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Abstract 
As concentrations of measured CO2 in the atmosphere reach a record high it is important to attempt all 
possible efforts to reduce the emissions of greenhouse gases (GHG) in all aspects of industry. The 
fishing sector contributes 15% of total GHG emission in Iceland, with the majority originating from 
fishing vessels using fossil fuel. The relationship between catching locations of Atlantic Mackerel 
(Scomber scombrus) in Icelandic waters and satellite remote sensing variables was explored. The aim 
was to provide information for possible fisheries forecasting, which could facilitate reduced energy 
consumption in Icelandic fishing vessels. The hypothesis was that satellite variables were a valuable 
source of information for determining viable fishing grounds in Icelandic waters.   

The variables explored were sea surface temperature (SST), chlorophyll (CHL), photosynthetically 
available radiation (PAR), water leaving radiance (L443) and down welling diffusion attenuation 
coefficient (kd490). The spatial resolution was about 4.6 km and temporal resolution 1 day. Effects of 
decreased spatial and temporal resolution were also explored.  

Binomial generalized additive models were created to identify the possible relationship with fishing 
locations represented as absence or presence of mackerel catches. Seven day PAR was the strongest 
single variable, explaining 47% of deviance, with the spatial variables latitude and longitude 
incorporated. The most successful multiple variable models included one or seven day averages of 
PAR and SST and seven day averages of L443, explaining 48% of deviance. Decreasing temporal 
resolution to 7 days improves the predictive ability of all variables. Decreasing spatial resolution to 
3*3 cells does not decrease or increase the predictability to any extent.  

In order to estimate the usefulness of global data sets in local situations, a correlation of observed and 
remotely sensed CHL in Icelandic waters was estimated. Results on a minor sample size revealed a 
strong significant correlation, suggesting that global datasets were useful in local situations around 
Iceland.   

The satellite variables explored significantly contribute to a model explaining the absence and 
presences locations for mackerel fishing in Icelandic waters. Mackerel catches were most successful in 
a temperature range of 7.5°-13°C where there were high amounts of incoming visible solar radiation 
and intermediate concentration of phytoplankton. Clear waters due to little absorption as well as 
turbulent water with high scattering also had effects. This suggested that mackerel caught in Icelandic 
waters was more dependent on visual foraging than previously considered.   

 

Keywords: Physical Geography and Ecosystem Analysis, Sea Surface Temperature, Water Leaving 
Radiance, Photosynthetically Available Radiation, Downwelling diffuse attenuation coefficient, 
Chlorophyll, Atlantic Mackerel, Scomber scombrus, Icelandic waters, Satellite variables, Remote 
sensing 
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Ágrip [Abstract in Icelandic] 
Styrkur CO2  í andrúmslofti mældist í fyrsta sinn yfir 400 ppm í maí 2013. Með Kyotobókuninni frá 
1997 hafa þjóðir heimsins hafa skuldbundið sig til að draga úr losun gróðurhúsalofttegunda. Ísland er 
þar á meðal. Sjávarútvegurinn leggur til um 15 % af heildarlosun gróðurhúsalofttegunda á Íslandi. 
Meiri hlutinn kemur til vegna brennslu jarðefnaeldsneytis skipaflotans. Ein af tíu lykilaðgerðum 
Umhverfis- og auðlindaráðuneytisins til að draga úr losun gróðurhúsalofttegunda er að leita leiða til að 
draga úr útblæstri íslenska fiskiskipaflotans.  

Tengsl milli veiðistaða makríls (Scomber scombrus) á Íslandsmiðum og fjarkönnunarganga frá 
gervitunglum var könnuð. Markmiðið var að afla upplýsinga fyrir mögulegar fiskiveiðispár, sem geta 
stuðlað að minni orkunotkun fiskiskipa. Tilgátan var sú að fjarkönnunargögn úr gervitunglum séu 
uppspretta gagnlegra upplýsinga til að ákvarða vænlegar fiskislóðir á Íslandsmiðum.  

Fimm gervitunglabreyturnar voru kannaðar: yfirborðshiti sjávar (SST), magn blaðgrænu (CHL), 
styrkur ljóstillífunargeislunar (PAR), full staðlaður geislunarljómi endurkastaðs ljóss frá vatni (L443) 
og stuðull fyrir niðurstreymi dreifðrar geislunar í vatni (kd490). Svæðisupplausn gervitunglabreytanna 
var um 4.6 km og tímaupplausn 1 dagur. Áhrif þess að minnka bæði svæðis –og tímaupplausn voru 
einnig könnuð.  

Tengsl gervitunglabreyta og veiðistaða makríls voru könnuð með tvíkostadreifðu GAM-líkani 
(Generalized Additive Model). Háða breytan var veiðistaðsetningar sem voru skilgreindar sem veiddur 
makríll eða enginn veiddur makríll. Óháðar breytur voru gervitunglabreyturnar með mismunandi 
svæðis – og tímaupplausn. Sjö daga meðaltal ljóstillífunargeislunar var sú einstaka breyta sem skýrði 
best makrílveiðar. Það módel með fleiri en einni óháðri breytu sem skýrð best makrílveiðar var módel 
með eins eða sjö daga meðaltal fyrir ljóstillífunargeislun og yfirborðssjávarhita og sjö daga meðaltal 
fyrir full staðlaðan geislunarljóma endurkastaðs ljóss frá vatni. Minni svæðisupplausn hafði ekki mikil 
áhrif á hæfileika gervitunglabreytanna til að skýra makrílveiðar en minni tímaupplausn frá einum degi 
til sjö daga bætti hæfileika flestra breytanna.  

Gervitunglabreyturnar sem voru notaðar komu úr stórum gagnasöfnum sem eru unnin fyrir heiminn í 
heild sinni. Til að meta hversu árangursrík slík gagnasöfn eru við staðbundnar aðstæður eins og á 
Íslandsmiðum voru tengsl milli blaðgrænu sem mæld er í sjó á Íslandsmiðum og magn blaðgrænu sem 
mæld er með gervitunglum á sömu stöðum borin saman. Niðurstöður, sem byggðu á litlu úrtaki, sýndu 
sterka marktæka fylgni.  

Gervitunglabreyturnar bættu marktækt módel til að skýra staðsetningu makrílveiðistaða. Makrílveiðar 
voru árangursríkastar við yfirborðshita sjávar frá 7,5°C – 13°C þar sem styrkur sólarljóss var mikill og 
þar sem magn blaðgrænu var í meðallagi. Tærari sjór og einnig sjór þar sem mikið endurkast á sér stað 
hefur líka áhrif. Þessar niðurstöður gefa til kynna að makríll sem veiddur er á Íslandsmiðum sé meira 
háður sjón við fæðuöflun en hingað til hefur verið álitið. Flestar heimildir segja að makríllinn afli 
fæðunnar fyrst og fremst með því að sía hana.  
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1 Introduction 

1.1 Motivation and overall aim 
The measured concentration of CO2 in the atmosphere at Mauna Loa, Hawaii exceeded 400 ppm for 
the first time on the 9th of May 2013 (Kunzig 2013). Following the Kyoto protocol international 
agreement in 1997, nations around the world have striven to decrease the amount of emitted 
greenhouse gases (GHG), including Iceland. According to an Action plan on climate change, by the 
Ministry for the Environment and Natural Resources in Iceland, one of the ten key actions for 
reducing GHG emissions in Iceland is to reduce fossil fuel energy usage by fishing vessels (Ministry 
for the Environment 2010). 

Fisheries have been the most important export sector in Iceland for more than a century. Its proportion 
in total exports exceeded 95% in the 1940’s and is currently close to 42% (Arnason and Agnarsson 
2005; Statistics Iceland 2013). The fishing fleet is also a large contributor to GHG emissions. In 2009 
15% of the total emission in Iceland came from fisheries (with heavy industry included). The majority 
of the emission originates from fishing vessels, but fishmeal factories have also contributed in a large 
way. The current aim is to reduce the emission by the fisheries sector by 27% in 2020 (Ministry for the 
Environment and Natural Resources 2012).  The main focus of the Ministry for the Environment and 
Natural Resources is to attempt to substitute fossil fuels with biofuels. Other schemas are also being 
explored, such as various technologies to reduce energy consumption. These are mostly related to 
redesigning fish gear, which are intensive energy consumers. Innovative ideas and development of 
novel procedures include the invention of using low frequency sounds (Björnsson 2012) or light 
beams to gather fish (Innovation Center Iceland 2012).  

This study aims to provide information which can be used to reduce energy consumption in Icelandic 
fishing vessels by investigating how satellite remotely sensed variables can be used to forecast poten-
tial fishing grounds for Atlantic Mackerel in Icelandic waters. 

On short term basis, correlative information between satellite variables and location of catches can be 
quite valuable and will support those fishermen that are already using satellite data onboard their 
vessels. On a longer term basis the knowledge can serve as an input into the development of fish 
finding tools specifically designed for Icelandic waters. Either way the knowledge is likely to 
encourage more energy efficient fishing methods and contribute to lowering the carbon footprint of the 
industry.  

Remote sensing has the ability to provide data with high spatial and temporal resolution and has the 
potential to be a valuable source of data in fisheries management and forecasting around the world. It 
has been suggested that remote sensing will revolutionize fisheries management and forecasting in the 
years to come with improved understanding of the relationship between various fish species and 
different ecosystem aspects (Stuart et al.  2011).  

Remote sensing has not been used systematically in Icelandic fisheries management. Studies are 
mainly carried out with research vessels and point measurements of the various aspects of the 
ecosystem. Such methods are both limited in time and space. As marine ecosystems are vast and vary 
both temporally and spatially, it is evident that such methods are not efficient in providing frequent 
information on the status of the ecosystems in near-real time (Klemas 2010; Stuart et al.  2011). Only 
a few studies have been carried out in Icelandic waters using remote sensing. Remotely sensed 
variables and in situ observations have been investigated (Jonason et al. 2009; Gudmundsson et al.  

2009; Zhai et al.  2012). One attempt has been made to forecast possible fishing grounds for capelin 
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(Mallotus villosus) in north Icelandic waters (Sánchez 2003) and Einarsson (2011) used satellite data 
as a model input to predict spawning migration pattern of the capelin stock.  

Previous studies on fisheries forecasting with satellite data have shown that satellite data can be used 
successfully to predict viable fishing areas for many different species and substantially increase 
catches (Solanki et al.  2003; Zagaglia et al.  2004; Klemas 2010; Stuart et al.  2011; Chassott et al.  
2011).   

The theoretical ground gained in studies on the relationship between fishing locations and satellite 
variables has contributed to development of commercial tools and service for fisheries, which are now 
widely used in professional fisheries around the world to provide near -real time information at 
different resolutions (Chassott et al.  2011; Stuart et al.  2011; Saitho et al.  2011). These tools are now 
commonly used in larger Icelandic pelagic fisheries vessels.  

This study aims at providing information for fisheries forecasting in Icelandic waters. Successful 
forecasting will clearly reduce energy and time spent in searching for fish and may provide an initia-
tive that will lead to economic gain in fisheries around the world. Previous studies have mainly 
focused on large fishing areas and used coarse resolution satellite data, averaged over weeks, months 
and seasons. Thus there is a need to test finer scale spatial and temporal resolution, on the exact date of 
fishing and extraction of single cell value for every location of caught mackerel (spatial resolution 
limited to single cell size of satellite data). To my knowledge this is the first study using such fine 
temporal and spatial scale.  

1.2 Objectives 
The main objective of the study is to identify relationships between actual fishing locations of Atlantic 
Mackerel in Icelandic waters from 2007 to 2012 and variables derived from remote sensing.   

The hypothesis is that remotely sensed variables are a valuable source of information for determining 
viable fishing grounds in Icelandic waters.  

H1= There is a relationship between catches of Atlantic Mackerel and various remotely sensed 
environmental variables  

H0 = There is no relationship between fishing locations and remotely sensed variables.  

Additionally the following questions are addressed:  

1. Which remotely sensed variable or combinations of variables are most successful in predicting 
catch locations of mackerel? 

2. How does decreased temporal resolution influence the relationship? 

3. How does decreased spatial resolution influence the relationship?  

4. How can the relationship between catch locations and remotely sensed variables be explained? 

5. Is there a correlation between observed environmental variables around Iceland and remotely 
sensed variables, with focus on chlorophyll?  

6. How has the pattern of mackerel fishing in Icelandic waters changed spatially and temporally 
from 2007 to 2012?  
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2 Background  

2.1 The species - Atlantic Mackerel 
The Atlantic Mackerel (Scomber 

scombrus) is a pelagic fish, typically 
found in large schools in the upper-
most layers of the open ocean. It is a 
superb swimmer and as it has no swim 
belly to control its buoyancy so it 
needs to swim continuously to avoid 
sinking (Utne et al.  2012).   

The Atlantic Mackerel is found in two 
separated stocks on the in the NE and 
the NW Atlantic. The mackerel found 
in the Icelandic waters is considered to 
belong to the NE-stock (Astthorsson et 

al.  2012).  

The NE Atlantic stock is large and the 
spawning stock has been increasing. 
The spawning stock biomass is 
estimated every year by the Inter-
national Council for the Exploration of 
the Sea (ICES). Since 1981, the stock 
has been estimated to vary between 2 
and 2.5 million tones. However in 
2009 it expanded rapidly to 
approximately 3.1 million tons while 
in 2011 it was estimated to be about 2.9 
million tons (ICES 2009, ICES 2011, 
Nøttested and Huse 2012).  

The distribution of the NE stock extends 
over a wide area, from NW Africa north 
to the Barents Ocean and from Norway in East to Jan Mayen in the west (Astthorsson et al.  2012). In 
recent years its distribution has extended westwards through the Icelandic EEZ and in 2011 small 
catches were reported for the first time in the Greenlandic EEZ (The Norwegian Ministry of Costal 
Affairs 2012).  The spawning stock is divided into three units; south, west and north. The south unit 
spawns off the east coast of Spain and Portugal. The west unit spawns in Bay of Biscay and west of 
Britain. The north unit spawns in the North Sea and in northern Skagerrak (Astthorsson et al.  2012) 
(Figure 1).   

The mackerel is a voracious and opportunistic feeder and mainly feeds on zooplankton, in particular 
Calanus finmarchicus, but also eats larvae, fish and invertebrates smaller than themselves (Olaso et al.  
2005; Langøy et al.  2012, Utne et al.  2012). Mackerel is considered to be primarily a passive filtering 
feeder (Astthorsson et al.  2010), swimming with the mouth open and filtering smaller pelagic organ-
ism.  But it is also known to visually select the prey (Olaso et al.  2005).  It is a constant eater, feeding 
both day and night (Conway et al.  1999).  

Figure 1 Recent distribution of the NE Atlantic Mackerel stock. Green 
filled area is the recent distribution and hatched areas are the three 
spawning areas. Redrawn from Astthorsson et al.  (2007) and Working 
group on mackerel fishing (2012). Modified according to mackerel 
fishing locations in the fisheries logbook from the Directorate of 
Fisheries (unpublished data). Base map: ESRI 2012.  



Kristín Ágústsdóttir – Lund University 

4 
 

Increased water temperature is considered to be the main reason of the periodic occurrence of 
mackerel in Icelandic waters. The Atlantic Mackerel prefers waters above 8°C and during the summer 
months it stays in the warmer surface layers, while during the colder periods of the year it moves to 
greater depths where the ocean is warmer (Utne et al.  2012; Valdimarsson et al.  2012). A study on 
the distribution of mackerel and other pelagic species in the Norwegian Sea shows that the presence of 
mackerel is positively correlated with temperature. It prefers the warm Atlantic water mass and is 
likely to avoid the colder water masses from the Arctic, even though there is a high availability of 
zooplankton for it in to feed on in these colder water masses (Langøy et al.  2012).  

From 2006 onward, mackerel has been caught in the Icelandic EEZ during its summer feeding 
migration from May/June to September/October. A study on summer feeding migration in the North 
Sea revealed that all schools are found in the top 100 m of the ocean layers, and that the majority are 
found in the top 40 meters. Interestingly the study revealed that the direction of migration was not 
random, but dominated by east-west directions movements (Godø et al. 2004).  

2.2 Mackerel in Icelandic Waters 
Several fish species have changed their ranges in Iceland waters during the last 15 years (Asthorsson 
et al.  2012). Species traditionally found further south have moved northwards and northern species 
have shifted even further north. These changes in the ecosystem are explained by warming of 1-2°C in 
the waters south and west of Iceland during this time period (Valdimarsson et al.  2012).  The expan-
sion of the Atlantic Mackerel northward into Icelandic waters comprises one of the more interesting 
examples of this type of range expansion. This species has traditionally been classified as a vagrant in 
the Icelandic area, although its presence has increased periodically during the 20th century, as a 
response to warmer marine climate and positive phases of AMO - the Atlantic Multidecadal 
Oscillation (Astthorsson et al.  2012).  

Factors other than SST which are considered to have contributed to the changes in distribution of the 
Atlantic Mackerel include increased size of the stock, changes in the size and age of the stock 
structure, the size of other competing stocks and changes in concentration and distribution of zoo-
plankton (ICES 2011; Astthorsson et al.  2012; Utne et al.  2012). 

In short, the distribution and abundance of mackerel in Icelandic waters increased gradually during the 
first years of the 21st century. Since 2006 it has been found in larger quantities than before leading to 
direct commercial fishing of the species by Icelandic fishing vessels within the Exclusive Economic 
Zone (Astthorsson et al.  2012). The total catch of the Icelandic fishing fleet increased from 1741 tons 
in 2006 to 146 thousand tons in 2012, and the fishing period expanded (Table 1).  

Table 1 Tons of mackerel caught in Iceland from 2006 to 2012 and the catching period (months). 

 

  

Year 2006 2007 2008 2009 2010 2011 2012

Total catch in tons 1,741 31,835 109,855 112,510 118,489 156,802 145,802

Period of fishing Jul.-Sept. Jul.-Sept. Jun.-Sept. May-Sept. Mai.-Okt. Jun.-Sept. Jun.-Okt.
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2.3 Study area – in time and space 
The study area is defined by the fishing locations of mackerel from 2007 to 2012 registered in the 
fisheries logbook database of the Icelandic Directorate of Fisheries (unpublished data). It extends from 
about 60° to 73°N and 33°W to 2°E (Figure 2). The time period is defined by the first year of 
substantial commercial mackerel catches in July 2007 to October 2012.  During these years mackerel 
was caught from May/June/July to September/October each year. 

 

Figure 2  The study area is defined by the mackerel catches in 2007-2012.  Fishing locations are identified with a different 
color for each year. The line represents the Icelandic Exclusive Economic Zone (EEZ). Base map: ESRI 2012.  

Icelandic waters are characterized by a frontal zone where two primary water masses with very diff-
erent origins and characteristics meet. The cold Arctic Polar water masses flow southward from the 
north to meet warmer northward flowing North Atlantic water masses of the Gulf Stream (Figure 3 
and Figure 4). Most other water masses in the area are a mixture of these two (Palsson et al.   2012; 
Valdimarsson et al.  2012).  

As a result of the great hydrodynamic variability in this area, the environmental conditions are highly 
variable. The areas north and east of Iceland differ from the areas in the south and west of Iceland, 
both in terms of biology and physical properties of the ocean. In the south and west, where the warmer 
and saltier Atlantic Ocean is dominant, the mean annual primary production is generally higher and 
the temperature ranges from 6-11 °C.  The northern and eastern areas are characterized by fluctuation 
in the influence of warm Atlantic and cold Arctic water masses with temperature ranges from 0-1 °C, 
causing large interannual variations in the fauna and physical properties. Primary production is 
generally lower in this area (Gudmundsson 1998; Gislason 2009).  
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The frontal areas to the southeast and north-
west of Iceland experience the highest prim-
ary production in Icelandic waters. The over-
all means range from 4.3 to 9.2 mg C m3 h1 
for different regions. When conditions are 
favorable, phytoplankton spring bloom starts 
in March/April and peaks in May. The 
regions to the north and east experience a 
single, well-defined peak of spring bloom, 
while the south and west regions have 
frequently observed sequences of peaks 
(Gudmundsson 1998).  

Zooplankton abundances are on an average 
higher south of Iceland than to the north, but it 
varies between years. The most abundant 
species of zooplankton is Calanus finmarchicus, which is a preferred food by mackerel (Astthorsson et 

al.  2010; Gislason et al.  2009; Gislason and Silva 2012; Palsson et al.  2012).  

 

 

As mentioned previously, oceanic ecosystems vary in time and space, both on long term and short 
term basis. Hátún et al.  (2005; 2009) discusses the effects of the dynamics of the Subpolar Gyre on 
ecosystems in the North Atlantic. Presence of weak or strong Subpolar Gyre has prominent effect on 
the fauna in the N-Atlantic Ocean as it affects exchanges of subarctic and subtropical water masses in 
the north-eastern North Atlantic Ocean (Figure 5). It influences salinity (Hátún et al 2005), 
phytoplankton productivity (Hátún et al.  2009) and spawning distribution of the pelagic species blue 
whiting (Hátún et al.  2009; Brickman et al.  2009; Payne et al.  2012). A period with a weak Subpolar 
Gyre has been ongoing since late 1990’s.  

Figure 4 Ocean currents around Iceland. (Based on Valdimarsson and Malmberg 1999 and Valdimarsson et al.  2012). 

Figure 3 Satellite image of SST vividly expresses the meeting of 
two water masses, the cold blue and purple from the north and the 
warmer red  and yellow from the south (Klemas 2010). With 
permission no. 3144380837828. 
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Figure 5  Simulated annual average temperature of water masses in the North Atlantic during a) strong Subpolar Gyre and 
cold period (1993) and b) weak Subpolar Gyre and warm period (1998). Red represents SST > 9°C, blue SST< 7°C and green 
SST between 7-9°C.  Blue arrows indicate currents associated with Subpolar Gyre and the white arrow represents movement 
of relatively warm and saline water of subtropical origin (Hátún et al. 2009) With perm.nr. 3144420069728.  

2.4 Fishing from space – fisheries forecasting 
The characteristics of a good fisherman are ability to read (sense) the environmental signs of probable 
fishing areas. Fishermen can detect different shades or colors of the ocean, heat differences and identi-
fy productive areas, for example by watching bird behaviour. Similar environmental properties are de-
tected by satellite sensors and have proved to be helpful in supporting fishing vessels to find fish 
(Klemas 2010; Chassot et al. 2011; Stuart et al. 2011) 

Satellite remote sensing variables have been used in fisheries research, management and forecasting 
since the early days of remote sensing. The first sensor specifically designed to detect oceanic proper-
ties, namely productivity of the ocean (ocean color or chlorophyll-a) was NASA´s Coastal Zone Color 
Scanner (CZCS) onboard NIMBUS-7, launched in 1978. It was successfully in service for 18 years 
(Wilson 2010). Today the number of sensors detecting different properties of the oceans has expanded. 
For example the sensors detecting ocean color are currently about 10 with different properties and 
resolution (IOCCG 2013). The best known sensors are probably NASA’s MODIS onboard Aqua and 
the recently retired ESA’s MERIS onboard ENVISAT. Since the first sensor was launched 35 years 
ago, the development of methods, algorithms and products of sensors has advanced (Wilson 2010). 
Free access to satellite data and free software to work with satellite data in the recent years has 
encouraged the use of satellite data in many aspects of fisheries research.  

Fisheries forecasting based on remote sensing has been successfully carried out for decades in an 
attempt to save fuel and time. Diverse methods have been used to link fishing locations and satellite 
variables. Some studies focus on frontal zones and specific phenomenon in satellite imagery, such as 
eddies and currents (Solanki et al.  2003; Zainuddin et al.  2006). Others look more at actual values of 
certain predefined parameters such as chlorophyll-a and sea surface temperature (Radlinski et al.  

2013). Some studies focus on hind casting while others strive for the more difficult task; to foresee the 
future (Solanki et al.  2003; Zagaglia et al.  2004; Chassott et al.  2011). Solanki et al.  (2003) used 
ocean color and SST to define potential fishing zones in the Arabic Ocean. Then, actual fishing was 
carried out to validate the forecast. The results suggest a substantial increase in fishing catch per effort 
in these zones. The method was improved by incorporating surface winds into the forecast (Solanki et 

al.  2005; 2010). Zagaglia et al.  (2004) compared actual catches of Yellow Fin tuna (Thunnus 

albacares) in the tropical Atlantic Ocean northeast of Brazil to sea surface temperature, chlorophyll, 
sea surface height anomaly and others variables. They conclude that sea surface temperature and 
chlorophyll are significant factors in controlling tuna abundance. Zainuddin et al.  (2004) used sea 
surface temperature, chlorophyll and sea surface height anomalies to locate tuna fish schools and Wall 
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et al.  (2009) found that chlorophyll and water clarity associated with bait significantly influenced 
successful recreational catches of King Mackerel west of Florida.   

Studies such as those mentioned above have contributed to development of governmental and com-
mercial tools and service for fisheries which are now widely used in professional fisheries (Chassott et 

al.  2011). An example of a commercially developed tool which is used on Icelandic pelagic fishing 
vessels is CATSAT, which is a worldwide satellite service especially designed for professional pelagic 
fishing, “providing near real time oceanographic and marine meteorological information” (Saitoh et 

al.  2011;  Catsat 2013). It provides information on sea surface temperature, chlorophyll and sea level 
anomalies from satellite data at resolutions of 2 to 25 km as well as information derived from models 
with a coarse resolution of 25 km. The temporal resolution of the satellite variables varies from 2 days 
to 7 days (Catsat 2013). Opinions vary amongst fishermen in Iceland on the applicability of such tools 
for aiding fish finding as well as which variables are most successful. While some think it is a very 
successful tool, others are doubtful. Variables like thermocline, which is derived from models, and sea 
level anomalies, sea surface temperature and chlorophyll concentrations derived from satellite data, 
are mentioned as successful (personal comments based on discussion with Icelandic fishermen 
onboard pelagic vessels in the period January to May 2013).  

2.5 Correlation of observed and satellite sensed CHL values in Icelandic waters 
The satellite variables used in this study come from global data sets which have been merged from 
different sensors and validated with in situ observations from around the world, but not specifically 
with observation data collected by the Icelandic Marine Research Institute (Globcolor 2007; Hu et al. 
2010). To get an idea of how representative the satellite variables are on the local scale in Icelandic 
waters, a minor validation check is carried out for one of variables: chlorophyll.   

The validation procedure for CHL in different oceanic waters is commonly split into two categories: 
Case 1 and Case 2 waters. Case 1 waters are considered waters where the color and optical properties 
of the ocean are determined primarily by phytoplankton and dissolved organic matter. These situations 
are commonly found in open waters. Case 2 waters are all other waters where the color and optical 
properties are influenced primarily by minerals, bubbles and dissolved organic matter. These are 
commonly referred to as more turbid waters and coastal waters (Mobley et al.  2004; ESA 2011).  

A strong correlation (r2>0.49) is found between observed chlorophyll concentrations and satellite 
sensed chlorophyll-a concentrations calculated assuming open waters (Case 1). Regional and seasonal 
divergence is known, especially in high latitude areas and in areas defined as Case 2 waters.  The 
correlation between Case 2 waters and satellite sensed chlorophyll is lower than for Case 1 waters, or 
from r2 =0.11 to r2 <0.35 (Globcolor 2007). This is mainly due to the presence of dissolved or suspend-
ed materials in the water column of the more turbid waters. Such materials can be wrongly interpreted 
as chlorophyll in chlorophyll algorithms used (Mobley et al.  2004; Gudmundsson et al.  2009).  

Gudmundsson et al.  (2009) suggest that the waters around Iceland may in general be characterized as 
Case 2 waters. Lee and Hu (2006) mapped the global distribution of Case 1 waters to find there is a 
seasonal variation in the distribution. The waters around Iceland are on the borders of Case 1 and Case 
2 waters. During spring and summer the areas south and east of Iceland are classified as Case 1, while 
in autumn and winter they are mostly Case 2 waters. Thus, it is interesting to know how chlorophyll 
from the Globcolor dataset correlates with observed satellite chlorophyll in this area. A study by 
Gudmundsson et al.  (2009) revealed  a fairly weak correlation (20% deviance explained) between in 

situ measurements of chlorophyll in Icelandic waters and multiannual averages of 8 day composites of 
SeaWiFS satellite sensed chlorophyll-a in the period 1998-2005. Seasonal variations in the strength of 
the correlation were quite apparent. Adding temporal and spatial patterns to the regression model for 
chlorophyll improved the model and  resulted in 49% of the deviance explained in the fitted data.    
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3 Data and methods 

3.1 Flowchart for data and methods  
The main features of data acquisition, manipulation, modelling and the methods and software used are 
described in Figure 6. A more detailed description of each part is presented in the following sections.  

 

Figure 6 Flowchart of data acquisition and methods.   
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3.2 Satellite variables 

3.2.1 Data 

The remotely sensed environmental variables used were provided by the Ocean Biology Processing 
Group (OBPG) at the NASA Goddard Space Flight Center, Greenbelt, MD, USA (OBPG, 2013) and 
ACRI-ST GlobColour service, supported by EU FP7 MyOcean & ESA GlobColour Projects, using 
ESA ENVISAT MERIS data, NASA MODIS and SeaWiFS data (Globcolor 2013). 

The variables selected for analysis are:  

• Daily average Surface Chlorophyll-a measured in mg/m3 per day (CHL) 

• Sea Surface Temperature measured in °C per day (SST) 

• Photosynthetically Available Radiation,  measured in Einsteins m2 day-1 (PAR)  
• Fully normalized water leaving radiance at wavelength 443 nm, measured in mW/cm²/µm/sr per 

day (L443) 

• Down-welling diffuse attenuation coefficient at wavelength 490 nm in m-1 per day (kd490) 

The products “colored dissolved and detrital organic materials” (CDM) from the Globcolor dataset 
and “Sea Surface Salinity” and “Sea Surface Wind Speed” from NASA’s Aquarius were also 
scrutinized but are not reported.  

 
All variables are level 3 products which are spatially and temporarily combined from higher resolution 
products. Globcolor data is combined from three different sensors. An overview of the sensors, source, 
unit of measurement and abbreviation of the satellite variables are listed in Table 2.  All variables have 
1 day temporal resolution and 4.6 km spatial resolution (Globcolor 2007, OBPG 2013).  

Time range for the satellite variables is defined by the time range of the fishing locations of mackerel, 
from May/June to September/October for the years 2007 to 2012.  

Table 2 Overview of the abbreviation, unit of measurement, sensors and source of the satellite variables. All variables have 1 
day temporal resolution and 4.6 km spatial resolution 
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These variables provide basic information on the biology, physics and optics of the ocean and are 
considered to help identify attractive areas for fish aggregation. Some are considered to have direct 
influence on the distribution of mackerel, for example SST. Other variables do not have as obvious 
direct influence on the distribution, but can be considered proxies for causal factors, for example PAR 
which controls photosynthesis and growth of phytoplankton, the variable kd490 which can be used as 
proxy for water transparency and L443 as a proxy for water clarity or turbidity. Other variables of 
interest are for example sea level anomalies, calculated ocean fronts, and fluorescence, but these are 
excluded due to lack of time. 

Some of the variables are correlated and even partially derived from the same spectral products of the 
satellite sensors. For example L443 is sometimes used as an input in the algorithms for CHL for the 
three different sensors constituting the Globcolor dataset (ESA 2011) and kd490 is computed from 
CHL (Globcolor 2010).  

3.2.1.1 Chlorophyll-a 

Chlorophyll-a is the photosynthetic pigment of phytoplankton. Phytoplankton plays a key role in 
ocean ecosystems as they are the first link in the food web. Their distribution is related to many 
environmental factors such as nutrients and carbon dioxide. Knowledge of the distribution of high and 
low concentrations of chlorophyll gives valuable information on the ecosystems of the oceans. 
Satellite sensors detect the spectral signature of chlorophyll-a. Light entering the ocean is absorbed 
and scattered depending on the contents, such as organic matter and other particles. Pure water scatters 
sunlight in blue wavelengths, causing the ocean to appear blue. Chlorophyll-a absorbs the blue and red 
radiation, but strongly reflects in the green. In the presence of chlorophyll-a, water turns from the 
unproductive blue to more productive green (Klemas 2010; Stuart et al.  2011). 

Chlorophyll-a is thus a direct indicator of primary production in the ocean but is also used indirectly as 
a proxy for water mass boundaries and to identify upwelling areas (Chassott et al.  2011).  

3.2.1.2 Sea Surface Temperature  

Sea surface temperature is detected by thermal infrared sensors in long wave bands at about 11 to 12 

µm or the shortwave bands at 3.9-4.0 µm (Savtchenko et al.  2004). Measuring SST has been 
successful since the early days of remote sensing.  The thermal radiance measured over the oceans 
primarily reflects changes in the actual SST as the ocean is considered to behave almost as a black 
body. After atmospheric corrections, SST is considered fairly accurately determined by a degree of -/+ 
0.5°C (Savtchenko et al.  2004; Chassott et al.  2011; Klemas 2010). 

Sea surface temperature is directly linked to locations of fish species which often have their own pre-
ferred temperature and many are very sensitive to temperature. Temperature can directly or indirectly 
affect many different stages of fish’s lifecycle, from spawning time to feeding activity and growth 
rates (Studholme et al.  1999, Stuart et al.  2011). It influences distribution and aggregation of fish, 
migration and behaviour of fish schools. Furthermore, thermal changes (e.g. eddies and fronts) are 
particularly linked with high concentrations of food for fish, caused either by better thermal conditions 
or increased food availability e.g.  in upwelling areas where rising cold water transports nutrients to 
the surface enabling phytoplankton to grow (Klemas 2010; Chaossott et al.  2011). 

3.2.1.3 Photosynthetically available radiation  

PAR indicates the amount of solar light or energy in the spectral range of 400-700 nm, reaching the 
surface of the ocean which is useful to organisms in the photosynthesis process and expressed in 
Einsteins m-2 day-1 (Frouin et al.  2003). The unit Einstein measures light energy concentration, 
defined as one mole (amount of substance) of photons, or wave of particles, regardless of their 
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frequency (Encyclopædia Britannica, 2013). High and low PAR controls the growth of phytoplankton 
and defines the depth of the euphotic zone, or the topmost sunlit zone in the oceans where almost all 
primary productivity occurs. Low PAR values can suggest turbid and less clear waters and high values 
clearer and warmer surface layers, which is preferred by some fish species (Sanches et al.  2008).   

3.2.1.4 Fully normalized water leaving radiance at wavelength 443 nm 

Fully normalized water leaving radiances at 443 nm (blue wavelength), can be used as a proxy for 
water clarity or turbidity. The parameter measures the radiance backscattered out of the water to the 
top of the atmosphere, and has been corrected for different atmospheric phenomenon such as viewing 
and sun geometry, time and atmospheric conditions and is thus normalized (Gordon 2005; Wall et al.  
2009; Globcolor 2010). The values of water leaving radiance are somewhat confusing, as both high 
and low values can suggest low light availability (Hu et al. 2003).   

Low water leaving radiance indicates less clear waters due to high absorption (Hu et al. 2003).  As 
mentioned earlier, pure water scatters sunlight at blue wavelengths, causing the ocean to appear blue. 
Increased phytoplankton growth and increased amounts of certain color dissolved organic matters 
results in a decreased water-leaving radiance at a wavelength of 443 nm. As more of the light is absor-
bed in the water column, the less light exits and the lower the values of the water leaving radiance 
become (Hu et al. 2003; Gordon 2005; Wall et al. 2009; Salisbury et al.  n.d.).  Some fish species, 
especially visual predators like tuna, are more commonly found in clear waters for foraging (Wall et 

al. 2009).   

High water leaving radiance indicates less clear waters due to high scattering in the water column (Hu 
et al. 2003). Suspended materials of both organic and inorganic origin can act as mirrors redirecting 
the incoming sunlight and reduce the light penetration in the water column. Turbidity can be induced 
for example by strong wind mixing (Hu et al.  2003). Turbidity due to scattering of light can have both 
negative and positive effect on visual feeding of fish by either decreasing or increasing the contrast 
between the prey and the background. Increased turbidity in the water column can also act as shelter 
from predators. The effects of light scattering in the water column on the behaviour of fish species is 
complex and dependant on the size of prey, color of the prey and the size of fish species involved 
(Utne-Palm 2002).  Waters with values of around 2-2.5 mW/cm²/µm/sr for L443 are considered turbid 
(Royal Belgian Institute of Natural Sciences, 2013)  

3.2.1.5 Down- welling diffuse attenuation coefficient at wavelength 490 nm  

The kd490 down welling diffuse attenuation coefficient at wavelength 490 nm is used to quantify the 
penetration in the water column of the light in the blue-green spectrum. Attenuation is the total loss of 
light because of both scattering and absorption in the water column.  Like L443, it can be used as a 
proxy for water transparency or turbidity (Globcolor 2010; Kumari et al.  2009).  A large coefficient 
means that the light is quickly attenuated and thus the water is less transparent or more turbid. 
Turbidity can be an indicator of eddies and other upwelling phenomenon indicating areas of increased 
productivity and high abundance of prey fish. On the other hand increased transparency to a certain 
depth and less turbid waters are important factors in locating tuna aggregation (Kumari et al. 2009).  
In waters with high coefficient photosynthesis and growth of primary producers can be limited (Kelble 
et al. 2005).  
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3.2.2 Extraction Method 

Satellite variables were extracted from the exact latitude and longitude of the fishing locations with the 
Pixel extraction tool in the VISAT Beam software (Brookman Consult and contributors 2001-2010). 
Three different methods were used for extraction (Figure 7): 

1. Extraction of cell value including the actual point location on the actual date of fishing. This 
resulted in a variable value with temporal resolution of one day and spatial resolution of ≈21 km2.  
This extraction method focused on keeping temporal and spatial resolution as fine as the dataset 
offered: one day and one cell.  

2. Extraction of the mean of the one neighboring cell in all directions from the cell including the 
actual fishing location on the actual date of fishing. This resulted in a variable value with temporal 
resolution of one day and spatial resolution of ≈190 km2.  

This extraction method explored the effects of decreased spatial resolution. Decreasing the 
resolution to a matrix of 3*3 cells was the smallest decrease possible when ensuring that the actual 
cell of interest (the fishing location cell) was in the middle of the merged area with equal number of 
cells to all sides.  Decreasing the resolution to a 5*5 matrix would result in spatial resolution of 
≈529km2 

3. Extraction of single cell values including the actual point location for seven days before the actual 
date of fishing. Then the mean value for the seven days was calculated. This resulted in a variable 
value with temporal resolution of one week and spatial resolution of ≈21 km2.  
This extraction method explored the effects of decreased temporal resolution. Previous studies 
suggest that the relationship between temperature, primary production and other properties of the 
ocean need to be sustained for some time to attract forage fish (Kumari et al.  2009; Wall et al.  
2009). A time lag of seven days was chosen based on a study in the Arabian Sea which suggests 
that a minimum time delay for phytoplankton patch to mature to viable forage ground for tuna fish 
is 5-7 days (Kumari et al.  2009).  

 

 

Figure 7 The three different methods used for extraction. The black dot represents a fishing location.  

The size of the cell is 4.6 km * 4.6

The size of each cell is 4.6 km * 4.6

The size of each cell is 4.6 km * 4.6. One box represents one day. 
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3.3 Mackerel fishing locations  
Fishing locations of mackerel originate from fisheries logbook maintained by the Directorate of 
Fisheries (unpublished data) but were provided by the Marine Research Institute in Reykjavík. Vessels 
in Iceland mostly use pelagic trawlers for mackerel fishing (ICES 2011).  All recorded locations where 
mackerel catch was >0 were extracted from the pelagic trawl dataset in the fisheries logbook for the 
years 2007 to 2012. These locations were considered to represent the presence of mackerel. A total of 
15388 locations were extracted, and in most of the catches (79%), mackerel was the majority (>50%) 
of the total catches, but Norwegian spring spawning herring dominated the by-catch. In 50% of all 
catching locations mackerel was the only species caught, but that varied within the study period. 

Locations for representing absence of mackerel were also extracted from the pelagic trawl dataset by 
selecting all recorded locations where mackerel catch was zero within the same time period and study 
area as the presence locations. The study area was defined with the Arc GIS (ESRI 1999-2010) 
minimum convex polygon tool, where the smallest possible polygon was draw to include all presence 
locations of mackerel catches in the period 2007-2012 (Figure 8 and Figure 9).  A total of 2659 
absence locations were extracted. Mostly locations of Norwegian-spring spawning herring fishing 
(79%), but that varied within the study period.  

 

Figure 8 The study area was defined by specifying a minimum bounding polygon enclosing all catching locations recorded 
in the fisheries logbook where mackerel is >0. (Figure from ESRI 1999-2011).  

During the process of satellite data extraction and merging, the number of points decreased substan-
tially, for example due to clouds and atmospheric distortions of different kinds. When all satellite 
variables and fishing locations had been merged, only 264 absence points for the period 2008-2012 
and 2348 presence points remained for the same period. Only 18 points remained for the year 2007 
and thus it was excluded from the data set used for modeling.   

To limit bias in the model the number of presence and absence locations was kept equal. The final 
number of absence locations were fewer than presences and thus defines the size of the data set for 
modeling. Presence locations were randomly sampled for each year to match the number of the 
absences for the corresponding year. The total number of locations of absences and presences for the 
model design and testing was 528 (Figure 10), 38 for 2008, 152 for 2009, 68 for 2010, 148 for 2011 
and 122 for 2012.   
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Figure 9 Delineation of the study area is defined by a minimum convex polygon around all presence location points in the 
period 2007-2012 (n=15388). Base map: ESRI 2012.   

 

Figure 10 Distribution of absence and presence location as used in the final modeling (n=528). Base map: ESRI 2012 
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3.4 Methods to explore and test main characteristics of fishing locations and 
satellite data 

Violating the assumptions underlying statistical techniques in regression modeling can increase the 
possibility of type I or type II errors. Type I errors involve rejecting the null hypothesis when it is true, 
thus wrongly concluding that a relationship exists. Type II errors involve not rejecting the null hypo-
thesis when it should be accepted.  For example autocorrelation can increase the possibility of type I 
errors and collinearity amongst explanatory variables can increase the possibility of type II errors 
(Zuur et al.  2010, Field et al.  2012).   

Detailed data exploration is important for extracting the main characteristics of the data and to avoid 
violating statistical assumptions. The main characteristics of the satellite variables and the dependent 
variable absence - presence of mackerel location, were explored, tested and visualized in ESRI 
ArcGIS (ESRI 1999-2011) and the R program and associated packages (Davison and Hinkley 1997; 
Wood 2000; Venables and Ripley, 2002; Wood 2003; Wood 2004; Pebesma and Bivand 2005; 
Plummer et al.  2006; Wood 2006; Bivand et al.  2008; Depayan 2008; R Development Core Team 
2011; Wood 2011; Bates and Maechler 2012; Canty and Ripley 2012; Bivand  2013; Bivand and 
Lewin-Koh 2013; Bivand et al.  2013; Girdoux 2013; Pinheiro et al.  2013, R Development Core 
Team 2013; Rowlingson et al. 2013). The focus was on graphical tools, but some statistical tests were 
also performed. An overview of the various methods used is provided in Table 3.  

Outliers can have a dominant effect on model performance. Possible outliers were searched for with 
Cleveland dot plots and box plots. Collinearity of variables was investigated with conditional box 
plots, scatter plots, and correlation coefficients. Conditional box plots were used to look for temporal 
patterns and variograms were drawn to explore the spatial autocorrelation (Table 3).   

Significant differences in satellite variables values between the groups absence and presence were 
tested. Histograms were used to explore normality prior to statistical tests. The data is not distributed 
according to previously described distributions in statistics, such as normal distributions, thus the non-
parametric Wilcoxon’s rank sum test is performed (Table 3). Non-parametric tests test significant 
differences between medians, but not between means as parametric tests do. Wilcoxon´s rank sum test 
can be viewed as a non-parametric alternative to the parametric t-test (Field et al.  2012).  

Significant differences in satellite variable values between years and months for both absences and 
presences were tested with the Kruskal-Wallis test, which is a non-parametric alternative to the 
ANOVA F-test.  

Significance of the correlation between different satellite variables was tested with the non-parametric 
Spearman’s rho rank correlation test (Table 3).   

Transformation of data was avoided, as the statistical model used (Generalized Additive Model, see 
section 3.5.1) can deal with untransformed and non-linear data (Zuur et al. 2010). Different opinions 
exist upon the process of transforming data prior to statistical modeling (Field et al.  2012).  Zuur et al.  

(2010) argue that transformation of the data can lead to difficult interpretation and different 
conclusions than those reached using untransformed data, and thus suggest avoiding transformation 
when possible.  

Spatial characteristics of the point pattern of the fishing locations were expressed with a standard 
deviation ellipse created with the Directional distribution tool in ArcGIS. The ellipse was created with 
one standard deviation for all mackerel fishing locations for each year. Tons of caught mackerel are 
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used as a weight field when ellipses are created. The ellipse summarizes the spatial characteristics 
such as directional and central tendency and the dispersion of the point patterns (ESRI 1999-2011).  

The geographical mean center of the mackerel catches for each year was defined by using the Mean 

Center tool in ArcGIS. A geographical center was created with weighted effects, where tons of caught 
mackerel were used as an input to emphasize the bulk of catches of mackerel and without weight 
effects to emphasize the actual location, regardless of how much was caught at each location.  

Table 3 Overview of data exploration methods, both graphical methods and statistical tests.  

 

3.5 Modeling the relationship between mackerel locations and satellite variables 

3.5.1 Statistical models 

The statistical model used to identify possible relationships between fishing locations and various 
satellite variables was a Generalized Additive Model (GAM), which is one type of general regression 
method commonly applied in studies on species distribution (Guisian et al.  2006). It can be thought of 
as an extension of linear modeling. But instead of linear predictor, the functions of the covariates are 
smoothed, based on the data itself, which improves the ability to deal with non-linear relationships 
(Guisian et al.  2006; Marra and Wood 2011).  

A generalized additive model is is a semi- parametrical approach to model the relationship between a 
response variable and explanatory variables (Guisian et al.   2002). Splines are used to describe the 
relationship and can be applied in a different way to each individual explanatory variable and even 
linear relationships can be included, resulting in a very flexible model (Wood 2006). The splines are 
based on certain predefined smoothing classes or even specific user defined smoothing classes. It is 
semi-parametrical in the sense that the probability distribution of the response variable must be 
defined, but the relationships are non-parametrical (Guisian et al.   2002; Wood 2006).  It was 
developed by Hastie and Tibshirani (1986) and is popular in ecology research and fisheries research, 
and has proved to be useful when modeling species distribution (Pearce and Ferrier 2000; Guisian et 

al.   2002; Lobo et al. 2010; Palialexis  et al.  2011).   

Outliers Cleveland dotplots

Boxplots

Collinearity Scatterplot

Correlation coefficient

Independance Variograms

Conditional boxplots

Normality Histograms

Conditional boxplots

Significant relationships Spearman's rho correlation test

Wilcoxon rank-sum test

Kruskal -Wallis test

Geographical Mean Center Mean center

Central tendency Standard deviation ellipse

Directional tendency Standard deviation ellipse

Dispersion of points Standard deviation ellipse

Data exploration Graphical tools and other tools Statistical test

Significant differences between values 

of satellite varibles (years and months)
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GAM’s are often described as a data-driven model approach, as the data input to the model defines the 
relationship, rather than assuming a predefined parametrical relationship. Due to this empirical nature, 
GAM’s can first and foremost be seen as models to model the realized distribution of species rather 
than the potential distribution of species. It can therefore be difficult to compare a model for the same 
species in different areas, or even for same species in the same area but in different times (Guisian et 

al.  2002; Lobo et al.  2010).  

GAM‘s have their limitation like other models. As the name suggests it is an additive model and thus 
assumes that all covariates are independent of other covariates in the model. Any interaction between 
covariates must by manually defined and incorporated into the model. Another important issue is the 
selection of appropriate level and basis of smoothing for each predictor (Guisian et al. 2002; Wood 
2006).  

3.5.2 Absence – Presence data  

In this study a binomial regression was applied, where the dependent variable was represented as  the 
absence and presence of mackerel catches. Presence can be interpreted in a straightforward manner, as 
it is mostly certain that the species is present in the location at the time of recording. Absence on the 
other hand is more uncertain and can be difficult to interpret. Absence can represent either that the 
species is absent due to lack of favorable conditions or that the favorable conditions are actually there, 
but other restrictive factors affect the species distribution (Lobo et al.  2010). An example of such 
restrictive factors can be interactions to other species or that the size of the favorable area recording 
absence is too small.  Finally absence can also simply be poorly recorded presence. Another important 
factor of absence data is its proper distribution and the extent of the study area, as this is what deter-
mines the final result of the model. If distance between absence and presence points is large the 
absence points may not be very informative, resulting in misinterpretations (Lobo et al.  2010).  

3.5.3 Applying a model to the data 

Generalized additive models  with binomial distribution and logit link functions were fitted to catch 
(presence) /no catch (absence) data to determine which variable, or set of variables, best described the 
pattern of catch/no catch of mackerel in the study area. The R package mgcv developed by Simon 
Wood was used for the analysis (Wood 2000; Wood 2003; Wood 2004; Wood 2006; R Development 
Core Team 2011; Wood 2011). The degree of smoothing was based on the data itself and the restricted 
maximum likelihood method (REML) as recommended by Marra and Wood (2011). The smoothing 
class for all variables was based on thin plate regression splines, which according to Marra and Wood 
(2011) tends to perform well overall and result in low mean square error compared to other smoothing 
bases. Thin plate splines refers to a specific form in geometric design for modeling purposes and  are  
considered appropriate when working with two dimensional data in GAM’s, such as latitude and 
longitude (Wood 2003; Wood 2006).  

Spatial autocorrelation was evident in explanatory variables. In an attempt to account for the spatial 
aspect, the location of each observation in latitude and longitude was incorporated into the model as a 
single smoother.  

3.5.4 Sample size 

A total of 528 absence and presence locations are used to fit and test the models. According to a study 
by Pearce and Ferrier (2000) a sample size of 250 or greater is needed to maximize predictive 
accuracy of generalized additive models.  Wisz et al. 2008 tested the performance of various species 
distribution models with various sample sizes to find that generalized additive models were quite 
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sensitive to smaller sample sizes (n =30 and n= 50) but performed well compared to other species 
distribution models with a sample size of 100.  

3.5.5 Selecting explanatory variables 

Both backward and forward selection of variables was performed to determine the most successful 
model for explaining variance in the catch/no catch of mackerel. For backward selection the 
smoothing base was set to thin plate regression with shrinkage for all variables and so-called double 
penalty approach. A penalty was added to each smoother, allowing it to be thrown out of the model by 
optimization of the smoothing parameter selection criterion, which in this case was restricted 
maximum likelihood (REML) (Wood 2006). This method has proven to perform better in including 
important variables than the classical backward stepwise selection of removing variables one by one, 
based on their significance level, which sometimes eliminates influential predictors (Marra and Wood 
2011).  Stepwise forward selection was performed by first modeling each variable separately and then 
adding the variables one by one to explore and find the best models. This was performed based on: 

i) Akaike Information Criterion value (AIC), which is a measure of the goodness of the fit of a 
model (lower value preferred). It accounts for model complexity and is thus a good tool to 
compare models of different complexities (Field et al.  2012).  

ii) Significant effects of each predictor (lower p-value preferred).  
iii) Model fit, or the deviance explained by the model (higher percentage preferred).The deviance 

explained is the proportion of the null deviance (likelihood without any parameter) explained 
by the model.  

The best single variable was selected and other high-scoring variables in these terms were added on to 
improve the fit of the model.  

3.5.6 Model selection 

Various parameters were used to select the best models. Validation plots were used to visually 
interpret and determine how well the models performed and related to underlying statistical assump-
tions. Pair-wise scatterplots and correlation coefficients were used to assess collinearity in explanatory 
variables. Histograms were used to determine the distribution of residuals (Table 4).  

Model residuals were tested for spatial autocorrelation using Moran’s I test in the pgirmess package in 
R (Giraudoux, 2013).  The Moran’s I spatial autocorrelation coefficient was computed on distance 
classes based on the spatial coordinates of the fishing locations and possible correlation at each lag 
tested for significance (p<0.05). Values of the coefficient range from -1 to +1.  A full negative spatial 
autocorrelation, indicating dispersion in the data has a value (-1), a random pattern, or absence of 
spatial autocorrelation has a value of 0 and perfect positive autocorrelation a value of +1 (Bourgeron et 

al.  2001).  

Temporal autocorrelation of model residuals was tested using the Autocorrelation Function (ACF) in 
the package stats in R (R Development Core Team (2011). The autocorrelation was estimated at diff-
erent lags which are plotted in units of time. A confidence limit of 95% was estimated and all values 
extending outside the limits were considered correlations that significantly differed from zero (Table 
4) (Zuur et al. 2009). 
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Table 4 Overview of parameters and methods used to select model variables and validate models.  

 

Final models were selected based on avoidance of collinearity in covariates and fulfillment of other 
statistical assumptions. Deviance explained by the model, AIC of the model and significant effects of 
the smoothers of variables were considered (Table 4) (Johnson and Omland 2004; Wood 2006; Zuur 
et al. 2009). The simplest models were favored.  

3.5.7 Model evaluation 

Prior to model design the data set was split up into a training data set (75%), used to design the models 
and search for relationships, and test data set (25%), used to estimate the efficiency of the model fit. 
Commonly used partitioning of training and test data sets is 70% - 30% (Dobbin and Simon, 2011; 
Rodriguez-Castaneda et al. , 2012) and 75% -25% (Crisci et al.  2012). A suggested rule of thumb 

says that the proportional split of data set into testing and training should be 1/(1+�� � 1), where p is 

the number of predictors. A data set with more than 10 predictors should be split to 75% - 25% 
(Franklin 2009).  Prior to model design it was not clear how many predictors would be included in the 
final models. As they could likely reach 10, a partitioning of 75%-25% was considered appropriate.  

The predicted values of a binomial model with 1 and 0 as dependent variables are always between 0 
and 1, but are never 0 or 1 (Zuur et al.  2009). A threshold probability for estimating the efficiency 
was arbitrarily set to 0.5, which is commonly used (Manel et al.  2001). This means that all values 
above 0.5 in the models were regarded as presence and all values below 0.5 were regarded as absence.  

Cohen´s Kappa coefficient was used to estimate the model performance. It provides a simple and 
effective statistic to evaluate the performance of species distribution models based on absence-
presence, compared to many other evaluation methods (Manel el al. 2001). The Kappa coefficient is 
based on the idea that any random model can by a chance generate acceptable results. It measures if 
correctly predicted absences and presences are higher than expected by chance alone (Liu et al.  2011). 
The coefficient takes values from -1 to 1, where 0 represents a random chance. Landis and Koch 
(1977) introduced arbitrary divisions of the strength of agreement for Kappa values to use as 
benchmarks in comparison discussions:  <0.00 = Poor, 0.00-0.21 = Slight, 0.21-0.40 = Fair, 0.41-0.60 
= Moderate, 0.61-0.80 = Substantial and 0.81-1.00 = Almost perfect.  

  

Validating models

Residuals normality Histograms Normal distribution

Residuals autocorrelation Autocorrelation function Sign. autocorr. not present (p<0.05)

Residuals spatial - autocorrelation Morans I test Sign. autocorr. not present (p<0.05)

Successful variables p-values of smoothers lowest preferred

Best model(fit) Deviance explained by model highest preferred

Best model (fit and complexity) Akaike's information criterion lowest preferred

Selecting variables and best models

Parameter Methods Preference
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3.6 Correlation of observed and satellite sensed CHL values  
Only one year of observations was available for validation during the time of this thesis project work - 
period. Kristinn Guðmundsson and Hafsteinn G. Guðfinnsson at the Marine Research Institute in 
Reykjavík (unpublished data) kindly provided observation points from surveys in 2006 in the area 
around Iceland, extending from 62°N to 71°N and 0° to 35°W. A total of 456 observation points for 
chlorophyll observations were available for the period from 14th of May to the 2nd of August 2006, 
with most of the samples sampled in July (Figure 11).  Chlorophyll was systematically sampled at two 
depths; 0-5 meters and 5-15 meters. Hundred and thirty nine observations were available for the depth 
of 0-5 meters and 317 observations for the depth of 5-15 meters.  

 

Figure 11  Spatial and temporal distribution of sampling locations of CHL at two different depths. Different sampling 
months are identified with different colors. Base map: ESRI 2012. 

Satellite CHL values were extracted from the Globcolor dataset according to the dates and locations of 
in situ observations. Their correlation was analyzed and tested for significance using the non-para-
metric Spearman’s rho correlation coefficient, as histograms reveal non-normal distribution.  An 
overview of the data acquisition and manipulation as well as the methods and software used are shown 
in Figure 12.  
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Figure 12 Flowchart of data acquisition and methods used to correlate observed and satellite sensed CHL.  
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4 Results 

4.1  The spatial and temporal pattern of mackerel catches from 2007-2012 
Mackerel catches in Icelandic waters have moved westward from 2007 to 2012. Changes in the spatial 
pattern from 2007 to 2012 are vividly shown in Figure 13. In 2007, mackerel were caught in a few  

 

Figure 13 Spatial and temporal pattern of mackerel fishing locations in Icelandic waters 2007-2012. Base map: ESRI 2012. 

locations clustered east of Iceland for the months July, August and September. The pattern in 2008 
was similar, but with a little northward expansion and an extended period. Fishing started in June and 
more locations were recorded in September compared to the year before.  In 2009, mackerel fishing 
started as early as May and the locations continued to be mainly in the east, but with more expansion 
to areas NE and NW of Iceland. A marked change in the pattern was evident in 2010, when mackerel 
was caught all along the south coast and in areas west of Iceland. The fishing period also extended to 
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October that year. The distribution patterns in 2011 and 2012 showed the continuing westward 
movement and in 2012 mackerel was caught in the waters of Greenland (Figure 13).  

Spatial characteristics of the fishing locations also revealed that fishing locations moved westwards 
and furthermore extended over wider areas. The standard deviation ellipses summarize the spatial 
characteristics of the pattern each year (Figure 14). They were based on weighted locations, where 
amount of mackerel caught gives weight to each location. The ellipses reflect the directional and 
central tendency each year and how the catches are dispersed over the study area. Changes from year 
to year are evident.  

The bulk of catches of mackerel fishing are still located to the east of Iceland. The calculated mean 
center for mackerel fishing locations further emphasized the pattern of westward movement during the 
period 2007-2012, with the exception of 2008, when it moved slightly northwards (Figure 14). A com-
parison of the mean center, where each location got the same weight regardless of the amount of 
mackerel caught, to weighted mean center, where the amount of caught mackerel had an impact on the 
location, revealed that the bulk of catches remained more to the east.   

 

Figure 14 Spatial characteristics of the fishing locations of mackerel in Icelandic waters from 2007 to 2012. Two mean 
centers are displayed for each year. Weighted mean center, represented with squares and un-weighted mean center, 
represented with circles. Base map: ESRI 2012. 

Size of mackerel catches had on average decreased and mackerel changed from being a bycatch 
species to the main species caught during the period 2007-2012. During the first years the catches of 
mackerel were on an average larger and the mackerel was most often caught with other species. In 
2011 and 2012 there was a marked change in the fishing behaviour as the catches got smaller on 
averge and mackerel became the main species caught. An overview of the main characteristics of the 
changing fishing pattern by years and by months is shown in Figure 15. The boxes contain 50% of the 
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observations, between the 25% and the 75% quartiles. The black line in the middle represents the 
median. The distance of the lines extending out of the box represent the lowest and highest 25% of the 
values. Outliers are not included in the plots, thus excluding a few very large catches in 2011 and 
2012. The width of the boxes is proportional to the sample size. The sample sizes are largest for 2011 
and 2012, but smallest for 2007 and 2008. The indents around the median are called notches and if 
they do not overlap notches of other boxes it is strong evidence that the medians differ. 

Largest catches of mackerel during the period 2007-2012 are on average in June (Figure 15, top left).   

 

Figure 15 Temporal differences in the catching pattern of mackerel by months for all the years (top left). By year (top right) 
and the proportion of mackerel in total catch at each location each year (bottom left).  
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4.2 Fishing locations and satellite variables 
4.2.1 Visualizing the relationship 
Visual estimation of the relationship between satellite remote sensing variables and fishing locations 
was somewhat confusing.  The ban on mackerel fishing within the isoline of 200 m depth influenced 
the distribution pattern (Figure 16, Figure 17 and Figure 18) (Icelandic regulation no. 504/2010, no. 
233/2011 and no. 329/2012). Comparison of mackerel fishing locations and spatial distribution of SST 
indicated that mackerel avoided the colder water masses below about 7°C (Figure 16).  

 

Figure 16 SST and fishing locations in July and September in 2009 and 2012, which were  arbitrarily chosen  for display in 
this report. The black line represents the isoline for 200 m depth.  

 

Figure 17 CHL and fishing locations in July and September in 2009 and 2012. The black line represents the isoline for 200 
m depth. 
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Comparison of fishing locations and CHL concentrations suggests that mackerel was caught in 
intermediate concentrations of CHL, or around 1-3 (mg/m3) (Figure 17). No specific pattern was 
obvious when fishing locations were visually compared to the values of PAR (Figure 18), L443 (not 
shown) and kd490 (not shown).   

 

Figure 18 PAR and fishing locations in July and September in 2009 and 2012. The black line represents the isoline for 200 m 
depth. 
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4.2.2 Statistically describing and testing the relationship 

The spread of the values of the satellite data differed between absence and presence locations. Large 
differences in values of PAR and SST for absences and presences are evident in Figure 19. As the 
notches of the box plots for absences and presences for both L443 and kd490 do not overlap, there is 
evidence that their medians differ. The values of absence and presence values of CHL are more similar 
than the other variables explored.   

 

Figure 19 Differences in satellite parameter values for absences and presences for CHL, L443, kd490, SST, PAR. 

Significant differences are present between the groups absence and presence for all five satellite 
variables: CHL (p=0.02), L443 (p<0.001), kd490 (p<0.001), SST (p<0.001) and PAR (p<0.001).  

Monthly temporal differences were evident in the values of the satellite variables for both absences 
and presences and the differences were similar for the two groups (Figure 20).  The largest differences 
were seen in PAR, which was highest in June and July and lowest in September.  SST and L443 had 
the highest values in July, but values for CHL and kd490 were highest in June.  

Significant differences (p<0.05) were found in absence values between the different months for all 
five variables. Significant differences (p<0.05) are also found in presence values between the different 
months for all five variables.  

Annual temporal differences are also evident in the values of the satellite variables for both absences 
and presences, but with patterns not as obvious as those found in the monthly differences (Figure 21). 
A trend is apparent towards warmer SST at the majority of the mackerel catching locations from 2008 
to 2012, but the trend is not as apparent in the absence locations. Other variables show irregular 
differences between years.   
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Significant differences (p<0.05) are found in absence values between the different years for all 
variables except SST (p=0.161). Significant differences (p<0.05) are also found in presence values 
between the different years for all variables except CHL (p=0.056).  

 

Figure 20 Monthly temporal differences in satellite variables values for both absences and presences for 2008 to 2012.   
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Figure 21 Annual temporal differences in satellite variables values for both absences and presences for 2008 to 2012.  
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4.2.3 Modeling the relationships 

4.2.3.1 Single satellite variable models 

SST was the most important single variable indicated by the first model results, explaining about 24% 
of the deviance in presence and absence of mackerel at fishing locations. Deviance explained by other 
individual variables ranged from 2.2% for L443 to 4.7% for CHL and 13% for PAR for single cell and 
single day.  The spatial variables latitude and longitude explained more deviance (30.8%) than any 
single environmental variable. Latitude alone explained 18% of the deviance and longitude 8.4%.  

The first models were not successful as residuals were not normally distributed and autocorrelation 
was evident in the residuals of models with all the different single variables: CHL, SST, PAR, CDM, 
kd490 and L443. A Moran’s I test revealed a significant spatial autocorrelation (p<0.05) at the shorter 
distances for all variables (Figure 22a).  

Single variable models improved considerably by adding a smoothing term with the spatial variables 
latitude, longitude. Spatial autocorrelation was eliminated (Figure 22b) and the distribution of 
residuals improved. Fit of the models, or deviance explained also increased.  

 

Figure 22  Results of a Moran’s I test on the spatial autocorrelation of the residuals in two models for SST. X-axis represents 
different distance classes/lags of two degrees. Red (filled) dot represents a significant spatial autocorrelation (p<0.05).  To 
left: Spatial autocorrelation was evident at the shortest distances. To right: Including the spatial variables latitude and long-
itude in the model removed spatial autocorrelation (note difference in Y-axis). Similar results were obtained for all other 
single variable models.  

CHL became the most successful single environmental variable in terms of model fit, when latitude 
and longitude were incorporated into the models, explaining 39% of the deviance. Considering both 
model fit and complexity of the models, both PAR and SST had a slightly lower AIC value than the 
CHL model, so they were considered successful as well (Table 5).   

Decreasing spatial resolution to 3 cells did not improve the models. The proportion of deviance 
explained by each variable did not or increase nor decrease to a large extent. CHL still explained the 
most deviance and the model improved in terms of the AIC value (Table 5).    

Decreased temporal resolution improved the deviance explained for all single variables models. PAR 
became the most successful variable with an increased deviance explained from 36% to 47%. kd490 
increased from 32% to 43% deviance explained, L443 increased from 33% to 45% deviance explained 
and SST increases from 34% to 44% deviance explained. CHL only increased from 41% to 42% 
deviance explained (Table 5).  
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The most successful model, when models for all the different spatial and temporal resolutions were 
compared, was the 7 day average PAR model, explaining about 47% of deviance. Seven day SST 
explained 44% of the deviance in the dependent variable (Table 5).  

The smoothers of the variables were significant for all the models, except the kd490 model for one 
day, one cell and the kd490 model with one day and decreased spatial resolution to three cells (Table 
5). 

Table 5 Models with single satellite variables for different spatial and temporal resolutions. All models include the spatial 
variable latitude and longitude. The most successful model for each resolution variation is highlighted.  

 

The shapes of the smoothers, defined by the models, depicted the relationship between absence and 
presence of mackerel catches and the satellite environmental variables (Figure 23).  

Better light conditions increased the probability of catching mackerel. The probability of catching 
mackerel rapidly increased with PAR between 10 and 30 E/m-2/day-1. With PAR above 30 E/m-2/day-1 
the probability remained high (Figure 23).  

Mackerel was more likely caught in clearer waters where there was less absorption, but also in more 
turbid waters due to high scattering. The probability of catching mackerel increased rapidly from 0.5-1 
mW/cm²/µm/sr and with L443 above 1 the probability remained high, but the confidence level 
widened as there were fewer values (Figure 23).  

The probability of catching mackerel also rapidly increased as SST increased from 4-8°C where it 
peaks. At temperatures higher than 9-10°C the likelihood of catching mackerel decreased again, 
although it still remained quite high, or  p=0.6  at 14°C (Figure 23). 
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Figure 23 Shapes of the non-linear relationships (smoothing functions) between dependent variable and the five explanatory 
variables in single variable models. Y-axis represents the probability of catch (1) or no catch (0). The number in brackets is 
the estimated degrees of freedom for the smooth curves. Bars at the bottom show distribution of covariate values. Shaded 
areas represent the 95% confidence limit, which widens where there are fewer values of covariates.  

According to the smoother for kd490, it was most likely to catch mackerel at 0.05 and 0.25 m-1 and the 
probability decreased rapidly with values above 0.25 m-1. Note that the rapid decrease is based on only 
one value (Figure 23).  

Intermediate concentrations of CHL increased the probability of catching mackerel. As concentration 
of CHL increased from 0 to 1 mg/m3, the probability of successful mackerel fishing increased. With 
concentration above 1 mg/m3 the probability remained steady with p≈ 0.7. CHL concentrations above 
3.5 mg/m3 resulted in decreased probability (Figure 23). Note that the highest probability value for 
CHL (p≈0.7) was somewhat lower than the highest probability values for other variables (p≈0.8-0.9).  

4.2.3.2 Multiple satellite variables model 

The most successful multiple variable models included the one or seven day variables SST, PAR and 
L443 for seven day mean with 48% of deviance explained. A comparison of models created with both 
backward and forward selection reveals that these are the best models in terms of the highest deviance 
explained, strong significant effects, lowest AIC value and no collinear variables. Other similarly 
successful models include variations of seven day SST and PAR values along with either seven day 
CHL or seven day CHL and seven day L443 (Table 6). All the models include the spatial variables 
latitude and longitude. Residuals are fairly normally distributed and temporal and spatial 
autocorrelation was not present in residuals of the most successful models. 

A model including all the single day, single cell variables: SST, PAR, CHL, L443 and kd490 proved 
to be the most successful model according to an automatic backward selection of variables with a 
penalty. But because kd490 and CHL were highly correlated (ρ2=0.84) with strong significance (p< 
0.001), one of them was excluded to avoid collinearity. This resulted in a much worse model, no 
matter which variable was excluded (Table 6).  

The smoothing functions of the multiple variable model with single-day PAR, SST and seven day 
average of L443 suggested similar breakpoints in probability as the single variable models (Figure 23 
and Figure 24). The model indicated that the probability of catching mackerel increased rapidly as 
L443 increased from about 0.25 mW/cm²/µm/sr to 0.75 mW/cm²/µm/sr and remained high with values 
above 1. The probability of catching mackerel in waters with SST from 2°C to 6 °C was low, but in-
creased rapidly between 6°C and 8°C. It peaked at about 8° to 9°C where the probability started to 
decrease again but still remained high with p>0.5. As the PAR value gets higher, the probability of 
catching mackerel increased steadily (Figure 24). The smoothing function for PAR looks basically 
linear, but a model where PAR was included as a linear parameter resulted in a worse model.  
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Table 6  Models with multiple satellite variables for different spatial and temporal resolutions. The most successful models 
are highlighted.  

 

 

Figure 24 Shapes of the non-linear relationships (smoothing functions) between catching locations and the three explanatory 
variables included in the one of the most successful models with multiple satellite variables: A seven day average of L443 
and a daily average of SST and PAR.  
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4.2.3.3 Model evaluation 

Fitting the highest scoring models to the test data set was successful. Results supported the suggest-
ions of models that the probability of catching mackerel rapidly increases with SST in the range 7.5 °C 
to 8.5 °C.  With values of L443 above 0.05 the probability of a catch was higher. Increased PAR 
values steadily increased the probability of a catch (Figure 25). 

 

Figure 25 Predicted values from a test data set (blue circles) for the three variables L443 – 7 day average and one day 
average of SST and PAR and the actual values of presence and absence of mackerel catches (black circles).  

The predictive ability of some of the most successful models was good. The predictive capabilities of 
the models are summarized in Table 7. All models predicted presence better than absence. The model 
with seven day average value of SST predicted absences most successfully and the 1 day average SST 
and PAR with seven day average L443 model best predicted presences, but only with 1% more 
success than the 7 day average PAR and 7 day average SST models did. According to the Kappa 
coefficient, the 7 day SST model was most successful and the only model with a Substantial strength 
of agreement according to the Landis and Koch divisions. The other models tested had a Moderate 

strength of agreement.  

Table 7 Predictive success of some of the most successful models. Overall accuracy for absence and presence predictions is 
shown and the Kappa coefficient value along with the strength of agreement division class.  

 

Model Absence Presence Total Kappa

1day CHL 72% 83% 77% 0.53 Moderate

7day PAR 68% 91% 77% 0.55 Moderate

7day SST 75% 91% 81% 0.62 Substantial 

1daySST  + 1day PAR + 7day L443 72% 92% 80% 0.60 Moderate

* divisons by Landis and Koch (1977)

Strength of 

agreement*
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4.3 Correlation of observed and satellite sensed CHL values 
Extraction success was not high for the observed values. Only 20 values were extracted (14.3%) for 
the shallower depth interval of observations of 0-5 m and only 43 values (13.5%) for the observations 
from 5-15 meter depth.  Distribution of the observations for the two different depth intervals and the 
extraction success for the two depths are shown in Figure 26 and Figure 27.  

 

Figure 26 Chlorophyll observations locations in 2006 at depth 0-5 m (left) and 5-15 m depth (right). Base map: ESRI 2012.  

 

Figure 27 Extraction success for chlorophyll observations at the depths, 0-5 m and 5-15 m. Base map: ESRI 2012.  

 

Highly significant relationships 
(p<0.001) between observed 
and satellite CHL was revealed 
by Spearmans’s rho test. The 
correlation coefficient was 
ρ=0.92 (ρ2=0.85) for observed 
CHL in the topmost layer and 
surface CHL detected by 
satellite. For CHL observed at 
5-15 m the correlation 
coefficient was a bit lower, or ρ 
=0.81 (ρ2=0.66) (Figure 28).  

Figure 28 Scatter plot and a Spearmans’s rho shows a strong relationship between 
observed and satellite remotely sensed chlorophyll values.  
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5 Discussion 
This study demonstrates that there is a relationship between catches of Atlantic Mackerel and remotely 
sensed environmental variables, thus the hypothesis is supported. The preceding results suggest that 
there is a significant difference between the satellite variable values between the groups delimiting 
absence and presence of mackerel at fishing locations. The remotely sensed variables CHL, SST, PAR 
and L443 significantly contribute to models which can partially explain absences and presences of 
mackerel catch in Icelandic waters. Decreased temporal resolution from one day to seven days 
increases the ability of satellite variables to explain locations of absences and presences. The shapes of 
the non-linear relationships of explanatory and dependent variables suggest that increased light (PAR), 
SST in the range from 8° to 13°C and waters with intermediate concentration of CHL are conditions 
where the probability of catching mackerel increases. Increased water clarity due to less absorption 
and also decreased water clarity, or increased turbidity, due to scattering in the water column seems to 
increase the probability of catching mackerel. Furthermore a strong significant correlation between in 

situ observed and satellite sensed CHL gives confidence in the use of global satellite data sets in local 
situations around Iceland.  In this chapter the results are discussed in the context of previous findings, 
from the point of view and as to whether they make sense given what is known about the biology and 
ecology of the Atlantic Mackerel and other pelagic fish. 

5.1 The most successful explanatory variables summarized 
The satellite variable CHL is the most successful single explanatory variable for variables with one 
day temporal resolution and both one and three cell spatial resolution, when the spatial components 
latitude and longitude have been incorporated. Other important variables are PAR and SST. For seven 
day resolution, PAR becomes the most successful single explanatory variable. The most successful 
models with multiple covariates are models with either one day or seven day average values of PAR 
and SST and seven day average values of L443. The most successful model in predicting absences and 
presences in the test data set was 7 day SST, with a slightly better ability to predict absences than the 
one day average PAR and SST with a seven day L443 model. 

5.2 Satisfactory models  
The deviance explained by the more successful models ranges from 39% to about 48%, when the 
spatial variables latitude and longitude are included. According to Smith et al. (2013) such values are 
considered satisfactory. Models with similar values of deviance explained, have been used to map and 
predict potential habitat of various fish species. For example for anchovies in the Mediterranean Sea, 
models with 24% to 42 % of deviance explained were used (Giannoulaki et al.  2012).  

5.3 Modeled relationships in an ecological perspective 
The modeled relationships are sensible from an ecological perspective and are in line with previous 
studies.  

5.3.1 Sea surface temperature 

With SST between 6°C to 8°C the probability of catching mackerel increases. It peaks at 8°C to 9°C 
were it starts to decrease again, but still the probability remains high with p> 0.6, but the confidence 
areas become wider at higher temperatures. More sample points in the higher temperature range are 
needed to define the upper limit sufficiently. The NE Atlantic Mackerel is known to be sensitive to 
temperature changes. Studies suggest that its migration is temperature driven (Overholz et al.  2011) 
and it prefers waters with SST around 8°C or higher (Utne et al.  2012). Studies on the NW Atlantic 
Mackerel suggest that it is intolerant of water temperatures less than 5-6°C and greater than 15-16°C 
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both in terms of physiological and behavioral responses and timing of migration and spawning 
(Overholz 1991).  

5.3.2 Light conditions – the photosynthetically available radiation 

The probability of catching mackerel increases with increased amount of visible solar light reaching 
the ocean surface. This might suggest that the mackerel prefers the warmer sunlit surface layers and/or 
that the increased PAR increases the visibility in the water, improving foraging conditions. PAR has 
previously been used as a parameter in defining catching areas of visual predators like the European 
Squid (Loligo vulgaris) (Sanches et al.  2008) and fish habitat for adult anchovies (Giannoulaki et al.  
2012). Solar illumination affects schooling behaviour of some pelagic fish, like anchovy and round 
herring (Agenbag et al. 2003), and Horse Mackerel (Trachurus trecae) around Angola show a 
difference in behaviour and distribution by day and night. During day the mackerel schools close to 
surface, but during night it disperses down to deeper layers (Velho et al.  2010).  

5.3.3 Clearer waters due to less absorption– the water leaving radiance  

Clearer water due to less absorption in the water column increases the probability of catching 
mackerel. This suggests that mackerel is more likely to be found in less productive waters, where there 
is less chlorophyll and other absorbing materials. L443 at 0.5 to 1.0 mW/cm²/µm/sr leads to more 
successful catches, which echoes the finding of Wall et al.  (2009) who conclude that intermediate 
water clarity as defined by L443 in the range 0.7-1.0 mW/cm²/µm/sr leads to more successful 
recreational catches of King Mackerel and vice versa, decreased water clarity leads to reduced 
catching success. Other studies also conclude that some fish species, especially visual predators like 
tuna, are more commonly found in clear waters for foraging (Wall et al. 2009).   

5.3.4 More turbid waters due to scattering– the water leaving radiance  

Less clear water due to increased scattering in the water column also increases the probability of 
catching mackerel. With L443 above 1.0 mW/cm²/µm/sr the probability of catching mackerel is high. 
This suggests that the increased scattering attracts mackerel. The reason might be that the scattering 
has positive effects on the visual feeding conditions for mackerel by increasing the contrast between 
the pray and the background. The reason might also be that the increased scattering provides a shelter 
for mackerel from their predators (Utne-Palm 2002).   

5.3.5 Transparent water – the down welling diffuse attenuation coefficient 

kd490 is the least successful variable in explaining catches of mackerel. It is not significant at resolu-
tion of one day and one cell and not with decreased spatial resolution to three cells. Furthermore it 
does not contribute to the most successful multicovariate models. It becomes significant when temp-
oral resolution is decreased to 7 days. However, the smoothing function for seven day kd490 further 
emphasizes the importance of transparent waters for successful mackerel catches. The probability of 
catching mackerel is high in the range of 0.05 m-1 to 0.25 m-1. These results are not necessarily in 
opposition to the results suggested by the water leaving radiance curve, as the attenuation coefficient 
evaluates the water transparency based on both the absorptions and scattering. Kumari et al.  (2009) 
suggests that increased transparency is an important factor when locating tuna aggregation areas.  

5.3.6 Primary production – chlorophyll concentrations 

CHL, indicating primary production, is a successful single variable and contributes to one of the more 
successful multi-covariate models. The probability of catching mackerel increases rapidly as CHL 
concentrations increase from 0 to 1 mg/m3. The probability remains high until the concentrations reach 
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above ≈ 3.5 mg/m3 when it rapidly drops. This rapid decline at higher concentrations might further 
underline the importance of clear, transparent water to mackerel. Higher primary production 
contributes to increased absorption in the water column and leads to less clear waters.    

5.3.7 Time lags– decreased temporal resolution 

Decreased temporal resolution improves the predictability of all the single satellite variables. This 
reflects the findings of Kumari et al.  (2009) which suggest that relationships between many fish 
species and primary production are often obscured by time-lags and spatial dislocation. They found 
that a minimum time delay for phytoplankton patch to mature to viable forage ground for all the domi-
nant species of tuna in the Arabian Sea is 5-7 days. It also reflects the typical patchiness of the ocean 
ecosystems and the importance of a certain preferred situation in primary production, temperature and 
other properties of the ocean to be sustained for some time to attract forage fish (Wall et al.  2009; 
Klaoudatos et al. 2010; Klemas 2010).  

5.4 Temporal patterns 
Both significant annual and temporal differences are evident in satellite variable values, within the 
groups absence and presence. The largest monthly differences are seen in PAR, which is highest in 
June and July and lowest in September. SST and L443 have the highest values in July but values for 
CHL and kd490 are highest in June. This suggests that the oceans at fishing locations are warmest and 
clearest in July. The higher CHL in June causes less transparent water with higher kd490. The pattern 
of PAR echoes the sun path at higher northern latitudes with the longest days and shortest nights in 
June.   

Patterns in annual differences are more difficult to interpret, but such differences are in agreement 
with previous findings of large interannual variation in fauna and physical properties of the ocean 
around Iceland (Gudmundsson 1998, Gislason 2009). 

5.5 Best models 
Best model is a vague term and dependent on the purpose being searched in any given case. The focus 
in this study is not to find the absolute best model, but to identify variables that can successfully 
predict viable fishing locations. Furthermore, statistical models like the once introduced here, are 
always just an approximation of the possible underlying processes (Kindt and Coe 2005).   

The best model according to AIC and deviance explained includes the variables seven or one day PAR 
and SST and seven day L443. From the perspective of parsimony, it can be argued that this more 
complex model with three satellite variables does not add much to the deviance explained by the 
simpler seven day PAR model. According to the predicative success of the models, the seven day SST 
is the most successful model in predicting correct values of absence and presence. But the predictive 
ability of the models must be viewed with caution as it is based on an arbitrarily set threshold of 0.5. 
This threshold is widely used in ecology but has been criticized for its arbitrary nature and for having 
no ecological bases (Liu et al. 2005).  A selection of other thresholds will affect the results. No signi-
ficance tests are available for these threshold methods of evaluating the model performance (Manel et 

al.  2001).   

Selecting the best model is thus somewhat arbitrary. All the most successful models should be 
considered and tested further to estimate their predictive capability in finding viable mackerel fishing 
grounds. Simpler models normally have more advantages, both practically and computationally, thus it 
is wise to start further exploration on the more simple models.  
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5.6 Most successful conditions for catching mackerel – a visual predator? 
This study suggests that mackerel catches are most successful in a temperature range of 7.5°C to about 
13°C where there are high amounts of incoming visible solar radiation and intermediate concentration 
of phytoplankton. Clear and transparent waters due to less absorption and decreased clarity due to 
increased scattering also have an effect. This might indicate that mackerel caught in Icelandic waters is 
somewhat dependent on visual foraging during its migration. Literature on the NE Atlantic Mackerel 
suggests it is primarily a passive filtering feeder but also known to be a particulate visual predator 
(Olaso et al.  2005; Astthorsson et al.  2010). Studies on the NW stock imply that filtering mostly 
occurs when and where small plankton is plentiful, particularly in summer. But during spring and 
autumn the mackerel is mostly a visual feeder, while other studies suggest that visual feeding occurs 
throughout the season (Studholme et al.  1999).   

5.7 Global dataset useful in local situations around Iceland 
Strong significant correlation of observed CHL in Icelandic waters and satellite remotely sensed CHL 
gives confidence in the usefulness of the global data sets from Globcolor for analysis of local situa-
tions in the waters around Iceland. Both surface chlorophyll observations and sub-surface chlorophyll 
observations reveal strong significant correlation with that of surface satellite sensed CHL.  

The correlation is much stronger than in previous study in Icelandic waters based on satellite values on 
a larger temporal scale of multiannual averages of 8 day composites (Gudmundsson et al.  2009). It is 
also stronger than results from a validation process for the Globcolor dataset in Case 2 waters and 
more in accordance with correlations found in the Globcolor validation process for case 1 waters 
(Globcolor 2007). Thus it might be an indicator that the Icelandic waters should be considered  Case 1 
waters (less turbid), at least during summer, as suggested in a study by Lee and Hu (2006), where the 
waters south of Iceland were classified as Case 1 waters during summer. The strong correlation must 
be taken with caution, as it is based on very few samples from only one year which are sampled 
systematically. Further research is needed with larger dataset of observed values for a longer time 
period. 

5.8 Unexpected results 
The results presented are in many aspects somewhat surprising. It was not expected that decreased 
temporal resolution would improve the predictability of covariates. The indifferent effects of 
decreased spatial resolution were also surprising. The evidents suggesting that mackerel might be 
more of a visual predator when foraging in Icelandic waters than previously considered was 
interesting. Furthermore it was interesting that only intermediate concentrations of CHL, but not 
higher concentrations of CHL, seem to attract mackerel. Finally the strong significant correlation 
between in situ observed and satellite sensed CHL was not expected.  

5.9 Limitations 
The models presented here only tell a part of the story. They are derived from a relationship between 
fishing locations and satellite variables where the original data set of fishing locations is highly subset 
to fit data sampled by satellites on cloudless days and when/where atmospheric distortions are not an 
issue. Thus it is only tells a story of mackerel fishing under these certain conditions. It should be kept 
in mind when deriving assumptions from such models that the relationships under cloudy conditions 
are still unknown.   

The fishing locations are most likely biased due to various reasons and lacking in coverage. The 
locations are based on occurrences records of fish as logged by fishermen, in non-systematic manner 
and must be treated with reservations as such. The definition of a fishing location is vague. As a haul 
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can extend over a few kilometers, the exact fishing location is only a point location. The strain of 
quota on mackerel fishing is likely to have effect on the pattern of fishing location in time and space. 
Furthermore many vessels already have satellite remote sensing systems onboard which might affect 
the relationship detected. In addition, no records of actual mackerel absences are available in the log 
book. Absences as used here are based on “lack of presence”, rather than clear absence and thus add 
an important source of uncertainty to the model design. Finally fishing is a human activity. There are 
no attempts to capture variables explaining this factor in the model.  

Inaccurate assumptions on relationships in regression models can be caused by violating underlying 
statistical assumptions in regression modeling, leading to either type I or type II error.  In this study 
autocorrelation was overcome in the modeling process by incorporate a smoothing parameter for 
latitude and longitude of the fishing locations, thus reducing the possibility of type 1 error. As a result 
of high correlation between kd490 and CHL the best scoring model was rejected to reduce the 
possibility of type II error.  But even though these variables cannot be included together in a statistical 
model it is important to be aware that they can still be important in explaining the distribution of 
mackerel. Correlation between other variables is not high and thus the possibility of type II error is 
reduced. 

5.10 Suggested improvements  
Improvement of the predictability of models for mackerel fishing locations can possibly be achieved 
by including more systematically spatially and temporarily structured samples of absences and 
presences and by scrutinizing the relationships of other possible explanatory remotely sensed 
variables. Temperature and primary production fronts have been proven to attract forage fish 
(Zainuddin et al. 2008; Wall et al.  2009; Klemas 2010). Other interesting variables are for example 
sea level anomaly (Giannulaki et al.  2012) and fluorescence which can possibly help to identify 
different phytoplankton functional types (Nair et al.  2008).  Furthermore, accounting for the temporal 
patterns which are evident in the satellite variables explored, might result in improved models.  
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6 Conclusion 
This study demonstrates that remote sensing variables can be significantly successful in defining 
absence and presence of mackerel at fishing locations in Icelandic waters, thus the null hypothesis is 
rejected. The results provide valuable information to develop methods to predict viable fishing 
grounds of mackerel in Icelandic waters. Successfully predicted fishing grounds contribute to reduced 
energy consumption of fishing vessels and lower carbon footprint of the industry, as well as increasing 
economic gain.  

Products from satellite remote sensing are commonly based on algorithms which are developed and 
validated on global scale and not necessarily successful in local situations. Validation of CHL 
observations in Icelandic waters and satellite remotely sensed CHL in this study gives confidence in 
the usefulness of the global data sets in analysis of local situations in Icelandic waters.  

Models are only just an approximation of the possible and often very complex underlying processes. 
The objective of this study was not to find the one true model to predict fishing locations of mackerel, 
but to explore and identify if and what satellite variables can be useful to define viable fishing 
grounds. PAR, SST, CHL and L443 all contribute to explain the locations of absence and presence of 
mackerel catching in Icelandic waters. The results and shapes of the modeled relationships are sensible 
from an ecological perspective and in compliance with previous studies on mackerel and other pelagic 
fish. Interestingly increased temporal resolution does not improve the predictability of the covariates 
and effects of decreased spatial resolution are somewhat unclear.  

It is concluded that mackerel catches in Icelandic waters are most successful in a temperature range of 
7.5°C to about 13°C where there are large amounts of incoming visible solar radiation and 
intermediate concentration of phytoplankton.  Clear and transparent waters due to absorption and 
increased scattering in the water column seem to be important factors too. This suggests that mackerel 
caught in Icelandic waters is possibly more dependent on visual foraging than previously considered.   

Remote sensing provides large data sets in near-real time with high temporal resolution and large 
spatial coverage which are not feasibly obtained in any other manner for fisheries research and 
forecasting. But like in other fields of remote sensing studies, there are problems with clouds, 
atmospheric distortion and seasonal availability at high latitudes. Furthermore algorithms used to 
create the products are constantly being scrutinized in an attempt for possible improvements.  
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