

Conversion of SA30 PLC
Program

Bachelor Thesis

LTH School of Engineering at Campus Helsingborg

Industrial Electrical Engineering and Automation

Bachelor thesis:
Andreas Ahlqvist

 Copyright Andreas Ahlqvist

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2013

Abstract

The objective of this thesis is to find the best possible solution to convert a

program, Straw Applicator 30, from RSLogix 5000 to TwinCAT 3 with

maintained functionality.

The main reason why Tetra Pak is interested in this problem is if the machine

could be run with two different suppliers and what that requires. The

conversion is briefly made rung by rung, except for where boxes appears that

TwinCAT 3 got different in their library than RSLogix 5000 and those are

converted with the requested functionality for the machine and not totally

converted.

Keywords: RSLogix 5000, TwinCAT 3, Straw Applicator, Conversion

Sammanfattning

Målet med detta examensarbete är att hitta bästa möjliga lösning till att

konvertera ett program, Sugrörsapplikator 30, så att samma funktionalitet som

i RSLogix 5000 uppnås i TwinCAT 3.

Huvudanledningen till att Tetra Pak vill få detta examensarbete gjort är för att

undersöka ifall det är möjligt att konvertera samt vad som krävs för att man

ska kunna utrusta maskinen med utrustning från två systemleverantörer

Beckhoff och Rockwell.

Kortfattat är programmet konverterat rad för rad förutom där olikheter mellan

programmen uppstått, det har då konverterats utefter behov i programmet och

därmed inte fått ett exakt identiskt beteende.

Nyckelord: RSLogix 5000, TwinCAT 3, Sugrörsapplikator, konvertering

Foreword

In this thesis method for converting a PLC program and each programming

environment specific functions from RSLogix 5000 to TwinCAT 3 were

studied.

This bachelor thesis project was carried out from January 2013 to June 2013 at

the department for Industrial Electrical Engineering and Automation with

Mats Lilja as academic supervisor and examiner.

List of contents

1 Introduction ... 1

1.1 Background ... 1

1.2 Purpose ... 1

1.3 Project delimitations ... 2

1.4 Tetra Pak.. 2

1.5 Technical Background.. 2

1.5.1 TwinCAT 3 ... 2

1.5.2 RSLogix 5000 ... 2

1.5.3 Straw Applicator 30 .. 3

1.5.4 Package types .. 3

1.5.5 Straw Types ... 3

2 Methodology .. 6

2.1 Tetra Pak standard .. 6

2.2 IEC 61131-3 .. 6

2.3 Structuring .. 6

3 Difference between RSLogix 5000 and TwinCAT 3 7

3.1 Timers .. 7

3.1.1 Structure ... 7

3.1.2 Timer On Delay .. 7

3.1.3 Timer Off Delay .. 8

3.1.4 Retentive Timer On .. 8

3.2 Data Unit Type ... 9

3.2.1 Message ... 9

3.2.2 Copy File .. 9

3.2.3 Get/Set System Value .. 9

3.3 Coils ... 9

3.4 Declarations .. 10

3.5 Rockwell specific functions ... 10

3.5.1 Bit access ... 10

3.5.2 Bit Field Distribute .. 11

3.5.3 Fill File .. 12

3.5.4 Clear .. 12

3.5.5 First scan .. 13

3.5.6 Jump to Subroutine .. 13

3.5.7 Assign task ... 14

3.5.8 One shot ... 14

3.5.9 One shot rising ... 15

3.6 Sequential function chart ... 16

4 Discussion ... 17

4.1 TwinCAT 3 ... 17

4.1.1 Ladder diagram .. 17

4.1.2 Sequential function chart .. 20

4.1.3 Structured text .. 20

4.1.4 Function block diagram .. 20

4.1.5 Assigning task .. 20

4.2 Verification of SA 30 ... 20

4.3 Source criticism .. 21

5 Conclusion .. 22

5.1 Further development .. 22

References ... 23

Appendix I - List of abbreviations ... 24

Appendix II – Word List ... 25

1

1 Introduction

1.1 Background

Development towards the standard IEC 61131 has been important for many

PLC companies. Implementing the standard will make it easier for the

costumers as the difference between different programs will be less. To

convert from one supplier to another will be much easier when the standard is

implemented.

The latest IEC 61131-3 edition (the third) were published in February 2013

with the language included

 Ladder diagram (LD)

 Function block diagram (FBD)

 Structured text (ST)

 Instruction list (IL)

 Sequential function chart (SFC)

The main motivation to use TwinCAT 3 is to decrease the execution time of

the PLC program. TwinCAT 3 is time based and not continuously based

program as RSLogix 5000.

It is cheaper to use a Beckhoff PLC than Rockwell/Allen-Bradleys, the price

for CPU-capacity is lower using a Beckhoff PLC.

This bachelor thesis will investigate if it is possible to convert PLC code to

TwinCAT 3 and how it should be done since RSLogix 5000 have some

specific functions that TwinCAT 3 lacks, such as manipulating timers, sending

messages and reading/setting system values.

To identify these kinds of differences and solving it will make a conversion of

another machine easier in the future.

1.2 Purpose

The main purpose is to get a Straw Applicator 30 implements by a Beckhoff

system with the same functionality as an Allen-Bradley/Rockwell

implementation. This requires hardware changes such as servo-axis,

communication handlers and the PLC. The main focus in this thesis will be to

get the I/O and the communication with the HMI and frequency converters to

have the same functionality as in RSLogix 5000.

2

1.3 Project delimitations

The focus is to get the I/O system working and be able to either compare to

RSLogix to see if the behaviour is identical or simulate on a simulator or on a

real machine. If there will be a simulation on a real machine it needs to replace

the Allen-Bradley/Rockwell equipment such as the frequency converters,

servo drives and PLC to Beckhoff hardware.

1.4 Tetra Pak

Tetra Pak began in the early 1950s as one of the first packaging companies for

liquid milk. Since then Tetra Pak have been one of the world‟s largest

suppliers of packaging systems for milk, fruit juices and drinks, and many

other products.

In 1991, Tetra Pak expanded into liquid food processing equipment, plant

engineering, and cheese manufacturing equipment. Today, 2013, it is the only

international company in the world able to provide integrated processing,

packaging, and distribution line and plant solutions for food manufacturing.

Tetra Pak provides processing solutions within the five food categories: dairy,

cheese, ice cream, beverage and prepared food.

1.5 Technical Background

1.5.1 TwinCAT 3
TwinCAT 3 is based on soft PLC, this means that a computer sends I/O

information by some kind of communication such as Ethernet. This makes it

possible to test the code directly with the computer. The maximum it could be

run on is 80% of the CPU power, the rest is needed for the operating system

such as windows to be able to run. This system is based on cycle based scans,

that means if a scan is complete, windows will be able to use the rest of the

time while it waiting for the next scan to execute. The different languages it

supports is those IEC 61131-3 includes, C/C++ and Matlab/Simulink. With

the included Visual Studio Shell C/C++ is not able to run, you need a Visual

Studio with more features for this. You can program object orientated with the

languages included in the IEC 61131-3 standard. The base time could be from

50µs up to 1ms, during which inputs are read, the program is executed and the

outputs are set.

1.5.2 RSLogix 5000
RSLogix 5000 follows the IEC 61131-3 standard. It provides ST, LD, FBD

and SFC editors [2]. It is a continuously based program, this means it will start

the next scan when the previous has finished, without any pause. To be able to

3

test code that is written with RSLogix 5000 you need an RSLogix Emulate

5000 and RSLinx Classic both provided by Rockwell. The version used in this

thesis is version 20.

1.5.3 Straw Applicator 30
The SA30 (Straw Applicator 30) is controlled by a LC (Line Controller) and

the machine are placed after the filling machine in the production line. It is

able to queue packages for the SA30 because of the distance between itself

and the filling machine. To get the straws into the machine there is a box with

straws that lies together in a line, waiting for one by one being drawn up and

into the machine.

1.5.4 Package types
The SA30 that is considered in this thesis can handle Tetra Brik Aseptic

(TBA), Tetra Brik (TB), and Tetra Prisma Aseptic (TPA). The packages can

be seen in Figure 1-3.

The TBA and TPA are available in all package size and shapes from 80-500

ml to run on the SA30.

1.5.5 Straw Types
There are four straw types‟ available straight straws, U-straws, sensory straws

and telescopic straws. The most common straw is the U-shaped. All the straws

are shown in the Figure 1-1 and the sensory straw is shown in action in Figure

1-2.

The sensory straw is unique with it four holes that makes the liquid flow in

four directions in the persons mouth that gives a different experience

compared to the other straws.

Telescopic straws can provide a straw that is longer than the package.

4

Figure 1-1

From left: Telescopic, Sensory, Straight & U-straw

(Tetra Pak, 2013)
Figure 1-2

Sensory straws in action

(Tetra Pak, 2013)

5

Figure 1-3

Tetra Brik Aseptic and Tetra Prisma Aseptic with straws

(Tetra Pak, 2013)

Figure 1-4

Straw Applicator 30

(Tetra Pak, 2013)

6

2 Methodology

2.1 Tetra Pak standard

Tetra Pak have its own standards to code a PLC program. The use of this Tetra

Pak standard is intended to minimize the risk of non-human errors due to

incorrect timing in the updating of the states.

2.2 IEC 61131-3

IEC 61131-3 is one of eight open international standards IEC 61131 for

programmable logic controllers (PLC). The third edition was published in

February 2013.

It consists of the following languages

 Ladder diagram (LD)

 Function block diagram (FBD)

 Structured text (ST)

 Instruction list (IL)

 Sequential function chart (SFC)

The main purpose of the standard is to easier get the same function of

programs in different developing programs and also to easier test, debug and

convert to other suppliers. The same function blocks, data types, functions,

resources and programs will be used [1].

2.3 Structuring

Every program has its own routines in RSLogix 5000. The programs are very

often modules that are sorted by what they are doing e.g. conveyor module,

infeed module.

In TwinCAT 3, every POU (Program Organization Unit) has its own actions.

Also every POU has its own states and transitions for SFC (Sequential

function chart), that are visible in the „Solution Explorer‟, where the actions

also are visible.

7

3 Difference between RSLogix 5000 and TwinCAT 3

3.1 Timers

3.1.1 Structure
TwinCAT 3 timers have following structure

 .IN BOOL Counts if it is true/false for a TON/TOF

 .PT TIME How much it should count to

 .Q BOOL If the timer is done

 .ET TIME How much it have count to

IN and PT are inputs and ET and Q are outputs.

RSLogix 5000 timers have following structure

 .EN BOOL Counts if it is true/false for a TON/TOF

 .PRE TIME How much it should count to

 .ACC TIME How much it have count to

 .TT BOOL If its counting

 .DN BOOL If the timer is done

EN and PRE are inputs, TT and DN are outputs and ACC is both in- and

output.

Time in RSLogix 5000 is simply represented as a number expressed in

milliseconds, to do it in TwinCAT 3 the time have to be specified with first T#

that indicates that time (data type) is about to be used and then followed by

numbers and then if its seconds or milliseconds, e.g. 10 seconds can be written

as T#10s or T#10000ms.

3.1.2 Timer On Delay
The TON (Timer On Delay) instruction is a non-retentive timer that

accumulates time when the instruction is enabled (rung-condition-in is true)

(Rockwell, 2013).

A TON got a similar behaviour for TwinCAT 3 except for manipulating

estimated time and reset that is used in this conversion.

To get a reset an explicit action needs to be implemented that sets the input

false. The ET then returns to 0 and it will start counting from the beginning

again when the input is true.

Figure 3-1

RSLogix 5000 TON (left) and TwinCAT 3 TON (right), both with the same

functionality

8

3.1.3 Timer Off Delay
The TOF (Timer Off Delay) instruction is a non-retentive timer that

accumulates time when the instruction is enabled (rung-condition-in is false)

(Rockwell, 2013).

A reset command does not exist for TwinCAT 3, if a reset is required it needs

specific user-created action that can be called which sets the input true.

Neither this nor the TON requires to be set to the rung in condition for

counting. Next time the scan hits the timer it checks if it should be started and

therefore the .IN does not need to be manipulated.

Figure 3-2

RSLogix 5000 TOF (left) and TwinCAT 3 TOF (right), both with the same

functionality

3.1.4 Retentive Timer On
The RTO instruction is a retentive timer that accumulates time when the

instruction is enabled. This simply means that the timer counts only when it is

enabled and it remembers where it stopped counting and starts from there next

time (Rockwell, 2013).

To reset the timer a reset instruction is needed. The output will remains true

until the reset is executed.

This timer is only used once in this conversion.

To get a timer with the requested behaviour for TwinCAT 3 a TON timer is

required with following code:

IF timer_Reset THEN

 timer_PT := presetTime;

END_IF

IF !rungConditionIn THEN

 timer_PT := timer_PT - timer_ET;

END_IF

timer(IN:=rungConditionIn);

9

3.2 Data Unit Type

The following DUT (Data Unit Type) are “dummies”, so that it should be able

to compile without errors when such occur. Those are used for motion parts

and that is not included in this thesis. These are DUT that are predefined in

RSLogix which are used to control the system with. These will be explained

and not used as it should, only used as “dummies”.

3.2.1 Message
MSG (Message) is mostly controlling the frequency converters which belong

to the motion parts. A message is an instruction that asynchronous writes, or

reads a block of data to another module on the network.

In this thesis this is not implemented in the code.

3.2.2 Copy File
The COP (Copy File) instruction copies the values in the source to the values

in destination with the requested length without changing the source. The data

types available are DINT, SINT, INT and REAL.

In this thesis this is not implemented in the code. This mostly appears in the

motion parts.

3.2.3 Get/Set System Value
The GSV/SSV (Get System Value / Set System Value) instructions get and set

controller system data that is stored in objects.

The data types that are available are INT, DINT, SINT and REAL for both

GSV and SSV. To access a value a class name, instance name, attribute name

and destination needs to be specified.

3.3 Coils

RSLogix 5000 has its own design possibilities where you could put a coil

before a contact in the middle of a branch, an example is shown in Figure 3-3.

In TwinCAT 3 this could be solved by splitting it up such as Figure 3-4 and

Figure 3-5, so that the second branch starts with the output coil as contact and

continue from there.

Figure 3-3

Coils after each other in RSLogix 5000

10

Figure 3-4

Same functionality as Figure 3-3 in TwinCAT 3

Figure 3-5

Same functionality as Figure 3-3 in TwinCAT 3

3.4 Declarations

A declaration of an array in RSLogix 5000 looks like „INT[100]‟. This array

of integers contains 100 elements. The same type of array is declared as

„ARRAY OF INT[0..99]‟ in TwinCAT 3. A declaration of a matrix has the

same structure, but has the form [elements, elements] in RSLogix 5000 and

[from..to, from..to] in TwinCAT 3.

A local variable in TwinCAT 3 is declared in the POU, which means that the

variable is available for all the actions under the POU. The global variables

are declared in GVL (Global Variable List).

The declaration of a local variable in RSLogix 5000 is done in Program Tags

and is only local for the program and not the routines.

3.5 Rockwell specific functions

3.5.1 Bit access
By trying to access a bit by having the requested variable dot the requested bit

generating “Bitaccess requires literal or symbolic integer constant” error, this

works fine with RSLogix 5000, but not TwinCAT 3.

To access a specific bit 2
x
 is used where x is the requested bit.

e.g. (Decimal) 8 = (binary) 1000 = 2
3

11

3.5.2 Bit Field Distribute
The BTD (Bit Field Distribute) instruction copies the specified bits from the

Source, shifts the bits to the appropriate position, and writes the bits into the

Destination (Rockwell, 2013).

Figure 3-6

BTD instruction with following parameters, source bit 2, length 4, destination

bit 6

FOR Counter := Source_Bit TO (Source_Bit + Length - 1) BY 1 DO

DINTTemp := (Source AND

LREAL_TO_DINT(EXPT(2,Counter))) OR DINTTemp;

END_FOR

DestTemp ≔ Dest;

Result := SHL(SHR(DestTemp, (Dest_Bit + Length + 1)), (Dest_Bit + Length

+ 1)) OR SHL(DINTTemp, Dest_Bit + 1) OR Dest AND

REAL_TO_DINT((EXPT(2,Dest_Bit + 1)-1));

DINTTemp stores the value that are about to be moved. TwinCAT 3 lacks any

feature to accesses a specific bit. The method in 3.5.1 is used for bit access. To

store the information without losses when accessing one bit at a time,

DINTTemp is OR with the bit, so it stores in DINTTemp and only affecting

one bit at a time.

To make sure that Dest have not been changed with the first use of it, it copies

to DestTemp.

First SHR (Bitwise right-shift of an operand) the bits higher than those

affected by DINTTemp to clear the bits that will be affected and those who are

lower, then SHL (Bitwise left-shift of an operand) the same length to have

cleared bits. By OR with the bits SHL that moves back the bits to right place

and OR with the AND between only set bits with lower value than the moved

bits and destination. As the code above shows.

12

3.5.3 Fill File
The FLL (Fill File) instruction fills elements of an array with the Source

value. The Source remains unchanged (Rockwell, 2013).

Figure 3-7

Fill File instruction in RSLogix 5000

To obtain the same behaviour in TwinCAT 3 as Figure 3-7 it could be done

like:

FOR position TO 600-1 DO

 REC_Buffer[position] ≔ 0;

END_FOR

This requires a defined length to know how many elements that are about to

be changed, therefore a unique function is needed every time with the array

that are about to get information copied from the source.

3.5.4 Clear
The CLR (Clear) instruction clears all the bits of the Destination (Rockwell,

2013).

This can be made in TwinCAT 3 by using the „MOVE‟ instruction to set 0 to

the destination.

This could be executed in the beginning of a rung or an action to remove the

present so no data is manipulated when beginning a new scan.

It could also be done in the end of a rung to clean up for the next action.

Figure 3-8

Clear instruction to the left in RSLogix 5000, the same logic to the right shown

in TwinCAT 3

13

3.5.5 First scan
S:FS is a Bool in RSLogix 5000 that are only active during the first scan of the

program. In TwinCAT 3 by declaring a FirstScan variable as Bool as true, this

is done in every POU and at the end of the action where all other actions are

called it sets to false and remains so until the program is restarted.

This function could activate units that need to be activated before the machine

starts running.

Figure 3-9

Typical use of FirstScan (S:FS) to clear transitions and states, the upper is

RSLogix 5000 and the lower is TwinCAT 3

Figure 3-10

Declaration of FirstScan and Reset of it

3.5.6 Jump to Subroutine
The JSR (Jump to Subroutine) instruction jumps and executes the requested

routine with input parameters if that‟s required. To return from a SBR

(Subroutine) the instruction RET (Return) is used.

14

To obtain this behaviour in TwinCAT 3 a box that refers to the SBR/action is

added and to return a jump-action is used in the same way as in RSLogix

5000.

Figure 3-11

Jump to Subroutine instruction to the left in RSLogix 5000, the same logic to

the right shown in TwinCAT 3

3.5.7 Assign task
Main routines in RSLogix 5000 is scanned every scan and from those it is

possible to call the SBRs within the local programs.

To do the same in TwinCAT 3, every POU is assigned to “tasks”. By calling

an action that is similar to the main routine in RSLogix 5000 the same

behaviour can be emulated.

Figure 3-12

_00000_MC is an assigned task in RSLogix 5000 (right), MAIN is an

assigned task in TwinCAT 3 (left)

3.5.8 One shot
When enabled and the storage bit is cleared, the ONS (One shot) instruction

enables the remainder of the rung. When disabled or when the storage bit is

set, the ONS instruction disables the remainder of the rung. (Rockwell, 2013)

This behaviour is able to get by using a rising edge detector in TwinCAT 3,

where a falling edge detector also can be used to detect.

15

Figure 3-13

One Shot instruction in RSLogix 5000 to the left and TwinCAT 3 to the right

3.5.9 One shot rising
When enabled and the storage bit is cleared, the OSR (One shot rising)

instruction sets the output bit. When enabled and the storage bit is set or when

disabled, the OSR instruction clears the output bit (Rockwell, 2013).

Figure 3-14

(Rockwell, 2013)

Explanation of the text above

To solve this for TwinCAT 3 one way is:

BOOLTEMP := FALSE;

IF inCondition=TRUE AND BOOLTEMP = FALSE THEN

 outCondition := FALSE;

 BOOLTEMP := TRUE;

16

END_IF

IF inCondition=TRUE AND BOOLTEMP = FALSE THEN

 outCondition := TRUE;

 BOOLTEMP := TRUE;

END_IF

3.6 Sequential function chart

In RSLogix 5000 it is possible to access a variable that tells if you are inside a

step or if it is active and if it is the first time you scan it.

To solve this in TwinCAT 3, you could add entry and exit actions. By adding

a variable on entry that sets true and gets false when leaving you can access if

the current state is active. By adding another variable that sets true when

entering and false at the end of the active state, you know if you‟re on the first

scan.

When programming in RSLogix 5000 there are lines from every step to the

possible steps to enter. In TwinCAT 3 there are jump-actions with where to go

after those conditions that can go to other steps.

17

4 Discussion

TwinCAT 3 is a user friendly language, except for ladder logic that was full of

graphical and logics errors. That made the programming more difficult then

what it should have been.

4.1 TwinCAT 3

4.1.1 Ladder diagram
The Figure 4-1 shows the main reason why I used FBD instead of LD. It

contains a graphical and logic error, where you are not able to have a parallel

gate with a box at any time. By trusting the LD language, it could occur

problems that are only visible when viewing the logic as FBD. By the time I

realised this approximately one fourth of the program was converted and I had

to check everything over again to find all the errors such as the Figure 4-1

shows. There was no problem only having parallel contacts, it was first when

using boxes that the errors occurred.

At some times a “Codesys” error could occur, that Beckhoff GmbH also was

unable to explain, see Figure 4-2 for an example. This only occurs in the beta

and not the released version. Codesys is a development environment for PLC-

programming according to PLCOpens IEC 61131-3 standard.

During this thesis I used TwinCAT 3.1.4002 to 3.1.4004 betas with build 4003

and when the conversion were finished 3.1.4006 was released.

Every error I explored was reported to Beckhoff GmbH.

Even though I used a beta and reported the error with parallel boxes in Figure

4-1 it still remains in the official version 3.1.4006.

18

Figure 4-1

Parallel boxes in LD (top) and the same logic in FBD (bottom)

The graphical in Figure 4-1 LD view shows what to be a connected rung,

when switching to FBD view there are two separate rungs, one with only input

and no output, the other one that will always be executed because of the inputs

will always be true. By trusting LD graphical problems could appears when

switching to FBD view that are not visible in LD view.

Figure 4-2

Parallel boxes in the beginning of a rung that generates CODESYS

19

Figure 4-3

A box that gets bigger the more contacts it is in front of it.

The Figure 4-3 shows a graphical view with the standard preferences, where

the boxes becomes larger and larger with the contacts added just before. This

is able to solve in the preferences by widening the gap between the logical

operands.

20

4.1.2 Sequential function chart
In the beginning this was annoying to use because of all the errors that

occurred. Many errors were not possible to be explained either by me or

Beckhoff GmbH. However, when redoing the action for 3 times it finally

worked, without any good explanation. This language became easier with the

time as experience was gained.

4.1.3 Structured text
Beckhoff is promoting ST (Structured text) having spent a lot of time using it.

It was easy to use as it should be and not full of errors.

Accessing functions is done by first using the functions name and then what to

do with the values, e.g. a timer called timer.

timer(time≔T#3ms)

This manipulates the time to count to 3ms. The „T‟ means time, the # is to

separate T from the value. 3 is the value in the unit after, in this case it is

milliseconds. With s second is the unit.

4.1.4 Function block diagram
I found this very pleasant to work with after a while. It was a different way of

thinking than what I was used to. But I found it very stimulating way of

thinking when structuring a program. It started with the output and ended with

the inputs when programming it.

The main reason why I started using FBD is that LD was not working as it

should and therefore it was not possible to see if it was correctly programmed.

See Figure 4-1for an example.

4.1.5 Assigning task
Assigning tasks was not working as it should have done, I was able to assign

one task, not more than that, and from that task I called other actions that

called other actions. This is an error not yet solved in the official version

3.1.4006 of TwinCAT 3. It only appeared one assigned task and when a new

task was assigned it did not appear in the assigned task list.

If it would have worked as it should it would be possible to assign the POUs

that calls the action within the POU.

4.2 Verification of SA 30

The conversion were about converting and not verifying, therefore it was not

confirmed if the code worked on a physical machine. The way it was

confirmed was by executing the program within TwinCAT 3.

21

The conversion was about converting branch by branch to obtain the same

behaviour and not converting whole of actions or POUs for obtaining it.

By testing smaller parts of the code in both environments to obtain the same

behaviour was made when TwinCAT 3 lacked functions that RSLogix 5000

contained.

The conversion does not guaranty that the motion parts will be able to fit with

it, there will be a different time for executing the actions which needs a

different cycle time, since RSLogix 5000 is cycle based and TwinCAT 3 are

periodic based, the time will be calculated when the conversion of the machine

is completed. The motors could be different designed with different input

parameters that needs a unique configuration and also contain unique

functions in RSLogix 5000 that TwinCAT 3 lacks, that the converted parts are

adapted for and therefore needs to be either removed or changed.

4.3 Source criticism

The sources that are used are Rockwells internal help in RSLogix 5000, that is

provided by Rockwell. This source is worth trusting since the provider of it is

the provider of RSLogix 5000.

PLCopen is used because it supplies the IEC 61131 standards.

22

5 Conclusion

I did not find any research regarding conversion from RSLogix 5000 to

TwinCAT 3. I was able to convert all of the parts of the program that I were

about to convert and find solutions for all the differences that needed to be

solved except for one. The one that I was not able to solve were about moving

directly into a state in SFC from LD. Beckhoff GmbH was not able help me

solving it either.

Since no fully functional SA 30 was available at the time, it was not feasible

to assess the possibility to convert another machine, especially not with

respect to the motion parts. If the machine works as it should when the motion

parts are converted I think there is a big potential to have two suppliers for the

machine and to be able to move freely between them.

By having two suppliers Tetra Pak will become more vendor independence.

The conversion of the motion parts are not finished yet, but if they will be

working as requested it will be possible to switch between the systems. This

does not considering further updates to the machine, if they fit or not.

5.1 Further development

The conversion was very time consuming for a human to do. Since this was a

rung by rung conversion there could be a program that does it all by itself. By

exporting the program from RSLogix 5000 to a converter that converts it rung

by rung into TwinCAT 3 would be very timesaving. There is no research

made regarding a programmed converter.

By having this program fully functional the development could be made in

one of the environments and be directly converted without doing the same

thing again in the other environment.

23

References

1. http://www.plcopen.org/pages/tc1_standards/iec_61131_3/ 2013-06-09

2. http://www.rockwellautomation.com/rockwellsoftware/design/rslogix50

00/overview.page 2013-06-10

http://www.plcopen.org/pages/tc1_standards/iec_61131_3/
http://www.rockwellautomation.com/rockwellsoftware/design/rslogix5000/overview.page
http://www.rockwellautomation.com/rockwellsoftware/design/rslogix5000/overview.page

24

Appendix I - List of abbreviations

SA30 - Straw Applicator 30

POU - Program Organization Unit

DUT - Data unit type

PLC - Programmable logic controller

SFC - Sequential function chart

LD - Ladder diagram

FBD - Function block diagram

ST - Structured text

IL - Instruction list

TBA - Tetra Brik Aseptic

TPA - Tetra Prisma Aseptic

TB - Tetra Brik

TCA - Tetra Classic Aseptic

TWA - Tetra Wedge Aseptic

TT - Tetra Top

COP - Copy file

SSV - Set system value

GSV - Get system value

BTD - Bit field distribute

TON - Timer on delay

TOF - Timer off delay

RTO - Retentive timer on

MSG - Message

FLL - Fill file

OSR - One shot rising

CLR - Clear

INT - Integer

SINT - Short integer

DINT - Double integer

BOOL - Boolean

SHL - Bitwise left-shift of an operand

SHR - Bitwise right-shift of an operand

JSR - Jump to Subroutine

SBR - Subroutine

RET - Return

ONS - One shot

OSR - One shot rising

GVL - Global Variable List

25

Appendix II – Word List

Non-retentive – The time does not reset until a reset instruction is called.

Continuously based – Scans the program again directly after finishing the

previous scan

Cycle/Time based – Scans the program on a time interval, will have a pause

before next scan.

