet.pdf (Accessed

2013-05-21)

https://iis.se/docs/Kallkritik-pa-Internet.pdf

16

Each shapefile contain the following files;

.shp is the “main” file containing all the geographical information.

.shx is the “index”-file containing indexing allowing for quick access of

objects.

.dbf is the “attribute”-file containing miscellaneous data as attributes. One

example of an attribute is: “ObjectType: Water.”
14

In order to organize the different spatial information within the .shp file in a

logical manner that is always interpreted the same way standardisation is

essential. Each .shp file may only contain one shape type (specified in the

shape file record) out of (null shape, point, arc, polygon, multipoint). The

geometric data for the shape is followed directly after the shape type

specification. This geometric data is stored in the shape file record according

to shape type;

A null shape, represented by #0, has no geometric data.

A point shape, represented by #1, consists of a pair of coordinates X and Y.

A multipoint shape, represented by #2, consists of a set of points. The data is

structured as follows: First the bounding box (4 double values giving Xmin,

Ymin, Xmax and Ymax of all points), then an integer giving the total number

of points and lastly the points in the shape.
19

An arc shape, represented by #3, may consist of multiple PolyLines (ordered

set of vertices). These PolyLines may or may not be connected to one another.

The data is structured as follows: First the bounding box, then an integer

giving the total number of PolyLines, then an integer giving the total number

of Points, then an array of length NumParts. The array stores the index of the

first point for each PolyLine in the points array. Lastly, there is an array of

length NumPoints.

A polygon shape, represented by #4 consists of a number of closed, non-self-

intersecting loops defined as rings.
19

 Since a polygon may contain multiple

outer rings, a way of defining what is part of the polygon area, and what is a

“hole” in the area becomes essential. ESRI has defined this as:

“The order of vertices or orientation for a

ring indicates which side of the ring is interior of the polygon. The neighbourhood to the

19

 ESRI, ESRI Shapefile Technical Description, pp. 4-6.

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf (Accessed 2013-04-11)

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

17

right of an observer walking along the ring in vertex order is the neighbourhood inside the
polygon. Vertices of rings defining holes in polygons are in a counterclockwise
direction. Vertices for a single, ringed polygon are, therefore, always in clockwise order.”

The structure of the polygon file is identical to the one of the arc shape.

Apart from spatial data, the ESRI shapefile also allows for storage of

attributes, stored in the .dbf file.
14

Spatial information in the files could be viewed using ArcMap, where each

.shp file could be displayed as a separate layer. By opening the layers attribute

table the data contained within the .dbf files could also be viewed. Most of the

VIRUM .dbf files contained the following table: (Figure 4)

Figure 4: VIRUM files viewed through ArcMap

This information given by ArcMap was also compared to the information

given from a third party program, “DBF Viewer plus”. The information from

both programs was found to agree: (Figure 5)

18

Figure 5 : VIRUM .dbf files viewed through DBF Viewer plus

In order to later manipulate shapefile data, the raw spatial data was also

needed. This is information that claimed impossible to gather through these

programs without spending further time learning about their specific

functionalities. In accordance with the project model decisions were made to

progress without these findings. The fact that the ESRI shapefiles were so well

documented, providing this information, further supported this decision.

One thing found in the ESRI shapefile documentation that proved important is

the way “holes” were represented in the data. (p. 21 Figure 7) This

information was to be important later when designing the database.

Another important finding is the possibilities of varying .dbf file content. In

contrast to the .shp file content the content of the .dbf file is undefined,

allowing different kinds of fields and data.
14

In order to, at a future point, make 3d models based on the information from

the 2d-shapefiles, height data is desirable. As expected height information is

not provided in the sample files. However, most of the VIRUM shapefiles

contained a field called “OBJTYP” (object type) in the corresponding .dbf

file. Different OBJTYPs were for example “GRÄS” (grass), “BYGGNAD”

(building) and “BANA” (runway). While this information does not directly

provide height specifications, some general conclusions can be drawn.

Considering the main use of the 3d engine which primarily serves air control

training purposes, these general conclusions may give sufficient accuracy. If

the ATC AirportBuilder software could utilize OBJTYP data, translating this

19

information into height and rendering information according to a given

scheme, much tedious work could be saved by this application.

One problem with this approach is that not all .dbf files contain “OBJTYP”

data. This is likely to happen in those cases where the Falken standard

(described in section 1.3.2) is not followed. If for some reason this data is

missing, the application needs an alternative way of dealing with height and

rendering aspects. This omission of the “OBJTYP” field and data is possible

due to the generous .dbf content rules. Since the fields in the .dbf file can

contain infinite combinations of different fields with data, or even none at all,

finding a solution becomes important. Although, the Falken standard might

provide an answer, this is hardly lasting. Even within the VIRUM files (that

supposedly follow the Falken standard) deviations were found. Also, Falken is

a Swedish standard, with Saab being a highly internationalized company

basing an application on a Swedish standard, using definitions in Swedish,

quickly becomes limiting. As one of the future goals of this thesis project is to

provide a less labour-demanding way off adding new airports to air traffic

control training systems world-wide, allowing for many different standards

seem a better choice. A decision was made to take these “issues” into account

during the implementation phase, where they can be tended to.

Another possible problem that could be seen when analysing the VIRUM

shapefiles was that the spatial information was minimized. Some “holes” in

the areas were omitted from the spatial data in certain files. This is for

example clear in the runway (shown below to the left, Figure 6) which is

represented by a large field rather than pathway-shaped area when displayed

solitarily. Only when analysed in a context together with intersecting spatial

data (shown below to the right, Figure 6) did the exact paths of the runway

become visible. This is another issue that will need to be addressed in future

versions of the ATC AirportBuilder.

Figure 6: Graphical interpretations of VIRUM shapefile data. From left to right, road area, grass area,

road and grass area together.

20

4.2 Database model and data analysis

The first part of this task involved some research. An example database from

ATSsim, the data model of the simulator was studied with hopes of providing

guidelines in how to best arrange data. Since the ATC AirportBuilder Wizard

database is later to be used with ATSsim, congruency between the two is

desired. However, this study proved futile as most data in the data model of

the simulator turned out to be irrelevant to this study. The data model of the

simulator database contains mainly data representing moving entities such as

airplanes, whereas the ATC AirportBuilder Wizard database primarily

contains data representing objects from the environment.

Instead of using the data model of the simulator for guidance focus was then

turned to the air traffic control lecture notes and discussions with the advisor

at Saab. A decision was made to divide the data to represent in the database in

two general groups, “airport-related” and “area-related” data.

4.2.1 Airport-related data
The airport table serves as a hub tying all areas related to a certain airport

together. It can also store important airport-related data. At first, storing the

airports specific airport code as the ID and private key may seem like a good

idea. But as the air traffic control class had shown, some airports may lack

airport code and duplicates may possibly occur. Therefore, this idea is

discarded.

In the air traffic control class, country codes were drawn to attention as

important. Therefore this country code information may be useful in the

airport builder database. However, this information proved redundant since

country code information can be gathered from the airport code.

Since there are several different standards for coordinate systems, storing the

coordinate system in the airport table may seem like a good idea. All areas

contained in an airport need be of the same system or they will mismatch in a

graphical display. However, upon researching the ATSsim we found that the

ATSsim only stores coordinates in the WGS84 standard. To ensure

congruency between the different platforms a decision was made to discard

having a coordinate system field in the airport builder database. Instead all

spatial data not already in the WGS84 format will have to be converted into

the former before entering the airport builder database. Another reason for

sticking to the WGS84 format is that it is internationally recognized as

opposed to the RT90 format (a Swedish system) used in for example all the

VIRUM shapefiles.

21

Apart from the help from the air traffic control class, discussions of database

design with the advisor proved highly valuable. One point brought to attention

during such a session was the need for different airport resources that may be

tied to and shared between several airports. An example of such resource may

be a fire truck.

4.2.2 Area-related data
The data most important to the ATC AirportBuilder is the Area-related data

since this data includes all spatial information.

The first issue discussed was how to represent “holes” in areas. A Boolean

field flagging for a “negative” (hole) area segment was first suggested.

20

Figure 7: An area with a hole

But since the shapefile analysis had shown that this information already exists

in the .shp coordinate data this Boolean flag would be redundant (given that

the .shp coordinate data is stored in a similar manner in the ATC

AirportBuilder database). The points in a ring shape in the .shp file may be

organized in either clockwise or counter-clockwise order. It is this order that

determines whether the ring shape represents an area itself or a “hole”. At first

thought, it may seem cumbersome to go through all points in a ring shape to

see if they are organized in clockwise order or not. On the contrary, this is a

simple task that can be handled through well documented algorithms.
21

 There

is therefore little reason to use a Boolean flag. In this thesis project the

decision was made to rely solemnly on information about order of points and

the use of the algorithms mentioned.

20

 ORACLE, [online image] http://docs.oracle.com/html/A88805_01/sdo_objl.htm (Accessed 2012-05-24)
21

 Microsoft, 2013, SharpMap – Geospatial Application Framework for the CLR – Source Code,

http://sharpmap.codeplex.com/SourceControl/latest#2058263 (Accessed 2013-05-15)

http://docs.oracle.com/html/A88805_01/sdo_objl.htm
http://sharpmap.codeplex.com/SourceControl/latest#2058263

22

Other data that was considered for the database was max values for a shapes

x- and y-coordinates. These values could be used to trace midpoints of an area

for accurate placement in a map context. As efficient algorithms to find these

values from .shp coordinate data, extra fields were found redundant.

Since these efficient algorithms exist, the simplest way of saving the .shp

coordinate data is to convert the .shp file data to “Well-known text

format”(WKT). WKT is a text format representing vector geometry and for

making transformations between different spatial reference systems. This

WKT text data could then be saved to the database as one long string, keeping

its current structure intact. One problem with this method remains. The use of

this method allows for many different shapetypes, some of which may not be

supported in future ATC AirportBuilder functionality. More control is granted

to the ATC AirportBuilder software if only a few necessary, predefined

shapetypes were allowed. This can be achieved with the use of an extra

database table, “Shapetype,” with a relationship to the “Shape” table. This

requires each shape to be saved as a separate entity within the ATC

AirportBuilder database. Hence the coordinate string originating from the .shp

file must be split into shapes.

This method resolves the issue of unknown shapetypes. It does also create

redundancy in the ATC AirportBuilder database unless the data from the .shp

file is further modified before entering the database. The piece of text

introducing each shape may now be omitted.

A different way of saving .shp file spatial data to a database is to use table-

valued parameters. This SQL server 2008 feature allows for several rows of

data to a stored procedure of function, excluding the need for extra tables. The

evaluation of this alternative method lies outside the scope of this thesis.

As discussed in 4.1, the .dbf may include numerous tables of useful

information. Even if this data sometimes is missing or not following the

Falken standard (discussed in 1.3.2) and therefore not used directly by the

application (all depending on choices made in the implementation phase) it

may still be worth saving to the database.

4.3 Implementation

The first step in implementing the ATC AirportBuilder Wizard was examining

if useful solutions existed at Saab that could be easily modified. The main

obstacles to be tackled were reading a shapefile and extracting its spatial and

.dbf data, preparing this data for storage in the database, as well as

transforming the data from mere coordinates into something that could be

drawn on the screen. It would also be of interest to be able to perform

23

calculations on the layers as possible difficulties in the way layers relate to

each other had occurred when examining the spatial data, (described in section

4.1) It could for example be useful to be able to erase one layer from another.

4.3.1 Examining libraries
As Saab’s existing simulation environments already possess the functionality

to display overviews of airports, ideas of using this functionality in the

prototype were exchanged with the advisor at Saab but proved not to be a

useful way to progress. The main reasons why this would be a bad solution

was that the simulation environments were both complex, and written in the

language C++, which would result in time consuming work not only to locate

the useful code in the system, but also to modify it so that it could be used in

the environment of the ATC AirportBuilder.

The discussions with the advisor led us to instead investigate if any useful

libraries were available online which could be used to satisfy the requirements

the prototype was to fulfil. After thorough examination of several libraries, it

was primarily two that seemed fitting for the purposes of the prototype;

GDAL/OGR (described in section 1.3.3) and SharpMap (described in section

1.3.4). GDAL/OGR has been around for many years and seemed like a robust

foundation for our prototype to build upon. SharpMap is very easy to use, and

could be used almost out of the box. Another reason why these libraries were

chosen was because they are both released under the terms of generous license

agreements. GDAL/OGR is distributed under the terms of X11/MIT License

and SharpMap under the GNU Lesser General Public License. GDAL/OGR

would be used to extract data in shapefiles, perform calculations on this data,

and prepare the data for the database.

SharpMap, which is built on GDAL/OGR and has the same functionality,

would be used to render the data, while other functionalities would be

provided by GDAL/OGR. The reason for this separation of functionality was

to make it easy for future developments and modifications. As it was unknown

at the time of this thesis project if Saab wanted to rely on the use of SharpMap

when creating the final application based on the prototype, it was decided to

try to minimize the use of SharpMap to only render the data on the screen. The

result of this separation is that Saab with ease can discard SharpMap without

having to rewrite all other code in the prototype.

4.3.2 Graphical user interface
After establishing what libraries to be used, a graphical interface was

designed. The general idea was to end up with an application with a wizard-

like feature that would produce a new airport along with associated areas. The

necessary steps were defining the airport information, selecting shapefiles

with information on the airport areas, displaying the data, and finally saving it

to the database.

24

The most important bit of the interface was the window where shapefile data

were to be displayed and modified. The goal of this window was to provide a

graphical representation of the shapes, an overview over the current shapes in

the scene, and a way to view and change the necessary properties of the shapes

that had been opened, i.e. the .dbf data. As no presumptions could be made of

what attributes the .dbf files contained, since attribute consistency cannot be

guaranteed (see section 4.1), the best solution was therefore to let the user

enter this information into the application. By displaying the .dbf data in the

context of the map, the user would most likely be able to fill in the necessary

information, such as “Area type”.

In future versions of the ATC AirportBuilder, usability may be enhanced if

.dbf attribute data is standardised. More on this in section 4.1.

4.3.3 Library integration
SharpMap is a library written for use with Windows Forms. Windows Forms

is included in the .NET framework and enables developers to easily create

applications for interacting with the user by providing access to familiar

Microsoft Windows user interface controls. As the prototype was to be created

using WPF, this was a problem. Even though branches of SharpMap with

support for WPF was available, their license agreements made them

impossible to use in the prototype, and the reliability of these branches was

questionable. Luckily, WPF provides a Windows Forms host control, used to

host existing Forms controls inside of a WPF application, which was used to

host SharpMaps MapBox control.

The SharpMap MapBox control is a container for the Map control with many

built-in functions for user-interaction, such as panning and zooming. The Map

control holds a collection of Layers where each layer holds its own collection

of Geometry objects which in turn can be created from the WKT (See section

4.2.2) of a shape by a simple method call. The Map will render all the layers

added to its Layer collection and the MapBox enables user interaction with the

map.

In this thesis it was decided to describe how OGR was used is by

demonstrating a code example. To create an Area object along with its Shape

objects from a shapefile using OGR, the following code was used:

25

26

Once an Area had been created in the prototype, the following code was used

to create a SharpMap Layer that could be rendered.

4.3.4 Database handler and data model
When the reading and viewing functionalities of shapefiles had been

implemented to the prototype, the fundamental bit of structuring shapefile data

and saving it to the database was left to be implemented. In the very first

version of the data model, plans were made to create class representations for

each of the tables in the database. For example one Airport class and one Area

class etc. where each instance of these classes represent a database table row.

A database handler class was also planned to serve as the main interface

between application and database. This structure, using a database handler,

would make it easy to map objects in the prototype to the database. It would

also simplify the recurring communication between the ATC AirportBuilder

Wizard database and the wizard’s general code, resulting in increased control

and maintainability.

After reviewing the options available it was decided to dismiss the ideas of a

database handler and use LINQ (Language-Integrated Query) instead. Using

LINQ had many benefits; the most obvious, automatic generation of all

necessary database classes, including classes representing tables in the

database.
22

 Thanks to C#’s “partial” keyword which is used to define these

generated classes, the definition can be split into several source files. This

makes it easier to manage these classes if property or method modifications

are required, as these modifications can be separated from the generated

code.
23

22

 Microsoft, 2013. LINQ (Language-Integrated Query), http://msdn.microsoft.com/en-

us/library/vstudio/bb397926.aspx (Accessed 2013-05-14)
23

 Microsoft, 2013. Partial Class Definitions (C#), http://msdn.microsoft.com/en-

us/library/wa80x488(v=VS.80).aspx (Accessed 2013-05-14)

http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/wa80x488(v=VS.80).aspx
http://msdn.microsoft.com/en-us/library/wa80x488(v=VS.80).aspx

27

Another benefit was that the results of queries to the database were

automatically translated into instances of the earlier mentioned classes, instead

of returning an abstract data type representing rows and columns, such as

Dataset. New instances of these classes could also be created and modified,

and with a call to a method it could be saved to the database.
22

4.3.5 Spatial references and coordinate transformation
As the spatial data was supposed to be stored in the WGS84 format in the

database, it was essential that the prototype could transform coordinates

described in different formats into the WGS84 format. To do this, spatial

reference systems were needed. A spatial reference system specifies the

coordinate unit, the ellipsoid, and the projection used to describe positions.

This information is necessary when transforming coordinates from one system

to another. Shapefiles can contain information regarding what spatial

reference system their coordinates are described in
24

; however, this

information is not always specified. In the case of the VIRUM shapefiles, the

spatial reference system used was instead described by a string attribute in the

.dbf file with the name of the projection. As mentioned earlier, the information

in the .dbf file could not always be counted on, as attribute consistency could

vary drastically. Therefore, one step in the wizard was dedicated to defining

what spatial reference system was used for the opened shapefiles. Very much

like what was done with the area types (described in 4.3.2), the attribute data

was presented on the screen to help the user select the correct spatial reference

system used for the shapefiles. When the spatial reference system had been set

for the files, OGR was used to convert the coordinates into WGS84.

4.4 Performance analysis

A performance test of SharpMap was conducted to see how suitable

SharpMap was to be used in future developments of Saab’s other simulators.

More specifically it was the SharpMap Map controls ability to render a high

number of points on the screen that was to be tested.

The performance test case was primarily based on a description given by the

Saab employee Jakob Blomberg. The goal was to display 400 points on a map

and to move each point by a small degree each hertz to simulate the movement

of airplanes. The CPU usage would during this test be monitored to see how

CPU demanding this process was.
25

24

 ESRI, Fundamentals of a shapefile's coordinate system,

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00560000000q000000.htm (Accessed 2013-

05-25)
25

 Blomberg, Jakob; Software Engineer, Saab Training and Simulation. Performance analysis, conversation,

2013-05-06.

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00560000000q000000.htm

28

In section 4.3.2, it was explained that SharpMaps Map control holds one

collection of layers. This is not entirely true, and in this section, a deeper

understanding of how SharpMap works is necessary. Therefore a more in-

depth explanation of how the SharpMap layer collections work is provided

here.

SharpMap holds three layer collections; the BackgroundLayer collection, the

Layer collection, and the VariableLayers collection. The reason to have three

collections of layers is to be able to differentiate between layers that are static

and layers that change frequently. This is an important performance aspect

that can be explained by studying this simple example:

Let us say that we would like to view a map with airplanes, represented by

points, flying over Sweden. In this setup, a number of layers would be used,

one layer with the outline of Sweden to be used as background, and to keep it

simple, we put each airplane in its own layer. Now, as the airplanes fly

around, their layers will be changed (as the points that represent them change

position), and thus need to be re-rendered. This could be done in different

ways. We could iterate through all layers and render them, which would work,

but would be inefficient. That is because the layer with the outline of Sweden

has not changed, and does not need to be rendered again.

This is where the three collections come into play. If the outline layer is put

into the BackgroundLayer collection and all airplane layers are put into the

VariableLayers collection, an image of the static layers (the outline layer) can

be cached, while the variable layers (airplane layers) can be rendered on top of

the cached image. The static layers will only need to be rendered once the area

displayed in the Map control changes.

This is why the ability to differentiate between static layers and variable layers

can lead to a decrease in processing power consumption.

The graphical user interface of the test case consists of a window which

contains two buttons for starting and stopping the simulation and a Windows

Forms Host control to host a SharpMap MapBox control. One layer with a

polygon with a black outline is added to the Layers collection of the Map, to

give a reference of how the points move around. The VariableLayers

collection contains one layer which data source is set to a geometry provider.

In this way, Points can easily be added to the geometry provider object, and

the map will automatically render these points when the rendering method is

called.

29

Figure 8: The graphical interface for the performance test. Points can be seen as black dots on a light

blue background.

A Timer object is used to call a method every second. The method iterates

through the points, adding random values to their coordinates, and calls the

rendering method.

It is worth noting that in a real Saab simulation the airplane positions are

calculated at a higher interval than one second. However, the positioning

calculations would be performed at a server and not by the computer where

airplane positions are displayed. Therefore, a higher interval would add

unrelated computations and possibly distort the result.

In this test case, the TouchTimer method is called on the VariableLayers

collection once every second to render the new positions of the points (Seen in

Figure 8). The test was also conducted using the Refresh method of the

MapBox control. There was no significant difference between the two, which

may be due to the background layer being simple to render. With a higher

number or more complex static layers, the difference between the two

methods is expected to be bigger. Exactly what is the cause of this difference

is not precisely determined in this thesis project, as this would involve

30

examining much of SharpMaps internal code, which lies out of the scope of

this thesis.

4.5 Integration analysis

The first step in the process of integrating the prototype with Saab’s ATC

solution is the integration between the prototype and ATSsim. Once this is

achieved, adaptions can be made in order for the 3dengine and the user client

to support ATC AirportBuilder features. A reason for starting in this order is

that ATSsim is the main part of the Saab’s ATC solution, containing important

simulation intelligence. While the 3d engine on the other hand rely on

communication with WISE to render appropriate views.

4.5.1 ATSsim integration
In order to maximize the benefits from the shapefile data the integration

between prototype and ATSsim should be given some thought. Currently the

spatial data available to the simulator is restricted, limiting the simulator in

making intelligent choices. This means that in order to for example have an

aircraft run along a taxi-route, first the route needs to have been manually

plotted, as ATSsim is oblivious to roads, buildings and other area types. If

there are several different taxi-routes that only slightly differ from one

another, each individual route still needs complete manual plotting. If instead

the simulator could identify different areas and their types, such as the area of

a road, well-designed algorithms could trace down possible taxi-routes along

this road. This allows for countless possibilities in terms of future simulator

capabilities. This would also take a heavy load off the administrators of the

system, and Saab employees creating airport environments.

Collision detection between aircrafts and, buildings and other obstacles is

another idea that can be implemented. Aircrafts could then make decisions to

park in front of certain buildings and not to take off from water surfaces.

Intelligent turns could be made by the ATSsim, forcing aircrafts not to collide

with objects in the environment. Collision detection between aircrafts is

already implemented in ATSsim
9
, and it is much possible that this code could

be modified to work with other types of objects as well. Another possibility is

to enable aircrafts to find the closest exit to a runway.

In order to achieve this, the ATC AirportBuilder requires some functionality

that is yet to be implemented as this implementation lay outside the scope of

this thesis project. However a discussion on what should be implemented

follows in this section.

As mentioned in section 4.1, a runway shape may be represented by a large

field rather than pathway-shaped. Only in a context with other overlapping

shapes can exact pathway information be gathered. This needs to be addressed

31

in the implementation. One way may be to allow the user to modify these

shapefiles when an airport is created/modified. By giving the user the freedom

to erase overlapping layers a runway shape can be transformed according to

user preferences. This may be a useful feature as it gives the user some

control. At the same time it adds another task to the user.

Another solution is to let the system handle these calculations with a simple

algorithm: Erase all areas of a runway area that has an overlapping area of a

different area type than a runway. The algorithm is clarified in the picture

series below (Figure 9).

Figure 9: From left to right, a road area, a grass area, a road area from which road area overlapping

with grass area has been deleted.

This algorithm could either be performed once on each road-like area type

within the ATC AirportBuilder prototype, permanently transforming the area

or at runtime within ATSsim each time the pathway of the area is needed. The

advantage with the latter is increased flexibility if buildings, grass and other

overlapping areas were to be added or removed from the area shape. At this

time, having this extra flexibility seems unnecessary, and it comes at a cost of

performance. The analysis of which alternative is the better lay outside the

scope of this thesis project.

Once pathways are deduced from an original road-like area type it would be of

use to find a line shaped path within the pathway that aircrafts could run

along. This way the aircraft will know exactly where, on a wider path it should

run and avoid zigzag driving patterns all over the roadway. Some research has

been done in ways to achieve this. A skeleton, or medial axis (Figure 10) can

be determined in any polygon shape. R. Edwards discusses several different

algorithms for doing so.
26

26

 Edwards, Robert, 2010,

 Determining the Skeleton of a Simple Polygon in (Almost) Linear Time

http://home.comcast.NET/~maptools/Skeleton.pdf (Accessed 2013-04-20)

http://home.comcast.net/~maptools/Skeleton.pdf

32

Figure 10: Medial axis

4.5.2 3D engine integration
Integration with the 3d engine would greatly reduce manual workload as 3d

environments could be mapped from existing shapefile data. Some thought has

been put into how this could be achieved.

The ATC AirportBuilder Wizard database has been given a table called area

types. This class has been created with the ambition to take advantage of the

information given in the .dbf shapefile. If the area type is given height,

rendering/colour data is provided and the 3d mapping could be done without

much manual work. (See section 4.1) This will however provide a 3d world

where all objects of the same type look the same. The graphical experience of

the product will therefore be less exciting than it is today. This is unless

further algorithms are developed to enhance variety among objects of the same

type. Creating more area types is another possible solution. Doing so requires

that further attention is paid to creation and enforcement of .dbf shapefile

standards.

5 Results

This thesis project has resulted in a prototype, ATC AirportBuilder, with an

explanation of its functionality in section 5.3. The result section also discusses

some future research possibilities in section 5.5.

5.1 Shapefile results

The shapefile was found to provide enough useful data for the creation of a

prototype. Not only was spatial data provided, it was also found to include

useful information in the .dbf files that may be used to draw basic conclusions

on an objects height.

33

The data found in the Shapefiles is arranged as follows:

The .shp file includes all spatial references

The .dbf file includes miscellaneous data as attributes.

The .shx file includes indexing allowing for quick access of objects.
14

The spatial reference data in the .shp was found to be essential to the ATC

AirportBuilder, as ATC AirportBuilder revolve around area information about

airports. However to suit the needs of the ATC AirportBuilder, .shp data

needed some additional work (described in section 4.3.5) The attributes in the

.dbf file were found to sometimes be useful as the attributes not always follow

a set standard. When following the Falken standard (see section 1.3.2), height

information may be deduced from the attribute “OBJTYP”. Other

miscellaneous data in the .dbf file may be used to provide the user of the

prototype with information that he/she may find useful for manual data

modifications.

5.2 Database model and data results

5.2.1 Tables
For structural reasons in this thesis, the tables needed to store shapefile data in

the prototype, have been divided into two general groups. “Airport-related

data” and “Area-related data.” These tables are described below. A scheme of

all tables and their relationships can be found in section 7.2.

5.2.1.1 Airport-related data tables
This table contains the common properties of an airport. The description of

each field can be found in the list below:
Table 1, Airports

Field Description

id Unique id for the airport. Assigned by

auto-increment.

name Name of the airport.

airportCode The ICAO code of the airport.

description A description of the airport.

date An automatic timestamp of when the

airport is created.

This table serves as a link between table Airport and table Resource as the

relationship between the two entities is of the type “many-to-many”. The

description of each field can be found in the list below:
Table 2, AirportsResources

Field Description

id A unique id for the airport the

resource has a relationship with.

34

resourceId A unique id for the resource the

airport has a relationship with.

id Unique id for an airport-resource

relationship. Assigned by auto-

increment

This table contains the common properties of an airport resource. The

description of each field can be found in the list below:
Table 3, Resources

Field Description

id A unique id for the resource the

airport has a relationship with.

Assigned by auto-increment.

type The type of the resource.

description A description of the resource.

5.2.1.2 Area-related data tables
This table contains the common properties of an area. The description of each

field can be found in the list below:
Table 4, Areas

Field Description

id A unique id for the area. Assigned by

auto-increment.

name Name of the area

description A description of the area.

height The height of the area.

areaType The type of the area

airportId The id of the airport to which the area

is contained.

This table serves as a link between table Area and table ShapeType as the

relationship between the two entities is of the type “many-to-many”. The

description of each field can be found in the list below:
Table 5, Shapes

Field Description

Id Unique id for an area-shapeType

relationship. Assigned by auto-

increment

coordList The spatial data of the shape.

shapeType A unique id for the shapeType the

area has a relationship with.

areaId A unique id for the area the

shapeType has a relationship with.

35

This table contains the common properties of an area shape type. The

description of each field can be found in the list below:

Table 6, ShapeTypes

Field Description

id A unique id for the shapeType the

area has a relationship with.

description A description of the shapeType.

This table contains the common properties of an area type. These fields may

be useful in future editions of the ATC AirportBuilder when integration with

3d engine is implemented. The description of each field can be found in the

list below:
Table 7, AreaTypes

Field Description

id A unique id for the areaType.

Description A description of the areaType

Texture A texture for the areaType. Has been

prepared for future integration with

3d engine.

Colour A colour for the areaType. Has been

prepared for future integration with

3d engine.

5.3 Implementation results and possible future work

This thesis project has resulted in the design and implementation of the ATC

AirportBuilder Wizard that enables users to open and display shapefiles,

modify useful simulation data and prepare this data for storage in a database.

This wizard involves 3 or 4 steps depending on what data the shapefiles

contain. This section will give a quick walkthrough of the most vital parts of

the ATC AirportBuilder Wizard.

When the wizard is started, the main window is displayed. At this point in the

wizard procedure, there is not much to do here as no shapefiles have been

opened to be displayed or modified. A new airport can be created through the

“File -> New” menu option (See Figure 11).

36

Figure 11:ATC AirportBuilder Wizard: window 1

The next step is entering the information needed to create a new airport object

(See Figure 12). It is to this airport that the areas will be bound, as the airport

is the central piece of information.

37

Figure 12: ATC AirportBuilder Wizard: New Airport Window

After the required airport information has been entered, a window (see Figure

13) where files can be selected will be displayed. The shapefiles that make up

the airport environment are to be selected in this step.

Figure 13: ATC AirportBuilder Wizard: select files.

The next window (see Figure 14) is not always displayed. It is displayed when

some of the selected shapefiles do not contain any spatial reference system

(see section 4.3.5). A spatial reference system must be selected for each of the

shapefiles from the drop down menu, and to make the task less tedious, the

user may choose to set a spatial reference system to all files that have the same

value of a specified .dbf attribute. This is useful if the coordinate system is

described by an attribute in the .dbf file.

38

Figure 14: ATC AirportBuilder Wizard: spatial reference system.

Finally, the user is brought back to the main window (see Figure 15) again.

Area and shape objects are created out of the shapefiles that were opened and

are displayed on the screen. The user may modify the necessary attributes of

each area and when ready, the airport, areas and shapes can be sent to the

database for storage.

39

Figure 15: ATC AirportBuilder Wizard: Editor.

As the ATC AirportBuilder Wizard is yet a prototype, there are numerous

possibilities to further extend the functionality of the ATC AirportBuilder in

future versions. A few examples of desirable functionality follow:

 Automatic sorting of layers based on their area type

 Manual sorting of layers

 Graphical modifications of areas such as the ability to intersect, erase,

merge, copy, paste areas among others

 Graphical selection of runways

 Save airport to file

 Apply skeleton algorithms in order to create pathways (see 4.5.1)

5.4 Performance results

The following statistics were collected during the performance analysis of

SharpMap:

Method 1 VariableLayerCollection.TouchTimer(): 2-3% CPU and 37-38 Mb

RAM

Method 2: Using MapBox.Refresh(): 3-4% CPU and 45-60 Mb RAM

40

The above results prove that SharpMap is fit for use in other systems as the

load is low even on a relatively modest computer on which the analysis was

performed.

The difference in CPU usage between the two methods is not significant, it is

however expected to increase in more complex cases, as discussed in section

4.4, and the first method is clearly preferred. It is unknown to the authors why

the second method consumes more RAM than the first, but the difference in

RAM consumption is yet another reason to use the first method in future

implementations.

5.5 Integration results and possible future work

In this thesis it has been found that integration with the ATC AirportBuilder

and the ATSsim could be beneficial as it enables a broader range of ATSsim

intelligence possibilities than the current system does. Some of these

possibilities are as follows;

 Automatic plotting of taxi-routes and other pathways.

 Collision detection between aircrafts and non-aircraft objects in the

environment.

 Intelligent aircraft collision-avoidance manoeuvres.

 Intelligent aircraft navigation.

In order to implement this integration the following points may be considered;

 Some areas in the ATC AirportBuilder Wizard database representing for

example a “road-like” area, may be represented as a large field instead,

when looked at in isolation. This problem can be tackled for example by

shapefile data manipulation when a new airport is created. It is also

possible to create algorithms within the ATSsim that performs area

calculations at runtime.

 “Skeleton algorithms” (see section 4.5.1) could be used to help find

pathways within road-like areas.

As well as there are benefits with ATSsim integration there are also benefits in

integrating the ATC AirportBuilder with the 3dengine. Data from the ATC

AirportBuilder could be used to map 3d environments thus greatly reducing

the manual workload. In order to achieve this some points should be

considered;

 Shapefile data is likely not to include height data. Instead, height data

could be added to each area in the ATC AirportBuilder or area shape

types could be used as reference. (See section 4.1).

 Shape types could be used to automatically give all areas of the same

type a certain texture or colour.

41

6 Conclusion

In this section the questions asked in section 2 will be answered. There will

also a few short conclusive notes on some of the most important results in the

thesis.

An analysis revolving the first questions “What data is contained within a

shapefile?” and “Which of this data can be used in the ATSsim and 3d

engine?” can be found in section 4.1. There we have found that the shapefile

does not only contain spatial data but also some miscellaneous attributes in the

.dbf file. These attribute data may, if following for example the Falken

standard be used to add basic height data to the spatial data from the .shp file.

This data may then be useful when creating new airports in the 3d engine.

There may also be use for this data in Scenario Management or in ATSsim

where intelligence may be enhanced and scenario creation made easier.

The next question “What data tables will be needed in the prototype to store

airport related shapefile data?” was discussed in section 4.2. From that section

some conclusions have been drawn. Instead of including a field in the database

with coordinate system format of an airport, the WGS84 system is always

used. This not only simplifies the database table, it also ensures congruency

with the WISE database. It was also decided to make use of the way “holes”

are detected in an area in a shapefile that is documented in the ESRI shapefile

documentation. There are existing algorithms that can determine holes from

areas. The complete set of tables and their fields that have been chosen for the

prototype can be found in section 5.2.1.1 and section 0.

Then there are a few questions that involve the implementation of the

prototype. The question “How can shapefile data be viewed and modified?” is

discussed in section 4.3. The analysis led us to an implementation in which

some existing libraries were used. GDAL/OGR was used to extract data from

shapefiles, perform calculations and prepare this data for database storage.

SharpMap, a library based on GDAL/OGR, was used to draw spatial data on a

screen. In order to avoid dependencies on the SharpMap technology, this

library was used to the minimum. Those functions were isolated when

possible. When answering the question “What sort of modifications may be

necessary?” it was found that the spatial data needed some modifications. The

shapes within each shapefile were separated, the shape names included before

each new shape deleted and the coordinate system changed to WGS84. The

wizard was also given some options in which the user could assign and modify

shapefile data. For example areas can be given a new area type (grass,

building etc.) and descriptions and names of areas may be changed. More

about this can be found in section 4.3 and 5.3.

42

When the performance was tested in order to answer the question “How CPU-

demanding is the method chosen for viewing shapefiles? “ it was concluded

that SharpMap performed well. On the higher stress load where 400 points

were to be rendered every hertz only between 2-4% of the CPU was needed of

the test case computer. There were no indications found in that test case that

SharpMap was not going to perform well enough for future versions of ATC

AirportBuilder.

Lastly, there is the question on integration; “How can the extracted

information from shapefile data be integrated with ATSsim?” In section 4.5

this question is discussed and some ideas are brought up. By making use of

spatial data and area types (roads, builds etc.) intelligent algorithms to trace

down roads could be made. Then possible taxi routes could automatically be

suggested. The ATSsim could then also be given intelligence for finding the

closest exit on a runway. Algorithms that determine medial axes on an area

can then help find the correct pathway on an existing road.

A problem that needs to be dealt with those areas where their correct spatial

information is only gathered when put in a context with other overlapping

areas. (See section 4.1). How this problem can be solved is discussed in

section. 4.5.1.

The ATSsim could, if given awareness of buildings and other “obstacle area

types” be given some intelligence in collision detection. Perhaps the ATSsim

could make an airplane automatically make a turn if about to collide with a

building.

Then there is also the possibility of using the spatial data and basic height

information gathered from shapefiles to automatically model the airport 3d

environment. In addition, shapefiles can be used to automatically set textures

and colours of items in the 3d environment. Lastly, shapefiles can be used to

create the 3d environment itself, providing all 2d data. These options require

some integration with the 3d engine.

43

7 Terminology

.dbf file A shapefile file that contains attributes.

3d engine Generates 3d environments to the ATC trainer TWR.

ArcMap ESRI application that lets you open and view shapefiles

ArcCatalog ESRI application that lets you open and view shapefiles

ATC Air Traffic Control.

ATC AirportBuilder The thesis project prototype.

ATC AirportBuilder
Wizard

The thesis project prototype wizard.

ATC trainer TWR Saab's simulated air traffic control tower for training purposes.

ATSsim Saab's ATC training solution simulator

DBF Viewer plus An application that lets you open .dbf shapefiles.

ESRI shapefile ESRI's geospatial vector data format for geographic information system
software.

Falken A Swedish .dbf file standard developed by Saab.

GDAL/OGR Open source libraries for raster and vector geospatial data formats.

GIS Geographic information system.

IATS Client Clients from which teachers and students may control airplanes
throughout an exercise.

LINQ Language Integrated Query.

MapBox MapBox is a SharpMap control with built-in functionality for user
interaction.

RT90 Swedish coordinate system.

SharpMap An open source C# library for GIS data.

Thesis project This thesis and all work involved.

VIRUM Saab's fabricated airport data.

WGS84 The coordinate system used in Saabs ATC training solution

WISE Widely Integrated System Environment. Saab technology that integrates
various applications.

WKT Well Known Text, a text markup language for representing vector
geometry.

WPF Windows Presentation Foundation.

XAML Extensible Application Markup Language.

44

8 Appendix

8.1 Falken object types

45

Figure 16: List of Object Types in Falken.

8.2 Data table relationships

Figure 17: Data table relationships

