
Using Linear Splines to Continuously Develop
Understanding of Affordances

Erik Lagerstedt
drattans@gmail.com

Understanding affordance is a bottom-up process that lets sim-
ple visual features be used as clues on how to use an object,
so that reasonable interactions with objects can be achieved,
without any semantic knowledge. Linear splines are proposed
as a way for robots to fast and continuously learn how their
actions affect their surroundings. The general conclusions that
they can draw from only little experience, using this method,
are seen as an example of understanding affordances, and the
specific case investigated by the robot created as a part of this
thesis, is how pushing actions affect small blocks. This infor-
mation will be used by the robot to perform goal directed tasks,
namely to push the block to specific predetermined positions.
A way to make generalised predictions, so that actions on new
shapes can be performed in a reasonable way without any pre-
vious interaction, is proposed. It becomes obvious that good
inner representations of actions and reactions are necessary,
as well as some management of learned relations.

1 Introduction
In humans, visual input is collected by the eyes and then
mainly sent to the occipital lobe in the back of the head.
From there it is primarily passed through two routes. The
ventral route, leading into the temporal lobe, is commonly
called the what stream and it is associated with semantic
understanding of objects in view. The other (dorsal) route
leads into the parietal lobe, and it is commonly referred
to as the where stream, since it handles the location of the
objects in view (Ungerleider & Mishkin, 1982). Goodale
and Milner (1992) proposed that the dorsal stream uses
information which is separate from semantics, but still
helpful when an action is attempted to be performed on
an object. This definition is wider than just where an ob-
ject is, and according to them, the dorsal route may also
handle simple features such as shape, size and colour,
which can be used as clues to what is possible to do with
the object. This route is thus sometimes referred to as
the how stream.

When performing an action on an object, the impor-
tance of the object’s location is trivial. The importance
of other features related to the how stream, might not
be as obvious, however, these features, which are simple
and general (e.g. concave or fist sized), are used to deter-
mine something commonly referred to as “the affordance
of the object.” Separation of affordance from semantics
have been used by Hodges, Bozeat, Lambon Ralph, Pat-
terson, and Spatt (2000) to explain how people suffering
from semantic dementia are able to use tools, even though
they cannot explain what the objects are. Lauro-Grotto,
Piccini, and Shallice (1997), also examining people suf-
fering from semantic dementia, report that the patients
can perform relevant behaviours when presented to visual
(but not verbal) input of objects. This is another strong
argument for affordance being separate from semantics.

Affordance is a concept that was coined by Gibson
(1977), and it is inspired by the Gestalt psychological
idea, that objects are perceived as their properties, more
particularly how objects can be used. This is a bottom-up
process which, for example let you see an object as gri-
pable, even before you realise that it is a door handle. The
initial definition was that “the affordance of anything is
a specific combination of properties of its substance and
its surfaces taken with reference to an animal” (Gibson,
1977, p. 67). The last part emphasises that affordances
of an object can vary depending on which agent is per-
ceiving it, however, this does not mean that affordances
are subjective. In this sense it is similar to the umwelt-
concept, which discusses the issue that the properties in
the world which are relevant depends on things such as
the physiology and size of the agent (Uexküll, 1957). This
general description of affordance might seem clear, how-
ever, the strict definition of affordance has been changed
many times, and it is debated to this day. Gibson is said to
never have been satisfied with any definition, and he liked
that it developed continuously (Şahin, Çakmak, Doğar,
Uğur, & Üçoluk, 2007).

The concept has been studied from the perspective of
many fields. It is central in ecological psychology and sup-
port of it has been found in neuroscience. Most research is
unfortunately only dealing with the perception aspect of
affordance. Other interesting areas, such as uses in learn-
ing or high level reasoning, are still unexplored to a large
extent. Exceptions to this are for example Fitzpatrick,
Metta, Natale, Rao, and Sandini (2003) and Stoytchev
(2005), who train robots to map actions to consequences,
or MacDorman (2000) who train robots to determine af-
fordances of its body and surrounding, and then uses it as
a tool for navigation. Çakmak, Doğar, Uğur, and Şahin
(2007) use affordances of the agent-environment system,
mentioned below, and formalise it to be (effect, (entity,
behaviour)), with which they mean that a certain effect
is achieved after a specific behaviour is applied on an en-
tity. With this formalism it is possible for the robot to
create lists of relations between the three, as it explores
the world. Their robot manages eventually to develop
goal-directed planning and navigate in an environment
with obstacles, without using simulation, and with mini-
mal use of visual input. This was later developed, so that
multi-step planning was possible, even though simple in-
ternal simulations were used in this case (Uğur, Şahin, &
Öztop, 2009).

When the concept of affordance is attempted to be for-
malised, one of three perspectives are used: the agent’s,
the environment’s or the observer’s. As an example, con-
sider a scenario with a human watching a dog playing
with a ball. The dog is in this case the agent, and affor-
dance is always in relation to the behaviour of the agent.
The agent may push the ball, which means that the the

ball is pushable. The ball represents the environment in
this example, and affordances from this perspective are
how it can be manipulated by its surroundings. Proper-
ties such as be pushed by the agent, and not seen by
the observer are possible affordances. The human is, as a
third part, the observer of the dog-ball system, which, as
an example of affordance, can be said to have the ability
to push (Şahin et al., 2007). All three perspectives are
commonly used, however, it is not always clear which one
in the different cases. The resulting confusion is one rea-
sons why the debate on the definition of affordance is still
ongoing.

Action is an important part of cognition. It serves not
only as one of few output channels, but it also offers ways
to manipulate the world, so that cognitive processes are
facilitated. The act of manipulating the world in this fash-
ion has been proposed not only to serve as preparation,
but also being a kind of cognition in itself (e.g., Kirsh and
Maglio, 1994). To what extent semantic knowledge of an
object is needed, for the object to be used, is debated.
A simple model would suggest that semantic understand-
ing includes information on how an object is used, which
would make semantics crucial to use the object. However,
as mentioned above, there are empirical evidence against
this simple model (Hodges et al., 2000; Lauro-Grotto et
al., 1997), which indicates that semantic understanding
is not necessary when detecting affordances and using an
object. If only semantic understanding is available (that
is, if parts crucial to the how stream have been damaged),
Rossetti et al. (2005) found that slow, off-line strategies
are used when performing actions as responses to visual
input.

In this thesis, a block pushing robot arm (henceforth
commonly referred to as “Radagast” (Robot Arm De-
veloping Appreciation for General And Specific Traits))
will be used to explore how affordance can be approached
by machines. The knowledge of the affordance of objects
will be used to perform goal directed actions, without
the robot having any semantic understanding. The result
might be generalisable to other agents, however, whether
that is true or not will not be pursued in this project. The
robot will, more specifically, learn to push blocks to pre-
determined goal positions, and it has to find the relation
between a push action and the movement of the block,
by trial-and-error. The problem has been simplified to
two dimensions by using the angle from where to push
as input, and the angle to where it moved as output. A
push will always be towards the centre of the block, and
it will always be intended to make the object move to-
wards the goal position. The objects are assumed to be
of constant apparent size, and constant distance from the
camera with which the robot sees. This is not entirely
true, and deviation from these assumptions will result in
noise.

When the robot manages to handle one object, other
shapes are intended to be introduced to establish a new
problem for the robot. A technique of pushing that was
previously confirmed to work flawlessly, is now useless.
The flawlessness and uselessness are strong words in the
context, and what it means is that the noise in the knowl-
edge should be smaller than the effects of the new shapes.
The shape of the block then has to be taken into consid-
eration when mapping a push and the reaction by the

pushed block. A set of strategies can be created, which
the robot can choose from, using an objects shape as a
cue.

When the second shape is introduced, the knowledge
of the first shape can initially be copied, and then modi-
fied over time. Each new shape could then start with the
knowledge from the latest shape, however, that would not
make much sense. A better idea would instead be to cre-
ate an incomplete and abstract prototypical shape. It can
be introduced as a copy of the first shape when the sec-
ond shape is introduced, and then be modified so that
it holds information that works for most shapes. To use
this as a base when a new shape is introduced would make
sense since it probably will contain information on gen-
eral behaviour, and only the shape specific traits must
be learned. This could imaginably happen in several lev-
els as well, so that new prototypes can be introduced,
but have a more general prototype to be based on. This
would open up for the possibility to use some abstract
shape space to predict techniques for new shapes. If cir-
cular and edgy are the two known mid-level-prototypes,
then a triangle shaped block might copy the edgy proto-
type, and a square shaped block might try to find some
way to be based on some combination the two proto-
types. This feature would require high fidelity and large
differences between the action-reaction-functions of the
different shapes.

The objects in this thesis can, from Radagast’s point
of view, have different kinds of pushability as affordance.
These pushabilities will be represented as functions, re-
lating block movement to push actions. To approximate
these functions, linear splines will be used, that is, be-
tween each adjacent pair of meassured data points a lin-
ear function will be fitted.

2 Materials and methods

The machine

The robot (see figure 1) consists of four dynamixel AX-
12 servos, creating an arm with four degrees of freedom
(DOF). Since the arm always will keep its fingertip some-
where in a plane (parallel to the surface on which it
stands), the software only uses the two relevant DOF,
which in the end is converted to angles of the servos, using
inverse kinematics. The robot can reach places between
9 cm and 24 cm from the base of arm.

The input to the robot is the visual (RGB, later trans-
formed to rgI) input from a Microsoft Kinect-device,
suspended 50 cm above the surface. This will give an
overhead-perspective of the experiment for the arm to
work with. Near the edges of the image, the perspective
is slightly from the side, which is a source of error. Func-
tions to compensate for this could be introduced, how-
ever, the caused errors were not deemed severe enough
for that to be prioritised. The robot will also use propri-
oceptic information, in form of feedback from the servos.

2

Figure 1: A photo of Radagast, the robot used in this project.
The green object near the finger of Radagast is one of the pushable
blocks.

The pushable objects are thin plastic cylinders (diam-
eter 4.2 cm, thickness 1.5 cm) laying flat on the surface,
and one of them can be seen in figure 1. Square and trian-
gular shaped blocks of similar sizes are also introduced.
Their colours are distinctly different from the surround-
ing, to facilitate the tracking of them.

The system

In Ikaros1, which is used in this project as the framework,
code is implemented as modules using the programming
language C++, and the modules are then connected us-
ing xml files with a description of the system. Several fea-
tures, such as an interface for the servos, and colour dis-
crimination algorithms, are already implemented as mod-
ules. To learn the relationship between arm movement
and block movement, a new module, implementing a lin-
ear spline function, was created. Other functions, such as
a shape detection module, were also implemented as the
need for them arose, and they are listed and discussed be-
low. Figure 3 sketches which modules are used, and how
they are connected. The information flow starts with the
input image from the Kinect device, and ends with arm
movements via the Dynamixel servos. The system has,
in figure 3, been split into four sections to facilitate a
discussion.

The idea is to let the robot predict what action will
get the pushable block closer to the goal position. If the
predictions are too wrong, it might indicate that the ob-
ject has a different shape than anticipated, which could
encourage Radagast to assume that some specific rules
might be relevant for this object. This latter feature has
not been implemented, since there are other sources of
error that are much more dominant than the error that
could be used as a cue. This will be discussed more in
section 3 and 4.

Sensor The first section contains only one module,
which is the Kinect module. It works as an interface be-
tween the Kinect-device and the system, and the only

purpose of this module in Radagast, is to take the video
image from the Kinect, and forwards it as an image of
640x480 RGB encoded pixels, into the system. This mod-
ule is part of Ikaros.

Image preparation All the modules in this section
are already part of Ikaros. The first module (ColorTrans-
form) takes the input image and transforms the colours
from RGB to rgI. This is to make the image less sensi-
tive to changes in light conditions. ColorClassifier defines
a colour subspace and finds every pixel with a colour in
that region. The output is an image of the same size as
the input image, however every pixel now has the value
one or zero, indicating whether or not the the pixel had
an appropriate colour. The final module in this section
(SpatialClustering) takes the image from ColorClassifier
and recognises it as a monochrome image. In this image,
clusters of white will be identified, and their locations will
be sent as the output. This method of finding coloured
object is more thoroughly described by Balkenius and Jo-
hansson (2007).

Core CropMod will take the monochrome image from
ColorClassifier and the cluster locations from Spatial-
Clustering, and create an image of 100x100 pixels. This
image will be a copy of the part of the input image which
is centred around the cluster centre.

The first thing that happens in ShapeMod is that the
input image from CropMod will be run through a dilation
algorithm, to remove empty pixels in the white cluster,
which sometimes occur due to noise. It is not necessary to
removed them, but doing so increases the quality of the
image slightly. If no shapes are known to the robot (which
will be the case in the beginning), or if some input indi-
cates that more shapes needs to be known, this module
will use the current input image as a template. Learning
a shape means, in this module, that the image is rotated,
so that information on how the shape looks from different
angles is learned (see figure 2). The original image, along
with the rotated versions of it, are stored in a list.

If there already are shapes in the list, this module will
compare the input image to all the stored images, to find
which shape and orientation fits the best. It will also try
several locations of the template, to see if the centre of the
cluster in the input image really coincide with the centre
of the object. The definition for the centre of the object
from the SpatialClustering module is the average position
of the pixels in the cluster. This is a good definition if the
entire object is seen, however, if part of the object is ob-
scured, an offset will appear. This module will compare
slightly shifted images to the input, to find a better fit.
Both a greedy search algorithm and a simulated anneal-

Figure 2: An example of an image of a shape being rotated.

1http://www.ikaros-project.org/

3

Figure 3: A sketch of the structure of the system. The flow of information starts with the Kinect module and ends with the Dynamixel
module. The system has been divided into four different sections. The sensor section contains the Kinect module, which provide images from
the outside world. The image preparation section finds the interesting features in the image and passes it on to the core, which performs
most of the work in the system. Ultimately the core will produce coordinates of the desired position of the finger, and the mechanics section
will use inverse kinematics to find the appropriate angles for the servos, which will finally move. The dashed line in the figure represents
feedback.

ing algorithm were tried when searching for the best po-
sition. A few different sets of parameters were tried, how-
ever, these algorithms were not successful enough with
any of them. Using a brute force approach, better ap-
proximations for the object locations are usually found.
The algorithm is relatively slow, however, since the shift
is very rarely more than ten pixels in any of the four di-
rections, that can be used to limit the search space to
something manageable. The index of the shape, the di-
rection of the shape and the location of the object are
sent as output.

The purpose of the BicSpli module is to decide how
the arm should push the block. The first thing that hap-
pen is that the direction to the goal position from the
block is found. This will be the direction in which the
block will be intended to move. After it is found, one of
four modes are used, the four modes being preparation,
evaluation, transportation and execution.

1. In preparation mode an angle from which the robot
should push the block, is determined. The robot will, if
possible, use past experience to decide this, and will oth-
erwise choose an angle randomly.

2. In evaluation mode it will compare the results of a
recent pushing action with the predictions that was made
for the same pushing action. It will then update its knowl-
edge in an appropriate way. This will be discussed more
extensively below.

3. In transportation mode, the location of the start of
the push is calculated and sent to the next module. The
push angle produced in preparation mode is relative to
the object, but the modules later in the chain uses co-
ordinates relative to the base of the robot. Converting
the coordinates from the first to the latter, is an impor-
tant part of this mode. While the finger moves to the
instructed position, it should not touch any object, since
that would change premise. To avoid that, the finger will
be slightly elevated, while in this mode, so that it will
pass over any potential blocks in the way.

4. In execution mode instructions on where the push
will end is sent to the next module. Entering execution
mode, the finger will be lowered from its levitated state.
Other than that, this mode works much like transporta-
tion mode.

The modes are commonly cycled like this: the start of
the push is decided in preparation mode, and transporta-
tion mode is engaged. It will stay in this mode until the
proprioceptic feedback indicates that the arm is in the
right position. The finger will be lowered as it enter exe-
cution mode, in which it will stay until the push action is
complete. The robot will then enter evaluation mode to
evaluate the effect of the push.

The knowledge that is acquired is stored in lists. The
information that is stored is from what angle y the block
was pushed, and the corresponding result x. The result
is seen as a function of the angle from where the push-
ing started, y = f(x). Between all the perceived cases,
linear functions are approximated:

f(x) =


m1x+ k1 if xn < x < x1
m2x+ k2 if x1 < x < x2

...
...

mnx+ kn if xn−1 < x < xn

(1)

where (x1, . . . , xn) are the different experienced results
of the tried push angles (y1, . . . , yn). The constants
(m1, . . . ,mn, k1, . . . , kn) are calculated using the push an-
gles and their results. Constructing a function from data
points like this is called using linear splines. The first con-
dition in equation (1) will not only cover angles smaller
than the smallest tried angle, but also angles larger than
the largest tried angle. The notation might be a bit con-
fusing, however, if the cyclic behaviour of the angles are
considered it should make more sense. Using these ap-
proximated functions, it is possible for the robot to make
qualified guesses about the reactions to untried push ac-
tions. When Radagast decides how to push, the desired
result is inserted into f(x), and the value of the function
in that point will be used as push angle. Figure 4 is an
example of how this function can look.

Apart from saving actions and reactions, information
on whether or not the robot trusts the different parts of
the data is saved. If a push action is performed, with a
result too different from what is predicted by the fitted
function, that segment of the function is declared unreli-
able, and is no longer used when searching for new start
points for future push actions. A randomly chosen point is
used, rather than using unreliable predictions. Whenever

4

Figure 4: An example of how the approximated function can look. The red crosses are experienced instances, and the other crosses are
probings of the fitted function. The blue crosses are in regions that are deemed untrustworthy. The cyan lines are the correct function.
These guidelines have been added after the robot is done, so it will not be able to use them.

a new point is found in an unreliable interval, the func-
tion will be updated and the region will be trusted again.
If it is a wide region, random angles will be needed to be
used often, however, it will also be very likely that one of
the randomly chosen points will lie within the region, so
it will not take long for this region to be updated. Narrow
regions will more rarely be updated, since it is less prob-
able to choose an angle within it. On the other hand will
a narrow region probably not be needed so often. Even if
the narrow region turns out to be important, it should be
easy for the robot to push the block away from it, using
randomly chosen points. The ability to not trust parts
of the data can sometimes be very important to avoid
getting trapped in a nonsensical series of actions.

The robot is learning continuously when it is running.
It is not, however, remembering every action-reaction-
pair that it has ever encountered. Unlike what is common
in the field, the robot not only learns when it is success-
ful. The robot saves the information if the new data point
will be in a region that is considered unreliable, if the re-
action diverges too much from prediction, or if it falls
within a large region without any data points. The last
reason is primarily to reduce the importance of outliers.
If the correct function is found quick and with few ex-
amples, the robot will otherwise only learn noisy points,
which will have a large effect on the function, since their
relative frequency compared to low-noise points, will be
high. Another problem with large regions is that if some
part of it is unreliable, the entire region will be useless.

If something indicates that a new shape is needed to be
learned, this module will send a signal to ShapeMod, and
then create a set of lists for the new shape. When the sec-
ond shape is created, the information from the first shape
is copied, and not only used as a start point for the second
shape, but also saved as a prototypical shape. Any shape
created after this will start with the information of the
prototypical shape, so that general pushing behaviours

are not needed to be learned repeatedly. Whenever an
action-reaction is experienced, that seems to fit the ex-
pectations of most known shapes, the prototype will be
updated. One catch with this is that the rule for when a
new shape is needed, is not yet implemented. The learned
data is at the moment considered too noisy to do that in
a good way, and this will be discussed more in section 4.

Mechanics The desired position of the fingertip will
be accepted as input for the SmMo module. By using
inverse kinematics, the angles for the servos is computed
and sent as output. The path is divided into small enough
parts for the transportation to be fairly smooth. This is
not only an aesthetic detail, since too rough movements
might damage the robot or its surroundings. The mod-
ule will discriminate between execution mode and trans-
portation mode, and the difference is that the fingertip
will be slightly elevated in the transportation mode, to
avoid the block being pushed by accident. The path will
always be the shortest possible, which makes it possible
for the arm to get stuck. This can for example be if the
shortest path is through a region in which the robot can-
not reach, even if there is a simple ways around it.

The last module, Dynamixel, will handle all commu-
nication with the servos. It will take angles for the servos
as input, and return information on their actual position.
The returned values are used by BicSpli as proprioceptic
information. This module is part of Ikaros.

3 Experiment and results
The experiment

To find out how well Radagast performed, the time it
took for it to get a block from a location to the goal posi-
tion was measured. The unit used for measuring the time
was number of ticks, which is the number of time each

5

Figure 5: A sketch of the setup of the experiment.

module have been called. Before restarting, the block was
placed in a new position, to see how well the acquired in-
formation could be used. The start positions were always
the same, however, due to the random angles that some-
times were used by the robot, different finishing times
are expected in the different trials. In all the trials in this
experiment, the circular shaped block was used.

Figure 5 sketches the setup. The first start position
(B) was 3 cm to the left of the goal position (X), and
when the robot had finished, the block was moved to the
second start position (D), which was 12 cm to the right
of the goal position. Ten trials were conducted like this,
and then another set of ten trials were performed, with
the difference that it was mirrored. In these trials the first
start position (C) was 3 cm to the right of the goal po-
sition, and the second start position (A) was 12 cm to
the left of the goal position. If the task took more than
2000 ticks to solve, that part of the trail was cancelled.

The results

The time it took to perform the different tasks are re-
ported in table 1. If the robot did not succeed within
2000 tick, it was timed out, which explains why some
times are > 2000 rather than a specific number. The
small number of trials makes it very hard to find any
statistically significant results, and regardless of the re-
sults of the statistical tests, the power of them would be
very low. The only statistical test performed was a χ2-
test to see if the difference in number of time-outs in case
D, compared to case A, were significant. The reason to
test this was because it seems to be the clearest result
from the experiment, and it should thus have the best
prospects for a significant p-value. However, when com-

Table 1: The numbers in this table is the time it took (measured in
ticks) for Radagast to successfully push the block from the different
start positions (A, B, C or D) to the goal position (X). Column B
and C represents the start positions close to the goal X, and D and
A the start positions far from the goal X.

B D
207 1606
158 >2000
53 >2000
253 >2000
122 50
250 >2000

>2000 >2000
116 >2000
101 1168
197 >2000

C A
42 945
392 737
213 327
367 235
112 433

>2000 >2000
>2000 >2000
217 278
1053 1402
1494 661

pensating for the small data set, using Yates’ continuity
correction, it turned out that not even this result was
significant (p=0.072).

By inspecting the numbers in table 1, it is possible to
see a problematic trend. The issue is the apparent bias in
the push direction. The median times when pushing left
is 380 ticks in the short case (when pushing from C), and
more than 2000 ticks in the long case (when pushing from
D). This is more than the corresponding 178 ticks and
699 ticks respectively when pushing right (from B and A
respectively). The success rates are also lower when push-
ing left compared to when pushing right (0.8 compared
to 0.9 in the short push case, and 0.3 compared to 0.8
in the long push case). The reason for this bias is the
discontinuity in the function relating block movements to
push actions. This discontinuity is, in turn due to an un-
suitable choice of representation of directions, and it will
be discussed in section 4.

Because of this bias, which is not due to a physical
restrain, but rather a weakness in the systems represen-
tation of the world, there are no reasons to continue with
further experiments. This issue needs to be sorted out
before any interesting phenomena can be studied. This
is reason for the experiment being so small, and for only
using one kind of the block shape in it.

4 Discussion
Radagast has a hard coded low-level feature detection
ability, which without any semantic knowledge, finds
pushable object. This only works if the pushable objects
have a distinct enough colour compared to the surround-
ings. By learning the relation between push actions and
movement of blocks, it is possible for the robot to move
blocks to goal positions. Throughout this project, the goal
positions have been constants, however, they are not de-
fined in any of the systems modules, but rather feed as in-
put to the interested modules. If other modules, of higher
cognitive level, can be constructed to perform planning
and reasoning to produce new goal position, they can eas-
ily be used by this system. This system only tries to push
objects towards the goal position, but other paths can be
achieved if necessary by constructing subgoals along that
path. In this way, this system can be used as a low level
function, which uses simple features in visual informa-
tion to solve simple object manipulation problems which
can be used by higher level systems. As the robot gains
experience by interacting with its surroundings, a sense
of what behaviours are appropriate to use on different
objects should appear. This is what affordance does for
many animals, but a few problems lingers in this system,
preventing it from clearly showing understanding of affor-
dance. This discussion will primarily revolve around that
subject.

For simplicity, the robot always tries to push towards
the centre of the block, so the only input variable is an
angle describing from what direction the push is coming,
and the value of this angle can thus vary from zero to
two pi. Since 0 = 2π, the function should continue from
zero if it exceeds two pi. This has been taken into account
when the function that relates block movements to push
actions have been defined, by letting the linear function
before the first point use the last point when being fitted,

6

and vice versa (see equation 1). The other angle in the
function is a very simple way of representing the result-
ing movement of a block after a push action. It became
apparent in the experiment, that there is a discontinuity
in the function, since 0 = 2π, and that this is a problem.
The discontinuity can be seen in figure 4 as the vertical
cyan line at x = 0. In the same figure, the only un-
trusted region (sketched with blue stars) is around this
discontinuity, which is a common phenomenon. It is hard
to learn how this region behaves, and even if good results
are achieved, even the slightest amount of noise around
this point is often enough to destroy it.

One way to solve this problem is by changing the rep-
resentation to sine and cosine of the angle, which would
remove the discontinuity. That would, however, enlarge
the problem space from two to at least three dimensions.
That is not preferable since problems with higher dimen-
sions will take much more time to handle, and more ex-
amples would be needed before conclusions can be drawn
by the robot. Linear splines will also be inappropriate for
problems of higher dimension. In three dimensions, bi-
linear splines could be used, however, when the number
of dimensions increase, it might be better to search for
ways to solve this problem that are more adapted and
specialised for higher dimensions. Considering the result
of the experiment, there are little choice regarding giving
up the angle versus angle representation.

The second largest problem is more of a mechanical
issue. When Radagast is experimenting, it tends to push
the blocks to places where it cannot reach them. When
this has happened, the block has simply been picked up,
by a supervising human, and placed back in the region
that is reachable to the robot. There is little to do to pre-
vent the robot from sometimes pushing the objects out of
reach, unless boundaries are introduced as a new concept
to be learned. Boundaries are interesting, but probably
deserves a project of its own, so it might not be prefer-
able to attempt before better results are achieved with
(seemingly) unbounded pushing. Letting a human return
the blocks might, however, introduce bias, or other un-
wanted information in the learned data. A related issue is
that Radagast never considers the possibility that some-
one else might move the object. If this happens while the
robot is in the wrong mode, it will learn very strange be-
haviours. A necessary feature, that needs to be added, is
thus the ability to prune the remembered data. Incorrect
data points are bound to accumulate in the memory, es-
pecially since it is primarily unexpected events that are
remembered. Even if there are ways to improve the mod-
ules, to reduce the number of strange events, there are
always undesirable things that will happen, and noise is
a natural thing to expect. The problem with it becomes
obvious after running the system some time. The predic-
tions keep getting worse, making an increasing amount
of predictions unreliable, and the robot relies more and
more on on random angles. Given enough time, the robot
will get the block to the goal position by randomly choos-
ing angles (Pólya, 1921), however, that would not be of
any help, since the the robot has learned nothing, and
will not be able to use this to improve.

In figure 4, some regions have unnecessarily many
points remembered, which is one symptom of accumu-
lating noise. A few really bad outliers can also be seen.

There exist several methods for pruning, and several more
might still be undiscovered, however, none have been tried
in this project. One large problem when pruning is how
to separate genuine errors from other phenomena, such as
a new shape appearing. Since the robot is learning about
the world from scratch, it can be hard to even distinguish
between a good and a bad point altogether.

Despite these problems, the robot can learn how to
perform targeted pushing of objects. It does this, relying
on a minimal amount of planning, which separates it from
approaches in classic AI. A feature that separates Rada-
gast from more recent AI-approaches, is that it will learn
continuously while it is running. When deciding whether
or not the latest experience should be remembered or
not is not whether it was successful or not, but rather
whether the observed behaviour was predictable or not.
This method will, as mentioned before, lead to over train-
ing if no pruning function is implemented, since strange
and genuinely wrong behaviours should be unpredictable.

Fitzpatrick et al. (2003) let a robot handle a simi-
lar problem as the one in this case, however, they only let
the robot learn during a learning phase. During the learn-
ing phase, several predetermined actions, such as pulling
and slapping, are tested several times, to make lists on
the relation between the actions and reaction for differ-
ent objects. Stoytchev (2005), who train robots to use
tools, also use initial learning trial, where all the prede-
termined behaviours are tried with all the tools, to get
a complete list of action-reaction-relations. Only learning
in a specific and initial phase will make the risk of over
training decrease. This is a good feature, which is needed
in this project, however, it will not be able to handle novel
situations. That would be a big problem for Radagast, so
a different solution (such as good pruning) is preferred
over introducing learning phases. It might be possible to
introduce conditions to engage a learning mode, so that
the robot realises that it need to learn something new.
This is similar to what is intended to be implemented
(and partly is), however, introduction of pruning would
probably still help, so the only addition would be that
an end condition would be necessary to end the learning
phase.

Another important use for pruning is to manage the
prototypical shape, which starts as a copy of the first
shape, and then evolves by adding new points, which
are common to several shapes. Apart from accumulating
noise in the same way as the other shapes, it was created
with noise, since the first shape probably has some shape
specific points, which the prototype inherits. These points
needs to be pruned away in the prototype, which could be
done over time, as the systems learns about more shapes.

As mentioned before, this robot have only operated in
a plane. This is a simplification compared to the three
dimensional world in which we live. To make a robot
perform an equivalent task in three dimensions would
not add much conceptually new to the problem, but the
problems when implementing would increase much. If the
plane in which the objects move were kept as it is, but
the objects were exchanged for three dimensional coun-
terparts, more easily distinguishable push reactions might
occur. Flat objects might for example slide, while round
objects might roll. If the robot is not fast enough, or is
not good enough to handle its body, objects able to roll

7

might easy roll out of reach, which would be troublesome.
One source of noise is the inaccuracy of the module

detecting the orientation of the blocks. To improve this,
several more rotated versions of the original image of each
shape is needed, which would improve the general perfor-
mance of the module. The downside to this is that the
time it takes to execute the module increases significantly
for each extra image, however, due to symmetries in the
shapes, some orientations are indistinguishable similar,
which can be used to reduce the number of needed im-
ages. This issue is not so pressing since other kinds of
noise will occur, so a more general method of removing
noise is prioritised.

A good feature that the ShapeMod module has, is
that it often can detect the correct shape, and its loca-
tion, even if it is partially hidden. It is common that the
arm or the finger hide parts of the shape from the cam-
era, when moving around, which make this feature very
useful. It has, however, its limits, and one way to push
these limits is by utilising the depth detection feature of
the Kinect. This could help the shape detection module,
by providing information on whether there is something
between the object and the camera or not. It has not yet
been implemented, mostly because it has not been nec-
essary, but it should not be to hard to do. One concern
might be that the interesting objects to look at is out of
range of the depth detection of the Kinect, however, it
should be possible to find ways around this if the feature
is needed.

The most important things to improve, to continue
on this work, is to add pruning of the learned data, and
to switch to some other representation of the angles, to
avoid the discontinuity. As mentioned before, pruning is
a common problem, with several solutions, however, it is
necessary to choose and adapt the algorithm carefully and
specifically for the problem. One solution to the problem
with the angles are, as mentioned before, to use trigono-
metric functions, which have the drawback that the prob-
lem increases in size, and the system needs more time to
run. When these things are sorted out, more advanced
features (with its own set of problems that will appear
when tested) have been prepared. For example, given that
a good condition is found, it should be possible for the
robot to recognise and handle new shapes as they appear.
It should be able to do this, without starting from scratch
with each shape, since one level of prototype shape is im-
plemented. Abstract prototypes for shapes could be con-
sidered understanding of affordance of pushable objects,
and the knowledge of the more specific shapes could be
considered understanding of affordance of objects with
more specific features. This should be achievable with-
out knowing what the objects are, that is, without any
semantic knowledge.

Using linear splines as a fast way to learn general be-
haviour from few examples seems to be effective if the
function needed to be learned is well-behaved. To fast re-
alise the general use of objects, given only sparse visual
information, is what happens when understanding of af-
fordances is used along the how stream. Similar behaviour
has been seen in Radagast, however, the choice of inner
representations introduces an unwanted and non-physical
restriction. The usefulness of the well-behaving parts will
decay over time, due to the accumulation of noise. Solu-

tions to both these problems have been suggested, so a
continuation of the project should be possible and inter-
esting.

Acknowledgements
I would like to thank my supervisor Christian Balkenius
for all the guidance and constructive input during this
project. I would also like to thank Rasmus Bååth and
Birger Johansson for all the help and support that they
have provided.

References
Balkenius, C., & Johansson, B. (2007). Finding colored

objects in a scene. LUCS Minor(12).
Çakmak, M., Doğar, M., Uğur, E., & Şahin, E. (2007).

Affordances as a framework for robot control. In
Proceedings of the 7th international conference on
epigenetic robotics, epirob’07.

Şahin, E., Çakmak, M., Doğar, M. R., Uğur, E., &
Üçoluk, G. (2007). To Afford or Not to Af-
ford: A New Formalization of Affordances Toward
Affordance-Based Robot Control. Adaptive Behav-
ior , 15 (4), 447–472.

Fitzpatrick, P., Metta, G., Natale, L., Rao, S., & Sandini,
G. (2003). Learning about objects through action-
initial steps towards artificial cognition. Proceed-
ings of the 2003 IEEE International Conference on
Robotics and Automation (ICRA), 3140–3145.

Gibson, J. J. (1977). Perceiving, acting, and knowing:
Toward an ecological psychology. In R. Shaw &
J. Bransford (Eds.), (chap. The Theory of Affor-
dance). Michigan: Lawrence Erlbaum Associates.

Goodale, M. A., & Milner, A. D. (1992). Separate vi-
sual pathways for perception and action. Trends in
neurosciences, 15 (1), 20–5.

Hodges, J. R., Bozeat, S., Lambon Ralph, M. A., Patter-
son, K., & Spatt, J. (2000). The role of conceptual
knowledge in object use evidence from semantic de-
mentia. Brain : a journal of neurology, 123 (Pt 9),
1913–25.

Kirsh, D., & Maglio, P. (1994). On Distinguishing Epis-
temic from Pragmatic Action. Cognitive Science,
18 (4), 513–549.

Lauro-Grotto, R., Piccini, C., & Shallice, T. (1997).
Modality-specific operations in semantic dementia.
Cortex; a journal devoted to the study of the ner-
vous system and behavior , 33 (4), 593–622.

MacDorman, K. F. (2000). Responding to affor-
dances: Learning and projecting a sensorimotor
mapping. Robotics and Automation, 2000. Proceed-
ings. ICRA’00. IEEE International Conference on,
4 , 3253–3259.

Pólya, G. (1921). Über eine aufgabe der wahrschein-
lichkeitsrechnung betreffend die irrfahrt im straßen-
netz. Mathematische Annalen, 8 (1), 149–160.

Rossetti, Y., Revol, P., McIntosh, R., Pisella, L., Rode,
G., Danckert, J., et al. (2005). Visually guided
reaching: bilateral posterior parietal lesions cause a
switch from fast visuomotor to slow cognitive con-
trol. Neuropsychologia, 43 (2), 162–177.

Stoytchev, A. (2005). Behavior-Grounded Representation

8

of Tool Affordances. Proceedings of the 2005 IEEE
International Conference on Robotics and Automa-
tion, 3060–3065.

Uexküll, J. von. (1957). Instinctive behavior: The devel-
opment of a modern concept. In C. E. Shiller (Ed.),
(chap. A stroll through the worlds of animals and
men: A picture book of invisible worlds). New York:
International Universities Press, Inc.

Ungerleider, L. G., & Mishkin, M. (1982). Analysis of
visual behavior. In D. J. Ingle, M. A. Goodale, &
R. J. W. Mansfield (Eds.), (chap. Two Cortical Vi-
sual Systems). Cambridge: The MIT Press.

Uğur, E., Şahin, E., & Öztop, E. (2009). Affordance
learning from range data for multi-step planning.
In Proceedings of the 9th international conference
on epigenetic robotics, epirob’09.

9

