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Abstract

Object tracking algorithms and motion triggered alarms are often dis-

turbed by shadows. It is challenging to separate between moving objects

and shadows since they have similar movement patterns and image prop-

erties. In this thesis, three different approaches to detect shadows are

developed and evaluated. The identified shadows determine what parts

of the image not to track and what alarms to ignore.

The first approach utilizes a mathematical model to estimate the intensity

attenuation of a shadowed region. The second approach applies thresh-

olding to identify shadows based on information about the attenuation,

color change and texture preservation. The third approach makes use of

probability distributions describing shadows, background and objects. An

energy minimization method using discrete optimization is then used in

order to classify the pixels as shadow, object or background. All three

approaches were evaluated using several different image sequences with

corresponding ground truth.

Deriving a shadow detection algorithm that is independent of environ-

ment and type of objects in the scene turned out to be the major chal-

lenge of this thesis. The best result, a true positive rate of 65.5% and a

false positive rate of 2.2%, was achieved with the second approach apply-

ing intensity, chromaticity and texture. However, there is still a trade-off

between the shadow detection and object discrimination. To further im-

prove the performance, more features and a more extensive data set could

be useful.
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1 Introduction

1.1 Background

It is very common that modern surveillance cameras contain image analytic
applications. These applications can be used to automatically detect and track
moving objects, making it possible to trigger events when certain rules are
violated. Normally only human activity is of interest and not environmental
movement such as swaying trees or shadows from nearby objects. It can be a
time consuming and sometimes hopeless task to manually con�gure a camera to
avoid such scene motion. If the detection of unwanted activity is inaccurate the
operators will be overwhelmed with false alarms. Therefore there is a request
for motion detection applications that are sensitive to human activity only, as
opposed to shadows and environmental objects.

1.2 Aim of the Thesis

The main purpose of this master thesis is to study di�erent strategies to separate
shadows from objects when using tracking algorithms in surveillance cameras.
The ulterior goal is to reduce the number of false alarms evoked by shadows and
thereby improve tracking of human activity.

The thesis is performed at Axis Communications AB which is a manufacturer of
network cameras for video surveillance. The shadow detection algorithm should
therefore be compatible with Axis integrated systems and meet the requests
imposed by Axis.

Initially it is necessary to identify and structure the di�erent problem scenarios
that can occur and in what sense they are disturbing. When understanding
the complexity of the problem it is time to investigate di�erent solutions. One
solution could be to improve the current tracking algorithm so it does not react
on shadows in the �rst place. This could possibly be achieved by detecting mo-
tion based on some feature that is insensitive to shadows. This thesis, however,
approaches the problem by identifying the shadows seperately from the object
tracking algorithm, and then handle the shadows in an appropriate way. By
identifying the shadows, a wider range of problems can be solved.

1.3 Related Work

A number of di�erent shadow detection algorithms have been proposed in the
literature. The survey articles [2] and [12] give an overview of some of the most
recent techniques for cast shadow detection. Both articles include a comparative
evaluation of the most representative algorithms. According to the articles, two
of the most promising techniques are presented in [1] and [11].

[1] proposes a physically-derived method for shadow detection based on intensity
properties. The method assumes that the light energy received when a shadow
is cast over a point is an a�ne transformation1 of the light energy received at

1An affine transformation is a linear transformation followed by a translation, i.e. move-
ment in a specific direction.
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the same point in the absence of shadow. This assumption, together with the
general condition that a shadowed region in an image has lower intensity than
a non shadowed region, forms the basis for a pixel being classi�ed as shadow or
not.

Another strategy is applied in [11]. Intensity, chromaticity and large region
texture is used to separate shadows from objects and background. Using three
di�erent features, they aim at reaching a better simultaneous shadow detection
rate and discrimination rate. Intensity and chromaticity information is �rst
used to extract candidate shadow regions, assuming that regions under shadow
retain their chromaticity [8]. To remove object pixels that slip through the
chromaticity mask, the texture in the candidate shadow regions is evaluated,
assuming that regions under shadow keep most of their texture. If the gradient
direction correlation between the frame and background is big enough, the re-
gion is considered a shadow. A prerequisite for this method to perform well is
that the scene contains signi�cant texture.

Some geometry based algorithms use knowledge of the illumination source, ob-
ject shape and ground plane to predict the orientation, size and shape of the
shadows [12]. However, scene constraints in terms of object types, assuming a
unique light source, and requiring objects and shadows to have speci�c orienta-
tion, make geometry based shadow detection very limited in its use.

Another feature that has been empolyed to enhance the detection of shadows
is temporal information [12]. Since shadows generally have the same type of
continuous movement patterns as the objects that generate them, it is assumed
that shadows occupy approximately the same pixel area between consecutive
frames. This information can be used to apply a temporal �lter to the shadows.

2 Problem Formulation

When detecting moving objects and shadows, a background model is used as a
reference. The video frames are compared to the background model, separating
the regions in motion from the static background. Figure 1 shows an example of
a frame with moving object and shadow, the corresponding background model,
and the desired result i.e. ground truth.

(a) Frame. (b) Background. (c) Ground truth.

Figure 1: The frame, background and ground truth from a sample image.
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In current object tracking techniques, moving shadows tend to be classi�ed
as objects. This is because shadows share the same movement patterns and
intensity changes relative to the background as the foreground objects. Since
cast shadows can have the same size as the actual objects, their incorrect clas-
si�cation as foreground decreases object tracking performance signi�cantly. See
Figure 2 for an illustration of two typical situations where a shadow is classi�ed
as object and thereby triggers a false alarm.

(a) The red lines symbolize triggers which
send an alarm if they are crossed in the di-
rection of the arrows. This car is driving in
the allowed direction but its shadow might
be detected as another object, crossing the
other line illegaly.

(b) The red area is a forbidden zone. An
alarm might be triggered although the man
is not traversing the forbidden area.

Figure 2: Typical false alarm situations.

Another problem scenario arises if a static shadow is not detected as foreground
but is instead included in the background model. This can cause a problem later
in the sequence if the shadow starts to move. Comparing the current frame to
the background model, the lack of shadow can be detected as an object and
thus trigger an alarm.

Regardless of problem scenario, the solution will be to identify and separate
shadows from real objects and background. For the shadow detection algorithm
to have practical use, certain requirements are imposed on the implementation.
First, it should be �exible with regard to the scene and illumination conditions.
For instance it should be independent of environment and type of objects in the
scene. Second, it should have rather low complexity in order to be applicable in
real-time systems. Also, it is desirable to achieve a high accuracy and precision.
Speci�cally, we want to detect a major part of the shadows without classifying
object and background as shadow.

3 Theory

In this section we will present some theory that is relevant to the work. We
introduce some of the analytic tools that have been applied, the features utilized
to detect shadows, and some techniques used to evaluate the results.
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3.1 Image Analytic Tools

3.1.1 Color Spaces

Color spaces represent colors with di�erent vector values. One of the most com-
mon examples is the RGB space where a pixel has three values which represent
the amount of red, green and blue. These three values span a color space that
can represent most of the colors that can be detected with the human eye.

HSV is another color space that might be more intuitive and is often used
in computer graphics. HSV stands for Hue, Saturation and Value, and was
designed to approximate the way humans perceive and interpret color. Hue
describes the shade of color and is normally the �rst thing we notice about a
color. Saturation describes how pure the hue is and is determined by a com-
bination of light intensity and how much it is distributed across the spectrum
of di�erent wavelengths. Finally, the value describes the brigthness of a color [6].

The color space YCbCr is commonly used in video streams and digital pho-
tography. Y represents the luminance (brightness) and Cb and Cr are the
blue-di�erence and red-di�erence chrominance components, conveying color in-
formation.

The color spaces described above are visualized in Figure 3.

(a) RGB color space. (b) HSV color space. (c) YCbCr color space.

Figure 3: Color spaces.

3.1.2 Morphological Operations

Morphological operations are used on images to change their shape and struc-
ture. Most commonly, the morphological operations are performed on binary
images. The basic idea is to examine the image with a simple shape, a so called
structuring element, to gain knowledge on how the shape �ts the structures in
the image. The structuring element could be a disk, square, line or some other
pre-de�ned shape. The convex hull, skeleton or contours are examples of fea-
tures that can be extracted by di�erent morphological operations. Some of the
most common morphological operations are demonstrated in Figure 4.
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(a) Binary im-
age.

(b) Erode opera-
tion.

(c) Dilate opera-
tion.

(d) Opening:
erosion followed
by dilation.

(e) Closing: dila-
tion followed by
erosion.

Figure 4: Morphological operations using a square structuring element of size
3x3 pixels.

3.1.3 Histogram Analysis

Histogram analysis is used to gain knowledge about for example the intensity
distribution, contrast, or exposure2 of an image. A histogram simply visualizes
how many pixels that have a speci�c value as bars. One example is illustrated
below in Figure 5.
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Figure 5: An image and its intensity value histogram with grayscale intensity
on the x-axis and number of pixels on the y axis.

3.1.4 Energy Minimization via Graph Cuts

Energy minimization can be used to solve many computer vision problems,
including image segmentation. Segmentation problems consist in �nding a la-
beling 𝑔 that assigns each pixel a label where 𝑔 is both piecewise smooth and
consistent with the observed data. Such a problem can be formulated in terms
of energy minimization [5]. We seek the labeling 𝑔 that minimizes the energy

𝐸(𝑔) = 𝐸𝑑𝑎𝑡𝑎(𝑔) + 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑔) . (1)

2Exposure is the amount of light captured on each area unit of the camera’s sensor while
taking a photograph.
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𝐸𝑑𝑎𝑡𝑎 measures the disagreement between 𝑔 and the observed data, while 𝐸𝑠𝑚𝑜𝑜𝑡ℎ

measures the extent to which 𝑔 is not piecewise smooth. The smaller energy,
the better 𝑔 segments the image. The major di�culty with energy minimization
lies in the enormous computational costs. The number of possible labelings is
𝑛𝑏𝑟𝑂𝑓𝐿𝑎𝑏𝑒𝑙𝑠𝑛𝑏𝑟𝑂𝑓𝑃𝑖𝑥𝑒𝑙𝑠, which can be huge. In addition, the energy functions
typically have many local minima, complicating the optimization problem fur-
ther.

There have been numerous attempts to design fast algorithms for energy min-
imization [5]. The technique applied in this thesis is based on graph cuts. A
graph 𝐺 = (𝑣, 𝜀) consists of a set of nodes 𝑣, corresponding to pixels, and a set
of edges 𝜀 that connect them. The graph also contains some additional nodes
called terminals that correspond to the set of labels that can be assigned to
pixels. For a simple example of a graph with only two terminals, see Figure 6.

(a) Graph with two terminals
(source and sink). The terminals
represents the labels that the pixels
can be assigned to.

(b) A graph cut minimizing the cost
as determined by the sum of the edge
weights. Here, the thickness of the
edges represents their weight.

Figure 6: Graph cuts.

All edges in the graph are assigned some weight. Normally, there are two types
of edges in the graph: 𝑛-links and 𝑡-links [4]. 𝑛-links connect pairs of neigh-
boring pixels (nodes), thus representing a neighborhood system in the image.
The weights of 𝑛-links correspond to a penalty for discontinuity between pixels.
These weights represent the smoothing term 𝐸𝑠𝑚𝑜𝑜𝑡ℎ in (1). 𝑡-links connect
pixels with the terminals. The weights of a 𝑡-link correspond to a penalty for
assigning the corresponding label to the pixel. These weights represent the data
term 𝐸𝑑𝑎𝑡𝑎 in (1).

A graph cut is a set of edges such that the terminals become completely sep-
arated, partitioning the nodes between the terminals (labels). See Figure 6.
Thus, any cut corresponds to some partitioning of the underlying image into as
many segments as there are labels. The cost of the cut equals the sum of its
edge weights. The minimum cut problem is to �nd the cut with smallest cost.
If weights are set based on parameters of the energy in (1), a minimum cut will
correspond to a labeling with the minimum value of this energy.
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3.2 Shadow Detection Approaches

Shadow detection is based on �nding features that are characteristic to shadows.
These features are chosen to separate shadows from surrounding background
and objects. The features that have been evaluated in this thesis are described
below.

3.2.1 Intensity

The most basic approach to detect shadows is based on the presumption that
regions under shadow become darker as they are blocked from the illumination
source. However, since the region still is exposed to ambient illumination, there
is a limit on how much darker a shadow region can become. These assumptions
can be used to set a presumed range of intensity reduction of a region covered
by shadow. This intensity information is often used as a �rst step to separate
between shadows and background.

3.2.2 Chromaticity

Another common shadow detection method is based on the assumption that
regions under shadow retain their chromaticity. Chromaticity is a measure of
the quality of a color, determined by its hue and saturation but independent of
intensity. Algorithms based on chromaticity are generally simple to implement
and have a low computational complexity. Normally, the HSV color space is
used since it o�ers a good separation between intensity and chromaticity.

A drawback with the chromaticity based methods lies in the assumption that the
illumination source produces white light. This is generally a rough simpli�cation
of the reality. In outdoor scenes, the main illumination source is approximately
white light from the sun scattered in the atmosphere. When a region is cov-
ered by shadow, excluding direct sunlight, ambient light will dominate and the
chromaticity will be shifted towards blue [9]. In this case, the assumption on
constant chromaticity will no longer be satis�ed. In indoor scenes it can be even
more complicated since the chromaticity is dependent on the light sources and
their spectral pro�les which might vary.

3.2.3 Texture

Texture based methods rely on the fact that regions under shadow keep most of
their texture. These algorithms vary a lot in implementation but in general they
follow the same basic steps: selection of candidate shadow regions and classi�-
cation of these regions as shadow or foreground based on the texture correlation
between frame and background. However, various implementations use di�erent
sizes of regions to correlate textures and also di�erent correlation techniques.
Texture based methods o�er great potential since textures are very character-
istic, robust to illumination changes, and independent of colors. However, they
are typically computationally heavy.
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3.3 Evaluation Techniques

3.3.1 Confusion Matrix

When identifying shadows it is of interest how often we make an incorrect clas-
si�cation, but also what kind of error we are doing. The confusion matrix in
Table 1 has been used when evaluating di�erent shadow detection algorithms.
The confusion matrix can be calculated for a speci�c frame, an entire video
sequence, or various video sequences from di�erent scenes.

Classi�cation \ True Shadow Object Background
Shadow How big

part of the
shadow is
detected as
shadow

How big part
of the object
is detected as
shadow

How big
part of the
background
is detected
as shadow

Non-shadow How big
part of the
shadow is
detected as
non-shadow

How big part
of the object
is detected as
non-shadow

How big part
of the back-
ground is
detected as
non-shadow

Table 1: Confusion matrix.

Depending on what application the algorithm should be used for, the di�er-
ent �elds of the confusion matrix is in focus. For example when suppressing
false alarms it is very important that objects are not classi�ed as shadows and
thereby suppresses a true alarm.

3.3.2 TPR and FPR

The confusion matrix can be summoned up in two commonly used measures;
the true positive rate (𝑇𝑃𝑅) and the false positive rate (𝐹𝑃𝑅). These measures
are de�ned as follows:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
and 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. (2)

The relation between the confusion matrix and the four quantities 𝑇𝑃 (true
positive), 𝐹𝑁 (false negative), 𝐹𝑃 (false positive), and 𝑇𝑁 (true negative) is
illustrated in Table 2.

Classi�cation \ True Shadow Object | Background
Shadow TP FP
Non-shadow FN TN

Table 2: The �elds of the confusion matrix in terms of 𝑇𝑃 (true positive),
𝐹𝑁 (false negative), 𝐹𝑃 (false positive) and 𝑇𝑁 (true negative).

In other words, 𝑇𝑃𝑅 is the proportion of the shadow pixels detected as shad-
ows and 𝐹𝑃𝑅 is the proportion of the object and background pixels detected
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as shadows.

Ideally, the algorithm should produce a TPR equal to 1 and a FPR equal to 0.
There is, however, a trade-o� between the hit rate and the fall-out and the goal
will be to reach a high 𝑇𝑃𝑅 and a low 𝐹𝑃𝑅.

These evaluation measures are more general than the confusion matrix in the
sense that the false positive rate does not tell whether the false shadow detec-
tions originate from objects or background. Also, the false positive rate can be
somewhat misleading since the background area generally is considerably greater
than the object area. This means that 𝐹𝑃𝑅 is dominated by the classi�cation
of background pixels and less sensitive to the classi�cation of objects.

3.3.3 Visualizing the Results

It is also relevant where in the image a certain misclassi�cation occurs. For ex-
ample, if 50% of the shadow pixels are identi�ed correctly, it is very important
to know how these 50% are located in the image. It could be a severe problem
if the algorithm is detecting about half of the di�erent moving shadows. On
the other hand, if every other pixel within the same shadow represents these
50% correct classi�cations, the relatively low detection rate can be easily and
successfully helped by a morphology operation.

To understand where in the image misclassi�cations are made, many of the
steps in the algorithm have been visualized as images. These steps can in many
ways tell you more than just numbers. It is important though to remember that
the eye is not consistent in its evaluation. The human brain draws conclusions
based on experience and imagination which a computer is unable to.

4 Data

While developing the algorithms, two data sources were used. In the early work
we used image sets from [12]. Since the �nal algorithm should be compatible
with Axis surveillance cameras, these downloaded images were eventually ex-
tended with representative video sequences from Axis database.

When evaluating our algorithms, eight di�erent video sequences were used with
a total of 259 frames. Five of them are sequences from Axis (ATM, basement,
burglar, lobby and parklot) while the remaining three (corridor, parking and
tra�c) were taken from [12]. The pixel resolution of the video sequences varied
from 135×240 low resolution to 540×720 high resolution.

To be able to evaluate the algorithms we needed ground truth images for the
various video sequences, indicating where the shadows, objects, and background
are located in each frame. The image sets downloaded from [12] were already
provided with a reference image with labeled objects and shadows. The same
kind of ground truth was obtained for the video clips from Axis by �rst subject-
ing them to Axis object tracking algorithm [3], producing foreground images
with labeled objects. This foreground includes object and background, and in
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some cases shadows incorrectly identi�ed as object. A correct ground truth for
these image sets was made manually by marking the regions with shadows in
MATLAB.

5 Algorithms

Three principal algorithms have been implemented in this thesis. To begin
with, a rather simple, one featured algorithm based on the a�ne intensity rela-
tion described in [1] was implemented. A somewhat more complex algorithm,
making use of intensity, chromaticity, and texture, was then developed in order
to increase the precision. This algorithm rely on thresholding to separate shad-
ows from objects and background. At last, to obtain a more dynamic shadow
detection, additionally one algorithm was invented. This was inspired by the
earlier algorithm, but extended with a classi�cation based on probability func-
tions instead of thresholding. All implementation was performed in MATLAB
(R2012b).

5.1 Affine Intensity Relation

One of the most promising and simple algorithms is described in [1]. An im-
plementation was made in order to see how the algorithm would perform in the
context of this master thesis.

The algorithm relies on the assumption that the light energy 𝐿 received at
a point 𝑟 in a neighborhood 𝑛𝑞 in the absence of shadow is approximately
a�nely related to the light energy 𝐿* received when the neighborhood is cov-
ered by shadow. Together with the general presumption that less light energy
is received under shadow, this relationship forms the basis for the algorithm.
Mathematically, the conditions are

𝐿*(𝑟) ≈ 𝜆𝐿(𝑟) + 𝜇 (3)

and
𝐿*(𝑟) < 𝐿(𝑟) , (4)

for some constants 𝜆 and 𝜇.

The a�ne relation (3) holds for all points within a local neighborhood. It is
therefore natural to implement the algorithm in a block-wise manner, checking
the luminance conditions in block pairs corresponding to the frame and back-
ground.

The received light energy, 𝐿, is represented as one intensity value in each pixel.
A block of gray scale pixel values is denoted 𝑃 . If 𝑃 𝑓𝑟 is a block in the frame
and 𝑃 𝑏𝑔 is a block in the background, equation (3) yields

𝑃 𝑓𝑟 ≈ 𝜆𝑃 𝑏𝑔 + 𝜇 . (5)

In words; the mean intensity value in the frame block is a�nely related to the
mean intensity value in the background block.
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In equation (5) there are two unknown parameters, 𝜆 and 𝜇, which should
indicate whether 𝑃 𝑓𝑟 is shadowed or not. In order to isolate these parameters
and calculate their values, one more equation is needed. The rules of standard
deviation 𝜎 give the following equation:

𝜎(𝑃 𝑓𝑟) = 𝜆𝜎(𝑃 𝑏𝑔) . (6)

From this information, the algorithm can be explained in a stepwise manner:

(a) Create blocks, 𝑃 𝑓𝑟 and 𝑃 𝑏𝑔, of size 𝑠𝑡𝑎𝑟𝑡𝑆𝑖𝑧𝑒, for example 16×16 pixels.

(b) Calculate the mean intensity, 𝑃 𝑓𝑟 and 𝑃 𝑏𝑔, in all blocks.

(c) Set 𝜆 = 𝜎(𝑃 𝑓𝑟)
𝜎(𝑃 𝑏𝑔)

.

(d) Set 𝜇 = 𝑃 𝑓𝑟 − 𝜆𝑃 𝑏𝑔 .

(e) Calculate 𝑟𝑎𝑡𝑖𝑜1 = 𝑃 𝑓𝑟

𝑃 𝑏𝑔 , which represents the intensity change between
background and frame.

(f) Calculate 𝑟𝑎𝑡𝑖𝑜2 = ‖𝑃 𝑓𝑟−(𝜆𝑃 𝑏𝑔+𝜇)‖2

‖𝑃 𝑏𝑔‖2
, which represents how far the frame

is from being an a�ne transformation of the background.

(g) Determine if the block is shadowed or not:

(i) If 𝑟𝑎𝑡𝑖𝑜1 < 1 and 𝑟𝑎𝑡𝑖𝑜2 ≈ 0 , de�ne the block as a shadow.

(ii) If not, continue to search for smaller shadows within the block. Di-
vide the block in four and repeat from step (b) until 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 =
𝑠𝑡𝑜𝑝𝑆𝑖𝑧𝑒 .

Probability Map In step (g) the algorithm is able to return a probability
map instead of a binary 𝑖𝑠𝑆ℎ𝑎𝑑𝑜𝑤-matrix. The probability for a block being a
shadow is assumed to consist of two normal distributions with expected values
approximated by the values of 𝑟𝑎𝑡𝑖𝑜1 and 𝑟𝑎𝑡𝑖𝑜2 in a typical shadow block.
The shadow probability in a block of size 𝑠𝑡𝑜𝑝𝑆𝑖𝑧𝑒 represents the accumulated
probabilities from all the levels.

5.2 Intensity, Chromaticity and Texture using Threshold-

ing

After implementing the algorithm above it was of interest to see what could be
achieved if more features were used. A promising method described in [11] uses
intensity, chromaticity and texture properties to identify shadows. Inspired by
this method, a new algorithm was implemented.

In order to cut down on memory and complexity, this algorithm is implemented
stepwise where the �nding of shadows in one step is dependent on the shadows
found in the previous step. The decisions are made by thresholding the feature
values into shadow or non-shadow.
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5.2.1 Intensity & Chromaticity

In the �rst part of this algorithm, intensity and chromaticity information is
used to identify shadows. The pixels classi�ed as shadows constitute a can-
didate shadow mask that can later be passed on to the texture algorithm in
Section 5.2.2 in order to be more discriminating towards objects.

The algorithm is based on the assumption that shadow pixels have similar
chromaticity in the frame and background while the intensity is lower in the
shadow. The intensity condition here is a more basic one than the a�ne con-
dition in Section 5.1. The intensity change is simply represented as a ratio
between the intensity in the frame and the intensity in the background.

When measuring the chromaticity change, the most natural approach utilizes
the HSV color space since the change in hue (H) is a direct measure of the
change in chromaticity. This HSV approach, however, is not appropriate in this
thesis since the color space normally used in video handling is YCbCr rather
than HSV. The translation between the two spaces is computationally expensive
and therefore not an alternative.

The hypothesis adapted to YCbCr is instead that a region under shadow does
not change its color neither in red nor in blue, i.e. Cb and Cr are both constant.
This however does not apply to outdoor scenes subjected to strong shadows. In
this case, the chromaticity change more towards blue components. To account
for both phenomenas, a combination of the two hypotheses was implemented.

The steps of the algorithm:

(a) Calculate 𝑦𝑅𝑎𝑡𝑖𝑜 = 𝑌 𝑓𝑟

𝑌 𝑏𝑔 for each pixel. Note, this ratio describes the
intensity reduction just like 𝑟𝑎𝑡𝑖𝑜1, but pixelwise instead of blockwise.

(b) De�ne 𝑦𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤 = {𝑦𝑅𝑎𝑡𝑖𝑜 > 𝛼 & 𝑦𝑅𝑎𝑡𝑖𝑜 < 1}. This mask consists of
pixels that have become somewhat darker (as determined by 𝛼), i.e pixels
that are shadow or moderately dark objects.

(c) Calculate 𝑐𝑏𝐷𝑖𝑓𝑓 = 𝐶𝑏𝑓𝑟 − 𝐶𝑏𝑏𝑔 and 𝑐𝑟𝐷𝑖𝑓𝑓 = 𝐶𝑟𝑓𝑟 − 𝐶𝑟𝑏𝑔 for each
pixel.

(d) De�ne 𝑐ℎ𝑟𝑜𝑚𝑒𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤 = {|𝑐𝑏𝐷𝑖𝑓𝑓 | < 𝛾} ∩ {|𝑐𝑟𝐷𝑖𝑓𝑓 | < 𝛿}. This mask
should contain all pixels where the chromaticity remains unchanged, i.e
all pixels that are background or weak shadow.

(e) Create 𝑤𝑒𝑎𝑘𝑆ℎ𝑎𝑑𝑜𝑤𝑠 = 𝑐ℎ𝑟𝑜𝑚𝑒𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤 ∩ 𝑦𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤. This mask is
supposed to only consist of weak shadow pixels.

(f) De�ne 𝑠𝑡𝑟𝑜𝑛𝑔𝑆ℎ𝑎𝑑𝑜𝑤𝑠 =
{𝑦𝑅𝑎𝑡𝑖𝑜 < 𝛼} ∩ {𝐶𝑏𝐷𝑖𝑓𝑓 > 0} ∩ {𝐶𝑟𝐷𝑖𝑓𝑓 < 0} ∩ {𝐶𝑏𝐷𝑖𝑓𝑓 +𝐶𝑟𝐷𝑖𝑓𝑓 ≈
0}, picking up strong bluish shadows.

(g) Create 𝑠ℎ𝑎𝑑𝑜𝑤𝑠 = 𝑤𝑒𝑎𝑘𝑆ℎ𝑎𝑑𝑜𝑤𝑠 ∪ 𝑠𝑡𝑟𝑜𝑛𝑔𝑆ℎ𝑎𝑑𝑜𝑤𝑠.

(h) Transact a morphological operation on 𝑠ℎ𝑎𝑑𝑜𝑤𝑠 in order to get rid of
scattered shadow pixels.
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Adaptive Parameter Setting In order for the algorithm to be more general
to weak and sharp shadows, histograms are used to set adaptive threshold val-
ues instead of using hard coded thresholds. This also allows for the background
model not to be perfect.
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Figure 7: 𝑦𝑅𝑎𝑡𝑖𝑜 values depicted as an image and a histogram.

The thresholding in step (b) assumes that 𝑦𝑅𝑎𝑡𝑖𝑜 in a background pixel is 1. In
order to be more persistent to variations in exposure between the current frame
and the background model, a re�ned version of the algorithm applies instead
the following condition: 𝑦𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤 = {𝑦𝑅𝑎𝑡𝑖𝑜 > 𝛼 & 𝑦𝑅𝑎𝑡𝑖𝑜 < 𝛽} , where 𝛽
is set dynamically.

By investigating the histogram of 𝑦𝑅𝑎𝑡𝑖𝑜, see Figure 7, the value of 𝑦𝑅𝑎𝑡𝑖𝑜
in a background pixel is assumed to be the value of the peak. This is because
of the assumption that the background pixels dominate the image. 𝑦𝑅𝑎𝑡𝑖𝑜 for
the background pixels is distributed around the peak value, so to leave room for
some noise, the following is set: 𝛽 = 𝑦𝑅𝑎𝑡𝑖𝑜𝑝𝑒𝑎𝑘 − 𝜖 . 𝛼 remains static.

5.2.2 Components & Texture

To remove object regions that were included in the candidate shadows, one ex-
tra condition is applied. This condition relies on the assumption that regions
under shadow keep most of their texture. There are two important parts of this
algorithm; dividing the candidate shadows into components and measuring the
texture correlation.

The intensity and chromaticity features are evaluated pixelwise. However, the
texture is better evaluated within larger regions. Before investigating the tex-
ture, the pixels are therefore gathered in components. A component speci�es a
continuos area in the image and the corresponding area in the background. It is
highly important to divide shadows and objects in di�erent components as the
subsequent algorithm will compare the texture in each connected component
and classify the entire component as either shadow or non-shadow. Ideally a
component consists of an entire shadow or object.

In order to separate regions of shadows and objects, edges between these regions
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need to be extracted and removed from the candidate shadow mask. Having
removed these edges, the regions of objects and shadows should be unconnected
and therefore divided into di�erent components.

The texture is measured by calculating the gradient of the intensity in each
pixel of the frame and background. The gradients with large enough magnitude
are selected to represent the texture within a component. Having selected pixels
with large gradient magnitude, the di�erence in gradient direction between the
frame and the background is calculated for each selected pixel.

The gradient direction correlation between the frame and the background is
estimated for each component, based on the total di�erence in gradient di-
rection within the component. Finally, components with high correlation are
considered shadow regions. The steps of the algorithm are presented below.

(a) Extract edges that exist in the frame but not in the background using
Canny edge detection [7]: 𝑒𝑑𝑔𝑒𝑑𝑖𝑓𝑓 = 𝑐𝑎𝑛𝑛𝑦𝑓𝑟 − 𝑐𝑎𝑛𝑛𝑦𝑏𝑔 . Extrapolate
to get continuous edges.

(b) Remove the edges from the candidate shadows and apply morphological
operations.

(c) Divide the candidate shadow mask into components with the MATLAB
function bwlabel.

(d) For each component:

(i) Extract pixels with high gradient magnitude. For those pixels calcu-
late 𝑔𝑟𝑎𝑑𝐷𝑖𝑟𝐷𝑖𝑓𝑓 = 𝑎𝑟𝑐𝑡𝑎𝑛( 𝛿𝑌

𝛿𝑦 /
𝛿𝑌
𝛿𝑥 )𝑓𝑟 − 𝑎𝑟𝑐𝑡𝑎𝑛( 𝛿𝑌

𝛿𝑦 /
𝛿𝑌
𝛿𝑥 )𝑏𝑔 .

(ii) Calculate the mean value of 𝑔𝑟𝑎𝑑𝐷𝑖𝑟𝐷𝑖𝑓𝑓 within the component.

(iii) Determine whether the component is a shadow or an object by thresh-
olding. If 𝑚𝑒𝑎𝑛(𝑔𝑟𝑎𝑑𝐷𝑖𝑟𝐷𝑖𝑓𝑓) ≤ 𝜏 , for some threshold 𝜏 , the com-
ponent is considered a shadow.

5.3 Intensity, Chromaticity and Texture using Graph Cuts

Instead of thresholding, a probabilistic view is now introduced. This algorithm
employs graph cuts to make the classi�cation in terms of energy minimization.
The algorithm is divided into two parts.

First, a training set is used to model how pixels in the di�erent classes be-
have regarding intensity, chromaticity, texture and spatial dependency. These
models are used to produce weights for each class, punishing uncommon behav-
ior. When training the algorithm, the ground truth is used in order to separate
the classes.

Secondly, the estimated weights can be used to classify pixels in an unseen
video frame. The optimal classi�cation of the image is calculated with graph
cuts, minimizing the total cost as determined by the weights (see Section 3.1
for more details on graph cuts).
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5.3.1 Deriving Weights

The algorithm stepwise:

(a) Calculate feature weights from the training data.
For each 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑦𝑅𝑎𝑡𝑖𝑜, 𝑐ℎ𝑟𝑜𝑚𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 and 𝑔𝑟𝑎𝑑𝐷𝑖𝑟𝐷𝑖𝑓𝑓) :

(i) Create a histogram over the feature values in each of the three classes
shadow, background, and object.

(ii) Estimate the probability distribution for each class based on the his-
tograms:

𝑃 (𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒) = 𝑠𝑢𝑚(𝑝𝑖𝑥𝑒𝑙𝑠 == 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒)
𝑠𝑢𝑚(𝑝𝑖𝑥𝑒𝑙𝑠) .

Examples of probability distributions can be seen in the left column
in Figure 8.

(iii) Convert the probability distributions into integer weights, punishing
feature values with low probability by higher weights.

𝑤𝑒𝑖𝑔ℎ𝑡(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒) = 𝑟𝑜𝑢𝑛𝑑[𝑘(−𝑙𝑜𝑔(𝑃 (𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒))] .

𝑘 is a number set automatically to obtain integer weights. Exam-
ples of derived weights are shown in the right column in Figure 8.

(b) Calculate spatial weights from the training data:

(i) Estimate the probability that a pixel has at least one neighbor of the
same class by simply counting the number of pixels that belong to
the same class as a pixel next to it. The neighborhood connectiv-
ity applied is the commonly used 4-connected, where each pixel is
considered to have four neighbors (vertically and horizontally).

(ii) Convert this probability into a weight, by taking the negative loga-
rithm of the probability as in a) iii).
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Figure 8: Probability distribution and weights for the three features intensity,
chromaticity and texture. These probabilities and weights are based on all
eight video sequences and a total of 259 frames. Intensity is represented by
𝑦𝑅𝑎𝑡𝑖𝑜, chromaticity by 𝑐𝑏𝐷𝑖𝑓𝑓 + 𝑐𝑟𝐷𝑖𝑓𝑓 , and texture by 𝑔𝑟𝑎𝑑𝐷𝑖𝑟𝐷𝑖𝑓𝑓 .

Designing Weights The histograms, probability distributions and resulting
weights for the three features display characteristics of the scenes from which
they are generated. Since the number of frames used to produce the weights are
rather limited, the probability distributions and consequently the weights are
somewhat noisy. Using a larger training set, these curves would presumably be
more continuous.

Having studied the diagrams in Figure 8, the next approach was to design the
probability distributions ourselves. This design was based on the derived distri-
butions but adjusted to remove noise and irregularities to better approximate
the presumed behavior of the features. The designed probability distributions
and corresponding weights are displayed in Figure 9.

Apart from smoothing the distributions to get more continuous weights, the ma-
jor intervention lies in the probability distribution of the intensity, i.e. 𝑦𝑅𝑎𝑡𝑖𝑜,
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in shadow. The shadow distribution of 𝑦𝑅𝑎𝑡𝑖𝑜 is assumed to be rather constant
in the interval between 0.4 and 0.9 in order to represent both weak and strong
shadows. Compare the red graph in upper left corner of Figure 8 and Figure
9. Another adjustment is the distribution of the chromaticity of objects. This
curve is supposed to be constant as objects in general should have an arbitrary
chromaticity.
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Figure 9: Designed probability distribution and weights for the three features
intensity, chromaticity and texture. Intensity is represented by 𝑦𝑅𝑎𝑡𝑖𝑜,

chromaticity by 𝑐𝑏𝐷𝑖𝑓𝑓 + 𝑐𝑟𝐷𝑖𝑓𝑓 , and texture by 𝑔𝑟𝑎𝑑𝐷𝑖𝑟𝐷𝑖𝑓𝑓 .

5.3.2 Segmentation using Graph Cuts

Using the weights derived in the previous section, an optimal classi�cation is
calculated. The classi�cation can be based on one, two or all three of the features
intensity, chromaticity and texture. The algorithm stepwise:

(a) For each pixel and selected feature, get the shadow, object, and back-
ground weights corresponding to the pixel's feature value.
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(b) Add the weights for all selected features and construct a data cost matrix
of dimension 3 × 𝑛𝑏𝑟𝑂𝑓𝑃𝑖𝑥𝑒𝑙𝑠 with three costs for each pixel; one for
shadow, one for object, and one for background.

(c) De�ne a (sparse) matrix of dimension 𝑛𝑏𝑟𝑂𝑓𝑃𝑖𝑥𝑒𝑙𝑠× 𝑛𝑏𝑟𝑂𝑓𝑃𝑖𝑥𝑒𝑙𝑠 with
neighborhood costs. The 4-connected sites are assigned with costs equal
to the spatial weights.

(d) Make the most optimal classi�cation based on the data costs and neigh-
borhood costs. An open source implementation of this multi-label opti-
mization step is described in [4] [5] [10].

6 Results

In this section, results from the various algorithms are presented for the exam-
ple image displayed in Figure 10. This image is taken from Axis ATM video
sequence. A comparison betweem the algorithms is presented in Section 6.4.

(a) Example frame. (b) Ground truth. Gray represents shadows,
white objects, and black static background.

Figure 10: This image from the ATM video sequence and the corresponding
ground truth will be used to show stepwise results.

6.1 Affine Intensity Relation

The two ratios, 𝑟𝑎𝑡𝑖𝑜1 and 𝑟𝑎𝑡𝑖𝑜2, from the a�ne intensity algorithm are visu-
alized in Figure 11. As mentioned earlier, 𝑟𝑎𝑡𝑖𝑜1 is supposed to be less than one
and 𝑟𝑎𝑡𝑖𝑜2 near zero for shadow pixels. As seen in Figure 11 (b) the assumption
on 𝑟𝑎𝑡𝑖𝑜2 does not hold very well.

In Figure 12 the �nal result is shown, using 𝑠𝑡𝑎𝑟𝑡𝑆𝑖𝑧𝑒 = 8 and 𝑠𝑡𝑜𝑝𝑆𝑖𝑧𝑒 = 4.
The binary shadow mask is displayed in Figure 12 (a) and the corresponding
probability map in Figure 12 (b). In Table 3, the confusion matrix for the
binary shadow results is displayed. These numbers are an average of the confu-
sion matrices for all eight scenes. The binary shadow mask in Figure 12 includes
most shadow pixels but also some object blocks. However, as seen in the confu-
sion matrix representing a wider range of scenes, the general result reveals the
algorithm's di�culty in separating between objects and shadows.
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(a) 𝑟𝑎𝑡𝑖𝑜1.
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(b) 𝑟𝑎𝑡𝑖𝑜2.

Figure 11: Ratios of the a�ne intensity algorithm described in Section 5.1.

(a) Binary shadow mask. (b) Probability map for shadow, bright is
high probability.

Figure 12: Shadows detected by the a�ne intensity algorithm.

Classi�cation \ True Shadow Object Background
Shadow 52.0621 % 34.8585 % 3.8738 %
Non-shadow 47.937 % 65.1415 % 96.1262 %

Table 3: Confusion matrix using the a�ne intensity algorithm. These numbers
are an average of the confusion matrices for all eight scenes.

6.2 Intensity, Chromaticity and Texture using Threshold-

ing

6.2.1 Intensity & Chromaticity

In Figure 13 (a), 𝑦𝑅𝑎𝑡𝑖𝑜 = 𝑌 𝑓𝑟

𝑌 𝑏𝑔 is visualized. 𝑦𝑅𝑎𝑡𝑖𝑜 should be equal to one
in background pixels since 𝑌 𝑓𝑟 = 𝑌 𝑏𝑔 there. It is also expected that shadow
pixels have a 𝑦𝑅𝑎𝑡𝑖𝑜 value less than one and that object pixels are distributed
over the entire range. These assumptions are con�rmed in Figure 13 (a).

The pixels that satisfy the shadow condition on 𝑦𝑅𝑎𝑡𝑖𝑜 are shown in Figure
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13 (b) and (c). In Figure 13 (b), the upper threshold is static, while in Figure
13 (c), 𝑦𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤 is generated using adaptive parameter setting decreasing the
background noise substantially. The corresponding confusion matrices based on
an average of our eight scenes are shown in Table 4 and Table 5. The desired
reduction of background noise in Table 5 was achieved with the adaptive pa-
rameter setting. The simultaneous reduced shadow detection percent originates
mainly from the loss of weak shadow boundaries, compare Figure 13 (b) and
(c).

(a) 𝑦𝑅𝑎𝑡𝑖𝑜. (b) 𝑦𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤 =
{𝑦𝑅𝑎𝑡𝑖𝑜 > 𝛼 & 𝑦𝑅𝑎𝑡𝑖𝑜 < 1}.

(c) 𝑦𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤 =
{𝑦𝑅𝑎𝑡𝑖𝑜 > 𝛼 & 𝑦𝑅𝑎𝑡𝑖𝑜 < 𝛽},
where 𝛽 is adaptive.

Figure 13: 𝑦𝑅𝑎𝑡𝑖𝑜 and shadows de�ned by the intensity criterion, before and
after the improvement of adaptive parameter setting.

Classi�cation \ True Shadow Object Background
Shadow 77.8818 % 45.3013 % 11.5267 %
Non-shadow 22.1182 % 54.6987 % 88.4733 %

Table 4: Confusion matrix using only intensity feature.

Classi�cation \ True Shadow Object Background
Shadow 70.8966 % 43.2192 % 4.5830 %
Non-shadow 29.1034 % 56.7808 % 95.4170 %

Table 5: Confusion matrix using the intensity feature
with adaptive parameter setting.

Applying the hypothesis that both Cb and Cr should be rather constant in
shadow pixels gives an expected value of 𝐶𝑏𝐷𝑖𝑓𝑓 and 𝐶𝑟𝐷𝑖𝑓𝑓 near zero,
compare these assumptions with Figure 14 (a) and (b). The corresponding
𝑐ℎ𝑟𝑜𝑚𝑒𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤 mask is shown in Figure 15 (a). In this frame, a rather big
part of the object is successfully extracted and can thus be subtracted from the
intensity shadow mask. The resulting shadows, shown in Figure 15 (b), contains
less object compared to the shadow mask in Figure 13 (c) based on intensity
only. Despite discriminating objects, information about chromaticity has also
been used to �nd strong shadows that were not included in the intensity mask
due to a too large attenuation. The increased shadow detection percentage
adding the strong shadows can be seen comparing Table 6 and 7.
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(a) 𝑐𝑏𝐷𝑖𝑓𝑓 = difference in Cb between the
frame and background.
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(b) 𝑐𝑟𝐷𝑖𝑓𝑓 = difference in Cr between the
frame and background.

Figure 14: Chromaticity measures.

(a) The chromaticity mask
𝑐ℎ𝑟𝑜𝑚𝑒𝐼𝑠𝑆ℎ𝑎𝑑𝑜𝑤. The black areas do
not satisfy the chromaticity condition and
should thus represent objects.

(b) The resulting 𝑠ℎ𝑎𝑑𝑜𝑤𝑠, representing
the union between 𝑤𝑒𝑎𝑘𝑆ℎ𝑎𝑑𝑜𝑤𝑠 and
𝑠𝑡𝑟𝑜𝑛𝑔𝑆ℎ𝑎𝑑𝑜𝑤𝑠.

Figure 15: The chromaticity mask and shadows de�ned by intensity and
chromaticity.

Classi�cation \ True Shadow Object Background
Shadow 66.9966 % 27.0768 % 4.4890 %
Non-shadow 33.0034 % 72.9232 % 95.5110 %

Table 6: Confusion matrix for 𝑤𝑒𝑎𝑘𝑆ℎ𝑎𝑑𝑜𝑤𝑠 based on an average of all scenes.

Classi�cation \ True Shadow Object Background
Shadow 75.6671 % 31.9542 % 4.4968 %
Non-shadow 24.3329 % 68.0458 % 95.5032 %

Table 7: Confusion matrix after adding 𝑠𝑡𝑟𝑜𝑛𝑔𝑆ℎ𝑎𝑑𝑜𝑤𝑠 to 𝑤𝑒𝑎𝑘𝑆ℎ𝑎𝑑𝑜𝑤𝑠
based on an average of all scenes.
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6.2.2 Components & Texture

Below, the steps performed to divide the candidate shadows from Figure 15
(b) into components are illustrated. The frame edges extracted with Canny
edge detection are visualized in Figure 16 (a) and the corresponding extrapo-
lated edges in Figure 16 (b). Removing the extrapolated edges from a morphed
version of the candidate shadow mask, results in the component partitioning
shown in Figure 17 (a). This plot also visualizes the texture correlation for
each component. A dark component has a low correlation between background
and frame, and is thus probably an object. The resulting shadow mask using
intensity, chromaticity, and texture is displayed in Figure 17 (b). In this frame,
the algorithm is successful in separating shadows from objects and background.

(a) 𝑒𝑑𝑔𝑒𝑑𝑖𝑓𝑓 = 𝑐𝑎𝑛𝑛𝑦𝑓𝑟 − 𝑐𝑎𝑛𝑛𝑦𝑏𝑔 .
𝑒𝑑𝑔𝑒𝑑𝑖𝑓𝑓 represents edges that exist in the
frame but not in the background.

(b) Extrapolated 𝑒𝑑𝑔𝑒𝑑𝑖𝑓𝑓 to get continu-
ous edges.

Figure 16: Edges extracted in order to divide the candidate shadows into
connected components.

(a) The resulting components and their
texture correlation. Brighter color means
stronger correlation.

(b) The final result using intensity, chro-
maticity and texture.

Figure 17: The components, colored according to their texture correlation
value, and the resulting shadows.

24



The confusion matrix using intensity, chromaticity and texture is shown in Ta-
ble 8 below. Compared to the confusion matrix in Table 7, the number of
misclassi�ed object and background pixels has been reduced substantially.

Classi�cation \ True Shadow Object Background
Shadow 65.4869 % 14.637 % 1.6363 %
Non-shadow 34.5131 % 85.3630 % 98.3637 %

Table 8: Confusion matrix using intensity, chromaticity and texture.

6.3 Intensity, Chromaticity and Texture using Graph Cuts

The segmentation using graph cuts is shown below. The previous algorithms
classify each video frame into shadow or non-shadow. This algorithm, however,
produces a full segmentation that separates between object and background as
well. The results are therefore comparable to the ground truth in Figure 10 (b)
with shadows in gray and objects in white.

In Figure 18 we show training results where one frame from the ATM sequence
has been labeled based on weights derived from the entire ATM sequence. These
results give an indication ot the potential of the graph cut algorithm. In Fig-
ure 19 the same ATM frame has been labeled based on weights derived from a
training set consisting of all sequences but ATM.

(a) Training result using only
intensity.

(b) Training result using in-
tensity and chromaticity.

(c) Training result using in-
tensity, chromaticity and tex-
ture.

Figure 18: Segmentation with graph cuts after training the algorithm on the
ATM sequence. Gray represents shadow, white represents object, and black

represents background.

Confusion matrices for the test results can be found in Table 9, 10 and 11.
The numbers are based on an average of the confusion matrices for all eight
sequences. For each sequence, the weights are derived from every sequence but
the one being classi�ed. Adding more features give a higher rate of detected
shadows but also more misclassi�ed objects.
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(a) Test result using only in-
tensity.

(b) Test result using intensity
and chromaticity.

(c) Test result using intensity,
chromaticity and texture.

Figure 19: Segmentation with graph cuts after training the algorithm on all
sequences but ATM. Gray represents shadow, white represents object, and

black represents background.

Classi�cation \ True Shadow Object Background
Shadow 59.9708 % 28.584 % 3.8633 %
Non-shadow 40.0292 % 71.416 % 96.1367 %

Table 9: Confusion matrix applying graph cuts with weights based on
intensity only.

Classi�cation \ True Shadow Object Background
Shadow 60.8658 % 34.7542 % 3.2118 %
Non-shadow 39.1342 % 65.2458 % 96.7882 %

Table 10: Confusion matrix applying graph cuts with weights based on
intensity and chromaticity.

Classi�cation \ True Shadow Object Background
Shadow 64.6401 % 44.3151 % 3.006 %
Non-shadow 35.3599 % 55.6849 % 96.994 %

Table 11: Confusion matrix applying graph cuts with weights based on
intensity, chromaticity and texture.
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The segmentation using the manually designed weights in Figure 9 is shown
in Figure 20. These results should be compared with the segmentation in Fig-
ure 19 based on the derived weights. The major di�erence is the increased
number of object pixels being misclassi�ed as shadows. This is also re�ected
in the confusion matrices in Table 12, 13 and 14. The confusion matrices also
reveals a higher shadow detection rate using designed weights.

(a) Segmentation using
weights designed for intensity.

(b) Segmentation using
weights designed for intensity
and chromaticity.

(c) Segmentation using
weights designed for intensity,
chromaticity and texture.

Figure 20: Segmentation with graph cuts and designed weights. Gray
represents shadow, white represents object, and black represents background.

Classi�cation \ True Shadow Object Background
Shadow 82.0428 % 56.9410 % 2.9145 %
Non-shadow 17.9572 % 43.0590 % 97.0855 %

Table 12: Confusion matrix applying graph cuts with weights designed for
intensity.

Classi�cation \ True Shadow Object Background
Shadow 81.8453 % 62.2612 % 2.6362 %
Non-shadow 18.1547 % 37.7388 % 97.3638 %

Table 13: Confusion matrix applying graph cuts with weights designed for
intensity and chromaticity.

Classi�cation \ True Shadow Object Background
Shadow 80.4103 % 63.4737 % 2.5148 %
Non-shadow 19.5897 % 36.5263 % 97.4852 %

Table 14: Confusion matrix applying graph cuts with weights designed for
intensity, chromaticity and texture.
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6.4 Comparison

In Figure 21 and 22, a comparison between the di�erent algorithms is displayed
for the eight di�erent scenes. The corresponding true positive rate (TPR) and
false positive rate (FPR) for all evaluated methods are displayed in Table 15.
These values are calculated as an average of the TPR and FPR for the eight
scenes.

In this section we refer to the various algorithms using the following abbre-
viations: Int (intensity), Chr (chromaticity), Tex (texture), GC (graph cuts).

Algorithm TPR (%) FPR (%)
A�ne Int 52.0621 5.1719
Int 70.8966 6.2576
Int/Chr 75.6671 5.5464
Int/Chr/Tex 65.4869 2.1951
GC Int 59.9708 4.8108
GC Int/Chr 60.8658 4.4191
GC Int/Chr/Tex 64.6401 4.5053
GC design Int 82.0428 5.2021
GC design Int/Chr 81.8453 5.1439
GC design Int/Chr/Tex 80.4103 5.0380

Table 15: TPR and FPR for the evaluated methods. The numbers are based
on an average of the TPR/FPR for all eight scenes.

Prioritizing a low FPR in order to not suppress real motion triggered alarms,
the algorithm Int/Chr/Tex from Section 5.2.2 is considered the best. Although
the graph cuts algorithm with designed weights has signi�cantly higher TPR,
the small increase in FPR is more severe than it might seem. Since FPR is the
proportion of the object and background pixels incorrectly classi�ed as shad-
ows, and the number of background pixels totally dominates the frame, the large
number of misclassi�ed object pixels using graph cuts is concealed in the false
positive rate.
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(a) ATM (b) Traffic (c) Burglar (d) Corridor

Figure 21: Shadow detection results in four di�erent scenes for �ve of the
evaluated algorithms. The following abbreviations are used: Int (intensity),

Chr (chromaticity), Tex (texture), and GC (graph cuts).
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(a) Basement (b) Parking (c) Parklot (d) Lobby

Figure 22: Shadow detection results in four di�erent scenes for �ve of the
evaluated algorithms. The following abbreviations are used: Int (intensity),

Chr (chromaticity), Tex (texture), and GC (graph cuts).

30



7 Discussion

The main challenge in this master thesis has been to design a shadow detection
algorithm that is able to extract shadows in every possible scene. In a speci�c
scene and lighting, the shadows introduce similar changes with respect to the
intensity and chromaticity. With speci�c values of these features, the shadows
are easy to extract by thresholding. However, when adjusting the algorithm to
work for other sequences and scenes, the range of the feature values gets much
wider. Extracting only shadows, without also including objects or background,
is then a very hard problem when applying thresholding.

As an example, the intensity change of a pixel covered by shadow, varies a
lot depending on the lighting of the scene. A sunny day, the intensity change
under shadow can be quite substantial while it might be barely visible a cloudy
day or in a poorly illuminated indoor scene.

The problem with objects slipping through as shadows was expected to be
helped by applying more features discriminating in di�erent directions. The
added features, however, proved to be more complex than expected. Overall,
the impression is that intensity gives the most valuable information when try-
ing to detect shadows, especially considering the low complexity of this feature
compared to the other features.

7.1 Affine Intensity Relation

The algorithm based on the a�ne intensity relation was implemented as a �rst
attempt to see how far we could get with a rather basic method. Although, since
the algorithm detects shadows recursively in progressively smaller blocks, the
computational load varies a lot depending on the chosen 𝑠𝑡𝑎𝑟𝑡𝑆𝑖𝑧𝑒 and 𝑠𝑡𝑜𝑝𝑆𝑖𝑧𝑒.

The results in Figure 12 and Table 3 were not as satisfying as expected. Clearly,
this algorithm has di�culties separating between shadows and objects. The
trouble consists in �nding suitable thresholds for 𝑟𝑎𝑡𝑖𝑜1 and 𝑟𝑎𝑡𝑖𝑜2. According
to the theory, 𝑟𝑎𝑡𝑖𝑜1 should be below one and 𝑟𝑎𝑡𝑖𝑜2 near zero for a block to be
de�ned as a shadow. Learning more about the e�ects of the ratios, we discov-
ered that 𝑟𝑎𝑡𝑖𝑜1 could use a lower bound as well. This lower bound prevented
some of the objects to slip through as shadows, but at the same time we lost
some of the stronger shadows.

𝑟𝑎𝑡𝑖𝑜1, representing the intensity reduction in shadows, seems to give more valu-
able information than 𝑟𝑎𝑡𝑖𝑜2, representing the accuracy of the a�ne condition
in Equation (5). Visualizing 𝑟𝑎𝑡𝑖𝑜2 as in Figure 11 (b) revealed weaknesses in
the a�ne intensity hypothesis. There was a bigger variation of the ratio within
a shadow than between shadows and objects. Therefore it was impossible to
�nd a threshold for 𝑟𝑎𝑡𝑖𝑜2, separating the two classes.
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7.2 Intensity, Chromaticity and Texture using Threshold-

ing

Modifying the intensity hypothesis and adding conditions on chromaticity, we
aimed at solving some of the problems above. Measuring the intensity attenu-
ation pixelwise instead of blockwise proved to be a big improvement. However,
applying chromaticity as an indicator for shadow was a lot harder than expected.

It was really di�cult to �nd a good measure of the chromaticity change in
YCbCr since the hue in HSV had no direct counterpart. None of the tested
conditions for preserving the chromaticity gave satisfying results in all possible
scenes. However, we believe that this is a consequence of false assumptions
rather than the measure itself.

One weakness, applying the theory in practice, is the need for a good back-
ground model since the chromaticity is very sensitive to small changes in color
and white balance. We use as background model a frame taken from the begin-
ning of the video sequence, before any objects or shadows has emerged in the
scene. Since the camera changes exposure between frames frequently depend-
ing on variations in the scene, the background model is rarely completely up to
date relative to the current frame. As a consequence, the hypothesis on constant
chromaticity in shadows does not necessarily hold when comparing the frame
to the background. This can be seen comparing Table 5 to Table 6 where the
shadow detection rate has decreased from 70.9% to 67.0% due to the shadows
not ful�lling the chromaticity condition.

Another weakness was, as expected, that the chromaticity behaves di�erently
in outdoor and indoor scenes. Particularly, the light shifts towards blue under
shadows in outdoor scenes. If the algorithm was to be applied only indoors or
outdoors, the measure could have been adjusted to �t the speci�c conditions of
that scene.

Adding texture as further indication for shadow, some of the previously misclas-
si�ed object pixels were excluded from the shadow mask. Compare Figure 15 (c)
and Figure 17 (c) to see the striking improvement. The advantage of evaluating
the texture in components rather than in blocks is that the evaluated region
then consists of only one class. This, however, relies on a skilled component
partitioning which was a challenging mission. The task is delicate as it ideally
should extract the borders which separate shadows from objects, whereas this
in some sense is the goal with the algorithm as a whole.

The drawback with the texture as a feature is that it demands a somewhat
high resolution in order for the video frames to preserve the texture informa-
tion. It also demands that the shadow attenuation is not too strong, such that
the texture gets lost due to the decreased contrast. For example, a relatively
dark texture containing values between 0 and 50 might be attenuated to values
between 0 and 5. This small intensity change is almost not notable and the
texture is lost.

This texture loss is not the only problem with strong shadows. In fact, none

32



of the feature conditions are fully satis�ed in strong shadows. The intensity
change in strong shadows is hard to distinguish from an object, since it is so
pronounced. Furthermore the chromaticity is generally not preserved in strong
shadows since a low intensity gives more color neutrality.

7.3 Intensity, Chromaticity and Texture using Graph Cuts

Having spent a lot of time evaluating and trying to improve the application of
the a�ne intensity relation in Section 5.1 and the di�erent features of the algo-
rithm in Section 5.2, the rigidity of thresholding was exposed. To make better
use of these features, the probabilistic view in Section 5.3 was introduced. This
approach gave us valuable knowledge of the behavior of the di�erent features.
The probability distributions in Figure 8 reveal whether the features behave as
expected and give some indication of the potential of the features.

As expected, 𝑦𝑅𝑎𝑡𝑖𝑜 performs quite well as a measure of the intensity change
in the frame compared to the background, see upper left corner in Figure 8.
The probability distributions of 𝑦𝑅𝑎𝑡𝑖𝑜 look like expected; shadow has a high
probability somewhere between 0.4 and 1, background has a peak near 1, and
the probability for objects are spread out over a larger range. The peak in the
shadow distribution around 0.4 originate from a dominant scene with strong
shadows while the peak around 0.9 originate from indoor and outdoor scenes
with more weak shadows. With a larger test data, re�ecting all possible scenes
and lighting, this shadow distribution would presumably be more constant be-
tween the two peaks.

The purpose with the chromaticity and texture features is that they should
discriminate objects in order to achieve a low FPR. For the algorithm to be
able to separate objects from shadows and background, it is necessary that
there is a clear di�erence in the feature measure betweeen objects and the other
classes. As seen in Figure 8, the chromaticity and texture distributions for ob-
jects are quite similar to the distributions for shadows and background. Thus,
the chromaticity and texture as calculated here is not discriminative for shad-
ows. Apparently, the texture feature is less informative using graph cuts than
in the algorithm applying thresholding. One possible reason could be that the
texture is evaluated pixelwise instead of in components, making the algorithm
more sensitive to noise.

Theoretically the chromaticity distribution for objects should be more or less
rectangular since the chromaticity of an object is rather arbitrary. This condi-
tion would also make the object distribution more unique and easy to separate
from the other distributions. Although this was accounted for when designing
weights, the expected improvement did not occur. Compare Table 9-11 with
Table 12-14. Instead of discriminating objects, more of both object and shadow
was found. A possible explanation for this could be that the training set used to
derive weights resembles the evaluated scene and thereby �ts the scene better
than the general assumption accounted for when designing the weights.
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8 Future Work

To further improve the results, a better data set could be valuable. A bigger
variation of the scenes and a larger amount of frames would give more informa-
tion and more trustworthy results. Better ground truth and background models
would also make the results more trustworthy.

To increase the precision, more features could be added to the algorithms. Per-
haps an estimate of the shape of objects and their attached shadows would make
it easier to separate them. The challenge here would be to make the estimate of
the shape general to all types of objects. Since shadows normally move contin-
uously like their corresponding objects, another improvement could be to apply
a temporal �lter in order to avoid shadows rapidly emerging and disappearing
from the shadow mask.

Another approach could be to divide shadows into di�erent groups depend-
ing on their properties, such as weak versus strong shadows, and customize the
algorithm to the characteristics of the scene. Allowing the algorithms to be less
general simpli�es both thresholding and estimating the probability distributions.
The challenge lies in estimating the type of shadows present in the scene. A
possible solution could be to separate between indoor and outdoor environment.

To reduce the number of false alarms evoked by shadows, another approach
could be to make the classi�cation using the object tracking mask. In that case
the algorithm would only have to search for shadows within the mask.
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