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Abstract

In a wastewater treatment plant, particles (activated sludge) are separated
from the liquid in a process called continuous sedimentation. This process is of
crucial importance when purifying water in a wastewater treatment plant. This
report will focus on a special case of sedimentation, namely batch sedimentation,
which means that no flux into or out from the sedimentation tank are present.
The goal is to implement and calibrate a mathematical model, that describes
the phenomenon. During batch sedimentation, both in reality and in the model
world, the conservation law implies solutions with shock waves. These shock
waves set high standard for the numerical method used in the implementation.
A specific model for this purpose is going to be used [3|. Some interesting results
were found about the induction period in the initial phase of the sedimentation.
Further improvements were observed when dispersion was taken into account
in the model. Nevertheless, there is no doubt about the fact that more research
in this area is needed.



Popularvetenskaplig sammanfattning

I ett vattenreningsverk separeras partiklar fran en vétska under inflytande av grav-
itationen. Detta leder till en rening av avfallsvattnet. Det ar av storsta vikt att
matematiskt kunna beskriva denna process for att gora det mojligt att optimera
driften i vattenreningsverken. Vattenrening dr komplext och omfattar manga olika
vetenskapliga discipliner, sasom biologi, kemi, fysik och matematik. Denna masterup-
psats kommer att behandla den fysikaliska och matematiska aspekten av processen.
I den biologiska reningen i ett vattenreningsverk anvinds sedimentering for att se-
parera biologiskt slam fran vattnet. Detta kallas kontinuerlig sedimentering, varvid
tva tankar ar sammankopplade med varandra. Den ena bestar av ett substrat av ak-
tiverat slam (mikroorganismer som forbrukar organiskt material). Denna bendmns
den biologiska reaktorn. I den andra tanken sker sedimenteringen. Sedimenter-
ingstanken har ett inlopp och tva utlopp. Inloppet bestar av aktiverat slam fran den
biologiska reaktorn. I toppen av tanken plockas sedan rent vatten ut, medan i botten
det sedimenterade slammet aterfors till den biologiska reaktorn. Systemet blir harvid
aterkopplat. Processen dar inga floden ar kopplade till sedimenteringstanken kallas
batchsedimentering, vilken denna masteruppsats har for syfta att undersoka.

Det har visat sig vara svart att matematiskt kunna beskriva batchsedimentering. Till
hands for analysen finns data fran sedimenteringstest utforda av ett forskarlag i Bel-
gien. Totalt tre experiment med olika initialkoncentrationer finns tillgingliga. Prob-
lemet &r av sadan natur att partiella differentialekvationer, vars l6sningar innehaller
diskontinuiteter, sa kallade chockvagor, uppkommer. Dessa ekvationer stéller hoga
krav pa de numeriska algoritmer som anvénds for att implementera losarna och bara
i undantagsfall gar dessa ekvationer att 16sa analytiskt.

For att till fullo kunna beskriva sedimentering av aktiverat slam maste kompression
beaktas. Det betyder att ndr koncentrationen av partiklar oéverskrider en viss kri-
tisk koncentration borjar partiklarna att rora vid varandra och en kompressionseffekt
uppstar. Det ar inte kint vid vilken koncentration detta sker eller hur stor effekten &r.

Resultaten fran analysen visar att denna kritiska koncentration verkar vara svar
att finna. De modeller som anvénts ér konservationslagar samt vissa konstitutiva
antaganden om partiklarnas sjunkegenskaper. Givet denna modell och tillgingliga
data ger analysen inget entydigt svar om den kritiska koncentrationen. Ej heller hur
stor effekten skulle vara. Emellertid visar det sig att induktionsperioden for hoga
initialkoncentrationer spelar en avgorande roll. Vidare har det visat sig att, trots
beaktande av induktionsperioden, problemet &r illa konditionerat. Slutsatsen ar att
mer forskning pa omradet behovs for att losa dessa problem.
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1 Introduction

The aim of this master thesis is to provide a parameter calibration of a specific mathe-
matical model describing a phenomenon called batch sedimentation. In a wastewater
treatment plant, the activated sludge particles are separated from the liquid in a
process called activated sludge process. This process can be described with two tanks
connected to each other. One with the activated sludge, i.e. a tank where microorgan-
isms consume and decompose organic material. This is called the biological reactor.
In the other tank, called the settler, the particles will be separated from the liquid. In
the settler, there are one inlet and two outlets. The inlet consists of activated sludge
from the biological reactor. On the top of the settler purified water is obtained and
in the bottom waste sludge leaves the settler. Some of the waste sludge is recycled,
which means that it recirculates back to the biological reactor [4]. Batch sedimenta-
tion is the process when no out- or inlets are considered, i.e. the settler has a total
flux of zero on the top and the bottom of the tank. This thesis will discuss some
properties of batch sedimentation with a certain initial concentration. This, together
with the boundary condition (total flux is zero on the top and the bottom if the tank)
produces an initial-boundary-value problem, which we will discuss later in this paper.

When the concentration of sludge in the sedimentation tank exceeds a critical con-
centration, the particles start to touch each other and therefore transmit solid stress.
This will lead to compression of the particles. It is unknown how this effective solid
stress function looks like. The main topic of this thesis is to find an appropriate
model structure and calibrate its parameters. Earlier attempts to solve this problem
have shown that the problem is ill-posed i.e. the solutions are not unique [2].

In 2005 data from a Wastewater treatment plant in Deinze, Belgium, were collected
by a research team [1|. Totally three sets of data are available in the analysis, with
three different initial concentrations of the activated sludge. With help from this data,
we hope to find a model that fully can describe batch sedimentation in mathematical
terms. The idea is then to use this new knowledge in the continuous sedimentation
case.

To get an introduction for the mathematical model that describes the phenomena
above, Section 2 will briefly discuss the traffic flow problem [9], which can be de-
scribed by the same differential equations as batch sedimentation. In Section 3 we
will go back to sedimentation again. In Section 4 we will take a look at the numerical
implementation of the batch sedimentation PDE and test the solver for some simple
cases. Section 5 treats a minimization problem, where the goal is to find parameter
values for the model, by fit the model to synthetic data and in Section 6 this is re-
peated, but now with real data collected by [2]. In Section 7 and 8 the approach is
different from that in Section 6, but with the same goal; to find parameter values, i.e
calibrate the model, by using the measured data. Section 9 discusses the results and
some improvements to the model are also suggested.






2 Introductory example

Here we will consider the traffic flow problem, by assuming the road to be in one
dimension, say x direction. Denote the concentration of cars along the road by
u. Then u is a function of z and time ¢, u = wu(x,t). By using the principle of
conservation, the rate of change of the total number of cars on the road is equal to
the inward flux of cars minus the outward flux of cars. This function, f, is also a
function of x and ¢, f = f(x,t). Now, consider an z interval (xq, z1). The conservation
law can then be written in the following way [6]:

z1

pr 5 u(z, t)de = f(xo,t) — f(z1,1) (1)

where f(zo,t) is the flux of cars into the road and f(zy,t) is the flux of cars out
from the road. Equation (1) can, by taking the derivative inside the integral sign, be

formulated as o g

U
—d 2
5 0% (2)

By the same technique the right hand side of (1) can be written as

T af
%dﬂf

o

o

Putting together (1),(2) and (3) it must hold that

nou Af ,
/JCO <E+a—x)dl‘—0 (4)

We can take any interval (xq,x;) which implies that

ou of

8t+8_x_0' (5)

This is a partial differential equation. If the function f only depends on u, f =
f(u(z,t)), (5) will be a partial differential equation for u in the variables = and t.
From now on we assume that f only depends on u(x,t). To get a reasonable realistic
model for the flux, we have to take into account the speed of the cars, v, as a function
of the concentration u. Here we assume that the speed is vg when v = 0 and v =0
when v = un... Between these two extremes we assume that the speed decreases
linearly, making v to look like [9]

v:v(u):v()(l— “ ) (6)

umax

The flux can then be obtained as the concentration multiplied by the speed, in
mathematical terms:

= f) = oluu = (1= ) 7)
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Figure 1: Velocity as a function of traffic Figure 2: Flux as a function of traffic den-
density. sity.

Here the function f has a second degree dependence of u and the derivative of f
with respect to u is a decreasing function of u. Combination of Equation (5) and (7)
gives the equation (by taking the derivative of f with respect to z and u with respect
to t) (6]

ug + f(u)u, = 0. (8)

Clearly, (7) is not linear because the coefficient for u, depends on w itself. To solve a
partial differential equation like (8), an initial distribution has to be imposed. System
(9) is the general form for this problem:

(9)

u + f(wu, =0, z€R, t>0
u(z,0) = upni(z), z€R

where uiy;e () is the concentration for ¢ = 0. To solve a system like (9) it is a good
idea to use the method of characteristics. Therefore, consider a curve z(¢) in the
a-t-plane where u is constant, ug, meaning that x(t) is a level curve for u. Plug
x = z(t) into u and get:

u(z(t),t) = uo. (10)

Taking the derivative with respect to ¢ using the chain rule:
ug'(t) +u =0 (11)
Now, replace u; with — f/(u)u, according to Equation (8) and obtain
ug (2'(t) — f'(u0)) =0 (12)

From Equation (12) it follows that either 2/(t) = f'(ug) or u, = 0. If u, = 0, Equation
(8) implies u; = 0, so the solution u is constant, ug, along i straight line in the z-t-
plane. If instead 2/(t) = f’(up) this also means that the solution is constant along i
straight line. The slope of the level curves (which also are called characteristics) in the
x-t-plane has the value 1/f'(ug). Here we define the signal speed as the value f’(uy),

10
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because a wave will propagate with this speed. From the relation 2/(¢) = f(uo) it is
easy to integrate over time and get z(t) = f'(uo(zo))t + zo for all points z on the x
axis. For # = xy we have u = ug(xy) and this produces an implicit relation between
u, x and t formulated in system (13): [6]

= f'(up(zo))t +
(o))t + 7 3
u = up(xo)
In some cases it is possible to achieve a solution u from system (13) explicitly, but
this is not always the case. Another possibility is to construct solutions geometrically.
The following example will show how to do this.

Example 1
The initial value problem
up + uuy, =0 (14)

with initial condition

0, <0

u(r) =< z, 0<z<1

1, x>1

can be solved geometrically. From (14) we conclude that f(u) = 1u® and since

f'(u) = w it follows that the signal speed is zero for < 0, increases linearly in the
range 0 < x < 1 and is constant = 1 for x > 1. Figure 3 shows the characteristics
starting from the different regions on the z-axis and Figure 4 shows u(x,0), u(x,1/2)
and u(z,1). By using the system (13), or Figure 3, one can explicitly solve Equation

Solution for Equation (14) given by characteristics. u()f’o)
2 =}
-1 0 1 2 3
1.5 X
u(x,1/2)
- 1 s ]
-1 0 1 2 3
X
0.5 u(x,1)
// s ]
0 . s ‘ | i i i
-1 -0.5 0 0.5 1 1.5 2 1 0 1 2 3

X

Figure 3: Solution for Equation (14) in Figure 4: Solution for Equation (14) for ¢t =
terms of characteristics. 0,1/2,1.

(14) with the given initial condition. The solution reads

0, z <0
u(z,t) =9 14, 0<z<1+¢
1, r>1+t

11



One interesting question immediately arises; what happens if two characteristics
intersects? The next example will partly answer this question.

Example 2

The equation is the same as in (14) but with different initial condition. The problem
to be solved is

u +uu, =0 (15)
1, <0
up(z) =49 1—2z, 0<x<1
0, z>1

By using the same technique as in example 1, characteristics can be drawn from the
x-axis over the x — t-plane. This is shown in Figure 5. What happens in the point

Solution to Equation (15) given by characteristics.

1.5¢

0.5

-1 -0.5 0 0.5 1 1.5 2
X

Figure 5: Solution for Equation (15) in terms of characteristics.

(1,1) is that several characteristics intersects. It is no longer possible to achieve a
continuous solution, a shock wave is obtained. The next section will briefly discuss
these properties.

2.1 Discontinuities and shock waves

This section will deal with what is happening when discontinuities appear. We are
going to make use of the concept weak solution. If it is possible to express zq in terms
of z and ¢ in the first equation in system (13) and plug it into the second equation, a
C'-solution can be obtained. C' stands for continuously differentiable functions. It
can be shown that a C'-solution can be obtained precisely when

dx

e = f"(u(xo)ug(wo)t +1 #0 (16)

12



where the implicit function theorem has been used. From (16) we see that, for some
functions f and the sign of ug(xg), there exists a time ¢ for which

dx

o = w0z}t +1=0 (17)

The smallest time ¢ that satisfy (17) is called the critical time. Beyond this time,
a weak formulation of the conservation law must be used in order to get a solution.
Now, multiply Equation (8) with a function w that belongs to C}, which stands for
continuously differentiable function with compact support. Compact support means
that the function is zero outside a compact interval. Now, use partial integration,
and get the relation

/Ow/_i(uwt + fww,) drdy + /_Z u(z, 0)w(z,0)de =0 (18)

This must hold for all w € C}. If a function u satisfies Equation (18) this function
is a weak solution of Equation (8). It is now possible to deal with the discontinuities
in order to get a solution. But the question still remains; what is happening at the
discontinuity? Therefore, consider a curve x(t) where the solution has a discontinuity.
Assume z(t) € C'. Introduce an interval (a,b) which intersects the curve and is
parallel to the z-axis and denote the solution u~ to the left of x(¢) and u™ to the
right of z(t). Use Equation (1) for (a,b):

b

b z(t)
f(u(a,t)) — f(u(b,t)) = %/ udr = %(/ udx —i—/ udzx) (19)

(*)

Now, take the derivation inside the integral sign (this is possible because x(t) and u
are sufficiently smooth). Hence (19) becomes

z(t) b

/ wdr +u” 2’ (t) + / ugdr — uta'(t). (20)
a z(t)

From Equation (5), us = — f,, so (19) and (20) combined then gives

flula,t)) = f(u(d, 1) = f(ula,t)) = fu(b,t)+ f(u") = f(u") = (u" —u")z'(t) (21)
Rearrange (21), then 2'(t), which is the speed of the discontinuity, can be expressed
oy = L) = 10)

ut —u~ (22)

Equation (22) is of central importance. It is called the jump condition or Rankine-
Hugoniot condition after William John Macquorn Rankine and Pierre Henri Hugo-
niot. A weak solution of (18) is obtained if system (9) is satisfied in the domain
where u € C' and the jump condition is fulfilled where u has discontinuities. This is
actually not enough to get the correct physical solution of system (9). An additional
condition has to be imposed, namely the Entropy Condition. This condition will help

13



us to pick out the physical correct shock wave. The problem with weak solutions is
that they are not unique. It can be shown that

fiu™) Z2'(t) = f'(u”) (23)

must hold in order to get a unique solution to Equation (18). Condition (23) is the
entropy condition and this, together with the jump condition and a convex or concave
flux function, makes it possible to receive a solution.

14



3 Batch sedimentation

Batch sedimentation shares a lot of similarities with the traffic flow problem described
in Chapter 2. The underlying physics is almost the same. There will appear solutions
with shock waves. Consider a cylindrical tank with given height and radius. The tank
is filled with a homogeneous suspension of particles and liquid. It can be assumed
that no inward or outward flux are present. This is called batch sedimentation. The
gravity will force the particles to the bottom of the tank, leaving the clear liquid at
the upper most top of the tank. By using the conservation law described in Chapter
2, some assumtions about the flux present at the bottom and the top of the tank
and some initial distribution, an initial-value-boundary-value problem arises. We
also assume the problem to be in one spatial dimension, z-direction and time ¢. The
r-axis points upwards and the tank has its top at x = h and its bottom at x = 0.
The flux function f and the velocity, here called v, are positive in the negative x-
direction. Denote the concentration of the particles by u. Then wu is a function of
x and t, v = wu(z,t). As in Chapter 2, suppose the velocity of the particles, to
depend only on the concentration, making v = v(u). For a flux function with one
inflection point and ug(x) as the initial distribution of the suspension the following
initial-boundary-value problem is obtained [3], [8]:

uy — f(u), =0, O<z<h, t>0,

u(z,0) = ug(x), 0 <z <h, (24)
w(0%, 1) = Umax, t >0,
u(h™,t) =0, t >0,

The last two equations in system (24) come from the fact that the flux is zero at the
top and the bottom of the tank. The values of u for which the flux is zero are either
u =0 0or u = Upax. After the system is released the concentration will immediately
reach u = upa, at the bottom of the tank and v = 0 at the top of the tank. It
should also be observed the minus sign in the first equation due to the orientation of
the z-axis. We will now discuss the solution of problem (24) for three different flux
functions. They are plotted in Figures 6-9 respectively.

Case I
The flux function reads f(u) = u(umax — u) where the function is scaled so that
Umax = 1. It follows that f”(u) = —2, so the necessary condition for an inflection

point, namely that f”(u) = 0, can not be fulfilled. Now, suppose the initial distri-
bution is ug homogeneously in the tank, where ug is somewhere between 0 and yax.-
Using the method of characteristics, we can solve this problem. For the problem of
sedimentation it is more natural to have the ¢ variable as the independent variable
and the x variable as the dependent variable. By drawing the characteristics in the
different regions in the t-z-plane and use the jump condition the solution can be
constructed, see Figure 10. The bold lines shows two different shock waves. One is
transported from the top to the bottom and one is transported from the bottom to
the top. Clearly, after a certain finite time, t..,q, the solution is stationary, where

15



flux as a function of concentration, case |

flux as a function of concentration, case Il
025} 1 0415}
0.2
%015 {1 o1
= =
0.1f
0.05r
0.05
0 I I I I 0 i i i i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
concentration concentration
Figure 6: Flux as a function of concentra- Figure 7: Flux as a function of concentra-
tion, case I. tion, case II.

) . flux as a function of concentration, case lll
flux as a function of concentration, case Il

3 3
o= S
i concentration y U = ;
i concentration
Unnax Yo infl Yo max u0 umax l'Iinfl l‘Imax
Figure 8: Flux as a function of concentra- Figure 9: Flux as a function of concentra-
tion, case III(a). tion, case III(b).

the two shock waves meet. After this time, the shock speed is zero. This means
that the concentration is u = 0 for z < Zjmit, and © = Upax for r > xn. Here
ZTimit denotes the border between the clear liquid and the part of the tank where the
concentration is homogeneously © = una. By knowing the slope of the bold lines,
i.e. the shock speed, one can calculate t.nq and ;. The slope of the upper shock
IS Umax — Ug SO the equation for this straight line is z1(t) = (Umax — o)t + h and
for the lower xo(t) = —ugt. Put z1(tena) = Ta(tena) and get teng = (h/Umax) and
Llimit = UO(h/umax)'

Case 11

Now the flux function is f(u) = u(t — Umax)?, 50 f/ (1) = (U — Umax)? + 20(U — Umay)
and f”(u) = 6u—A4uUpay. It is clear that f/'(umax) = 0 and f”((2/3)umax) = 0, meaning
that f has an inflection point at u = (2/3)umax. The fact that f'(umax) = 0 and the
inflection point located at u = (2/3)umax makes the situation different from that in

16



Solution to problem (24), case |.

Figure 10: Solution to problem (24), case L.

case I. Figure 11 shows what is going on. The bold line at the right in the figure shows

u=0

\ u:u0

u=u0
-l

t

Figure 11: Solution to problem (24), case II.

a shock wave that has not constant speed. Below this line v will grow to u = .y as
t — oo. The system becomes asymptotically stationary. By using the fact that the
total mass in the tank remains constant it must hold that Ahug = AZcnqUmax, Where
A is the cross-sectional area, and thus Ze,q = hug/Umax-

17



Case 111

The flux function here is f(u) = u(u — 1.05)* — eu, where £ = 0.0025. We have
defined tupyay = 1 so that f(0) = f(tmax) = 0 and f/(umax) = —&. Consider Figures 8
and 9. Here we have f/(umax) > 0. Two qualitatively different situations now occur,
depending on the size of uy. The first case (b) is when ug < u’¥ ., see Figure 9. This
case is the same as in case I, because the inflection point does not affect the system.
If instead ug > wu}r,., (case (a), as seen in Figure 8, the solution is found in Figure 12.
The inflection point makes it impossible for a shock wave to travel from ug directly
t0 Umax- Instead an expansion wave will be observed from u§ to umax. It should also
be taken into consideration that in case II, u}* = 0. With the same argument as in
case 11, Teng = hug/umax and since we know the slope of the characteristic that passes
through the point (tend, Tena) We can calculate teng as tend = (Tend — )/ f/ (Umax ). Note

that teng — 00 as f’(Umax) — 0.

u=0

\ u:uo

end

Figure 12: Solution to problem (24), case ITI(b).

18



4 Numerical method for batch sedimentation PDE

4.1 Models of batch and continuous sedimentation

In Chapter 3 some simple cases of batch sedimentation were treated. In this Chapter
we will introduce a new physical phenomenon to the model, namely compression.
When the concentration exceeds a critical concentration, u., the particles start to
touch each other, which means that they will be exposed to solid stress. The con-
stitutive relation that governs this solid stress is one of the main topic of this paper.
The following model, for continuous sedimentation, is described by [3] and [4], see
Figure 13 and 14:

ou 0

Qr (t)us(t)
o Tar

Flut) = g (06Ham0) + di Q) 51 ) + L)

(25)
Here u is the concentration, F' is the convective flux, x the spatial variable (assuming

U (OR
J|1 1 —H 40
clarification zone w=0
Us
SN B S S S
O R
u=u
thickening zone ’
sludge
blanket
level
-— B - B
Ut (2111‘ "37 V,T
Figure 13: Continuous sedimentation. Figure 14: Batch sedimentation.

the problem to be in one space dimension), ¢ time, y(x) a function that is 1 where
compression is present and 0 otherwise, dcomp @ function that models the compres-
sion due to solid stress, dgisp @ function that models dispersion due to turbulence,
Q:(t) the volumetric feed flow, us the feed concentration and §(x) the Dirac delta
distribution.

In the case of batch sedimentation, Equation (25) will be substantially simplified.
We can suppose that no dispersion has to be considered, making dgis, = 0 and also,
Qs(t) = 0. Equation (25) is a result of the conservation law described in Chap-
ter 2. In our case we do not have any production of mass inside the tank. The
total mass can be obtained by integrate Au(z,t) (where A is the (constant) cross-
sectional area) over an interval (z;,x2). Denote the total flux ®(u, g—;‘) and put
®(u, 84) = F(u) — deomp(u)$:. This can be done since y(z) = 1 in the considered
region. Also notice that both F' and dcomp only depend on the concentration u. From

19



this, the conservation law can be written as [3]

d [
pr Au(z,t)dx = A(D|,, — Pla,). (26)
1

The model requires that we have an expression for ®. One choice is to use the relation
F(u) = uvps(u), (27)

where vps = vge™"VY, 1g is the velocity of a particle that does not interfere with any
other particle and ry is a parameter. In order to get an expression for ®, we also
need the compression function deomp (). According to [3] this can be written

= Lvhs w)ol(u).
e (0) = )l 25)

Here ps and p; are the solid and fluid densities respectively, g the acceleration of
gravity and one simple choice of o.(u) is

0 if c
ouu) =14 L (20)
alu —u.), ifu > ue.

Combination of Equation (28) and Equation (29) then gives

0, if u < ue
deomp (1) = { (30)

(p—%avge_r‘/“, if u > Ue.
S

Equations (26),(27) and (30) make it possible to discretize the problem. The next
section will show how to do this.

4.2 Discretization

In order to describe the discretization procedure, it is necessary to have a clear pic-
ture of the sedimentation tank. Figure 13 and 14 show two different cases. Figure 13
describes continuous sedimentation and Figure 14 batch sedimentation. From now
on we will only consider batch sedimentation.

Now, divide the tank into NN internal layers, see Figure 15. Every layer has the
thickness Az = B/N and the value u; is the average of the exact solution over the
layer 7, thus
1 (%

0 — M/leu(ac,t)dx (31)
We also know that the total flux must be zero at the top and the bottom of the
tank. The boundary points have the positions z; = jAx for j = 0, ..., N. For batch
sedimentation we have Q¢ = 0, Qu = 0, Qe = 0 and dgisp = 0. According to Section
4.1 the conservation law can be written ®(u, 9%) = F(u) — deomp(u)2%. Then put

D(u) = / " ey (w)des, (32)
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X
Figure 15: Discretization of the tank.
and take the derivative of D with respect to x we get
0 ou
—D = dcom a_
- D(w) = dumpw) 5 (33)
Write the conservation law as
ou
O (u, %) = F(u) — Jeomp- (34)
By using Equation (26) and (31), we find
duj __ Flule,t) = Fu@i-1,t)) | Jeomp(:t) = Jeomp (-1, 1) (35)
dt Ax Ax
where we have used Equation (34) and Jeomp(z,t) = 'y(x)ag—i"’). We also need to

approximate the convective flux function F'(u) at the boundaries between the layers.
This can be done in many different ways. If the function F(u) has one unique
maximum point, a smart choice of approximation is the Godunov numerical flux,

which reads 3]

<1rn<in F(u) ifu; <ujpq
Gy = Gjluj,uj) = ¢ /=00 . (36)
max F(u) if u; > ujy
Uj U U1
To get a complete spatial discretization we need to approximate deomp (). Therefore
denote the approximation of deomp(u) as follows:
Dy — pom

AL (37)

Jcomp(xj7 t) ~ V(xj)
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D™ can be found by Equation (32). With our choice of the function deomp(u) this
can be done analytically.

It now remains to discretize the time. The method described above is of first order
convergence in space, so we are going to use an explicit Euler scheme to discretize
the time. Let u} denote the concentration over layer j at time ¢,, where ¢, = nAt.
Use the explicit Euler step and get

du; with —
3 () A7 (38)
Plug this expression into Equation (35), rearrange and get:
At At
n+l _ ,n num,n num,n num,n num,n
Uy = Uy _A_$(Fj _ijl )+A_x<Jj _ijl ) (39)

Equation (39) shall be valid for j = 1,..., N and it is the final discretization of the
batch sedimentation PDE.

It is important to note that there is a restriction on At to keep the scheme sta-
ble. The CFL-condition must be satisfied, which is

1
Atﬁ(— max | F'(u)

AJ; 0<u<umax

max dcomp(u)> - (40)

_|_ -
| AI2 0<u<umax

Inequality (40) gives us an upper bound for the time step. Violation of (40) may imply
numerical instability, which means that the numerical scheme would not converge to
the physically relevant solution.

4.3 Numerical solution for batch sedimentation PDE

In order to solve the batch sedimentation PDE we are going to use the numerical
method described in Chapter 4.2 and implement this in MATLAB. In this program
it is easy to change the parameters to see the impact they have on the final solution.
Consider the following examples.

Example 1

The solution to this example is found in Figures 16 and 17. The following parameter
values have been used: vy = 9.75 m/h, ry = 0.37 m*/kg, ps = 1050 kg/m?, p; = 998
kg/m?, g = 9.81 m/s? u. = 7 kg/m® and @ = 2 m?/s*. The convective flux function F
and the function that models the compression d.opn,, are chosen according to Equation
(27) and Equation (30) respectively. The initial concentration is uy = 6.12 kg/m3
and the simulation lasts for 5 hours. The spatial domain interval is discretized into
70 cells. We see that the solution tends to a value between v = 12 and v = 13 in the
bottom of the tank as the time passes. Interesting is also the the critical concentration
where the compression effects are present. In this case u, = 7 as clearly can be seen in
Figure 16. The border between the clear liquid and the activated sludge is somewhere
around x = 1.4 when 5 hours have passed. The CFL condition (40) makes At = 1.78
S.
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Concentration u as a function of x for five different times. Concentration u as a function of x and t.

14
—5h
12| 3h
2h 15
10 ;: 3
3 10
= 8 S
) ®
> g ‘g 5.
2
J 5]
4 0

0 1 2 3 4 t (h) 0 o0
x (m)

Figure 16: Solution for batch sedimenta- Figure 17: Solution for batch sedimenta-
tion PDE example 1, 2 dimensional plot. Pa- tion PDE example 1, 3 dimensional plot. Pa-
rameter values: vg = 9.75, uc = 7, a = 2, rameter values: vg = 9.75, u. = 7, a = 2,
ug = 6.12, ryy = 0.37. ug = 6.12, ryy = 0.37.

Example 2

Now we are going to investigate the impact of the parameter a. This parameter
models the solid stress that the particles would be exposed to when the concentration
exceeds the critical concentration u.. This is briefly discussed in Chapter 4. A higher
value of a means higher solid stress. An initial guess is that this will lead to a lower
final concentration. Figures 18 and 19 show the solution. The same parameter values

Concentration u as a function of x for five different times. Concentration u as a function of x and t.
12
——5h
——3h =
0 2n — 15
o — — 5
Oh 2
8
] g 10
= [ o
EX) | s
=] } E 54
{ 2
4+ ‘ ]
o 0.
6
2 L
0
0 1 2 3 4 t (h) 0 0 X (m)

Figure 18: Parameter values: vy = 9.75, Figure 19: Parameter values: vy = 9.75,
U =17,a=3, uy =6.12, ryy = 0.37. u.=17,a=3, uy =6.12, ryy = 0.37.

have been used as in example 1, except that we now have a = 3. The simulation last
also for 5 hours. From Figure 18 we now see that the concentration in the bottom of
the tank tends to a value around v = 11 kg/m? in the stationary state. The border
between the clear liquid and the sludge is now higher up in the tank compared to
situation in example 1. Now this border is around x = 1.15 m when t = 5. Also the
slope of the solution from the point where u > u. and to the stationary point is more
flat. The CFL condition implies At = 1.22 s.
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Example 3

This example will discuss what happens when the initial concentration changes. Here
we have the same parameters as in example 1, except that uy = 4. Figures 20 and
21 show the solution. Not very surprisingly the stationary concentration is now
lower compared to example 1. Also the border between clear liquid and sludge
is significantly lower, approximately x = 2. Notice also that there is hardly any
difference between the concentration profile after 3 hours and 5 hours. The CFL
condition is independent of ug, thus At = 1.78 s as in example 1.

Concentration u as a function of x for five different times. Concentration u as a function of x and t.
12 :
——5h
3h
—1h , =)
o
C
= : 2
36 s
g
4 ( 8
!
| J
0 1 L L J 0
0 1 2 3 4 t (h) 0 x (m)
x (m)

Figure 20: Parameter values: vy = 9.75, Figure 21: Parameter values: vy = 9.75,
U =17, a=2,uy =4, ry =0.37. U =17, a=2,uy =4, ry =0.37.

Example 4

The next parameter to investigate is u.. Put u. = 9 and keep all other parameters
constant as in example 1. Figure 22 and 23 show what is happening. In the bottom
the concentration is around v = 14 when ¢t = 5 and the border between clear liquid

and sludge is lower, now approximately at the point x = 1.8. The CFL is now
At = 3.42 s.

Concentration u as a function of x for five different times. Concentration u as a function of x and t.
15 :
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Figure 22: Parameter values: vg = 9.75, Figure 23: Parameter values: vy = 9.75,
U =9,a =2, up =6.12, ry = 0.37. U =9,a =2, uy =6.12, ry = 0.37.
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Example 5

Now keep all constants in example 1 unchanged, but put vy = 15. The result is
shown in Figure 24 and 25. Here we see that this case is not profoundly different
from the case in example 1. However, two small differences can be found. For small
times the border between clear liquid and sludge is slightly lower in the tank. Also,
the concentration is higher in the bottom of the tank for small times. The CFL
condition: At = 1.16 s.

Concentration u as a function of x for five different times. Concentration u as a function of x and t.
14
—5h
12| 3h
2h
10— 1h 3
0h -
~ 8 S
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> 6 5
o
C
o]
4+t &)
2,
0
0 1 t (h) 0 0
x (m) X (m)
Figure 24: Parameter values: vy = 15, u. = Figure 25: Parameter values: vg = 15, u. =
9, a=2,uy=06.12, ry = 0.37. 9, a=2,ug=06.12, ry = 0.37.
Example 6

This is the last example and it will discuss the impact of the parameter ry. As usual,
use the same constants as in example 1 but with ry = 0.2. The solution is shown in
Figure 26 and 27.

Concentration u as a function of x for five different times. Concentration u as a function of x and t.
14 ;
—5h
12 3h
2h
10 Th 3
Oh 3
= 8F E
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Figure 26: Parameter values: vy = 9.75, Figure 27: Parameter values: vy = 9.75,
U =9,a=2,uy=6.12, ry =0.2. U =9,a=2,uy=6.12, ry =0.2.

Clearly, the solution becomes stationary much faster in this case. After 2 hours
there is in principle no differences between the solutions. Moreover, the CFL condi-
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tion is now much lower, At = 0.57 s. The conclusion is that the CFL condition is
very sensitive for changes in the parameter ry.
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5 Adjustment of parameters a and u, to fit synthetic
data

This section will discuss some properties of the parameters a and u. and investigate
the inverse problem of determining these two parameters from data by solving a min-
imization problem. Here we will consider synthetic data to see if the implementation
is correct and that the model is able to produce a relevant solution. Therefore, sup-
pose that we solve the batch sedimentation PDE with the parameter values a = 3
and u. = 7. Denote this solution u. Then, add to this solution a normal distributed
noise, with zero mean and a certain variance. Let us call this the disturbed solu-
tion and denote it by d. Now we need some measure to quantify difference between
solutions. Introduce a function J according to

J(a,ue) =Y Y (uly ) — d(z;, 1)) (41)

t; Tj

The solution u that best approximates the disturbed solution in the least square sense

is the solution we will look for. This can be formulated as an optimization problem:
minimize  J(a,u
subject to  a >0, 0 < ue < Upax-

Obviously, J is a function of a and u., so we want to find the point (a*,u}) that
satisfies (42). J is quadratic, but the constraints do not define a compact set. How-
ever, for large a the function J will grow, so we can restrict the value of a, making
the set defined by the constraints compact. Since J is continuous, it follows from
Weierstrass theorem that a minimum exists [5].

To illustrate the minimization procedure, we will take a closer look att three dif-
ferent cases. The parameter values are found in Table 1.

N 70 (Number of z-steps)

up  3.67 (Initial concentration)

H 1 (Height of the tank in meters)
T 1 (Simulation time in hours)
Vo 3.47

v 0.37

ps 1943

Ap 945

g 9.81

Ue T

a 3

Table 1: Parameter values.
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5.1 Case I (small disturbance)

First we treat the case when the standard deviation of the disturbance is low, so we
add zero mean, normal distributed noise with standard deviation ¢ = 0.05 to the
solution of the PDE with the parameter values a = 3 and u. = 7. The next step is to
try to find back to the point (a,u.) = (3,7) by solving (42), i.e. minimizing J. There
are several built in routines in MATLAB for this purpose. To visualize the problem, it
is also advantageous to also plot level curves for .J. Figure 28 shows the level curves
for J and Figure 29 the disturbed solution. Not very surprisingly the minimum is
attained at the point (a,u.) = (3,7) where Jyui, = 17.9763. We see also that J grows
fast as a gets larger combined with that u. gets smaller, and vice versa. Note also the
curve where J does not grow very fast. The change in one of the parameter seems
to cancel out the change in the other.

Level curves for J, small disturbance. (6=0.05, Jm
9

=17.9763)
n

Disturbed solution, case I. 8.5

Concentration u (g/l)

05

]
0.5 g : / , , e
1 15 2 25 3 35 4 45 5

t (h) 0o x (M) a

Figure 28: Disturbed solution, ¢ = 0.05, Figure 29: Level curves for J, ¢ = 0.05,
Jmin = 17.9763. Jmin = 17.9763.

5.2 Case II (medium disturbance)

Now increase the standard deviation to o = 0.3. The result is shown in Figure 30
and 31. The structure of J is rather similar to that in case I, but with significantly
larger minimum value, J;, = 108.2623. It can also be observed that the function
does not seem to grow as fast as in case I around the minimum point, (a,u.) = (3,7).
The level curves are more sparse there.

5.3 Case III (high disturbance)

Finally, increase the standard deviation to ¢ = 1.5 and obtain the result in Figure 32
and 33. The same pattern is repeated. The minimum value is larger, Jy;, = 540.3623,
and the level curves around the minimum point are more sparse.

In order to investigate if the numerical method is able to find the minimum point,
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Level curves for J, medium disturbance. (6=0.3, Jmin=108.2623)
9 -

1000

Disturbed solution, case II. 850

Concentration u (g/l)

“05

X (m) a

Figure 30: Disturbed solution, ¢ = 0.3, Figure 31: Level curves for J, ¢ = 0.3,
Jmin = 108.2623. Jmin = 108.2623.

Level curves for J, large disturbance. (6=1.5, Jm
9

,=540.3623)

1100

Disturbed solution, case IlI. 85p 1050

1000

Concentration u (g/l)

t (h) 0 0

X (m) a

Figure 32: Disturbed solution, ¢ = 1.5, Figure 33: Level curves for J, o = 1.5,
Jmin = 540.3623. Jmin = 540.3623.

which is (a,u.) = (3,7) consider Figure 34. The simulation has now been going
for 200 minutes. The red line shows iterations with the multidimensional search
method Nelder-Mead. It takes the algorithm 26 iterations to reach the minimum
point (a,u.) = (2.9915,6.9953), when starting at the point (a,u.) = (5,8).
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Level curves for J, small disturbance. (6=0.05)

9 | | l _—

Figure 34: Level curves for J, o = 0.05. In red, iterations with Nelder-Mead algorithm.
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6 Real data and functional

As mentioned earlier, the main topic of this paper is to investigate if it is possi-
ble to find parameter values for the compression function described in Chapter 4.
The available data are from a wastewater treatment plant in Deinze, Belgium. The
measurement procedure is described in [2] and [1].

6.1 TIllustration of measured data

Figures 35-40 show the data sets for the three different initial concentrations. As

Measured data, u0=3.67 Measured data, uD=3.67
350
25 300
3201 250
3
5 15 4.
£104.
C
S 5
e .
o
© 0l
300
100 - :
t (min) 00 % (m) 0 02 0.4X(m) 06 08 1

Figure 35: Measured data, ug = 3.67 g/1 Figure 36: Measured data, ug = 3.67 g/1

Measured data, u0=6.12 Measured data, uD=6.12

NN
o o

15
104

Concentration u (g/l)

0 0.2 0.4 0.6 0.8 1
x (m)

t (min) 0o

Figure 37: Measured data, ug = 6.12 g/1 Figure 38: Measured data, ug = 6.12 g/1

can be seen from the figures, the different cases differ a lot. From the cases when
uy = 6.12 g/1 and uy = 7.29 there is an induction period in the initial phase, where
no sedimentation takes place. This induction period highly depends on the initial
concentration uy and it will be discussed later in this paper.
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Measured data, u0=7.29 Measured data, u0=7.29

Concentration u (g/l)

. 06 08 1
x {m)

t (min) 0o x (m)

Figure 39: Measured data, ug = 7.29 g/1 Figure 40: Measured data, ug = 7.29 g/1

6.2 Functional

In order to find the parameter values of the model, we have to measure the error
between the simulation and the data. Therefore we will define a functional J in a
way that it will measure the error. The task is then to minimize J.

For this purpose it is necessary to get a clear picture of the data sets. Totally
three sets are available. For the case with ug = 3.67 g/l the experiment lasts for
21270 seconds and for the other two 20250 seconds. The spatial discretization is
equidistant and the same for all three. The time discretization is not equidistant.
All three experiment has its first value at t; = 15 s. Here we define At; =t — ¢;
where 7 is the index for time point 7. For all three experiments it holds that

30s, i=1,..,239
At; =4 45s, i=240
60s, i=241,... M

where M is the total number of time points. For ug = 3.67, M = 475 and for both
up = 6.12 and ug = 7.29, M = 458. By putting At = 30 s, At; can be written

At, i=1,..239
Aty =14 3At, i=240
2At, i=241,..,. M

In space, the total number of data points is N = 191. The tank is 1 meter high
which means that the data points are not symmetrically placed on the x-axis. The
first value is z; = 0.00225 m and the last zny = 0.97725 m. The distance between
the data points are Az; = ;41 — z; = 0.0050 m for all j. Therefore we can define
Az without index j. It is now possible to define the functional J. To be able to
compare functional values from different time intervals 7', in order to investigate in
which time intervals the functional is largest, we need to, in some sense, normalize
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the functional. We want to minimize the integral

1 T oH
J = ﬁ/o/o (Ugata(T, ) — upDE(x,t))2dxdt (43)

where H is the height, T" is the time, uq.¢, is the data points and uppg is the solution
to the PDE. When discretizing the functional, the integral turns into a sum:

1
=7 Z Z(Udata(% t;) — uppp(wi, t;))* Az At (44)
2 J

Since Ax; = Ax is constant, this can be written as

Ax
J = frog 2 D (tawa(wi, ) = wppp (i, )ALy = (45)
4 J

1
NT Z Z(Udata(il?i, t;) — uppr(wi, t;))* At
g

since H*/Ax = N, where H* = xy — 1+ Az = 0.9540.005 = 0.955 m. At the time
point that corresponds to i = 240, At; goes from 30 seconds to 45 seconds. Denote
this by M*. The time point that corresponds to i = 242, At; goes from 45 seconds
to 60 seconds. Denote this time point M**. The functional can then be written

N M
1
S = W izl(jzl(udata(xia tj) - uPDE(’ri’ tj))QAt—‘r
M

(46)

Equation (46) can be simplified, by factorization and putting M* = 240 and M* =
242:

Ar L 240
J = NT 2 (;(Udata<xi,t]’) — UPDE(xiatj))2+
- (47)
3/2(tgata(T211, t2a1) — UppE(Toa1, tonr) + 2 Z (tdata (i, t;) — uppr (i, tj))Q)
§=242

Functional (47) makes it possible to compare a simulation with data on a time interval
of arbitrary length. Functional (47) is also called L?*-norm. It is also possible to define
a L'-norm by replacing the squares in the sum by an absolute value.

6.3 Adjustment of parameters a and u. to fit real data

In Chapter 5 we solved the minimization problem (42), i.e. we were looking for a
solution u that approximated the disturbed solution. Here we are trying to do the

33



same thing, but with the real data and the functional defined in 6.2.

The values of vy and ry are retrieved from [7]. We will here use the Vesilind hindered
settling velocity function defined in Chapter 4. The problem is then to minimize
J(a,u.). The strategy is to plot level curves for J in some region in the (a, u.)-plane
to get an estimate where the minimum point is located, after which we will use the
Nelder-Mead-simplex algorithm to find the minimum point. The reason for plotting
the level curves is that we get an overview of J(a,u.). Moreover, as seen in Figure
41 and Figure 42 some values of a and u. have been omitted, because these values
imply a very small A¢, which make the simulation slow, and also because the values
for J is much larger in these regions. Totally four simulations were done, two for
up = 6.12 g/l and two for ug = 3.67 g/l. We also use the L'-norm to see if there is
large differences between if the error is measured in L'-norm or in L?norm. We

Optimization over a and u_. Complete data set. Optimization over a and u_. Complete data set.
Frobenius norm. u =6.12. v,=9.7305, r, =0.3507. 1-norm. u,=6.12, v,=9.7305, r, =0.3507.

Figure 41: Level curves for J, ug = 6.12 Figure 42: Level curves for J, uy = 6.12

g/l. L?-norm. J = 0.52 at (1.42,8.22). g/l. L'-norm J = 57.06 at (1.42,8.16).
Optimization over a and u_. Complete data set. Optimization over a and u_. Complete data set.
Frobenius-norm. u =3.67, v,=9.7305, r, =0.3507. 1-norm. u,=3.67, v,=9.7305, r, =0.3507.

/
/,/ e

Figure 43: Level curves for J, ug = 3.67 Figure 44: Level curves for J, uy = 3.67
g/1. L?-norm. J = 0.40 at (0.66,7.36). g/1. L'-norm. J = 38.23 at (0.73,6.32).

notice that both a and wu, are larger for the larger initial concentration. Now we are
going to take a look at the parameters vy and ry. The next section will proceed with
an optimization of all the four parameters at the same time.
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6.4 Optimization over a, u., vy and ry simultaneously

The next procedure is to minimize over the four parameters a, u., vg and ry simulta-
neously. Here we take the points found in the previous section as the initial point in
the Nelder-Mead algorithm. Table 2 summarizes the different cases, where the point
is (ry, vo, Ue, a). In order to see how well the model describes batch sedimentation,

Up Final point Jmin | Norm

6.12 | (0.46,11.58,6.48,0.37) | 29.40 | L'-norm
6.12 | (0.40,4.58,20.20,0.70) | 0.31 | L*-norm
3.67 | (0.46,11.75,4.37,0.30) | 23.72 | L'-norm
3.67 | (0.45,7.66,0.006,0.11) | 0.23 | L?*-norm

Table 2: Optimization over rvy, vy, u. and a.

form the difference between the model with the parameters given by Table 2 and
the measured data. Figures 45 - 52 show the results. Obviously, the result is better
than in the previous section, but still not satisfactory. ~ The model has big problem

Difference between simulation and data, u =3.67 Difference between simulation and data, u =3.67

Concentration u (g/l)

0 0.2 0.4 06 08 1
X {m)

t(h) 00

x (m)

Figure 45: Difference between simulation Figure 46: Difference between simulation
and data, up = 3.67 g/1, L'-norm. and data, up = 3.67 g/1, L'-norm.

with the first 2 hours. It seems that the concentration is way too high in the bottom
of the tank for small times. Here we have not treated the induction period at all.
Therefore the solution is way of initially. It is also worth noticing that the L?-norm
produces a better solution around the shock wave. However, the induction period is
a problem that we will try to solve in the next section.
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Difference between simulation and data, u o=3‘67

Difference between simulation and data, un=3.67
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Figure 47: Difference between simulation Figure 48: Difference between simulation
and data, ug = 3.67 g/1, L?>-norm. and data, ug = 3.67 g/1, L?>-norm.

Difference between simulation and data, u 0=6.12

Difference between simulation and data, un=6.1 2
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Figure 49: Difference between simulation Figure 50: Difference between simulation
and data, ug = 6.12 g/1, L'-norm. and data, ug = 6.12 g/1, L'-norm.

Difference between simulation and data, u o=6.12

Difference between simulation and data, uu=6.1 2
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Figure 51: Difference between simulation Figure 52: Difference between simulation
and data, ug = 6.12 g/1, L?>-norm. and data, ug = 3.67 g/1, L?>-norm.
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7 Graphical approach to model induction period

This section will deal with the induction period. For small times, an induction period
can be observed i.e. a time period in the initial phase where no sedimentation is
present first and then gradually the settling velocity increases. This induction period
is longer for higher initial concentrations and can be neglected for the case uy = 3.67
g/l. We assume that the equation for the upper particle reads

2'(t) = g(t)vns(uo) (48)

where ¢(t) is a function increasing from 0 and 1, defining the induction period and
vps(p) is the hindered settling velocity at concentration ug. Put K = wvys(ug), inte-
grate from 0 to t and get:

2(t) - 2(0) = /0 gOKde = K /0 gle)ie (49)
o) =20+ [ @)k = a(0) + K [ gle)ae (50)

The values for K = vy5(ug) can be found in the following way. Define

(o, 1) = /0 " (e ) de (51)

Then m(x,t) is the mass per area unit between 0 and « at time ¢. Figures 53-55 show
the level curves for the function m(x,t). They can be interpreted as isomass curves.
The particles form a queue, like cars in a traffic flow, where no car overtakes another.

Since we know that 0 < g(t) < 1, it follows that vys(ug) is obtained where 2/(t) has

Particle paths, u0=6.12 gll Particle paths, u0=7.12 gll

Figure 53: Level curves for m(z,t), ug = Figure 54: Level curves for m(z,t), ug =
6.12 g/1. 7.29 g/1.

its maximum. By differentiation the data, we find the maximum points in Figures
56-58. Due to noise it is not easy to see the maximum for ug = 3.67. The reason for
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Particle paths, u0=3.67 g/l
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Figure 55: Level curves for m(x,t), up = Figure 56: g(t)vns as a function of time,
3.67 g/1. ug = 6.12 g/1.
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Figure 57: g(t)vns as a function of time, Figure 58: g(t)vys as a function of time,
up = 7.29 g/1. ug = 3.67 g/l

plotting these curves is that it makes it possible to estimate the Vesilind parameters
v and ry. For Vesilind hindered settling velocity we have vps(u) = voe™"V*. Using a
least square fit of the three points, gives vo = 20.46 m/h and ryv = 0.48 1/g. These
values have also been found by [2]. In order to find the parameters in the function
g(t), we want to minimize the functional

i*

ST = Y (alt) +20) - K " (6T, p)de)? (52)

i=1

where ¢* is the time point that corresponds to the times where maximum in Figures
56-58 obtains and 7" and p are parameters in the function g(¢). The ansatz for g(t)
reads g(&;T,p) = 1 — e~ T)” Put this function g(¢) into the functional and obtain:

i*

J(Top) = S (a(ts) + 2(0) — K / (11— e €7 )gg)? (53)

=1
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When minimizing the functional in Equation (53) (using non linear least square) we
find the result in Table 3. The result is plotted in Figures 59 and 60.

up (g/1) | T (s) | p
6.12 [ 360 |1.42
7.29 1944 | 2.34

Table 3: Optimization over 1" and p.

Induction period, u,=6,12. Data in blue, estimation in red. Induction period, u,=7.29. Data in blue, estimation in red.
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Figure 59: x (particle path) as a function Figure 60: x (particle path) as a function
of time, ug=6.12. of time, ug=7.29.

39



40



8 Graphical approach to find a and u.

8.1 Find a and u. from steady-state profile

A similar procedure can be done in order to find the parameter values connected to
the solid stress function o, (u). In steady state, it holds that u; = 0. The conservation
law implies

Ut + (Uops(w) — deomp (W) ty)z =0 (54)

and thus
Us(U) = deomp(U)Uy (55)

Using Equation (28) then gives

Ps
u(r) = o.(uw)ug(x o6
() Py (u)uz () (56)
Put C' = ps/(gAp) and observe that the right hand side of Equation (56) can be
written C %ae, giving
d u(x)

age(u) = T (57)

Integration of Equation (57) from 0 to x then gives

oo (u(x)) — ou(u(0)) = 1/C / Cu(e)de (58)

By letting o.(u(0)) = 0 and replace the integral by a finite sum, we get

oe(u) = 1/02 u(z;)Ax (59)

The numerical integration of Equation (59) is performed for the three initial con-
centrations respectively and the result is shown in Figures 61-63. The same result
is found by [2]. Clearly, there are some effective solid stress present even for small
concentrations. At concentrations around 13-15 g/l (which may be interpreted as
the parameter u.) a dramatic increase in effective solid stress can be observed. Note
that only the last time point is used in this analysis. According to [2] it seems that
the parameter u,. is time dependent. It is getting smaller for smaller times.

8.2 Find parameter values using induction period and disper-
sion

The values of vy and ry found in Section 6.4 differ very much from those found in
Section 7. If the parameter values found in Section 6.4 are used in the optimization
in Section 7, this will lead to other values of the parameters 7" and p. They seem to
cancel out each other. When trying to optimize over the parameter a, we can also
conclude that the result is highly dependent on the initial value of the parameter in
the optimization algorithm. This suggests that the problem is ill-conditioned. This
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motivates us to pick out the parameter values by hand. Now, introduce a new term
to the diffusion, due to dispersion

daisp (t) = doe™"/7 (60)

where dy and 7 are parameters. By trial and error it is possible to choose values of
the parameters dy, 7, T" and p in such a way that the shock-wave can be described
in all three experiments with the same values of vy and ry. Here only T depends
on ug, whereas the other parameters are constant. See Table 4 for parameter values
and Figures 64-66 for the solutions. Note that the values of the functionals are lower
than in previous sections. Due to computational difficulties, it is hard to implement
an optimization algorithm to this problem, even though it is the correct scientific
way to do it. However, this analysis suggests that an extra term of type (60) may
be necessary in order to fully solve the problem. Constant parameters: dy = 5% 107°
m?/s, vg = 2.65 % 1073 m/s, rv = 0.43 g/1, 7 = 1000 s, p = 4. No compression is
considered.

up (g/1) | T (s) | J

3.67 0 0.23
6.12 215 0.29
7.29 1500 | 0.28

Table 4: Parameter values for induction period and corresponding functional value.

Effective solid stress function as a function of concentration, u,=3.6&ffective solid stress function as a function of concentration, u,=6.12
15 ‘ : : : 30

25

20

Effective solid stress function (Pa)
Effective solid stress function (Pa)

0 L i I I 0 L L I L
0 5 10 15 20 25 0 5 10 15 20 25

u (g u (gl

Figure 61: Effective solid stress function, Figure 62: Effective solid stress function,
up=3.67, steady-state. up=6.12, steady-state.
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Difference between simulation and data, u 0=3,67
Effective solid stress function as a function of concentration, u0=7
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Figure 63: Effective solid stress function,
up="7.29, steady-state. Figure 64: Solution-data, up=3.67 g/L.
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Figure 65: Solution-data, up=6.12 g/1. Figure 66: Solution-data, up=7.29 g/1.
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9 Conclusion and discussion

Throughout this thesis, we have seen that the calibration problem seems hard to
solve. Others have already observed the ill-posedness of the problem and this is what
we also find. This can clearly be seen in the Figures in Section 6.3. The level curves
for the functional J is very flat in the middle of the Figures. This means that the
functional is small along a curve, which shows that the problem is ill-conditioned.
Every point (a,u.) that lies on this curve is a solution to the problem. It is also
worth noticing that this will not disappear when using L'-norm instead.

In Section 8.2 we observed that u. were somewhere between 13 g/1 and 15 g/1 (for
the steady-state profile) for all three experiments. But note the scale on the y-axis.
The parameter a seems to depend on the initial concentration, because there are
significantly higher effective solid stress for higher initial concentrations. Another
problem, found by 2], is that the parameter u, seems to depend on time. Therefore
the paramater a seems to depend on ug in steady-state and u,. on time. It is hard to
make a physical interpretation of this. If the critical concentration depends on time,
it is difficult to build reliable models for continuous sedimentation.

However, we can see that by taking the induction period into consideration and
adding a dispersion term that decreases with time, it is possible to handle the shock
wave for all three experiments, just by choosing the parameter values by hand. The
functional value may be even lower if a complete optimization over the parameters
is performed.

From above it is obvious that further research in this area is needed. It is well
known that many inverse problems are ill-conditioned and ill-posed. A possible way
to get rid of this maybe is to collect more data or perhaps try another model structure
with fewer parameters to calibrate.
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