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POPULÄRVETENSKAPLIG SAMMANFATTNING 
 

Risken för en olycka i ett svenskt kärnkraftverk är mycket låg, tack vare de höga 
säkerhetskrav som myndigheterna ställer. Skulle en olycka ändå inträffa kan det få mycket 
allvarliga konsekvenser för allmänheten och därför måste anläggningar ha 
beredskapsplaner. Vid en olycka är det viktigt att man snabbt kan skapa sig en uppfattning 
om olyckans omfattning och möjliga konsekvenser, detta så att räddningspersonal kan vidta 
nödvändiga åtgärder. 
 
I projekt RASTEP (RApid Source TErm Prediction) utvecklas ett datoriserat verktyg för att i 
realtid prediktera potentiella radioaktiva utsläpp i händelse av en olycka. En viktig komponent 
i verktyget är ett Bayesianskt nätverk (BBN) vars uppgift är att prediktera möjliga tillstånd i ett 
kärnkraftverk och sannolikheterna för olika utsläpp. 
 
Ett BBN består av noder som representerar uppsättningar av tillstånd samt länkar som 
representerar orsakssamband mellan noderna. Fördelen med ett BBN är att observerade 
tillstånd i kärnkraftverket kan ges som insignal till nätverket och ju fler observationer man har 
desto tillförlitligare blir prediktionen av utsläppssannolikheterna. 
 
För varje nod i ett BBN finns en sannolikhetstabell som ger sannolikheterna för tillstånden i 
noden givet tillstånd i andra noder. Ansättningen av sannolikhetstabellerna är av stor vikt vid 
konstruktion av ett nätverk. Detta görs enklast genom att använda data. Om data saknas, 
vilket ofta är fallet för kärnkraftsanläggningar, görs ansättningarna av experter inom området. 
Användningen av expertbedömningar kan dock leda till osäkerheter i nätverket. 
 
I examensarbetet utvecklades en iterativ metod som består av fyra delar: Nätverksstruktur, 
Sannolikhetsskattning, Känslighetsanalys samt Verifiering och validering. Genom att 
använda denna metod kan relevanta och försvarbara sannolikhetstabeller definieras trots att 
expertbedömningar används för ansättning av sannolikheterna. Metoden går ut på att först 
definiera nätverkets struktur och sedan ansätta grova skattningar av sannolikheterna. 
Därefter utförs en känslighetsanalys som visar hur nätverkets utsignal påverkas av 
variationer i insignalerna. Känslighetsanalysen identifierar också vilka sannolikheter som har 
störst påverkan och därför behöver ansättas mer noggrant. Även fel i nätverkets struktur kan 
upptäckas. Till sist bör nätverket verifieras och valideras, även i detta steg kan felaktigheter i 
nätverket identifieras. Under utvecklingen av metoden har fokus legat på 
sannolikhetsskattning och känslighetsanalys. 
 
Om inte data finns tillgänglig vid skattning av sannolikheter kan expertbedömningar 
inkluderas systematiskt med hjälp av elicitationsmetoder. Några metoder går ut på att 
experten får ansätta sannolikheterna en och en i tabellerna och det kan ske med hjälp av 
grafiska hjälpmedel. Det finns även metoder som genererar hela sannolikhetstabeller baserat 
på olika typer av ansättningar gjorda av experten. Ansättningarna kan t.ex. vara enstaka 
sannolikheter eller vikter för noder och tillstånd. Dessa metoder är fördelaktiga att använda 
om experten har svårigheter att ansätta alla sannolikheterna i en tabell. 
 
I en känslighetsanalys studeras hur nätverkets utsignal påverkas av olika observationer och 
variationer i sannolikhetstabellernas värden. Resultatet av en känslighetsanalys kopplad till 
observationer kan leda till att strukturen i nätverket behöver modifieras eller att sannolikheter 
behöver skattas om. Hur känslig en utsignal är för variationer i sannolikheterna kan 
kvantifieras. De sannolikheter i tabellerna för vilka utsignalen är mest känslig är de 
sannolikheter som kräver större noggrannhet för att ett tillförlitligt BBN ska erhållas. 
 
Om denna iterativa metod används vid konstruktionen av ett BBN så kan ett robust och 
pålitligt nätverk uppnås trots att expertbedömningar har använts vid ansättningen av 
sannolikhetstabellerna. 
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ABSTRACT 
 

In project RASTEP (RApid Source TErm Prediction) a computerized tool for real time 
prediction of source terms at a nuclear power plant is developed. The tool consists of two 
modules where one is a Bayesian belief network (BBN). A BBN consists of connected nodes 
and each node has a defined conditional probability table (CPT), which contains the 
probabilities that a node is in its different states given the states of the node's immediate 
predecessors. Due to the lack of data the CPTs for some nodes are subjectively determined 
by experts in the field. Expert judgment may induce uncertainties in the network and it is 
desirable to know how a relevant and defendable set of conditional probabilities in a BBN 
can be defined. 
 
This Master Thesis is part of a R&D project run by Scandpower on behalf of the Nordic 
Nuclear Safety Research (NKS). The aim of the thesis is to develop a general method where 
experts' beliefs can be included in a systematic way when defining the CPTs in the BBN. The 
proposed method consists of four parts; Network structure, Probability estimation, Sensitivity 
analysis and Verification and validation. These parts are performed iteratively until the 
network is robust and reliable. The main focus of the thesis is on the two parts Probability 
estimation and Sensitivity analysis.  

 
From literature different elicitation methods to help the experts assess probabilities in a CPT 
were found. Two types of elicitation methods were studied; elicitation of a single probability 
and elicitation of a full CPT. The method preferred when eliciting a single probability was 
Probability scale since it is an easy and straightforward method for the expert to use. 
Understanding and implementing methods for generating full CPTs required more attention 
and were tested both on nodes for example networks and for a network developed in 
RASTEP. The Likelihood method showed the best result for elicitation of a full CPT and this 
method is beneficial to use when the expert is uncomfortable at expressing his beliefs as 
probabilities. 
 
An important outcome of the work performed, is that rough estimates of the probabilities are 
sufficient as a first assignment since a sensitivity analysis will reveal which probabilities have 
significant effect on the network's output and thus need to be more accurately assessed. The 
sensitivity analysis also shows the constructor of the BBN how observable nodes, given 
evidence, influence the network and may lead to modifications in the network's structure. 
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List of notation 
 
     node   in a BBN 

  
 
  state   in node    

      a child node 

      a parent node 

         the set of parent nodes of    

    a combination of states of the parents of a node 

     mean of the absolute difference between an original CPT and a CPT 

generated with any of the elicitation methods. 

     node of interest 

   output probability of interest 

   parameter under study 

    sensitivity value 

    vertex of the hyperbola branch 
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O3 Reactor no.3 in Oskarshamn 

PSA  Probabilistic Safety Assessment 
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RASTEP RApid Source TErm Prediction 

SSM  Swedish Radiation Safety Authority 

STERPS Source Term Indicator Based on Plant Status 
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1. INTRODUCTION 

Development of tools for use in the fast, online event and accident diagnosis and subsequent 
source term forecasting at nuclear power plants is increasingly desired by off-site emergency 
planning and response personnel. In project RASTEP (RApid Source TErm Prediction) such 
a computerized tool for real time prediction of source terms (expressing crucial properties of 
radioactive releases) is being developed. The tool consists of two modules, each with a 
specific aim: 
 

-  A Bayesian belief network (BBN) to predict plant states and the probability of 
different releases. The more information that is fed into the network, the more 
precise the prediction. 

- A source term module that characterizes the amount, chemical composition, 
release height, and timing of the predicted radioactive release. 

 
A BBN is built up of connected nodes and for each node a conditional probability table (CPT) 
is defined, which contains the probabilities that a node is in its different states given the 
states of the parent nodes. The determination of a CPT depends on the characteristics of the 
node with some nodes requiring special attention since the lack of data requires a subjective 
determination of the conditional probabilities. Handling those nodes is time consuming and 
with probabilities based mainly on expert beliefs it is a challenge to achieve a consistent and 
quality assured assignment of probabilities in CPTs.   

 

1.1 Aim 

This Master Thesis is part of a R&D project run by Scandpower on behalf of the Nordic 
Nuclear Safety Research (NKS). The aim of the thesis is to develop a general method where 
beliefs can be included in a systematic way to define CPTs in the BBN. This semi-
quantitative method should have qualities which enable the BBN constructor to find 
uncertainties in the network and study the importance of different parts of the BBN along with 
determining CPTs. Therefore, sensitivity analysis regarding parameters and model structure 
of the BBN must be included in the method. This analysis should also show how parameters 
and model structure influence the prediction of source terms. 
 
The intention of the general method is to give a consistent approach of combining the 
different parts in building a reliable BBN, where the main parts are: 
 

- Network structure – provide a graphical representation of the relationship between 
events. 

- Probability estimation – define probabilities in the CPTs with a focus on methods for 
expert elicitation. 

- Sensitivity analysis – identify how observations and probability uncertainties affect 
the network's output. 

- Verification and validation – make sure that the network's output is reliable and 
makes sense. 

 
This thesis focuses on the Probability estimation and Sensitivity analysis parts. 
 

1.2 Outline of work 

Bayesian statistics and discrete BBNs will first be studied. In addition a BBN developed in the 
RASTEP project will be examined in order for us to become familiar with the model structure. 
The next step is to perform a literature study to identify different expert elicitation methods 
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used for determining CPTs and the application of sensitivity analysis. With previous 
approaches as a base, a general method will be developed and then implemented on an 
example network. Furthermore, it will be decided which of the elicitation methods that can be 
applied on CPTs in a BBN developed within RASTEP. As a last step a sensitivity analysis will 
be performed on the same network. 
 

1.3 Outline of the report 

Section 2 Background introduces the theory needed to understand the concept of Bayesian 
belief networks and gives a brief introduction to project RASTEP. The problem is stated in 
Section 3. The network structure is briefly discussed in Section 4. In Section 5 different 
expert elicitation methods are described. The details of the methods in Section 5.2 are 
primarily aimed for the specially interested reader. Section 6 presents Sensitivity analysis 
and an illustrative example is given in Section 6.3. Verification and validation of a BBN is 
briefly discussed in Section 7. Section 8 analyses how probability estimation and sensitivity 
analysis can be applied on a BBN developed in RASTEP. The Proposed method is 
presented in Section 9. The final sections, Section 10 and 11, contain a discussion and 
recommendations for further work.  
 
References are given according to the Vancouver system. A reference placed in a sentence 
only applies to that sentence. A reference placed after a sentence is valid from the previous 
reference in the same section.  
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2. BACKGROUND 

2.1 Bayesian Statistics 

In probability theory the definition of conditional probability is 
 

   |   
      

    
  

 
where   and   are random variables. Using the above definition leads to Bayes' theorem 
 

   |   
   |      

    
  

 
which defines the posterior probability,    |  , in terms of the prior probability,     , a 

normalizing factor,    , and the probability of   given  ,    |  . The probability     |   is 

also called the likelihood of   given  . 
 
Two of the basic axioms in probability theory are 
 

1. 0        1 
2.       1 if and only if   is certain. [1] 

 

2.2 Subjectivity 

In probability theory there are two distinct views, objective and subjective probability. 
Objective probability is usually calculated based on a mathematical model. [2] Subjective 
probability on the other hand is based on a person's individual assessment of a probability, 
for example an expert's judgement or belief [3]. When new information is gained, a 
probability can be modified through Bayes' theorem [2]. 
 

2.3 Bayesian belief networks 

BBNs are established in a wide variety of domains, including medicine, ecology and 
engineering, to model cause and effect [4] [5]. This is because of their ability to capture the 
probabilistic relationship between events and to combine different sources of data. Another 
advantage of a BBN is that the result is often convincing and conclusive even if the data is 
uncertain, which is very common in many applications. [6] [7] 
 
A BBN gives a graphical representation of events that occur in reality and is built as a 
directed acyclic graph, i.e. a directed graph without cycles. Each node in a BBN represents 
an event described by a number of possible states, which can be either continuous or 
discrete. A causal relationship between two nodes is represented by a directed arc, leading 
from the parent node (cause node) to the child node (effect node), see Figure 2.1. The 
absence of an arc between two nodes represents conditional independence assumptions. [8]   
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An arc between a parent node     and a child node   , see Figure 2.1, can be interpreted in 

different ways and one of the following statements usually holds:      
 

-    causes    or 

-    partially causes or predisposes    or 

-    is an imperfect version of    or 

-    and    are functionally related or 

-    and    are statistically correlated. [9] 

 
A BBN consists of a qualitative part and a quantitative part and the relationship described by 
the nodes and arcs is the qualitative part [10]. The strength of influence between a child node 
and its parent nodes is quantified by conditional probabilities which are represented in a 
CPT, see Table 2.1. Each probability in a CPT represents the probability of a child node 
being in a certain state given a set of parent states, e.g. according to Table 2.1 

 (  
 |   

     
 )   0.1. For nodes that have no parents the table consists of the unconditional 

probabilities of each state of the node. The probabilities in the CPTs are the quantitative part 
of the network and they are based upon different types of information, ranging from well-
founded theory over frequencies of events in a data base to experts' beliefs. [11] 
 

The following is a more formal definition of a BBN. 
 
Definition 2.1.  A Bayesian belief network is a set           where 

-   is a directed acyclic graph with nodes                 ,     1, and arcs     ; 
-   is a set of conditional probabilities      |        , for all          , where        

is the set of immediate predecessors of node   . [12] 
 
One valuable property of a BBN is that the product of the conditional probabilities can be 
used to define the joint probability distribution for all the nodes in a BBN. The joint probability 

of the nodes         in a BBN is 
 
 

𝑋𝑝 
 𝑋𝑝 

 

𝑋𝑐 

Figure 2.1 Simple Bayesian Network where node 𝑋𝑐 has the two parent nodes 𝑋𝑝 
 and 𝑋𝑝 

. 

Table 2.1 A CPT for a child node    with the two states   
  and   

 . The 
node has two parents,    

 and    
, with two states each, 

   
  and    

  respectively    
  and    

 . 

  Child node    

Parent node    
 Parent node    

   
    

  

   
     

  0.1 0.9 

   
     

  0.3 0.7 

   
     

  0.8 0.2 

   
     

  0.7 0.3 
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            ∏ (  |      ).

 

   

 

 
Using this product, the conditional probabilities and the structure of the BBN the marginal 
probability of each node being in one of its states can be determined by marginalisation. [8] 
The nodes in a BBN can either be observable or hidden. Observable nodes can be updated 
by the BBN user, i.e. the marginal probability of the observed state is set to 1 and the 
probabilities of the other states in the node are set to 0. Hidden nodes can not be updated 
and are entirely based on the states of the other nodes. [13] 

 
2.3.1 d-separation 

The d-separation criterion provides a way to determine whether any pair of nodes in a BBN 
are dependent given a set of observations. Before defining d-separation the concept of 
blocking has to be introduced. 
 
Definition 2.2.  Let                 be an acyclic directed graph with nodes      and arcs 

    , and let   be a chain, i.e. a path in the undirected underlying graph of  , in     between 
nodes    and   . We say that   is blocked by the set of nodes         , if either    or     is 

included in  , or   contains three consecutive nodes              for which one of the 
following conditions holds: 

(1) arcs           and           are on the chain  , and      ; 
(2) arcs           and           are on the chain  , and      ; 
(3) arcs           and           are on the chain  , and              , where 

      is the set composed of    and its descendants. 
 

Letting   be the set of observed nodes the definition of d-separation between two nodes    
and    is stated as follows. 

 
Definition 2.3.  Let   be an acyclic graph and let   ,  ,        . The set of nodes   is said 

to d-separate the nodes    and    in  , denoted ⟨    |   |    ⟩ 
 
, if every chain from    to    in 

  is blocked by  . [12] 
 
If two nodes are d-separated they are called structurally independent which means 
 

 (     | )      |   (  | ). 

 
The three types of blocking causing a d-separation between two nodes    and    are 

illustrated in Figures 2.2-2.4. 

𝑋𝑗 

𝑋𝑘   𝑋𝑘   

𝑋𝑖 

𝑋𝑘 

(1) 

Figure 2.2 An illustration of d-separation. The connection between 𝑋𝑖 and 𝑋𝑗 is 

diverging and blocked by the observed node 𝑋𝑘, grey represents an 
observation. 
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2.3.2 Inference 

Statistical inference is the calculation of parameters of interest, given a known model and 
data, and can be characterised as either frequentist inference or Bayesian inference. 
Frequentist inference calculates the probability as the limit of an event's relative frequency in 
a large number of trials and can only be done if the experiments are well-defined and 
random. Bayesian inference is a way to represent probability given evidence or as an 
individual's degree of belief in a statement. [14] 
 
Applying Bayesian inference on BBNs enables us to compute the probability of each state in 
a node given observed states in other nodes. When performing inference, beliefs propagate 
through the BBN, i.e. the probability of each state is updated when evidence is given to some 
of the nodes. [8] Belief propagation is done automatically in Netica; a program for working 
with BBNs [15].  

 
2.3.3 Illustrative example 

The example Chest Clinic, see Figure 2.5, is available in Netica and is a BBN that could be 
used to diagnose patients arriving at a clinic [15]. In this network each node represents a 
condition of the patient. The probabilities displayed in Figure 2.5 are the marginal 
probabilities of each node being in its states given the rest of the network. 

  

𝑋𝑗 

𝑋𝑘   𝑋𝑘   

𝑋𝑖 

𝑋𝑘 

(2) 

Figure 2.4 An illustration of d-separation. The connection between 𝑋𝑖 and 𝑋𝑗 is serial and 

blocked by the observed node 𝑋𝑘, grey representing an observation. 

𝑋𝑗 

𝑋𝑘   𝑋𝑘   

𝑋𝑖 

𝑋𝑘 

𝜎 𝑋𝑘  

(3) 

Figure 2.3 An illustration of d-separation. The connection between 𝑋𝑖 and 𝑋𝑗 is 

converging and blocked since neither 𝑋𝑘  or its descendants are observed 
(shaded in blue). 
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All nodes except Tuberculosis or Cancer, which is deterministic, are probabilistic and the 
difference between these two types of nodes can be seen in their CPTs, see Table 2.2 and 
2.3. The CPT in Table 2.2 shows the probabilistic node Dyspnea where for each parent 
combination probabilities are assigned to the child states. In the CPT in Table 2.3 the parent 
combination completely determines the child state.  
 
 
 

 
 

 
 
 

 
Figure 2.5 The BBN Chest Clinic. 

 

Table 2.2 CPT of node Dyspnea. 
  Dyspnea 

Tuberculosis 
or Cancer 

Bronchitis present absent 

true present 0.1 0.9 
true absent 0.3 0.7 
false present 0.8 0.2 
false absent 0.7 0.3 

 

Table 2.3 CPT of node Tuberculosis or Cancer. 
   

Tuberculosis  
Lung 

Cancer 
Tuberculosis 

or Cancer 

present present true 
present absent true 
absent present true 
absent absent false 
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When observables are known, in this case after the patient has been examined, they can be 
fed into the network as observations and the state probabilities will be updated using 
Bayesian inference, see Figure 2.6. In this case, the observation of tuberculosis being 
present was given as input to the network and some of the probabilities where updated. The 
structure of the network determines which probabilities are affected by an observation. It 
should be noted that the information from observations can propagate in the opposite 
direction of the arcs which can be seen in the node Visit to Asia. This upward propagation is 
based on Bayes' theorem [16]. 
 

 
 

2.4 RASTEP 

2.4.1 Background and over-all context of the project 

This Master Thesis is part of a R&D project run by Scandpower as part of the research 
programme of NKS, Nordic Nuclear Safety Research (NKS-RASTEP). It is also indirectly 
related to the previous EU Project STERPS and to a major ongoing project at SSM, the 
Swedish Radiation Safety Authority (SSM-RASTEP).  
 
Both SSM-RASTEP and NKS-RASTEP take as their starting point the outcome of the EU 
project STERPS (Source Term Indicator Based on Plant Status). The STERPS project was 
part of the European Union 5th and 6th Euroatom Framework program, and had the objective 
to develop for trial use a tool for rapid and early diagnosis of plant status and estimation of 
likely environmental releases. The EU project showed the feasibility of using BBN technique 
for modelling of severe accidents, but also identified some issues and challenges related to 
this. The Swedish contribution to the project (through KTH, Scandpower and OKG) aimed at 
the development of a first prototype version of a BBN model for the Swedish boiling water 
reactor Oskarshamn 3 (ASEA-Atom BWR 75).  
 
SSM-RASTEP basically aims at the development of BBN models for all Swedish nuclear 
power plants, using the basic approach defined by the STERPS project, i.e. a model 
consisting of two different parts; a BBN model used to predict plant states and release paths 
and a source term definition part used to characterise the source term (height, composition, 

 
Figure 2.6 Chest Clinic with observed node 

Tuberculosis. 
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amount and timing). This development is to include the development and documentation of 
an analysis methodology, including the necessary QA (Quality Assurance) procedures and 
procedures for validation and verification of developed BBN models, as well as the definition 
of procedures for update and maintenance of the specific NPP (Nuclear Power Plant) models 
in RASTEP. During the past four years a basic BBN model (with associated source term 
definitions) has been developed and largely validated for Oskarshamn 3 (O3). In later stages, 
further models have been developed for other Swedish plants (generic pressurised water 
reactor and Oskarshamn 2). The O3 model developed as part of the SSM project is the 
reference also for NKS-RASTEP. 
 
The basic aim of NKS-RASTEP is to address a number of advanced topics that constitute 
R&D challenges in the application of BBN to source term predictions during an NPP severe 
accident. The NKS project has been run in two phases, with phase 1 run in 2011-2012, and 
the ongoing second phase in 2012-2013. The project has dealt mainly with the following 
issues: 
 

 Definition of the source terms (ways to improve precision and functionality of the 
source term module of RASTEP; supported through two M.Sc. theses) 

 Comparison of codes for accident sequence and source term calculation (comparison 
between analysis codes MAAP and MELCOR; supported by one M.Sc. thesis).  

 Challenges in BBN structure and quantification (subject of the M.Sc. thesis presented 
in this report) 

o methods for dealing with sensitivity with respect to parameters and model 
structure and  

o development of a systematic approach for defining complex CPTs in a BBN. 
 
2.4.2 The Bayesian belief network in RASTEP 

The stage when the user should start making use of RASTEP is assumed to be the time of 
failure of the "first line of defence", i.e. failure of one or more of the systems for fission 
control, pressure control, core cooling and residual heat removal that are expected to 
function in case of a normal disturbance. 
 
When creating a RASTEP plant model it is essential to map the plant characteristics. The 
aim of this task is to give a general understanding of relevant plant characteristics and of 
systems designed to mitigate severe accidents. Furthermore, key plant parameters and 
observables to include in the BBN are identified and source terms are defined. The output 
from RASTEP is a set of possible plant states where each state has an associated source 
term. The set of plant states are ranked depending on probability and are intended to be 
used with off-site consequence analysis tools.  
 
One of the modules in the computerized tool RASTEP is a BBN used to model severe 
accident progression. The BBN predicts plant states and the probability of different 
environmental source terms. 
 
Nodes in the BBN can be either observable or hidden. Observables are nodes indicating the 
status of the plant, typically related to pressure and temperature, during a severe accident 
and can be updated by the user. Hidden nodes are entirely updated by the states of the other 
nodes in the BBN. In RASTEP an interface will let the user answer questions about the plant 
observables. Given observations the joint probability of the network is changed and hence 
the state probabilities are updated. As more questions are answered the accuracy of the 
predictions increases. 
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When constructing the BBN in RASTEP the probabilities can be derived from a variety of 
sources. The CPTs can be based on information from the plant PSA (Probabilistic Safety 
Assessment), estimates from data or fault tree analyses. When none of these sources are 
available one has to rely on expert beliefs to define the conditional probabilities. [13] 
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3. STATING THE PROBLEM 

RASTEP is designed to support decisions in case of a severe accident. Thus, it is crucial that 
the predictions are as credible and reliable as possible, which in turn increases the 
requirements on validity, robustness, and transparency of the BBN. Therefore it is important 
to analyse how the choice of model parameters and model structure affects the network's 
output. 
 
The determination of the CPTs depends on the characteristics of the node. Some nodes 
require special attention since there is no or very little data to derive the probabilities from 
and hence the CPTs have to be based on expert judgement. Developing CPTs using experts 
can be time consuming since the number of probabilities that need to be estimated is usually 
very large. Furthermore, using expert judgment may induce large uncertainties in the network 
and it is desirable to know how the uncertainties affect the reliability of the output.  
 
The aim of this thesis is to propose a method for the definition of a relevant and defendable 
set of conditional probabilities in a BBN that also considers uncertainties in the network. 
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4. NETWORK STRUCTURE 

The qualitative part, i.e. the nodes and arcs, forms the basis of the network and is the first 
part to be determined when building a BBN. How to set up the network structure will not be 
discussed in detail in this thesis. However, a way of modifying the structure of the BBN to 
make the probabilities in CPTs easier to assess is node divorcing which is presented briefly 
below. 

 
The technique of node divorcing reduces the number of combination of parent states for a 
node by introducing a mediating node. This node becomes the parent of the original child 
node and the child node of the divorced parents. In Figure 4.1 the nodes    

 and    
 have 

been divorced from the child node,   , by the mediating node   . If the nodes in Figure 4.1a 

all have four states the CPT for    requires 256 probabilities to be assessed. However, if    
is introduced, also having four states, the CPTs for both    and    contain 64 probabilities 
reducing the total number of probabilities to be assessed to 128. Node divorcing only works 
for discrete nodes and it is only effective if the number of combinations of states from    

 and 

   
 is greater than the number of states in   . [17] [18] 

 

 
A property of a BBN is that the immediate successors of a node should be conditionally 
independent given that node. If the BBN does not satisfy this property it indicates that a 
hidden node should be introduced. [19] The introduction of a hidden node is the same 
technique as node divorcing. 
 
  

𝑋𝑝 
 𝑋𝑝 

 𝑋𝑝3
 𝑋𝑝 

 𝑋𝑝 
 𝑋𝑝3

 

𝑋𝑚 

𝑋𝑐 𝑋𝑐 

a) Original b) Divorced 

Figure 4.1 Node divorcing. 𝑋𝑚 divorces the nodes 𝑋𝑝 
 and 𝑋𝑝 

 from 𝑋𝑐. 
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5. PROBABILITY ESTIMATION 

When the network structure has been set up the quantitative part, i.e. the probabilities in the 
CPTs, of the network need to be defined. If no data is available for the determination of 
probabilities, the source of probabilistic information is expert judgement [20]. Using experts' 
beliefs to assign conditional probabilities is called expert elicitation.  
 
The main steps of the elicitation process are: 
 

- determine what the experts need to elicit, 
- select experts, 
- expert elicitation, where the experts may use an elicitation method to assign 

probabilities, 
- if there are several experts, combine their assessments, 
- document the process and the result. [21] 

 
Due to the structure of a BBN the number of probabilities that populates a CPT grows rapidly 
with the number of parent nodes related to that CPT, e.g. a child node with   states and   

parents each having   states demands      probabilities to populate its CPT. Thus, the 
elicitation can be very time consuming. 
 
For an expert it can be particularly difficult to assign probabilities for events that are very 
rare. Therefore, different methods to help the expert and to systematise the elicitation have 
been developed. There are two types of elicitation methods; Elicitation of a single probability 
and Elicitation of a full conditional probability table. The methods presented below are 
findings from literature studies. Methods for eliciting single probabilities were more frequently 
used than elicitation of full CPTs. 

 

5.1 Elicitation of a single probability 

This type of elicitation can further be divided into two groups; direct methods and indirect 
methods. In direct methods experts should give their degree of belief as a number directly, 
e.g. a probability, whilst for indirect methods the expert will make a decision from which his 
belief is inferred. [23] 
 
5.1.1 Probability scale 

A numerical probability scale is a well-known direct method. It is a horizontal or vertical line 
showing the probability either in the interval 0-1or 0-100%. The line is divided into several 
non-overlapping intervals, where 5-7 is the optimal number of intervals. For each probability 
that the expert assess he puts a mark, which corresponds to his belief, on the scale and the 
probability can then be determined by measuring the distance between the mark and the 0.  
 
Since not all experts are familiar with probabilities and are more comfortable expressing their 
beliefs with words there are scales with both verbal and numerical intervals, see Figure 5.1.
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The use of probability scale is advantageous since it is easy for the expert to express his 
beliefs in a fast and distinct way. However, when using a probability scale the assessments 
are prone to have scaling biases, such as centring and spacing effects. Centring is the 
tendency of experts to use the centre of the scale and spacing is the tendency of experts to 
divide their responses more or less evenly over the scale. [23] [24] [25] 

 
5.1.2 Gamble-like methods 

When an expert finds it hard to express his belief of an event as a number a gamble-like 
method can be used. The basic idea of gamble-like methods is to infer the expert's 
assessment of a probability from his behaviour in a controlled situation. Gamble-like methods 
are indirect methods that are designed to represent controlled situations. Two types of 
gamble-like methods can be distinguished.  
 
In the certain-equivalent gamble an expert chooses between an exact reward, x, and a 
probabilistic alternative where the reward, r, depends on the probability, p, to be assessed. 
The exact reward is then altered until the expert is indifferent between the two choices. The 
probability, p, can be calculated as p=x/r. 
 
In the lottery-equivalent gamble the expert chooses between a lottery where the outcome 
depends on a given probability and a lottery that depends on the probability, p, to be 
assessed. Altering p until the expert is indifferent between the two lotteries give the value of 
p. 
 
Using gamble-like methods can suppress biases as centring and spacing but they are 
instead influenced by risk attitudes, especially certain-equivalent gamble. Two other 
drawbacks of gamble-like methods are that they are complicated for an expert to learn and 
are very time-consuming. [23] [24] 

 
 
 
 
 

certain 
(almost) 

probable 

expected 

fifty-fifty 

uncertain 

improbable 

(almost) 
impossible 

100 

85 

75 

50 

25 

15 

0 

high 

moderate 

low 

very low 

extremely low 

negligible 

0.7 - 1.0 

0.3 - 0.7 

0.05 - 0.3 

0.001 - 0.05 

10-6 - 0.001 

0 - 10-6 

Verbal description 
of probability 

Probability interval 

Figure 5.1 Verbal and numerical probability scale, represented as a scale and as a 
table. 
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5.1.3 Probability wheel 

The probability wheel is an indirect method that is not influenced by risk attitudes. It is usually 
a circle divided into two sections. The sections are altered until the expert believes he can 
spin a pointer and the probability that it will stop in a section is equivalent to the probability 
being assessed. Probability wheel is very similar to a direct method but a drawback is that it 
cannot elicit small or large probabilities. [23] [24] 

 

5.2 Elicitation of a full conditional probability table 

In this section three methods of elicitation of a full CPT, using a reduced number of 
assessments, will be discussed.  Their aim is to generate a full CPT without the expert 
assigning each probability individually. In the literature other methods exist with this purpose 
but the advantage of the Likelihood method, the EBBN method and the Weighted sum 
algorithm is that they are not restricted to binary nodes.  
 
To illustrate how the methods work in practice; guidelines are created as a result from testing 
the methods on several nodes. Each method will then be used on a node, Battery voltage, 
from the network Car Diagnosis 2 available in Netica, see Table 5.1 [15].  As a measure of 
accuracy the mean,     , of the absolute difference between the original CPT given in Netica 
and the CPT generated by an elicitation method is calculated. The methods are used on 
additional nodes and the mean will be used to compare the methods.  
 
The approach for testing the methods is that, in the absence of a real expert, the original 
CPT has been used as the knowledge of an expert. Consequently, if a method requires 
probabilities as assignments, these have been taken from the original CPT. If weights are 
required; they are based on the characteristics of the original CPT. 

5.2.1 Likelihood method 

This method takes its starting point in Bayes' theorem, which can be written as  
 

 (  |   
    

       
)   (  |   

    
       

)       

 

where  (  |   
    

       
) is the conditional probability and  (  |   

    
       

) the 

likelihood of a child state,   , given the states for each of the parent nodes,    
. The prior 

probability for    is       and in this method       will be derived from a typical distribution, 
   

. A typical distribution describes the normal state of affairs and its specific form is not of 

importance. As an example the typical distribution for a node with three discrete states might 

Table 5.1 The original CPT for the node Battery voltage from the network Car 
Diagnosis 2 in Netica. 

  
Battery voltage 

Charging system Battery age strong weak dead 

okay new  0.950 0.040 0.010 

okay old  0.800 0.150 0.050 

okay very old  0.600 0.300 0.100 

faulty new  0.008 0.300 0.692 

faulty old  0.004 0.200 0.796 

faulty very old  0.002 0.100 0.898 
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be [0.25  0.50  0.25] but it could also take the form of a continuous distribution. By focusing 
on the likelihood, instead of the conditional probability, the elicitation procedure becomes 
easier since the expert does not have to remember the relative frequency of different states 
of the child node and hence the method is called the likelihood method.  
 
Using the log likelihood, instead of the likelihood, is convenient since the log likelihood 
covers a smaller range of values. Assuming that the parent nodes are independent the log 
likelihood can be expressed as 
 

     (  |   
    

       
)  ∑      

 

   

 

  
 

 (  |   
    

       
)   

       
       

             
 
 

 
and a more convenient variant is to define       

    
    

.  

 
The elicitation procedure is then accomplished by letting the expert provide the following 
information: 
 

1.  a typical distribution,    
, 

2.  the base,  , 
3.  a weighting factor for each state of the child node,    

, 

4.  a weighting factor for each state of the parent nodes,     
. 

 
Given this information the CPT can be calculated using the equations above. It can be seen 
that if the parameter       

 is positive, the likelihood for that combination of    and    
 will 

increase, and if the parameter is negative the likelihood will decrease. The value of the 

likelihood determines how the probability of the child node,  (  |   
    

       
), shifts in 

relation to    
. The base   can be set so that the values of       

 are of desired magnitude.  

Advantages of the likelihood method are that only one value for each state of each parent 
node needs to be specified and that the expert is asked to give influence weights instead of 
probabilities. [26] [27]  
 
Some other advantages of this method are that it works even if a node only has one parent 
and the algorithm that generates the CPT is easy to implement. If the child node has more 
than three states this method will be very complex and therefore only guidelines for nodes 
with two and three states are stated. 
 
Two states 
    A suitable start for   is 10. If a smaller/larger range of the probabilities is desired 

  should be smaller/larger. 
   

  If possible, use a typical distribution for the states in the child node. If there is 

none use a uniform distribution. 
   

  Let the weights of the child states have opposite signs, e.g. [-1  1]. 

    
  Start with one of the parents and decide for which of its states each child state 

should have a high probability. The parent state that results in a high probability 
of a child state should have the same sign as that child state's weight. A suitable 
assignment for the first parent is [-1…0…1]. The other parents' weights are then 
assigned in the same way except that the sign and magnitude of the first parent 
weights must be considered as well. A reasonable interval for the weights are [-
3…3]. 
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Three states 
   A suitable start for   is 10. If a smaller/larger range of the probabilities is desired 
    should be smaller/larger. 
   

  If it is known that one of the child states, independent of the combination of 

parents states, always will have approximately the same probability, first assign 
   

 so that this state have the maximum value of the probability for all of the 

parent combinations. Then distribute the probabilities for the two other states 
uniformly. If all three states can have high probabilities assign a high probability 
to one of the states and let the two others be uniformly distributed, e.g.    

  [0.9  

0.05  0.05]. 

   
  If a weight is equal to 0 it does not shift  (  |   

    
       

) away from    
. 

Hence, assign the state that was first assigned in    
 with 0 and then assign the 

other states with -1 and 1. 
    

  Use the same reasoning as for two states but the assignments are only based on 

the weights of the child states that are not equal to 0. 
 
When using this method to generate the CPT for the node Battery Voltage the following 
assignments were made: 
 
   10 
   

  [1/3  1/3  1/3] 

   
  [-1  0  1] 

    
  [-1  1] 

    
  [-0.5  0  0.5]. 

 

These assignments resulted in the CPT in Table 5.2 and the mean,     , was equal to 
0.054.  

 

 
5.2.2 EBBN method 

The EBBN method (an elicitation method for BBNs) requires only a limited amount of elicited 
probabilities from an expert to derive a node's CPT. It uses piecewise linear interpolation, 
based on the ranks of the parent nodes' states, to determine the CPT. The method requires 
that the states of the child node,   , and the states of the parent nodes,       , can be 
ordered on the form low to high. Before the actual method is described, some definitions are 
introduced. 
 

Table 5.2 Likelihood method used on the node Battery Voltage. 

  
Battery voltage 

Charging system Battery age strong weak dead 

okay new  0.968 0.031 0.001 

okay old  0.901 0.090 0.009 

okay very old  0.706 0.223 0.071 

faulty new  0.071 0.223 0.706 

faulty old  0.009 0.090 0.901 

faulty very old  0.001 0.031 0.968 
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     The node whose CPT is to be determined, where   
    and   

     are the  
  lowest and highest ordered state of   , respectively. 
        The set of parent nodes of   . 
 
    An assignment of states of the parents,       . 
 
      The assignment in which all the parent nodes are in their most favourable state 

for low ordered states of   . 
 
       The assignment in which all the parent nodes are in their most favourable state 

for high ordered states of   . 
 
       

   The assignment of        in which    
        is in its most favourable state for 

high ordered states of    and all              
 are in their least favourable 

state for higher ordered states of   . 
 
          Represents that           has a positive influence on   , which means that 

observing a higher ordered state for    does not decrease the likelihood of higher 

ordered states of   , regardless of the states of the other nodes          . 

 
          Represents that           has a negative influence on   , which means that 

observing a lower ordered state for    does not decrease the likelihood of lower 

ordered states of   , regardless of the states of the other nodes          . 

 

    Is a function of parent states that expresses the positiveness (or negativeness) of 
the joint influence of        on   . The function can take on values in the range 0 

to 1, i.e.    (0,1) with  (    )   0 and  (    )   1. The method makes use of 

two types of influence factors, individual influence factor      and joint influence 
factor       . The two factors are determined as follows: 
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 where the rank of the lowest ordered state is set to 1. 
 

The EBBN method requires that the states of        are ordered such that each of these 

nodes have either a positive or negative influence on   . Before the determination of a CPT 
can be done an expert must make the following assessments: 
 

1. For each of the parent nodes          , order the states of    such that    has 

either a negative or a positive influence on   . 
2. For each of the states    of   : 

o Determine the assignment           
 such that the probability        

       |   
  is as large as possible. 

o Assess the probabilities     |   
 . 
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3. For each of the parent nodes    
       , assess        

    |       
   and  

       
    |       

  . 

The determination of a CPT can be divided in to two steps. In the first step          is 

estimated as a function of        ,    
        , for each state    of   . This is done by 

constructing a piecewise linear function    
  [   ]  [   ] through the points 

[          
         |   

 ]. The estimated probabilities          for all    sum up to 1. In 

the second step the conditional probabilities     |          of the CPT are derived using  
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and    is the weight for each parent    

        calculated as 
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[20] 
The EBBN method only requires the expert to assign as many rows of the CPT as there are 
child states and one weight for each parent node. This method is based on linear 
interpolation and therefore it has difficulties to produce a large difference between two 
adjacent probabilities of a state in the CPT. According to Wisse et.al [20], the EBBN method 
includes the expression dominance, which can be a characteristic of a parent node. Applying 
dominance comes down to, if the expert is certain of a probability, replacing a probability 
calculated by the method with the expert's belief. This can be done for all three methods and 
is therefore not discussed in this section. 
 
Since the EBBN method only requires assignments of probabilities the method only needs 
two guidelines. First, order the states both for the child node and for the parent nodes. 
Second, if the child node has few parents, each having few states, consider to let the expert 

set the parent weights,  , direct instead of calculating them as in the method. This could also 
be done if the node has many parents and the expert knows how the parent nodes are 
weighted. 
 
Assignments that were made when using the EBBN method on the node Battery voltage 
were: 
 
 
  

        [okay  new]     
      [faulty  new]      

      [faulty  very old] 

  
     dead     

     strong 
      [okay  new]         

   [faulty  new]         
   [okay  very old] 
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 Assignments required for the weights,    and   . 

 
This resulted in the CPT in Table 5.3, where the assigned rows of probabilities have replaced 
the generated, and the mean,     , was 0.085. 
  

 
5.2.3 Weighted sum algorithm 

This method consists of an algorithm that estimates the           conditional probabilities, 

 (     
 |   

    

      
    

        
    

  ), that populate a CPT. With    as the child 

node with   states and {   
}
   

 
 as the parent nodes with    states each the algorithm takes 

the following form 
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 |   
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 | {    (   

    

  )})

 

   

 

 
where           and            . The method requires the expert to elicit two things; 

1.  the relative weights         for the parent nodes, where        and ∑      
    

2.  the         probability distributions,  (  
 | {    (   

    

  )}), over   for 

compatible parental configurations.  
 

Compatible parental configurations refer to the term {    (   
    

  )} which has the 

following definition. 
 

Definition 5.1. The state    
    

  , for the parent    
, is compatible with the state    

    

  , 

if according to the expert's mental model the state    
    

   is most likely to coexist with the 

state    
    

  . Then {    (   
    

  )} denotes the compatible parental configuration 

Table 5.3 EBBN method used on the node Battery Voltage. Bold numbers 
indicate assigned probabilities. 

  
Battery voltage 

Charging system Battery age strong weak dead 

okay new 0.950 0.040 0.010 

okay old 0.600 0.134 0.266 

okay very old 0.197 0.198 0.605 

faulty new 0.008 0.300 0.692 

faulty old 0.004 0.160 0.836 

faulty very old 0.002 0.100 0.898 
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where    
 is in the state    

   and the rest of the parents are in states compatible with    
 

   

  . 

 
Using the weighted sum algorithm will make the number of assessments of a CPT linear 
instead of exponential. [22] 
 
The weighted sum algorithm is a simple elicitation method that doesn't need any specific 
guidelines before it is used. The expert only has to assign as many rows of the CPT as there 
are states in the parent nodes. However, the method is based on the concept of compatible 
parental configuration, which can be hard for an expert to determine. 
 
The following assignments were made when using this method on the node Battery Voltage, 
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The assignments for the weighted sum algorithm gave the CPT in Table 5.4, where the 
assigned rows of probabilities have replaced the generated, with a mean,     , calculated to 

0.062.  

 
 

5.3 More examples of elicitation of a conditional probability table 

The three methods were also used on two other nodes, both found in Netica; Voltage at plug 
from the network Car Diagnosis 2, see Table 5.5, and Cardiac output from the network 
ALARM, see Table 5.7 [15]. For the node Voltage at plug the methods were only used for the 
upper half of the CPT, i.e. when the parent node Main fuse is in state okay. This is done 
because the probabilities in the rows where Main fuse is in state blown are all 0 or 1 and 
therefore these distributions are considered to be known. The result from the three methods 
for each of the nodes can be seen in Table 5.6 and 5.8, where the assigned rows of 
probabilities have replaced the generated. The mean values,     , for all three methods and 
nodes are presented in Table 5.9. 

Table 5.4 Weighted sum algorithm used on the node Battery Voltage. Bold 
numbers indicate assigned probabilities. 

  
Battery voltage 

Charging system Battery age strong weak dead 

okay new  0.950 0.040 0.010 

okay old  0.855 0.056 0.089 

okay very old  0.855 0.046 0.099 

faulty new  0.097 0.094 0.809 

faulty old  0.004 0.200 0.796 

faulty very old  0.002 0.100 0.898 
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Table 5.5 The original CPT for the node Voltage at plug from the network Car 
diagnosis 2. 

   
Voltage at plug 

Main fuse Distributer Battery voltage strong weak none 

okay okay strong  0.90 0.05 0.05 

okay okay weak  0.00 0.90 0.10 

okay okay dead  0.00 0.00 1.00 

okay faulty strong  0.10 0.10 0.80 

okay faulty weak  0.00 0.10 0.90 

okay faulty dead  0.00 0.00 1.00 

blown okay strong  0.00 0.00 1.00 

blown okay weak  0.00 0.00 1.00 

blown okay dead  0.00 0.00 1.00 

blown faulty strong  0.00 0.00 1.00 

blown faulty weak  0.00 0.00 1.00 

blown faulty dead  0.00 0.00 1.00 

 

Table 5.6 The resulting CPTs from the three methods used on the node Voltage at 
plug. Bold numbers indicate assigned probabilities. 

Likelihood EBBN Weighted sum 

strong weak none strong weak none strong weak none 

 0.992 0.008 0.000  0.900 0.050 0.050  0.900 0.050 0.050 

 0.100 0.800 0.100  0.000 0.900 0.100  0.000 0.900 0.100 

 0.000 0.008 0.992  0.169 0.422 0.409  0.450 0.025 0.525 

 0.003 0.201 0.796  0.319 0.430 0.251  0.450 0.025 0.525 

 0.000 0.000 1.000  0.000 0.375 0.625  0.000 0.450 0.550 

 0.000 0.000 1.000  0.000 0.000 1.000  0.000 0.000 1.000 

 0.000 0.000 1.000  0.000 0.000 1.000  0.000 0.000 1.000 

 0.000 0.000 1.000  0.000 0.000 1.000  0.000 0.000 1.000 

 0.000 0.000 1.000  0.000 0.000 1.000  0.000 0.000 1.000 

 0.000 0.000 1.000  0.000 0.000 1.000  0.000 0.000 1.000 

 0.000 0.000 1.000  0.000 0.000 1.000  0.000 0.000 1.000 

 0.000 0.000 1.000  0.000 0.000 1.000  0.000 0.000 1.000 
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Table 5.8 The mean of the absolute difference between the node's original CPT 
and the method's generated CPT. 

 Likelihood EBBN Weighted sum 

Battery voltage 0.054 0.085 0.062 

Voltage at plug 0.045 0.157 0.131 
Cardiac output 0.082 0.193 0.220 

 

 
Table 5.7 The original CPT for the node Cardiac output from the network ALARM. 

 

 
  Cardiac output 

Heart rate Stroke volume low normal high 

low low 0.98 0.01 0.01 

low normal 0.95 0.04 0.01 

low high 0.30 0.69 0.01 

normal low 0.95 0.04 0.01 

normal normal 0.04 0.95 0.01 

normal high 0.01 0.30 0.69 

high low 0.80 0.19 0.01 

high normal 0.01 0.04 0.95 

high high 0.01 0.01 0.98 

 

 
Table 5.9 The resulting CPTs from the three methods used on the node Cardiac output. 

Bold numbers indicate assigned probabilities. 

Likelihood EBBN Weighted sum 

Low Normal High Low Normal High Low Normal High 

 0.999 0.001 0.000  0.980 0.010 0.010  0.755 0.235 0.010 

 0.945 0.055 0.000  0.304 0.611 0.085  0.118 0.872 0.010 

 0.342 0.636 0.022  0.096 0.417 0.487  0.300 0.690 0.010 

 0.871 0.129 0.000  0.556 0.402 0.042  0.950 0.040 0.010 

 0.113 0.662 0.225  0.040 0.950 0.010  0.040 0.950 0.010 

 0.000 0.003 0.997  0.020 0.339 0.641  0.010 0.300 0.690 

 0.681 0.318 0.001  0.197 0.543 0.260  0.800 0.190 0.010 

 0.012 0.225 0.763  0.025 0.464 0.511  0.268 0.722 0.010 

 0.000 0.000 1.000  0.010 0.010 0.980  0.450 0.540 0.010 

 



24        Modelling Expert Judgement into a Bayesian Belief Network  
 
 
 

5.4 Discussion 

Of the three methods used for elicitation of a single probability the probability scale is 
considered the best method. This method helps with systemising the elicitation process and 
the scale can be designed according to the type of probabilities in the network. Although it 
may be difficult to design a suitable scale for some networks, the other two methods have 
even greater disadvantages; the gamble-like methods because they are hard to learn for an 
expert and the probability wheel because of its lack of eliciting high and low probabilities. 
 
A general conclusion for the three methods that elicit full CPTs is that they generate more 
correct CPTs if the probabilities in each child state do not shift too much between high and 
low probabilities. Another finding for these methods is that an expert must check to see if 
there are any obvious errors in the generated CPTs and if there are, change these according 
to his opinion. This replacement also has to take place if the generated probabilities are not 
the same as the assigned probabilities. For small CPTs these methods might not shorten the 
elicitation procedure but they can still be useful if: 
 

- the expert is uncertain of assessing specific probabilities and feels more confident 
in assessing weights for the child and parent states, then he could use the 
likelihood method. 

- the expert is certain of some probabilities and uncertain of others, then the EBBN 
method or the weighted sum algorithm can be used. 

 
A last conclusion is that the person that performs the elicitation, with the help of an expert, 
must be well versed in the methods he chooses to use in the elicitation process. 
 
To determine which of the three methods that is best at generating full CPTs the mean of the 
absolute difference is compared and each generated probability is compared with the original 
probability. In Table 5.9 it can be seen that the likelihood method produced the lowest mean 
for all three nodes, which implies that it is the best one to use. Another advantage of the 
likelihood method is that it handles situations where probabilities in each child state shift 
between high and low probabilities better than the other two methods. The EBBN method's 
inability to handle these situations can clearly be seen when comparing the probabilities in 
Table 5.1 and 5.3. A comparison between the EBBN method and the weighted sum 
algorithm shows that the latter gives lower mean. This might be due to the fact that the 
expert sometimes has to assign more probabilities in the weighted sum algorithm and 
therefore more generated probabilities have been replaced resulting in a lower mean.  
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6. SENSITIVITY ANALYSIS 

Sensitivity analysis is a technique to investigate how much a mathematical model's inputs, 
when varied, affects the model's output. In a BBN, the inputs can be seen either as states of 
observable nodes or as the probabilities in the conditional probability tables and the output is 
the probability of the state of interest. Consequently, one can distinguish between two 
different sensitivities: 
 

- sensitivities oriented to findings, i.e. observations, 
- sensitivities oriented to network parameters, i.e. the probabilities in the CPTs. 

 
By studying these two kinds of sensitivities in a BBN the constructor of the network will be 
aware of which observable nodes and parameters that are critical for the network. The two 
sensitivity analyses are often done separately and when investigating the network's reliability 
both need to be considered. [28]  

 

6.1 Sensitivity to findings 

Based on the concept of d-separation, see Section 2.3.1, it can be determined by only 
looking at the structure of the network if an observable node, given evidence, has any 
influence on a node of interest. Together with an expert one can check if this information is 
consistent with his intuition of how the network should work.  
 
If an observable node,   , is not d-separated from the node of interest,   , the influence can 
be quantified through entropy reduction. [5] Entropy,      , is a measure of how scattered 

the probability mass is between the states in    and is calculated as 
 

       ∑               

     

 

 
[3].       is the entropy of    before any new findings and the effect of an observation in    

can be measured through entropy reduction,  , 
 

            |     ∑∑
                    

          
    

  

 
where      |    is the entropy of    given new findings from    [29]. Entropy reduction can 

be calculated in Netica which also ranks the nodes based on their value of  . By performing 
this analysis it is possible to identify if a node is either too sensitive or insensitive to other 
nodes given different sets of observations. The result of the analysis could assure the 
constructor that the network's structure is correct or highlight errors in the network structure 
or CPTs. [5] It may also be worth considering the usefulness of nodes with less important 
inputs, even contemplating if they should be rejected from the BBN [28]. 

 

6.2 Sensitivity to parameters 

Using experts' beliefs to define probabilities will inevitably result in inaccurate assessments 
and in a BBN these inaccuracies affect the reliability of the network's output. Sensitivity to 
parameters can be used to identify how uncertainties in parameters influence the output 
probabilities, i.e. the output robustness. [12]   
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If uncertainty in a parameter has large impact on the network this represents a probability 
where the accuracy is important. Consequently, rough estimates of all probabilities in the 
CPTs are sufficient as first assignments and sensitivity analysis will reveal probabilities that 
need to be assigned more accurate. [30] 
 
Depending on the number of inputs varied, a sensitivity analysis to parameters can be either 
a one-way analysis or an n-way analysis. A one-way analysis implies that only one of the 
model inputs is varied whilst the others are fixed. In an n-way analysis the effect of varying n 
inputs is considered. [31]  
 
When performing a one-way sensitivity analysis on the network's parameters one can study 
how a probability of interest (output value) is affected by varying a parameter. How sensitive 
an output is to uncertainties in a parameter depends on the certain case, i.e. current states of 
all observable nodes. [28] This means that in order to make a full scale sensitivity analysis 
for each output probability of interest; for every possible case the sensitivity is calculated for 
each parameter in the network. However, this straightforward sensitivity analysis is very time-
consuming. One way to reduce the computations is to first ask experts in the field which 
parameters that are expected to be influential and focus primarily on these parameters. To 
further limit the computations, for each specific case, only the nodes in the sensitivity set, 
Section 6.2.1, are studied. [10] 
 
For each parameter belonging to a node in the sensitivity set the probability of interest is 
related as a quotient, called sensitivity function, of two linear functions to the parameter 
under study, Section 6.2.2 [12]. By using the sensitivity function the influence a parameter 
has on a probability of interest can be quantified by calculating the sensitivity value and the 
vertex proximity, Section 6.2.3 and 6.2.4 [31]. 

 
6.2.1 Sensitivity set 

A sensitivity set consists of those, and only those, nodes where variation in the parameters 
may influence the network's probability of interest. The definition of a sensitivity set is based 
on the concept of d-separation, see Section 2.4.1, and is stated below. 
 
Definition 6.1. Let           be a BBN. Let         be the network's node of interest and 

let        be the set of observed nodes. Now, let    be the digraph that is constructed 

from   by adding an auxiliary predecessor    to every node        . Then, the sensitivity 

set for    given  , denoted          , is the set of all nodes    for which ¬⟨      |   |    ⟩  
 . 

 
The definition of sensitivity set may need some clarification. The auxiliary predecessor    is 

used to represent inaccuracy in   's assessment. If    is not d-separated from the node of 
interest,   , then    belongs to the sensitivity set for that specific case of observed nodes. 

[12] Figure 6.1 shows an example when    and    don't belong to the sensitivity set for the 
node of interest,   , since their auxiliary predecessors    and    are d-separated from   . 
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6.2.2 Sensitivity functions 

A sensitivity function provides a way of studying how variation in a parameter,  , affects a 

probability of interest,  . The parameter under study is       |        , where    is a 

state of a node   and   is a combination of states of the parents of  . The probability of 
interest is       |  , where    is a specific state of the node of interest and   is the set of 
observations.  
 

When varying a parameter   the other parameters of the same distribution,  (  | )    , 

must be co-varied so that the parameters sum to one. Keeping the sum to one is 

accomplished by, if   with an original value of    is varied to the value   , letting each of the 

other parameters  (  | ) vary as follows 

 

 ̂(  | )   (  | )  
    

    
  

 

where  ̂(  | ) are the co-varied parameters and this is called proportional co-variation.  

 
If the parameters are proportionally co-varied the sensitivity function,      , which describes 

how   varies with   takes the form 
 

       
      
      

 
      

    
. 

 

[31] The sensitivity function reduces to a linear function, i.e.     ,  if the parameter under 
study belongs to a node that is an ancestor of the node of interest and the parameter's node 
has no observed descendants. Also if there are no observations; the probability of interest is 
linearly related to all parameters in the sensitivity set. The constants in a linear sensitivity 
function can be determined by computing the probability of interest for two different values of 

the parameter   and then solving a simple linear equation system. 
 
If the sensitivity function is not linear it can be observed as a fragment of a rectangular 
hyperbola, see Figure 6.2. The constants in a hyperbolic sensitivity function can be 
determined by computing the probability of interest for three different values of  . A 
rectangular hyperbola takes the general form 
 

𝑋  𝑋  

𝑋𝑟 

𝑋  

𝑍𝑟 

𝑍  

𝑍  𝑍  

Figure 6.1 A BBN where 𝑋  is observed (grey), auxiliary predecessors are added to 
the network and 𝑋𝑟 is the node of interest. A red circle represents a node 
that belongs to the sensitivity set. 
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where for a hyperbolic sensitivity function, the constants are 
 

             and          . 
[12] 

 
6.2.3 Sensitivity value 

The derivative of the sensitivity function can be used as a measure of how infinitesimally 
small shifts in the parameter under study affects the probability of interest. This measure is 
called the sensitivity value of   and   and it is defined as the absolute value of the first 

derivative of the sensitivity function at the original value,   , of  .  
 

   |      |  
       

       
 
 

 
is the sensitivity value of a hyperbolic sensitivity function and 
 

   |      |   
  
  

 

 
is the sensitivity value of a linear sensitivity function. According to the literature; parameters 
with a sensitivity value larger than one need further attention and the accuracy of these 
parameters are of importance for the network [32]. 
 
When studying a probability of interest the sensitivity value can be calculated for all the 
parameters in the sensitivity set for all possible cases. However, this can be very time 
consuming and thus an upper bound on the sensitivity value can be used to reduce the 
number of computations. The upper bound for    and the original value of the output 
probability,   , is 
 

 
Figure 6.2 A rectangular hyperbola where in each quadrant a 

sensitivity function is illustrated. 
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|      |  
        

        
 

 
and it is based on the so called bounding functions, see [31] for more details. In Figure 6.3 

the upper bound as a function of    and    is plotted. Figure 6.3 can be used for identification 
of which combinations of     and    that could result in high sensitivity values. Hence, it is 
also possible to identify parameters that will have small sensitivity values for all cases, i.e. all 
possible values of   . This means that it is not necessary to calculate the actual sensitivity 
value of these parameters and thus the number of computations is reduced. [31]  
 
In Figure 6.4 the upper bound as a function of    and    can be seen from above and the 
black parts indicate functional values lower than 1.01. This plot implies that parameters close 
to 0.5 will have a maximum sensitivity value smaller than 1.01 for all possible output 

probabilities   . The black shape in the in Figure 6.4 would be even more narrow for a lower 
limit than 1.01 and a limit lower than one would induce a gap in the middle of the black 
shape. 

 

 
Figure 6.4 The upper bound as a function of    and    

plotted for 0.05       0.95. 
 

 

 
Figure 6.3 The upper bound as a function of    and    

seen from above. The black parts 
indicate functional values lower than 
1.01. 
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If the sensitivity function is linear, the maximum sensitivity value is one [31]. Worth noting is 
that for a linear sensitivity function, if     1, it directly reflects the uncertainty of the 
parameter in the output. This means that independently of the size of the shift of a parameter 
the output probability is shifted the same amount, i.e. if the parameter is shifted 0.2 so is the 
output. For a linear function, a sensitivity value equal to one also implies that either       

or        . 
 
6.2.4 Vertex proximity 

The assessed probabilities in a CPT may be very uncertain and to study only infinitesimally 
small shifts in the parameters is then not enough. If the relation between the output and the 
parameter is a linear function the sensitivity value remains the same for larger parameter 
shifts. But if the sensitivity function is hyperbolic the sensitivity value could change 
significantly for larger shifts. Thus, another measure, which looks at larger shifts of 
parameters, is needed to quantify the sensitivity of the output probabilities. A technique for 
this is to find the   for which the sensitivity value is equal to one and use that as a measure 
of the shift from large sensitivity values to small ones and vice versa. The point is called the 
vertex of the hyperbola branch under study and can easily be computed from the constants 
of the sensitivity function using 
 

   {
  √| |       

  √| |       
. 

 
The original value of the parameter,   , and    can be compared and the conclusion that can 
be made depends on the type of hyperbolic function that the sensitivity function represents. 
 
In Figure 6.2 one can see that the absolute value of the derivative of the functions in the 

second- and third-quadrant, i.e.   1, is increasing. Which means that if    is smaller than    
but quite close to it, it can be indicative of possibly significant effects of variation of the 

parameter to larger values. With the same reasoning, for functions where    0, and if    is 
larger than    but quite close to it, it can be an indication that, if the parameter is shifted to a 
smaller value, it affects the output probability significantly. [31]  
 
Further, it is not interesting to calculate the vertex if the sensitivity value is larger than one, 
since the output is already considered to be sensitive to the value of the parameter. 

 

6.3 An illustrative example of sensitivity analysis 

A quite thorough sensitivity analysis is done on a BBN, available through Netica [15], called 
Car Diagnosis 2 and the network can be seen in Figure 6.5. This example is meant to show 
how a sensitivity analysis can be done and the usefulness of the analysis. First, rough 
estimates are assigned in the CPTs. Throughout the sensitivity analysis some of the 
estimates are replaced by the probabilities given by the original network, which are assumed 
to be the correct probabilities. After a replacement, the parameter is excluded from the rest of 
the sensitivity analysis. This procedure, showing how a sensitivity analysis works, is inspired 
by Coupé et al [30].  
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6.3.1 Problem set up 

The likelihood method is considered to be the best method of the ones studied in Section 5.2 
and it is used to generate rough estimates of the parameters in the two nodes Voltage at 
Plug and Battery Voltage. For the rest of the nodes, a random number is generated between 
0 and 0.2 for each row in each original CPT. The first parameter in a row is then changed as 
much as the generated number and the parameter is increased if the original value is below 
0.5 and decreased otherwise. Remaining parameters in the row are decreased respectively 
increased uniformly.  
 
If the original parameters in a row are all either 0 or 1, this is considered to represent a 
situation when the expert is certain of a probability distribution. These probabilities are kept 
and the row is excluded from the sensitivity analysis. For the same reason all parameters 
with a value of 0 are kept and excluded from the analysis. 
 
The state probabilities in three nodes; Car Starts, Starter System and Voltage at Plug, are 
used as output of interest for this sensitivity analysis. Car Starts is chosen on the basis that 
it's the final output of the network and the main interest. The other two nodes are chosen 
since they both connect different parts of the network. The selection of the nodes has been 
inspired by the nodes of interest in the BBN developed within RASTEP. 

 
6.3.2 Sensitivity to findings 

Sensitivity to findings is done in Netica and the result, for all three nodes of interest, using no 
observations is that the entropy reduction, see Section 6.1, is equal to zero for the nodes 
Headlights and Gas Tank. Studying the CPTs of those nodes and the CPT of the node Fuel 
System confirms that Headlights and Gas Tank have no impact on the rest of the network. 
Therefore these two nodes are removed from the network. If an expert is at hand when 
performing sensitivity to findings a more thorough analysis can be done. 
 

 
Figure 6.5 The network Car Diagnosis 2. 
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6.3.3 Sensitivity to parameters 

At the beginning of this analysis the network consists of 57 rows with estimated parameters 
making it a total of 127 parameters. If a row has two parameters they will result in the same 
sensitivity value since the parameters will be varied with the same amount and therefore only 
half of the parameters in the binary nodes are studied. There is no symmetry in the sensitivity 
values for nodes with more than two states and all parameters in these nodes need to be 
included in the sensitivity analysis. This results in a sensitivity analysis where 80 parameters 
are studied.  
 
The analysis is done in three stages, one for each node of interest, and in each stage five 
cases with three observed states and one case with no observations are studied. The cases 
are both randomly generated and chosen with the aim to produce interesting types of 
sensitivity sets. The node Spark quality is excluded from the analysis since it is a 
deterministic node. 
 
For each case with observed nodes the number of studied probabilities is reduced to the 
number of parameters in the nodes in the sensitivity set. The number of parameters is further 
reduced if a node in the sensitivity set has an observed parent since only the parameters 
belonging to a parental combination with the observed state need to be studied. 
 
In a first stage of sensitivity analysis to parameters the probability of the state true in node 
Car Starts is used as an output probability of interest. For each case the sensitivity set is 

found and the sensitivity values,   , and vertexes,   , are computed. After all six cases have 
been analysed the maximum sensitivity value of each parameter is found. Very few 
sensitivity values are larger than one and therefore it is decided that all parameters with      
0.3 should be replaced with the original probabilities. Since the sum of a row in a CPT must 
sum to one the entire row of a parameter with      0.3 must be replaced and the total 
number of changed parameters is 13, see Table 6.1. 

 

 
In the second stage the state okay in Starter system was used as output probability of 
interest. Sensitivity values larger than 0.3 are again considered to represent parameters that 
should be replaced and another 14 parameters are changed, see Table 6.2. 

 
 
 
 
 
 
 
 
 

Table 6.1 Result of the first stage of sensitivity analysis 
to parameters. 

 

Number of parameters 
with      0.3 

7 

Number of rows changed 6 

Total number of changed 
parameters 

13 
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In the third stage all the three states in the node Voltage at plug are used as output 
probabilities and studied at the same time. Demonstrations of two different cases, Case 1 
and Case 2, can be seen in Figures 6.6 and 6.7. In the figures the node of interest, the 
observations and the sensitivity sets are shown in different colours. The sensitivity function 
with the output probability                             as a function of the parameter 
                           |                                                 
        is plotted for both cases in Figure 6.8. In Case 1 the sensitivity function is linear since 
the node Voltage at plug has no observed descendants. Since Car starts is observed in Case 
2 the sensitivity function for the same output and parameter becomes hyperbolic. 
 

 

Table 6.2 Result of the second stage of sensitivity 
analysis to parameters. 

 

Number of parameters 
with      0.3 

8 

Number of rows changed 6 

Total number of changed 
parameters 

14 

 

 
Figure 6.6 The network Car Diagnosis 2 - Case 1. Green represents the node of 

interest, grey represents an observed node and a red border indicates a 
node that belongs to the sensitivity set.   
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For hyperbolic sensitivity functions the vertexes are calculated, see Section 6.2.4, in order to 
study what happens if larger parameter shifts are made. Throughout the sensitivity analysis 

 
Figure 6.7 The network Car Diagnosis 2 - Case 2. Green represents the node of 

interest, grey represents an observed node and a red border indicates a 
node that belongs to the sensitivity set.   

 

 
Figure 6.8 The sensitivity function with the output probability 

                            as a function of the parameter 

                           |                            
                            . Case 1 to the left and Case 2 to the 
right. 
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of this network only a handful calculated vertexes are in the range 0        1 which are the 
only ones of interest since a parameter only can take values in that range. In Case 2 when 
the parameter                       is studied together with the output probability 
                          the vertex is     0.88. In Figure 6.9 the hyperbolic sensitivity 

function can be seen where the red dot is     0.81 and the green line represents the vertex. 
In this plot it can be seen that if the original value of the parameter would increase the 
sensitivity value, i.e. the derivative of the sensitivity function, would be larger and for a 
parameter value larger than the vertex the sensitivity value becomes larger than 1. The 
conclusion is that, although    = 0.85 for   , the sensitivity value for this parameter and 
output probability should be considered to be larger than 1. 
 

 
The resulting changes after sensitivity analysis with respect to the output probabilities in the 
node Voltage at plug can be seen in Table 6.3. It should be noted that the maximum 
sensitivity value of all output probabilities is considered.  
 

 
 
 
 
 
 
 
 
 
 

Table 6.3 Result of the third stage of sensitivity 
analysis to parameters. 

 

Number of parameters 

with      0.3 
10 

Number of rows changed 6 

Total number of changed 
parameters 

14 

 

 
Figure 6.9 The sensitivity function with the output probability 

                          as a function of 

the parameter                      . Red 

dot is     0.81 and the green line represents 
the vertex     0.88. 
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Table 6.5 shows the resulting output probabilities after each stage. The results after stage 
three are compared with the original values and one can see that there is still room for 
improvement. Therefore a fourth stage of sensitivity analysis is carried out with Car Starts as 
node of interest since it is considered to be the most interesting node in this network. Three 
cases are studied in this stage and as expected the sensitivity values are relatively lower in 
this stage compared to the other stages. The reason for this is that many parameters have 
already been changed and are not included in the further analysis. Although only the six 
parameters with a       0.1 are replaced, see Table 6.4, the resulting output probabilities 
are closer to the original, see the result of stage three and four in Table 6.5. 
 

 
A total of 24 rows with estimated parameters are replaced with the original probabilities in the 
sensitivity analysis. This means that even though more than half of the rows have rough 
estimates of the parameters the output probabilities are fairly close to the original. 

 
6.3.4 Discussion 

As mentioned in Section 6.2.3 parameters with a sensitivity value larger than one need 
further attention. In the sensitivity analysis of the network Car Diagnosis 2 very few sensitivity 
values were larger than 1 and therefore a lower limit was used to identify parameters that 
had significant impact on the output. Another way of determining the parameters that need 
further attention is to simply replace a specific number of probabilities in each stage. It is 
difficult to give an exact limit or a specific number since it depends on the network under 
study and the magnitude of sensitivity values generated. Regardless of the method to 
determine the parameters whose accuracy is important, the total number of re-estimated 

Table 6.4 Result of the fourth stage of sensitivity 
analysis to parameters. 

 

Number of parameters 
with      0.1 

6 

Number of rows changed 6 

Total number of changed 
parameters 

14 

 

Table 6.5 Output probabilities of the nodes of interest with different amounts of estimated 
parameters. Values in parenthesis indicates the number of estimated rows in 
the CPTs of the network. 

       

Output 
probability 

Only 
rough 

estimates 
(57) 

Result of 
stage 1  

(51) 

Result of 
stage 2 

(45) 

Result of 
stage 3 

(39) 

Result of 
stage 4 

(33) 

Original 
 

(0) 

            
       

0.168 0.192 0.229 0.265 0.298 0.315 

                
       

0.490 0.491 0.580 0.580 0.607 0.647 

                 
         

0.415 0.358 0.368 0.410 0.420 0.422 
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parameters comes down to weigh the time and money to be invested against the benefits of 
higher accuracy [10]. 
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7. VERIFICATION AND VALIDATION 

Before a BBN can be used its ability to model a system and give a reliable output must be 
evaluated. Errors in some parts of the network can be identified both when the structure is 
reviewed and during the sensitivity analysis. However, the network should be further verified 
and validated, preferably with the help of several experts in the field. 
 
The network can be verified by testing if the BBN predictions are in line with results from 
other available sources of information [13]. Experts can help to verify if the behaviour of the 
network is as expected when different observations are given as inputs to the network. 
 
During sensitivity analysis parameters with high influence on the network are identified and 
the probabilities should be more accurately estimated. If for some of these parameters it is 
only possible to give rough estimates it should be evaluated if it is accepted or if the structure 
of the network needs to be revised. 
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8. A BBN IN RASTEP 

A BBN for O3, reactor no. 3 in the nuclear power plant in Oskarshamn, has been developed 
within RASTEP, see Section 2.4. This network contains approximately 90 nodes and it is 
divided into connected segments, see Figure 8.1. The primary output of the network is a 
node that contains a set of possible source terms. Another important node has states with 
possible initiating events whose probabilities are derived from a PSA model. 
 

Although several nodes in the network are deterministic and many nodes have deterministic 
parts in their CPTs, there are more than 200 parameters that need to be assigned. Data is 
not available for all nodes and a large part of these parameters have to be based on expert 
judgements.  
 
Based on the CPTs in the O3 network, recommendations for the probability estimations 
using expert judgements in networks like O3 and similar are given in Section 8.1. A simplified 
sensitivity analysis is done on the developed network and in Section 8.2 it is discussed how 
to perform and continue the analysis. 
 

8.1 Probability estimation 

8.1.1 Elicitation of a single probability  

Of the three elicitation methods, described in Section 5.1, probability wheel and gamble-like 
methods are not suitable for the O3 network. This is because probability wheel can't elicit 
small and large probabilities which are common in the CPTs in the O3 network and since 
gamble-like methods are needlessly complicated for this type of elicitation. Even though 
probability scale can enter bias in the assessments, see Section 5.1.1, it is considered the 
most suitable method for the O3 network. It is an easy and straightforward method for the 
expert to use and it can be designed according to the type of probabilities in the CPTs.  
 
Given the probabilities in the CPTs in the O3 network a scale with appropriate intervals is 
created, see Figure 8.2. The approach the expert should use is to first pick an interval from 
the table and then mark his belief in the corresponding interval on the scale. If the expert 
believes that the probability is in the interval "Almost certain" or "Almost impossible" he is 
asked to mark his belief in a new scale for that specific interval. This is done since these 

 
Figure 8.1 Basic structure of the O3 BBN. [13] 
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intervals are small on the original scale and it can therefore be difficult for the expert to mark 
his assessment. How to determine the probability given the expert's mark on the scale is 
done in the same way for both the original scale and the subscales, see Section 5.1.1 for 
more details. If the expert needs to assess very small probabilities the subscales can be 
enlarged and hence make it easier for the expert to mark his beliefs and for the constructor 
to determine the probability. 
 
The rows in a CPT must sum to 1 (100%) and this is something the constructor of the BBN 
must have in mind when the expert assess probabilities. A way to assure that a row sum to 1 
is to let the expert assess the probabilities of k-1 states of a CPT with k states. The 
probability of the kth state is then calculated as the difference between 1 and the sum of the 
probabilities of the other states. However, this probability must be confirmed by the expert. If 
he disagrees with the result the constructor must ask the expert to rethink the assessments 
that were made for the probabilities of the other states. 
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Figure 8.2 Suggested probability scale for the O3 network, table with probability intervals and    
subscales for the intervals "Almost impossible" and "Almost certain". 

 
 
 
 
 
 
 
 

 
 

Verbal description of the 
possibility of the event 

Probability interval 

Almost certain 99 – 100% 

Probable 90 – 99% 

Expected 70 – 90% 

Reasonable 30 – 70% 

Unexpected 10 – 30% 

Improbable 1 – 10% 

Almost impossible 0 – 1% 

 Probability intervals for the probability scale. 

Scale of the interval 
"Almost certain". 

99 

100 Certain 

Probable 0 

1 Improbable 

Impossible 

Scale of the interval 
"Almost impossible". 
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8.1.2 Elicitation of a full CPT 

By studying the CPTs in the O3 network there are some nodes where the elicitation methods 
in Section 5.2 may be suitable. Although the CPTs in O3 are relatively small the methods 
may be useful if the expert is certain of some probabilities and uncertain of others or if the 
expert doesn't feel confident in assessing specific probabilities.  
 
The likelihood method, see Section 5.2.1, which was considered the best method, is applied 
on two of the nodes in O3;     and    . Descriptions of the two nodes and their parent nodes 

are seen in Table 8.1. 

 
The original CPT of the node     can be seen in Table 8.2 and since the EBBN method and 

the weighted sum algorithm both require at least two parents they can't be used. The 
assignments made, according to the guidelines for two child states in Section 5.2.1, and the 
resulting CPT when applying the likelihood method on the CPT in node      can be seen in 

Table 8.3. Comparing the probabilities in the original CPT and the generated CPT shows that 
this method captures the pattern of the CPT and this is foremost due to the weights of the 
parent node's states in     

. Moreover since all generated probabilities are similar to the 

original the likelihood method works well on these types of CPTs. 
 

 

Table 8.2 The CPT of the node     in the O3 network. 

 
    

   
    

     
  

   
  0.055 0.945 

   
  0.055 0.945 

   
  0.055 0.945 

   
  0.055 0.945 

   
  0.055 0.945 

   
  0.055 0.945 

   
  0.999 0.001 

 

Table 8.1 Description of child and parent nodes from O3 
used for elicitation of full CPTs. 

Node Description 

    
Identification of failure to reclose SRVs after initial 

depressurisation 

    Indication of the likely fuel status 

   
 Designated initiating events 

   
 Indication of core cooling recovery 

  3
 Identification of LOCA size based on indicators 
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For the node     the rows with a parent combination including the state    
  are not estimated 

since the probabilities in these rows are all 0 or 1 and therefore these distributions are 
considered to be known, see Table 8.4. The generated CPT and the assignments made, 
according to the guidelines for three child states in Section 5.2.1, when using the likelihood 
method on this node can be seen in Table 8.5. 

 

 
Since     has two parents the EBBN method can also be used to generate the CPT of the 

node. The method was applied by using the guidelines in Section 5.2.2 and the assignments 
with resulting CPT can be seen in Table 8.6. 

Table 8.4 The CPT of the node     in the O3 network. 

 
 

    

   
   3

    
     

     
  

   
    3

   0.990 0.010 0.000 

   
    3

   0.950 0.010 0.040 

   
    3

   0.500 0.001 0.499 

   
    3

   0.000 0.000 1.000 

   
    3

   0.000 0.000 1.000 

   
    3

   0.000 0.000 1.000 

   
    3

   0.990 0.010 0.000 

   
    3

   0.990 0.010 0.000 

   
    3

   0.990 0.010 0.000 

 

Table 8.3 The resulting CPT of the node 𝑋𝑐  and assignments for the 

likelihood method. 

𝑋𝑐  

𝑥𝑐 
  𝑥𝑐 

  

0.038 0.962 

0.038 0.962 

0.038 0.962 

0.038 0.962 

0.038 0.962 

0.038 0.962 

0.998 0.002 

 

Assignments: 

𝑏   10 

𝑇𝑥𝑐   [0.5  0.5] 

𝛽𝑥𝑐   [-1  1] 

𝛼𝑥𝑝 
  [0.7  0.7  0.7  0.7  0.7  0.7  -1.4] 
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The probabilities generated, by both elicitation methods, for the CPT in     are all roughly the 

same as the original and hence the likelihood method and the EBBN method works well for 
this type of CPT. 

 

8.2 Sensitivity analysis 

8.2.1 Implementation 

For the O3 network, sensitivity to findings requires knowledge about the power plant and is 
therefore recommended to be done by the constructor of the network together with an expert 
who can perform a thorough analysis of the network structure and how the nodes interact. 
However, a short version of sensitivity to parameters is done on the O3 network.  
 
The seven most important output nodes in the O3 network have been given together with 
four realistic cases of observed states. One of the cases is a design case and the other three 
are beyond design cases which are used worldwide within risk analysis. All cases are known 
sequences from PSA (Probabilistic Safety Assessment) executions. It should be noted that 
realistic accidental cases are difficult to define for a nuclear power plant due to the lack of 

Table 8.6 The resulting CPT of the node 𝑋𝑐  and assignments for the EBBN 

method. Bold numbers indicate assigned probabilities. 

𝑋𝑐  

𝑥𝑐 
  𝑥𝑐 

  𝑥𝑐 
  

0.942 0.009 0.048 

0.950 0.010 0.040 

0.500 0.001 0.499 

0.000 0.000 1.000 

0.000 0.000 1.000 

0.000 0.000 1.000 

0.990 0.010 0.000 

0.984 0.010 0.006 

0.907 0.009 0.084 

 

Assignments: 

𝑃 (𝑋𝑐 |𝑎𝑥𝑐 
 )   [0.99  0.01  0.0] 

𝑃 (𝑋𝑐 |𝑎𝑥𝑐 
 )   [0.95  0.01  0.04] 

𝑃 (𝑋𝑐 |𝑎𝑥𝑐 
3 )   [0.5  0.001  0.499] 

𝑤   [0.5  0.5] 

 

Table 8.5 The resulting CPT of the node 𝑋𝑐  and assignments for the 

likelihood method. 

𝑋𝑐  

𝑥𝑐 
  𝑥𝑐 

  𝑥𝑐 
  

0.9580 0.0040 0.0380 

0.9040 0.0060 0.0900 

0.4950 0.0100 0.4950 

0.0000 0.0000 1.0000 

0.0000 0.0000 1.0000 

0.0000 0.0000 1.0000 

0.9996 0.0003 0.0001 

0.9992 0.0004 0.0004 

0.9948 0.0013 0.0039 

 

Assignments: 

𝑏   10 

𝑇𝑥𝑐 
  [0.495  0.01  0.495] 

𝛽𝑥𝑐 
  [1  0  -1] 

𝛼𝑥𝑝 
  [0.8  2] 

𝛼𝑥𝑝3
  [-0.1  -0.3  -0.8] 
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data. When defining cases for a nuclear power plant one also has to consider which time 
point, after failure of one or more systems, the cases should represent.  
 
Despite the size of the network, since it is divided into segments, it is rather easy to 
determine the sensitivity set, see Section 6.2.1, for each case and output node. Many of the 
observable nodes are not given findings in these four cases and it is noted that several of 
these nodes only could be included in a sensitivity set if they are observed. Therefore 
additional realistic cases are created by adding more findings to the original four cases by 
the help of an expert. This is done by letting the expert consider the original cases with its 
specific set of observations and for each case a time point after failure is chosen. Based on 
the time point and the original case the expert gives his opinion about what state the 
unobserved nodes should be in. For the nodes of which the expert is certain about their 
states, additional observations are added. With this information it is possible to create more 
cases either with all of the observations given by the expert or with just some of them added. 
 
One way of reducing the number of calculations in the sensitivity analysis is to start by 
excluding parameters with specific probabilities which could be done by studying the upper 
bound of the sensitivity value for a parameter, see Figure 6.3 and 6.4 in Section 6.2.3. 
However, since most of the parameters are outside the range of 0.45-0.55 in the O3 network 
it is not useful for this kind of network. 
 
8.2.2 Result and conclusions 

The result from performing a sensitivity analysis with seven output nodes and the four 
original cases is that 52 parameters out of 211 have sensitivity values larger than zero. Out 
of these parameters 13 have a maximum sensitivity value larger than or equal to one and the 
largest value found is 1156. It is concluded based on literature, see Section 6.2.3, that these 
parameters are considered as parameters were the accuracy is important and it results in 
eight probability distributions that need further attention. 
 
For a further analysis of the primary output node, five additional cases are created by adding 
observations to the original cases. The output node with initiating events as states is also 
studied for two additional cases. In this analysis another four parameters have sensitivity 
values larger than one and with the same reasoning as above this results in four additional 
distributions where the accuracy is important. 
 
This short analysis shows that at least twelve probability distributions in the O3 network 
require a high level of accuracy in order for the network to be robust. If a further analysis 
were to be done by creating more cases, it could possibly give indications of more 
parameters with sensitivity values larger than one. 
 
From this analysis it is concluded that the node with different source terms as states is most 
sensitive to the parameters in nodes with the following description; designated initiating 
events, availability of system 327, water level in the condensation pool, indication if drywell 
sprinkling with the system "322 independent" is available and the hydrogen content in the 
containment. For the node with initiating events as states the values of its own parameters 
and in the node describing the availability of system 327 have a significant impact on the 
output. 
 
It is difficult to say if distributions belonging to parameters with    lower than one should be 

further studied or not, as mentioned before some of the literature point out    > 1 as limit. 
But as confirmed in the example in Section 6.3, it is worth to improve the accuracy of 
parameters with    lower than 1 as well since as a total it affected the output probability 
significantly. Nevertheless, it depends on the specific network and the range of the sensitivity 
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values calculated. In the view of the fact that the O3 network has 211 parameters and less 
than 10% of them have      1 it seems reasonable to consider the accuracy of more 
parameters. If one want to consider 15% of the parameters with the highest sensitivity value 

it would result in the parameters with      0.7 which still is a quite large value.  
 
For the O3 network it can be useful to study parameters with low sensitivity values and a 
probability value close to vertex, see Section 6.2.4. In this analysis of the network this 

situation appeared a few times and one example, where     0.3, can be seen in Figure 8.1. 
The figure shows the hyperbolic sensitivity function for a parameter with an original value of 
0.69 and a vertex with value 0.84. In this specific situation it means that a shift of about 0.15 
to a larger parameter value implies that the parameter actually has significant impact on the 
output probability. 

It is worth noting that for some parameters and output probabilities in the O3 network, where 
the sensitivity functions are linear, the sensitivity values are very close to or equal to one. 
This means that as much as the parameter is shifted the same amount is the output 
probability shifted, which is an obvious measure of how the parameter affects the output. 
 
A property of many of the used cases is that although some nodes are part of the sensitivity 
set the sensitivity values of their parameters are zero. This may be due to the fact that some 
unobserved nodes, particularly deterministic nodes, are largely affected by the observed 
nodes and the probability of one of the states in the unobserved node becomes very close to 
or equal to 1. This could prevent changes in the network parameters to propagate through 
the network to the node of interest and hence the sensitivity value becomes very small or 
equal to zero. This indicates that more cases with different observations may be needed for a 
full analysis of the network. 
 
For the cases that have been studied it is more or less the same parameters that have 
sensitivity values larger than zero for all cases. The exception is nodes that have no child 
nodes which only are part of the sensitivity set if they are observed. This is another reason 
that additional cases should be studied in order to find the parameters that have the highest 
impact on the output probabilities in the O3 network. Exactly how many cases one should 
use is hard to say and no specific guidelines are found in the literature. In the sensitivity 
analysis done in [28], where a similar network to O3 is analysed, 117 realistic but randomly 
chosen cases were used. In [30] however, only five cases were used to get a descent result. 
The more cases used increase the chance of finding all the most important parts of the 

 
Figure 8.2 The sensitivity function for one of the output probabilities as a function of 

one of the parameters. Red dot is     0.69 and the green line 
represents the vertex     0.84. 
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network but it is time consuming. So the conclusion is that the constructor of the network 
should continue with the analysis until he is confident with the reliability of the network. 
 
For the further analysis of the O3 network it is recommended to only study two of the most 
important output nodes; the node that contains a set of possible source terms and the node 
that has states with possible initiating events. The reason for this is that from the sensitivity 
analysis done it is concluded that the other output nodes do not provide any additional 
information about the impact of different parameters. 
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9. PROPOSED METHOD 

The proposed method for including experts' beliefs in the CPTs of a BBN can be seen in 
Figure 9.1. The aim has been to create a method that results in a reliable network even 
though expert beliefs, which are uncertain sources, have been used. First the structure of the 
network should be studied to see if it can be modified in order to make the assessments of 
the probabilities easier. Estimation of probabilities can be divided into three groups and 
regardless of which method that is used rough estimates of the probabilities are sufficient as 
a first assignment. Rough estimates are good enough since running a sensitivity analysis on 
the network will reveal which parameters have large affect on output probabilities of interest 
and thus need to be more accurately estimated. Sensitivity analysis may also lead to 
modification of the network's structure. Verification and validation of the network is the last 
part of the method. The four parts of the method are performed iteratively until the network is 
robust and reliable. 

 

9.1 Network structure 

After the structure of a BBN has been constructed it can be studied if some modifications can 
be made to ease the assignment of probabilities. The network can be modified through the 
technique of node divorcing, which implies that a node is introduced between a child node 
and some of its parents, resulting in fewer probabilities to assign, see Section 4.  

 
Figure 9.1 Proposed method. 
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9.2 Probability estimation 

In the second part of the method probabilities in the network's CPTs are estimated. These 
assignments can be done in three different ways, as is shown in Figure 9.1. The probabilities 
can be estimated from data or if there are no known data experts' beliefs are used to assess 
the probabilities. 
 
Assessing probabilities with the help of experts can be done through elicitation and for the 
proposed method there are two kinds of elicitation procedures; elicitation of a single 
probability and elicitation of a full CPT. Procedures for elicitation of a single probability are 
foremost ways of systemising the assessment of probabilities and helping the expert to 
express his beliefs in probabilities. Single probabilities can be elicited either by letting the 
expert assign the probabilities directly or by an indirect method where the expert make a 
decision from which his belief is inferred, see Section 5.1.  
 
Elicitation methods for generating a full CPT are the other kind of elicitation procedures and 
their purpose is to use fewer assignments to assess a full CPT, thus making it more time 
efficient. Three different elicitation methods that are not restricted to binary nodes are 
likelihood method, EBBN method and weighted sum algorithm and have been discussed in 
Section 5.2. These elicitation methods require different types of assignments. The likelihood 
method requires the expert to assess weights for the states in the child node of interest and 
the states of its parent nodes based on a typical probability distribution of the child states. 
The other two methods require the expert to assess probabilities for some of the rows in the 
CPT and weights for the parent nodes. The elicitation methods of a full CPT can be used if 
the expert feels more confident determining these types of different assignments instead of 
single probabilities although the time of the elicitation procedure won't be significantly 
reduced. 
 
The choice of elicitation method depends on the structure of the CPT, e.g. how many parent 
states, and on the expert's ability to assign probabilities or weights. Guidelines for when and 
how to use each method is found in Section 5.2.1-5.2.3. 
 

9.3 Sensitivity analysis 

In this part of the proposed method a sensitivity analysis is performed. This is a technique to 
study how states of observable nodes and probabilities in CPTs affect the probability of a 
state of interest. The analysis can be distinguished between two different sensitivities; 
sensitivity to findings and sensitivity to parameters.  
 
Sensitivity to findings is based on the concept of d-separation, see Section 2.3.1, and can 
determine if a node, given an observation, has influence on a node of interest. If it has, 
entropy reduction can be used to quantify the influence. The result of this analysis may 
require the structure of the network to be reconsidered and imply that single probabilities 
should be re-estimated, see Section 6.1. 
 
Sensitivity to parameters is used to identify how uncertainties in the parameters, i.e. the 
probabilities in a CPT, affect an output probability. The influence a parameter has on an 
output probability can be quantified by using the sensitivity function to calculate the sensitivity 
value, see Section 6.2. A high sensitivity value indicates that the parameter has a high 
influence on the output probability and thus it is of importance that the parameter is assessed 
with high accuracy. The demand of high certainty in the parameters may lead to re-
estimation of some parameters after sensitivity to parameters has been performed. After re-
estimating parameters a new sensitivity analysis should be performed to see if there are 
other parameters that result in high sensitivity values. The determination of when the 
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parameters are sufficiently accurate is a weigh between the time and money to be invested 
and the benefits of higher accuracy. 
 
By studying these two kinds of sensitivities in a BBN the constructor of the network will be 
aware of which observable nodes and parameters are critical for the network. The two 
sensitivity analyses are often done separately but when investigating the network's reliability 
both should be considered. 
 

9.4 Verification and validation 

Before a BBN can be used its ability to model a system and give a reliable output must be 
evaluated. The network can be verified either by comparison with data or by the help of 
experts. If the result is not satisfying a revision of either the network structure or the 
probability estimation may be required. 
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10. DISCUSSION 

The iterative method that is proposed has the ability to produce a relevant and defendable 
set of conditional probabilities in a BBN even though expert judgement is included in the 
assessments.   
 
The use of the elicitation methods described, either elicitation of single probabilities or of full 
CPTs, gives a systematic way to include expert beliefs in the network. If the expert is 
uncomfortable in assigning specific probabilities a method that generates a full CPT is 
recommended. The advantage is that it better reflects the expert's knowledge of the 
causalities in the network and therefore is more defendable to use. A drawback with the full 
CPT methods is that the complexity of the methods requires the constructor to be well versed 
in their implementation. 
 
The gain of performing sensitivity analysis, although it may be time consuming, is that in a 
large part of the parameters rough estimates are acceptable to use. Since sensitivity analysis 
puts focus on the most essential parts of the network, where accuracy in the probabilities is 
important, the resulting BBN is reliable although rough estimates are included. If the 
sensitivity analysis indicates that parameters, for which only rough estimates are possible to 
assess, have high sensitivity values the constructor has to consider the required reliability of 
the network. The constructor may accept these rough estimates and otherwise the structure 
of the network has to be revised.  
 
It has been a challenge to reach a conclusion of which limit for the sensitivity values that 
determines the parameters that needs to be accurately assessed. Parameters with sensitivity 
values larger than one have to be re-estimated if possible. However, it depends on the 
network under study if parameters with lower sensitivity values also should be considered as 
probabilities with high impact on the network. The number of parameters and the range of 
the sensitivity values in the network are of great importance in this decision. 
 
The benefit of following this method is that along the way errors in the network can be 
detected and corrected and in that way prevent the use of an incorrect network. At the same 
time it can be confirmed that the network is correct and strengthen the reliability of the 
network. 
 
For the O3 network it is concluded that the elicitation methods for a full CPT may be applied 
and a probability scale suitable for the O3 network is proposed. Performing sensitivity 
analysis on the O3 network gives information about which parameters that influence the 
prediction of source terms and also the ability of the model to predict initiating events. Since 
only a small percentage of the parameters in O3 have sensitivity values larger than one it 
seems reasonable to consider the accuracy of more parameters. Further it is concluded that 
only two of the most important output nodes are needed to be studied. This since performing 
sensitivity analysis on the other output nodes doesn't give any new valuable information. 
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11. FURTHER WORK 

When investigating a network's reliability both sensitivity to findings and to parameters need 
to be considered. Sensitive to findings have not been performed on the O3 network and it 
needs to be done to reveal how observations in the observable nodes affect the network's 
output. In the short sensitivity to parameters analysis performed, 10% of the parameters in 
the O3 network were identified as parameters where the accuracy is important. However, it is 
recommended to continue the sensitivity analysis of the network with more cases, which may 
reveal more parameters with significant impact on the network. 
 
For the BBN in RASTEP it should be possible to implement interfaces for the probability 
estimation part. For the probability scale the interface should allow the expert to make his 
marks on the scale and then calculate the probabilities. For the elicitation methods of a full 
CPT an interface lets the expert give his assignments as inputs and it quickly generates the 
CPT so that the expert can confirm the result. 
 
In the real case scenario the user of the BBN in RASTEP may be uncertain about the 
observables that are used as inputs to the network. This situation might call for an interface 
that enables the user to receive information about the effect of the input that he is about to 
give the network. Another suggestion is to let the user assign a probability for an observation, 
i.e. his certainty for this observation being true.  
 
It would be valuable to connect an interface to Netica in order to simplify the sensitivity 
analysis. Given the output of interest the interface would have the ability to calculate the 
sensitivity values for all parameters in the sensitivity set.  
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13. APPENDIX 

Appendix A: Scripts for elicitation methods 

The following Matlab scripts are implementations of the three elicitation methods; Likelihood 
method, EBBN method and Weighted algorithm sum, when applied on the node Battery 
Voltage in the network Car Diagnosis 2. 
 

A.1 
 
% Likelihood method - Battery Voltage 

 

Tx = [1/3 1/3 1/3]; 

beta = [-1 0 1]; 

alpha1 = [-1 1];         

alpha2 = [-.5 0 .5];     

b = 10; 

CPT_BV = [95 4 1; 80 15 5; 60 30 10; 0.8 30 69.2; 0.4 20 79.6;... 

     0.2 10 89.8]; %Original 

  

s = 0; 

cpt = zeros(length(alpha1)*length(alpha2),length(beta)); 

i = 1; 

 

for j = 1: length(alpha1) 

     for k =1:length(alpha2) 

            for l =1:length(beta) 

                cpt(i,l) = b^((alpha1(j)+alpha2(k))*beta(l))*Tx(l); 

            end 

            s = sum(cpt(i,:)); 

            cpt(i,:) = cpt(i,:)/s; 

            i = i + 1; 

    end 

end 

CPT_est = cpt*100 

diff = abs(CPT_est-CPT_BV); %Difference between generated and original 

m = mean(diff(:)) 

 
A.2 
 
% EBBN - Battery Voltage 

 

% Assessments 

 

% 1. S+(CS,BV); S+(BA,BV) 

% Charging system: Okay, Faulty 

% Battery Age: New, Old, Very Old 

% Battery Voltage: Strong, Weak, Dead 

 

% 2.  

Pstrong = [0.95 .04 .01]; %a_strong = okay,new 

Pweak = [0.008 0.3 0.692]; % a_weak = faulty,new 

Pdead = [0.002 0.1 0.898]; % a_dead = faulty, very old 

 

% xc_min = strong, xc_max = dead 
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% a_neg = [okay, new], a_pos = [faulty, very old]; 

 

% 3. 

%P(Xc=xc_max | aneg) 

P_dead_okaynew = 0.01; 

%P(Xc=xc_min | aneg) 

P_strong_okaynew = 0.95; 

 

%P(Xc=xc_max | aneg,k+) 

P_dead_faultynew = 0.692;  %Xk=CS 

P_dead_okayvery = 0.1;  %Xk=BA 

 

%P(Xc=xc_min | aneg,k+) 

P_strong_faultynew = 0.008;    %Xk=CS 

P_strong_okayvery = 0.6;    %Xk=BA 

 

%Compute delta and weights 

dCSp=P_dead_faultynew-P_dead_okaynew; 

dCSm=P_strong_okaynew-P_strong_faultynew; 

dBAp=P_dead_okayvery-P_dead_okaynew; 

dBAm=P_strong_okaynew-P_strong_okayvery; 

 

wCS = 0.5*(dCSp/(dCSp+dBAp)+dCSm/(dCSm+dBAm)); 

wBA = 0.5*(dBAp/(dCSp+dBAp)+dBAm/(dCSm+dBAm)); 

 

% Individual Influence 

i_CS = zeros(2,1); 

i_BA = zeros(3,1); 

 

for i =1: length(i_CS) 

    i_CS(i) = (i-1)/(length(i_CS)-1); 

end 

for i =1: length(i_BA) 

    i_BA(i) = (i-1)/(length(i_BA)-1); 

end 

 

% Joint Influence 

%ij_a for all combinations of parents 

s = (length(i_CS)-1)+(length(i_BA)-1); 

ij = zeros(6,1); 

l = 1; 

for i = 1:length(i_CS) 

    for j = 1:length(i_BA) 

        ij(l) = (i_CS(i)*(i-1)+i_BA(j)*(j-1))/s; 

        l = l+1; 

    end 

end 

 

%ij_a_xc 

ij_okaynew = (i_CS(1)*(1-1)+i_BA(1)*(1-1))/s; 

ij_okayvery = (i_CS(2)*(2-1)+i_BA(1)*(1-1))/s; 

ij_faultyvery = (i_CS(2)*(2-1)+i_BA(3)*(3-1))/s; 

 

% STEP 1 

f_strong = [Pstrong(1) Pweak(1) Pdead(1)]; %f_strong 

f_weak = [Pstrong(2) Pweak(2) Pdead(2)]; %f_weak 

f_dead = [Pstrong(3) Pweak(3) Pdead(3)]; %f_dead 

ij_x = [ij_okaynew ij_okayvery ij_faultyvery]; 

figure 

plot(ij_x,f_strong) 

hold on 
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plot(ij_x,f_weak,'r') 

plot(ij_x,f_dead,'g') 

hold off 

legend('strong','weak','dead') 

 

%k-values for function, calculate the slopes of the function 

for i = 1:length(f_strong)-1 

    k_strong(i) = (f_strong(i+1)-f_strong(i))/(ij_x(i+1)-ij_x(i)); 

    k_weak(i) = (f_weak(i+1)-f_weak(i))/(ij_x(i+1)-ij_x(i)); 

    k_dead(i) = (f_dead(i+1)-f_dead(i))/(ij_x(i+1)-ij_x(i)); 

end 

 

% STEP 2 

w = [wCS wBA]; 

 

ICS = zeros(6,2); %i_min,i_max for parent CS 

IBA = zeros(6,2); %i_min,i_max for parent BA 

l = 1; 

for i = 1:length(i_CS) 

    for j = 1:length(i_BA)        

        ICS(l,1) = min(i_CS(i),ij(l)); 

        ICS(l,2) = max(i_CS(i),ij(l)); 

        IBA(l,1) = min(i_BA(j),ij(l)); 

        IBA(l,2) = max(i_BA(j),ij(l)); 

        l = l+1;     

    end 

end 

 

CPT = zeros(6,3); 

S1 = 0; 

S2 = 0; 

 

%Integral 

for i = 1:6 

    S1 = f_area_general(ICS(i,:),f_strong,k_strong,ij_x); 

    S2 = f_area_general(IBA(i,:),f_strong,k_strong,ij_x); 

    CPT(i,1) = w(1)*S1 + w(2)*S2; 

     

    S1 = f_area_general(ICS(i,:),f_weak,k_weak,ij_x); 

    S2 = f_area_general(IBA(i,:),f_weak,k_weak,ij_x); 

    CPT(i,2) = w(1)*S1 + w(2)*S2; 

     

    S1 = f_area_general(ICS(i,:),f_dead,k_dead,ij_x); 

    S2 = f_area_general(IBA(i,:),f_dead,k_dead,ij_x); 

    CPT(i,3) = w(1)*S1 + w(2)*S2; 

  

end 

 

CPT_BVest = CPT*100; 

CPT_BVest(4,:) = Pweak*100; 

CPT_BVest 

CPT_BV = [95 4 1; 80 15 5; 60 30 10; 0.8 30 69.2; 0.4 20 79.6;... 

    0.2 10 89.8];   %Original 

diff = abs(CPT_BV-CPT_BVest);%Difference between generated and original 

m = mean(diff(:)) 

 

% f_area_general 
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% Calculates the area under the function f between the endpoints in 

% interval and x consists of the extreme points in f 

function s = f_area_general(interval,f,k,x) 

s = zeros(length(f)-1,1); 

 

if interval(2)==interval(1) 

    if interval(1) == x(1) 

        s(1) = f(1); 

    else 

        s(end) = f(end); 

    end 

else 

    for m = 1:length(f)-1 

        if interval(1) >= x(m) && interval(2) < x(m+1) 

            f1 = k(m)*(interval(1)-x(m)) + f(m); 

            f2 = k(m)*(interval(2)-x(m)) + f(m); 

            b = interval(2)-interval(1); 

             

        else if interval(1)>=x(m) && interval(1)<x(m+1) && 

interval(2)>=x(m+1) 

                f1 = k(m)*(interval(1)-x(m)) + f(m); 

                f2 = f(m+1); 

                b = x(m+1) - interval(1); 

            else if interval(1)<x(m) && interval(2)>x(m) && 

interval(2)<=x(m+1) 

                    f1 = f(m); 

                    f2 = k(m)*(interval(2)-x(m)) + f(m); 

                    b = interval(2) - x(m); 

                else if interval(1)<x(m) && interval(2)>x(m+1) 

                        f1 = f(m); 

                        f2 = f(m+1); 

                        b = x(m+1) - x(m); 

                    else 

                        f1 = 0; 

                        f2 = 0; 

                        b = 1; 

                    end 

                end 

            end 

        end 

        h1 = abs(f2-f1); 

        h2 = min(f1,f2); 

        s(m) = (b*h1/2 + b*h2)/(interval(2)-interval(1)); 

    end 

end 

 

s = sum(s); 

end 

 
A.3 
 
%Weighted sum algorithm - Battery Voltage 

w = [0.9 0.1]; 

 

Comp = [0.95 0.04 0.01;...  %Comp(Okay) = okay,new 

    0.002 0.1 0.898;...     %Comp(Faulty) = faulty, very old 

    0.95 0.04 0.01;...      %Comp(New) = okay, new 

    0.004 0.2 0.796;...     %Comp(Old) = faulty, old 

    0.002 0.1 0.898];       %Comp(VeryOld) = faulty, very old 
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CPT = zeros(6,3); 

k = 1; 

 

% one loop for each parent node and the child node 

for i = 1:2         %2 = number of states in parent 1 

    for j = 3:5     %5-2 = number of states in parent 2 

        for m = 1:3 %3 = number of states in child node 

            CPT(k,m) = w(1)*Comp(i,m) + w(2)*Comp(j,m); 

        end 

        k = k + 1; 

    end 

end 

CPT_BVest = CPT*100; 

CPT_BV = [95 4 1; 80 15 5; 60 30 10; 0.8 30 69.2; 0.4 20 79.6;... 

    0.2 10 89.8]; %Original 

 

CPT_BVest(5,:)=Comp(4,:)*100; 

CPT_BVest 

diff = abs(CPT_BV-CPT_BVest);  %Difference between generated and original 

mean(diff(:)) 
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Appendix B: Scripts for sensitivity analysis   

Matlab scripts for the calculation of sensitivity values for a linear function and a hyperbolic 
function. 
 

B.1 
 
%Sensitivity value for a linear function 

%In this case SV is calculated for (yi0,p0) and yi's row contains three 

%parameters 

 

%% Calculation of the proportional co-variation 

yi = [yi0 yi1];     %yi0 initial value, yi1 is the varied value 

yj = [yj_1 yj_2];   %yj contains the rest of the parameters in yi0s row     

yj_hat = (yj.*(1-yi(2))/(1-yi(1)))*100  %Proportional co-variation of  

                                        %yj is needed for p 

 

%% Calculate sv 

p = [p0 p1];    %p is the output probability for yi0 and yi1 

 

%Solving the equation system 

Y = [yi(1) 1;yi(2) 1 ]; 

A = Y\p';   %A contains the constants c1/c4 and c2/c4 

 

%Calculate |c1/c4| 

sv = abs(A(1)) 

 
B.2 
 
%Sensitivity value for a hyperbolic function 

%In this case SV is calculated for (yi0,p0) and yi's row contains three 

%parameters 

 

%% Calculation of the proportional co-variation 

yi = [yi0 yi1_1 yi1_2];     %yi0 initial value, yi1_1 & yi1_2 are the  

                            %varied values 

yj = [yj_1 yj_2];   %yj contains the rest of the parameters in yi0s row  

 

yj_hat1 = (yj.*(1-yi(2))/(1-yi(1)))*100  %Proportional co-variation of 

yj_hat2 = (yj.*(1-yi(3))/(1-yi(1)))*100  %yj is needed for p 

 

%% Calculate sv 

p = [p0 p1_1 p1_2]; %p is the output probability for yi0, yi1_1 & yi1_2 

 

%Solving the equation system 

Y = [yi(1) 1 -p(1); yi(2) 1 -p(2); yi(3) 1 -p(3)]; 

A = Y \(P.*yi)'; 

d1 = A(1); 

d2 = A(2); 

d3 = A(3); 

s = -A(3); 

t = A(1); 

r = A(2)+s*t; 

 

%Sensitivity value 

sv = abs((d1*d3-d2)/(yi(1)+d3)^2); 

 

%Vertex 

if s<0 
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    xv = s + sqrt(abs(r)); 

else if s>1 

        xv = s - sqrt(abs(r)); 

    else 

        's has wrong value' 

        xv = s; 

    end 

end 
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