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Abstract 
 

Oskarshamn 3 has undergone a power uprate from 110% to 129.1% of original reactor thermal output 

in recent ended project PULS (Power Uprate with Licensed Safety). The main objective of this thesis 

have been to identify deviations in the power plant, explaining the differences in power output 

between designed and achieved power output after PULS. The investigation has been conducted with 

the use of classical thermodynamic heat balance calculations using computer software Probera.  

Prior to the heat balance calculations, a literature study has been done to investigate how wet steam 

turbines can be modeled with a special focus on the turbine capacity or wideness. The literature study 

led to an implementation of capacity model Beckmann in Probera which gave a better description of 

the plants performance and behavior off-design. 

The heat balance calculations showed that two major differences in the plant has occurred in 

comparison to what was designed:  

 A wide HP-turbine which leads to a power loss in the region of 9-14 MW 

 Higher condenser pressure than designed which leads to a power loss of 4-8 MW. The loss in 

power is however variable with a variable temperature in the cooling water, i.e. the Baltic Sea. 

At higher temperatures, around 15°C the loss in power output is none. 

The high condenser pressure can be explained by a variable blockage of tubes in the condenser with 

more tubes blocked with decreeing CW-temperature, which lead to the following reasoning about 

possible explanations: 

 Problems with ejector system, off-design operation or design flaw. 

 Choking of the steam and/or disturbed flow pattern on shell side. 

 Loss of siphon effect on tube side which leads to a lower water level in water boxes and hence 

no water will be present in upper tubes. 

 Air flow on tube side causing plugging two-phase flow and decreeing heat transfer coefficient. 

The explanations don’t stand alone but are even more plausible if one takes all or some of them into 

account. 

To confirm or to rule out some of the explanations, suggestions have been made to measure 

temperature and pressure over the intercondensers in the ejector system and to measure outlet 

temperature of strategically located tubes in the condenser. 

 

Keywords: Heat balances, Power output, Deviations 
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Sammanfattning 
 

Oskarshamn 3 har nyligen genomgått en effekthöjning från 110 % till 129.1% av ursprunglig reaktor 

effekt i det nyligen avslutade projekt PULS. Huvudmålet med uppsatsen har varit att konstatera 

avvikelser i kraftverket som kan förklara skillnaden i uttagen eleffekt mellan designad och erhållen 

effekt efter PULS. Undersökningen har i huvudsak genomförts med klassiska termodynamiska 

värmebalansberäkningar med hjälp av datorprogramet Probera. 

Före de faktiska värmebalansberäkningarna genomfördes en literaturstudie med inriktning mot hur 

våta ångturbiner kan modeleras med särkilt fokus på vidheten hos turbinen. Literaturstudien ledde till 

en implementering av vidhetsmodellen Beckmann i Probera vilket gav en bättre beskrivning av hur 

kraftverket betedde sig off-design. 

Värmebalansberäkningarna visade att det i huvudsak är två stora avvikelser i kraftverket jämfört med 

vad man designade för: 

 En vid högtryckturbin vilket ger ett effekttapp kring 9-14 MW 

 Högre kondensortryck än förväntat, vilket ger ett effekttapp kring 4-8 MW. Effekttappet är 

dock variabelt med varierande temperatur på kylvattnet, alltså Östersjön. Vid cirka 15°C och 

högre är effekttappet obefintligt. 

Det högre kondensortrycket kan förklaras med en variabel blockering av tuber i kondensorn med 

högre andel tuber blockerade vid fallande kylvattentemperatur. Detta ledde till följande 

förklaringsmodeller: 

 Problem med ejektorsystemet, antingen av oväntade driftsfall eller konstruktionsfel. 

 Chokning eller ändrad strömning av ångflödet genom tuberna på mantelsidan. 

 Tapp av häverteffekten på tubsidan som ger en lägre vattennivå i vattenkamrarna och 

följaktligen får man inget kylvatten i de övre tuberna. 

 Luftflöde på tubsidan vilket ger två-fas flöde av plugg-typ och som följd erhålls en lägre 

värmeöverföringskoefficient än förväntat. 

Förklaringsmodellerna kan förklara det högre trycket enskilt, men ännu mer troligt är att en eller flera 

av dessa samverkar. 

För att bekräfta eller för att utesluta några av förklaringarna föreslås en uppmätning av tryck och 

temperatur över interkondensorna i ejektorsystemet samt uppmätning av temperaturen i utloppet av 

strategiskt valda tuber i kondensorn.   

 

 

NYCKELORD: Värmebalanser, Effekt, Avvikelser 
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Nomenclature 
 

 

 

Arabic Symbol Unit Description 

A [m
2
] Area 

CT [m
2
] Turbine constant 

c [m/s] Speed 

H [J/kg] Enthalpy 

𝑚  [kg/s] Mass flow 

n [-] Polytropic coefficient 

P [Pa] Pressure 

Q [W] Heat flux 

T [K] Temperature 

U [W/(m
2
·K)] Overall heat transfer coefficient 

u [m/s] Rotor speed 

v [m
3
/kg] Specific volume 

x [kg/kg] Steam quality 

Y [kg/kg] Moisture content 

   

Greek Symbol Unit Description 

α [-] Baumannfactor 

Δ [-] Difference 

η [%] Efficiency 

Ρ [kg/m
3
] Density 

   

Subscript   

0  Stagnation 

des  Design 

dry  Dry 

i  Inlet 

j  Outlet 

lmtd  Logarithmic mean temperature difference 

wet  Wet 

   

Abbreviations   

BPV  Bypass valve 

BWR  Boiling water reactor 

CW  Cooling water 

HP  High-pressure 

HPFH  High Pressure Feed heater 

LP  Low-pressure 

LPFH  Low Pressure Feed heater 

MSR  Moisture separator and Reheater 

RTO  Reactor Thermal Output 
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1. Introduction 

1.1 Background  
The nuclear power plant Oskarshamn 3 located in Oskarshamn, Sweden, is a boiling water reactor 

(BWR) which in the recent ended project PULS was designed for a power output of about 1465 MW 

electric power with a temperature of 5°C in the cooling water. Some time has passed since the project 

ended and the power output hasn’t quite achieved the designed value. The deviation in power output 

can be explained by a number of reasons in the plant and the aim with the thesis is to highlight some 

of these reasons and give plausible explanations to the behavior of the plant. 

 

1.2 Problem 

Why is there a deviation in power output and what is the reason? 

 

1.3 Purpose 
Investigate differences in achieved power output after the power uprate in comparison to the power 

output designed. Suggest how the designed power output could be achieved. 

 

1.4 Limitations 

Only the Turbine system will be investigated, the nuclear reactor and the generator or electric 

substations will not be included.  

Modeling – Only the turbine component model is thoroughly investigated and examined as well as 

somewhat improved. The other components in the heat balance model are only briefly examined 

regarding, for example, pressure losses. Only steady-state conditions are considered. 

  



Robert Kronblad  LTH 

9 

 

2. Methodology 
The investigation was mainly made with the use of classical thermodynamic heat balance calculations 

with the use of computer software Probera[1] which was designed by Bertil Persson at OKG. Some 

hand calculations were necessary to give input values to the model. To be able to describe the Turbine 

and the surrounding systems as realistic as possible, some literature studies have been conducted to 

verify and improve the program’s component models prior to the actual heat balance calculations. The 

literature study can further be examined in chapter 3 Theory – Turbine modeling. 

After the heat balance calculations, the major deviations were then further investigated via reports, 

drawings, measurements, calculations and interviews. See section 5.6 Deviation Analysis.    

 

2.1 Programs used  
Probera has been used for heat balance calculations, Process Explorer [2] has been used to collect and 

retrieve data from measurements and Excel [3] has been used for data analysis.  

 

2.2 Procedure 

Four heat balance models were considered in this thesis were three were Probera models: 

 Original Designed heat balance model retrieved from Turbine supplier 

 Probera Design model, aiming to imitate the original designed model 

 Adjusted model, retrieved with the adjustment tool in Probera 

 Adjusted model with the assumption of a condenser with a fouling factor of 3.0·10
-5

 (“clean”) 

The new Turbine component model Beckmann introduced in chapter 3 was developed and tuned 

accordingly to the Turbine supplier’s heat balance model for steady-state conditions at 5°C in the 

cooling water. This model is denominated Probera Design model. 

The adjustment calculating tool in Probera was used to fit the parameters to the measured data at 5°C. 

This was done both in the HP- and LP turbines. To make sure that the calculation was successful the 

opening percentage of the bypass valve was chosen as a parameter together with the HP turbines and 

for the LP turbines the fouling factor in the condenser was chosen as parameter. This heat balance 

model is denoted the Adjusted model. 

For reasoning, the Adjusted model was also examined with the parameter fouling factor put to its 

initial value and this heat balance model is therefore denoted Adjusted model with a clean condenser. 

To show how the power output or condenser pressure varies with the cooling water temperature, a so 

called Table calculation was made were the parameter was the inlet CW-temperature. This parameter 

was changed in steps and the heat balance model was adjusted accordingly. Steps of 0.5°C were used 

in this report with a span of 0°C to 16°C or 18°C if possible. This was been done for the Probera 

Design model and also the Adjusted model with clean condenser. The Table calculation also provided 

information about condenser pressure, exhaust losses, values on parameters at measurement points and 

so on.  
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To describe further differences in the production curve, the parameter blockage percentage in the 

component model of the condenser was used. This means that some of the tubes are “deactivated” or 

rather that some of the area is unavailable. Table calculations using a constant blockage of tubes were 

made for the Adjusted model with the assumption of a clean condenser. 

The major differences found when the heat balance models were compared were further investigated 

through calculations and discussion about plausible reasons and causes.  

 

2.3 Measurement treatment 
The measurements have been retrieved with Process Explorer together with Probera. Process Explorer 

was used to evaluate suitable times for the collection of data, for example at part-load conditions. 

Probera was then used to collect the actual data from DRUS (DRiftens Underhållnings System) which 

basically is a server were data is gathered. The collected data was exported to Excel were it was 

further analyzed and for all measurements a 2
nd

 order polynomial fit using a least square method of the 

data was used for comparison with modeled data. The measurements can further be studied in 

appendix 9.4 and 9.5. 
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3. Overview of the plant 
O3 is the world’s largest [4] boiling water reactor (BWR) with a recognized low CO2-footprint [5] 

which today is more important than ever considering the climate change issue. According to UNs 

climate change panel (IPCC), the global temperature rise needs to be kept to a less than 2°C and 

electricity from nuclear power plants could be a part of the solution. 

The reactor of O3 (constructed by Asea-Atom [4]) delivers steam to the turbine at a temperature of 

about 270°C with a pressure of about 70 bar. I.e the steam is not superheated but the quality is rather 

99 % at the inlet to the high pressure turbine. This is special for nuclear power plants in general, the 

thermodynamic admission data are fairly low which leads to high moisture contents and therefore 

moisture separation is essential. The behavior of some components and also the modeling of said 

components are therefore more complicated or at least more extensive. 

Oskarshamn 3 consists mainly of one High Pressure (HP) turbine and three Low Pressure (LP) 

turbines together with one condenser, 2 high pressure feed heaters (HPFH), 4 low pressure feed 

heaters (LPFH), one of which is a feed water tank/dearator, and two moisture separators and reheaters 

(MSR’s). The bypass valve (BPV) keeps the pressure in the reactor to 70 bar which is essential for a 

good and stable moderation. In Figure 1, an overview of the plant’s main components is presented.  

The picture is somewhat simplified, the polishing plant between LPFH 1 and 2 is left out, as is the 

double HPFH flow chains after the feed water pumps. The gland system and ejector system is also left 

out. To keep the condenser clean on tube side, the so called Taprogge© system is installed, cleaning 

the tubes with small balls.  

 

Figure 1, Schematic Overview of the main components in the plant. 
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A schematic view of the turbine sections and extractions can be seen in Figure 2.Error! Reference 

source not found. The turbines are dual-flow with steam inlet at the center of the turbine, and the 

extractions are all symmetrical except extraction 2 and 3 in the LP-turbine were they are 

unsymmetrical as seen in the figure.  

 

 

Figure 2, Schematic illustrations of Turbine sections and extractions as they are modeled. 

For a good and stable operation of the reactor and for a stable moderation of the neutrons, the reactor 

needs to be kept at a pressure of 70 bar at all times. The pressure is kept by the BPV which is smaller 

than the conventional control valves to the turbine and also much faster in its operation. This allows 

the pressure in the reactor to maintain constant but at the same time the large and heavy control valves 

don’t need to operate under high speeds which means heavy loads. This is very beneficial, but the 

drawback is the “loss” of high valued steam which just passes the turbines without producing useful 

work.  
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4. Theory – Turbine modeling 
 

To be able to estimate differences in the plant, such as power, pressure, temperature and mass flows, 

the type of component models in Probera are very important. The program has a very sophisticated 

modeling of the feed heaters, condenser and so on with correlations for heat transfer, pressure losses 

etc. However, the component model of the turbine is somewhat old-fashioned. The program is using 

Aurel Stodola to describe the swallowing capacity of the turbine, i.e. the connection between pressure 

and flow, which he empirically found in the 1920’s. To achieve a better modeling, Beckmann is 

introduced instead in the turbine component model. The following chapter describes some of the 

features of a turbine and how it could be modeled.  

 

4.1 Swallowing Capacity 

In a turbine in general (steam or gas) there is a tight connection between the mass flow (𝑚 ) the 

pressure P and implicit the temperature T.  

 

Figure 3, Schematic illustration of a turbine with inlet (i) and outlet (j) conditions linked with the 

swallowing capacity CT,i-j. 

 

 

Aurel Stodola[6] showed empirically that the connection between inlet and outlet conditions can be 

written: 

𝑚 = 𝐶𝑇,𝑖−𝑗 
𝑝𝑖

2 − 𝑝𝑗
2

𝑝𝑖𝑣𝑖
= 𝐶𝑇,𝑖−𝑗 

𝑝𝑖
𝑣𝑖  

1 −
1

 
𝑝𝑖
𝑝𝑗
 

2 …(1) 

Where the constant CT [m
2
] is the so called turbine capacity or swallowing capacity which is a 

measure of the size of the turbine or the area of the flow channel. The equation is valid for all turbines 

including a turbine section, for example between extractions. The equation is fundamental to be able to 

describe how flows, pressures and temperatures vary off-design and how they are linked to each other 

and is an important tool to predict changes in the plants performance. The equation can be solved for 

the constant CT and takes on the form of  
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𝐶𝑇,𝑖−𝑗 =
𝑚 

 
𝑝𝑖

2 − 𝑝𝑗
2

𝑝𝑖𝑣𝑖

…(2) 

Probera is currently using Stodola to describe the swallowing capacity of the turbine using the turbine 

constant as a parameter provided by the user. As a first approximation the turbine constant is 

calculated from the information provided by the turbine supplier and can then be adjusted accordingly 

to actual measurements. 

Beckmann’s [7] findings during the 60’s led to an even improved and accurate formula: 

𝑚 =  𝐶𝑇,𝐵 + 𝐾𝜇  𝜇 − 𝜇𝑑𝑒𝑠    1 + 𝜇  
𝑝𝑖
𝑣𝑖𝜇

𝐹 …(3) 

Where CT,B and Kµ are constants, µ is calculated from  

𝜇 =
 𝑣𝑑𝑃

𝑢2
≈
∆𝑕𝑠
𝑢2

…(4) 

And therefore could be named the theoretical, dimensionless enthalpy drop through the stage or 

turbine. Δhs [J/kg] is the isentropic enthalpy drop and u [m/s] is the blade speed on the average 

diameter. It has a somewhat connection to the stage blade loading and is quite similar, but should not 

be mixed up. The stage loading is written: 

Ψ =
Δ𝑕

u2
…(5) 

This dimensionless number, theoretically, is choosed by the designer of the turbine and in turn also 

decides the reaction of the stage. It can be shown that a lower reaction (or impulse-) turbine has a 

higher stage loading.   

µ is then actually a function of the reaction of the stage and could be optimized accordingly by the 

designer, this is noted by the µdes in equation (3). The factor left to explain in equation (3) is the factor 

F, which can be written 

𝐹 =
𝑛

𝑛 + 1
 1 −  1 +

2𝜆

𝑛 − 1
  
𝑝𝑖
𝑝𝑗
 

−
 𝑛+1 
𝑛

− 𝜆  1 −
𝑛 + 1

𝑛 − 1
 
𝑝𝑖
𝑝𝑗
 

−
2
𝑛

  … (6) 

Where in turn n is the polytropic coefficient: 

𝑛 =

𝑙𝑛  
𝑝𝑖
𝑝𝑗
 

𝑙𝑛  
𝑣𝑗
𝑣𝑖 

… (7) 

And λ is a correction factor depending on the number of stages in the turbine, which Beckmann [7] 

introduced as: 
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Table 1, correction factor lambda as a function of number of stages in the turbine. 

Number of stages λ=f(nstg) 

1 0.5  1.0 

2 0.3  0.5 

3 0.25  0.3 

4 0.25 

∞ 0 

Single Impulse 1.0 

 

Magnus Genrup at Energy Sciences,LTH [8] has developed an equation for λ as follows: 

𝜆 =
1

1 + 𝑛𝑠𝑡𝑔
 8.0889𝑛𝑠𝑡𝑔

−0.1240 − 65.5910𝑛𝑠𝑡𝑔
−0.0132 + 58.8398 … (8) 

Which is implemented in Probera and used in the analysis in this thesis.  

To further improve the modeling of the swallowing capacity in the wet-area of the expansion in the 

turbine, Cotton [9] introduced yet another correcting factor which takes into account that the 

swallowing capacity decreases as the moisture content in the steam increases. The swallowing 

capacity should be corrected by the square root of the quality as: 

𝑚 =  𝐶𝑇,𝐵 + 𝐾𝜇  𝜇 − 𝜇𝑑𝑒𝑠    1 + 𝜇  
𝑝𝑖
𝑣𝑖𝜇

𝐹 𝑥𝑗 …(9) 

Where the quality at the outlet of the turbine (-section) is used.  

Equation (9) is implemented in Probera and used in the analysis. 

 

4.2 Moisture correction of the efficiency 
The common method to adjust the turbines efficiency as the moisture content increases is to use the 

Baumann-rule, which was developed in the 20’s. The turbines wet efficiency [10] could be written as 

𝜂𝑤𝑒𝑡 = 𝜂𝑑𝑟𝑦  1 − 𝛼
𝑌𝑖𝑛 + 𝑌𝑜𝑢𝑡

2
 … (10) 

Where α is the Baumann-factor, which usually varies between 0.5-1.0. Y is the moisture content. The 

Baumann-factor is larger for a turbine section than for a single stage, for example could one droplet 

cause more losses through multiple stages than through just one. The losses caused by the moisture 

content could be divided into three parts [10]: 

 Braking losses, the droplets hits the backside of the rotor, acting as a brake. 

 Frictional losses, the friction between droplets and steam, i.e two-phase flow. 

 Thermodynamic losses, sub cooling of the steam due to the rate of the expansion causes 

irreversibility [11].  

Baumann describes how the efficiency decreases linearly, which is assumed, as the moisture content 

increases. However, only the total quantity of moisture is taken into account, not the structure [12]. 
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For example, the last stage in the LP-turbines in Oskarshamn 3 is reinforced to better withstand the 

impact of the droplets, and the reinforcement is made near the tip where most droplets are present [12].  

Probera is using the Baumann rule to take the moisture content’s affect on the efficiency into account; 

however a slightly different methodology is used [13]. Probera calculates the fraction of how much of 

the expansion is taken place in the wet area (wetfrac) and then calculates the wet efficiency as 

𝜂𝑤𝑒𝑡 = 𝜂𝑑𝑟𝑦  1 − 𝛼 ∗  1 − 𝑥𝑜𝑢𝑡  ∗ 𝑤𝑒𝑡𝑓𝑟𝑎𝑐 … (11) 

For a wet fraction of 0.5 the methods are equal, regardless of the value of the Baumann-factor. 

However, when the wetfrac is higher (or lower), for example wetfrac=1, the methods differ as can be 

seen in the following picture: 

 

Figure 4 difference (%) between wetfrac- and average moisture methodology as a function of the steam 

quality at the outlet of the turbine with a wetfraction of 1 and a Baumann factor of 0.5/0.35. 

 

The wetfrac methodology gives a slightly less penalty to the efficiency for a wetfraction of 1 (i.e the 

entire expansion takes place in the wet area) than the average moisture method. Note that every turbine 

section expands in the wet region except the first stage of the Low pressure turbine (LP11). 

Some care when choosing the Baumann factor is therefore essential for a good result. 
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4.3 Stagnation properties and exhaust loss 

 

The stagnation enthalpy is the enthalpy that a fluid with negligible potential energy, the steam in this 

case, would achieve if it was brought to rest with no work or heat transfer involved i.e adiabatically. 

This can be written [14]:  

𝑕0 = 𝑕 +
𝑐2

2
… (12) 

Where h is the static enthalpy and c is the speed, the term c
2
/2 is often referred to as dynamic enthalpy. 

The exhaust loss in a turbine conducts mainly of the dynamic part of the enthalpy. For a multiple stage 

turbo machine the exhaust loss is only calculated at the last stage, one assumes for multiple stages that 

the following stage could recover the speed back into static properties or at least make benefit of the 

speed into useful work. The loss at the final stage could however be significant and must be 

considered for the last stage since the speed is quite high and also represent an additional load to the 

condenser. Probera is using a routine to calculate the exit loss using the inner- and outer diameter, the 

speed of the blade and a mean value of the blade angle. The mass flow to the condenser varies little 

with a varying cooling water temperature, but the specific volume of the steam and thereby the speed 

(or volumetric flow for a given area) varies quite a bit giving a non-linear connection between the 

exhaust loss and cooling water temperature. A typical exhaust loss variation can be seen below in 

Figure 5: 

 

 

Figure 5, Schematic view over a typical exhaust loss. Courtesy to Magnus Genrup at Energy Sciences, 

LTH. 
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5. Results 
 

5.1 Modeling – Heat Balance Differences 

Four heat balance models are considered in this section: 

 Designed model provided by turbine supplier, not a Probera model. 

 Probera Design model, which tries to imitate the Designed model. 

 Adjusted model 

 Adjusted model with a clean condenser 

The Designed model needed to be simulated in Probera since it’s not provided from supplier how the 

plant actually behaves at varying cooling water temperatures but only at 5°C and 18°C. Approximate 

power output according to turbine supplier at 5°C and 18°C can be seen below in Table 1. A print 

screen of the entire Probera Design model and Adjusted model can be seen in Appendix 9.3 . For 

information about factors used in the plant, see Appendix 9.1. 

Table 1, Approximate power output provided by turbine supplier. 

Approximate power output [MW] Cooling water temperature [°C] 

1465 5 

1386 18 

 

In Table 2 differences between the designed plant (were data was gathered from turbine supplier) and 

the Probera model is presented. The biggest relative difference is an increased flow from extraction 6. 

The second biggest relative difference is a decrease in flow from extraction 4, thanks to the higher 

drainage from HPFH’s (via flash tank 462 TD1) which in turn is a consequence of the increased flow 

from extraction 6 and 5. The slightly low condenser flow together with the lower flow from extraction 

1 causes the flow from extraction 2 to increase. The pressures simulated are fairly equal, with the 

exception of extraction 2 and 4 pressures which are somewhat lower than designed. The power output 

is 2.3 MW lower than designed. 
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Table 2, Major differences at 5°C in cooling water between Designed plant and the Probera model of the 

designed plant. Relative error to Designed plant. 

 
Units Probera Design Relative error [%] 

Condenser flow [kg/s] 1137.0 -0.5 

Condenser pressure [kPa] 4.41 -0.2 

Extraction 1 flow [kg/s] 42.2 -7.9 

Extraction 1 pressure [kPa] 12.8 -3.6 

Extraction 2 flow [kg/s] 69.3 6.8 

Extraction 2 pressure [kPa] 62.0 -5.3 

Extraction 3 flow [kg/s] 107.1 0.0 

Extraction 3 pressure [kPa] 241.6 -4.1 

MSR moisture flow [kg/s] 237.7 3.6 

Extraction  4 flow  [kg/s] 143.0 -11.2 

Extraction 4 pressure [kPa] 884.1 -6.1 

Drainage from flashtank 462 TD1 [kg/s] 583.7 2.7 

Extraction 5 flow [kg/s] 101.5 3.4 

Extraction 5 pressure [kPa] 1774.5 2.0 

Extraction 6 flow [kg/s] 70.8 17.4 

Extraction 6 pressure [kPa] 2486.7 2.5 

Bypassvalve (421 VB6) [kg/s] 19.0 -0.1 

Drainage from HPFH's to flashtank 462 TD1 [kg/s] 371.3 3.0 

Admission flow to LP Turbines [kg/s] 1356.0 -0.3 

Admission pressure to LP Turbines [kPa] 905.9 0.6 

Admission pressure to HP Turbines [kPa] 6460.3 0.0 

Flow to Reheater [kg/s] 183.3 -0.8 

Total flow from Reactor [kg/s] 2113.1 -0.1 

Power output [MW] 1462.7 -0.2 

 

 

Differences between designed model and the adjusted model can be seen in Table 4. To be able to 

describe the behavior of the plant at the sea water temperature of 5°C, the model adjusted the fouling 

factor to 4.35044·10
-5

 in the condenser. A clean condenser is assumed to have a fouling factor of 

3.0*10
-5

 according to Berth Arbman [15]. The adjustment on the turbine constants can be seen in 

Table 3. The biggest difference is in the HP-turbine were the HP1 and HP3 sections which are 9.0% 

and 9.3% wider respectively. The HP2 section is however somewhat narrower with a -3.1% decrease 

in wideness. The first sections in the LP-turbine are slightly narrower whereas the last sections in the 

LP-turbine are somewhat wider. See Table 3 for values. 
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Table 3, Change in Turbine capacity between Probera Design model and the Adjusted model. Relative 

difference to Probera Design. 

 Turbine Section Probera Design CT,B [m
2
] Adjusted model CT,B [m

2
] Relative difference [%] 

HP1 0.054381 0.059282 9.0% 

HP2 0.176100 0.170583 -3.1% 

HP3 0.190480 0.208275 9.3% 

LP11 0.099469 0.097183 -2.3% 

LP12 0.089200 0.086292 -3.3% 

LP21 0.268000 0.265074 -1.1% 

LP22 1.044810 1.049690 0.5% 

LP31 5.315910 5.423210 2.0% 

LP32 5.314530 5.574320 4.9% 

 

 

Table 4, Major differences at 5°C in cooling water for the model adjusted to measurements. Relative error 

to Designed plant. 

 
Units Adjusted Relative error [%] 

Condenser flow [kg/s] 1149.0 0.6 

Condenser pressure [kPa] 4.71 6.6 

Extraction 1 flow [kg/s] 39.8 -13.2 

Extraction 1 pressure [kPa] 13.1 -2.0 

Extraction 2 flow [kg/s] 69.9 7.7 

Extraction 2 pressure [kPa] 62.0 -5.3 

Extraction 3 flow [kg/s] 110.4 3.0 

Extraction 3 pressure [kPa] 247.4 -1.8 

MSR moisture flow [kg/s] 228.1 -0.5 

Extraction  4 flow  [kg/s] 150.9 -6.3 

Extraction 4 pressure [kPa] 913.2 -3.0 

Drainage from flashtank 462 TD1 [kg/s] 562.5 -1.0 

Extraction 5 flow [kg/s] 86.0 -12.4 

Extraction 5 pressure [kPa] 1686.6 -3.0 

Extraction 6 flow [kg/s] 77.1 27.9 

Extraction 6 pressure [kPa] 2453.4 1.1 

Bypassvalve (421 VB6) [kg/s] 13.7 -28.2 

Drainage from HPFH's to flashtank 462 TD1 [kg/s] 356.0 -1.2 

Admission flow to LP Turbines [kg/s] 1368.0 0.6 

Admission pressure to LP Turbines [kPa] 936.1 4.0 

Admission pressure to HP Turbines [kPa] 5989.3 -7.3 

Flow to Reheater [kg/s] 182.6 -1.1 

Total flow from Reactor [kg/s] 2108.9 -0.3 

Power output [MW] 1444.9 -1.4 

 

On the assumption that the condenser in fact is clean, or has a fouling factor of 3.0·10
-5

 instead, the 

change in flows, pressures and power output can be seen in Table 5. In comparison with the Adjusted 
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model, the condenser pressure is lower and the flow is somewhat lower which gives a higher flow 

from extraction 1. Note that the extraction 1 pressure only changes a little bit from Adjusted model- 

the backpressure only has a minor impact on the flow through the stage, see equation (1). It is the 

wideness of the last stage of the turbine that governs what happens in the plant. The other results are 

fairly the same as for the Adjusted model, see Table 5. 

Table 5, Major differences at 5°C in cooling water for the adjusted model with the assumption of a clean 

condenser. Relative error to Designed plant. 

 
Units Clean Condenser Relative error [%] 

Condenser flow [kg/s] 1146.4 0.4 

Condenser pressure [kPa] 4.45 0.6 

Extraction 1 flow [kg/s] 41.2 -10.0 

Extraction 1 pressure [kPa] 12.9 -2.9 

Extraction 2 flow [kg/s] 70.1 8.1 

Extraction 2 pressure [kPa] 61.9 -5.5 

Extraction 3 flow [kg/s] 110.6 3.2 

Extraction 3 pressure [kPa] 247.2 -1.9 

MSR moisture flow [kg/s] 228.1 -0.5 

Extraction  4 flow  [kg/s] 151.0 -6.3 

Extraction 4 pressure [kPa] 913.0 -3.0 

Drainage from flashtank 462 TD1 [kg/s] 563.5 -0.9 

Extraction 5 flow [kg/s] 86.0 -12.4 

Extraction 5 pressure [kPa] 1686.6 -3.0 

Extraction 6 flow [kg/s] 77.1 27.9 

Extraction 6 pressure [kPa] 2453.3 1.1 

Bypassvalve (421 VB6) [kg/s] 13.7 -28.2 

Drainage from HPFH's to flashtank 462 TD1 [kg/s] 356.0 -1.2 

Admission flow to LP Turbines [kg/s] 1368.0 0.6 

Admission pressure to LP Turbines [kPa] 936.0 4.0 

Admission pressure to HP Turbines [kPa] 5989.3 -7.3 

Flow to Reheater [kg/s] 182.6 -1.1 

Total flow from Reactor [kg/s] 2108.3 -0.3 

Power output [MW] 1448.4 -1.1 

 

 

5.2 Power Output as a function of cooling water temperature 

A comparison between the Probera Design model, aiming to describe the designed production curve, 

the adjusted model with a clean condenser (fouling factor = 3.0*10
-5

) and the actual measurements 

(approximated with a 2
nd

 order polynomial) can be seen below Figure 6. For further information about 

the RTO, Power output and condenser pressure-measurements at full load, see Appendix 9.4, 9.5. 

The difference between the adjusted curve with a clean condenser and the designed curve is -14.3 MW 

at 5°C. The difference is somewhat lower at higher CW-temperatures. At higher CW-temperatures the 

Adjusted model and measured data is coinciding, but diversifies as the temperature drops, only to 

converge again from about 4°C and lower temperatures.  
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At 18°C the power output is 1385.5 MW for the Probera Design curve. The Adjusted model has a 

power output of 1370.4 MW which gives a difference of -15.1 MW. 

 

Figure 6, Power output as a function of cooling water temperature. Comparison between Probera Design 

model, Adjusted model and measured power approximated with a 2
nd

 order polynomial fit. 
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5.3 Condenser pressure as a function of cooling water temperature 

 

The condenser pressure as a function of cooling water temperature can be seen below in Figure 7 were 

both the modeled curve as well as the measured curve is presented. At higher temperatures the 

Adjusted model and measured curve coincides but diverge at lower temperatures, starting at about 

15°C. 

 

 

Figure 7, Condenser pressure as a function of cooling water temperature. Comparison between Adjusted 

model with clean condenser and measured pressure approximated with a 2
nd

 order polynomial fit. 
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5.4 Modeling of blocked tubes in the Condenser 

 

In Figure 8 it is shown how the power output varies with cooling water temperature as a constant 

blockage (%) of some tubes are present in the condenser, decreasing available heat transfer area. 

 

Figure 8, Power output as a function of cooling water temperature. Comparison between Adjusted model 

with a clean condenser, measured power output approximated with a 2
nd

 order polynomial fit and 

adjusted model having a constant share of blocked tubes present. 

 

 

If points from the curves with constant blocked tubes shown in Figure 8 are kept were the curve 

matches with the measured curve, one could derive a sort of variable blocking of the tubes in the 

condenser as a function of the cooling water temperature explaining the difference in power output. 

This can be seen in Figure 9 were the points have been placed together with a percentage of blocked 

tubes that matches the measurements. A greater percentage of tubes are blocked as the temperature of 

the cooling water decreases. 
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Figure 9, Power output as a function of cooling water temperature. Comparison between Adjusted model 

with clean condenser, measured power approximated with a 2
nd

 order polynomial fit and Adjusted model 

with variable blocking of tubes. 

 

 

5.5 Part load 
In the summer of 2012 the plant had a RTO of about 105% during the 27

th
 of July to the 11

th
 of 

August. During this particular period the temperature varied between about 6.5°C to 11.5°C so the 

measured curves in Figure 10, Figure 11 are only presented in this span since they aren’t valid for 

other temperature ranges. For more extensive values on the RTO, Power output and condenser 

pressure, see Appendix 9.4. 

The power output as a function of cooling water temperature can be seen below in Figure 10. The 

difference between modeled and measured power output follows about the same behavior as the full 

load case with a lower power output than expected. It also seems that a variable blockage of tubes in 

the condenser matches the modeled curve to the measured one as it is in the case of full load. 
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Figure 10, Power output as a function of cooling water temperature at 105.01% RTO. Comparison 

between modeled curve, measured curve approximated with a 2
nd

 order polynomial fit and modeled curve 

with a constant blockage of tubes present. 

 

The modeled condenser pressure and the measured condenser pressure are compared in Figure 11 

were also the pressure at 129% RTO is presented. As seen in the figure, the condenser pressure is 
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1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
o

w
er

 O
u

tp
u

t 
[M

W
]

Coolingwater Temperature [°C]

Power, modeled

Power, measured

Power, modeled 5% blocked tubes

Power, modeled 10% blocked tubes



Robert Kronblad  LTH 

27 

 

 

Figure 11, Modeled and measured condenser pressure as a function of cooling water temperature at full 

load (129.1 % RTO) and part load (105.01% RTO). The modeled curves have the assumption of a clean 

condenser. 

 

5.6 Deviation Analysis 
As stated previously, the two main reasons for the drop in performance of the plant and loss in power 

output is the wide HP-turbine and a higher than expected condenser pressure. The wide HP-turbine is 

a question for the turbine supplier, there isn’t much to analysis further about that deviation. The high 

condenser pressure however could be explained by a number of things and for reasoning, the 

following equation which describes the heat transfer in a heat exchanger could be used [16]: 

𝑄 = 𝑈 ∗ 𝐴 ∗ ∆𝑇𝑙𝑚𝑡𝑑 …(13) 

Where Q is heat flux [W], U is overall heat transfer coefficient [W/ (m
2
K)], A heat transfer area [m

2
] 

and ΔTlmtd [K] is the logarithmic mean temperature difference used for heat exchangers. A change in 

these three factors therefore contributes to a change in transferred heat and this lead to the following 

explanations regarding the high condenser pressure: 

 Too small heat transfer area, simply not enough tubes. 

 Too low overall heat transfer coefficient, caused by for example:  

o Dirty condenser, air in-leakage or a higher flow of radiological gases than expected. 

o Poor extraction of said gases could in turn be caused by for example a design flaw of 

ejectors or an off-design operation of the cooling chain of the ejector (inter-) 

condensers. Also an off-design operation of motive steam in the ejectors such as 

pressure, temperature, quality or flow leads to a poor extraction as well. 

o Lower heat transfer coefficient/heat conduction for the materials than expected. 

(Roughly a fifth of the tubes were changed to a steel alloy instead of titanium in 

PULS) 
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o Choked or disturbed flow pattern on shell side- some tubes doesn’t transfer enough 

heat. 

o Air blockage on the inside of the tubes, released from the cooling water and/or air in-

leakage. 

 

Degasification - Ejector System 

The ejector system is a really interesting system. Accordingly to the model, the affect on the power 

output if the mass flow of ejector steam increases with 1 kg/s is approximately -1MW. However, a 

flow different from the designed one could cause a worse extraction of radiological gases which in 

turn could block the heat transfer of the tubes in the condenser causing a higher condenser pressure 

and a large power loss. The reason is that the non-condensable (radiological) gases is present at the 

surface of the tubes, like a thin film, which forces the steam to first diffuse through this film thus 

reducing the heat transfer coefficient and increasing the thermal resistance [17]. 

 

Choked tubes or disturbed flow pattern 

Since the power uprate not only ment a higher reactor thermal output but a higher load for the 

condenser, questions have been raised if the tubes somehow is blocked by the increased flow both on 

shell side and tube side. In Figure 12 the modeled exhaust loss is presented which in the model only 

consists of the kinetic loss, not hood loss, see Figure 5 in Chapter 4. As can be seen in Figure 13 the 

specific volume of the steam is quite high at lower CW-temperatures, i.e. lower condenser pressure. 

Even though the steam isn’t saturated at the outlet of the LP-turbines there should still be a significant 

increase in specific volume as the cooling water temperature decreases. 

These effects combined, a high kinetic loss and high specific volume of the steam, together with the 

higher mass flow than before PULS, increases the load on the condenser considerably and makes it 

more difficult to condense the steam back into water.  

 

Figure 12, Exhaust loss for the model adjusted to measurements. Both LP-31 and LP32. 
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Figure 13, Specific Volume of saturated water and vapor as a function of cooling water temperature. 

 

Siphon Effect 

The cooling water is pumped, or rather sucked, through the condenser with the use of the siphon 

effect. In Figure 14, a schematic side view of the condenser is presented showing the water boxes, 

inlet to air pumps as well as the hot well.  

 

Figure 14, Schematic side view of the condenser. 
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The cooling water pumps provide a high flow rate but have a rather small pressure ratio. To be able to 

get the water through the tubes the gravity is used via the siphon effect. The lower pressure is achieved 

with air pumps which sucks the air out from the outlet water box. If the amount of extracted air isn’t 

sufficient the water level in the condenser is too low and therefore the upper tubes won’t have water 

on the inside. Some air constantly needs to be withdrawn, otherwise the pressure would increase and 

the level be lowered.  

 

Air on the inside of the tubes 

Following the previous discussion about the removal of air on the tube side, some air constantly needs 

to be ejected from the tube side in the condenser. Could the air then block the tubes even before it 

enters the outlet chamber? For calculations see Appendix 9.2. 

The solubility of air in water is higher with a lower temperature and a higher pressure, according to 

Henrys law [18]. When the cooling water is passing through the condenser, the temperature increases 

and the pressure decreases and this leads to a separation of air from the water. This gives the following 

flow of air as the CW inlet temperature varies: 

 

Figure 15, Released air on tube side of the condenser as a function of inlet cooling water temperature. 

The released air in the tubes could in turn cause a two-phase flow in the tubes as seen in Figure 16. 
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Figure 16, Different types of flow regimes for two-phase flow of gas and liquid. [19] 

The type of flow can be determined with a so called Baker plot, shown in [20]. The type of flow 

regime can be calculated with parameters Gf·ψ and Gg/λ, for values see Table 6. 

 

 

Table 6, values on Gf·ψ and Gg/λ for CW-temperatures of 0 and 16°C. 

Gf·ψ [kg/(m
2
s)] Gg/λ [kg/(m

2
s)] Cooling water temperature [°C] 

0.07 2484 0 

0.05 2484 16 
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Figure 17, Baker-plot for two-phase flow regimes. [21] 

Giving the indication that plugs could be present in the tubes, at least near the outlet of the condenser 

tube bundles. 
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6. Discussion 
 

6.1 Discussion of Methodology 

As an alternative, the adjustment calculation could be performed at a higher cooling water temperature 

since the results indicates that the measurements and model coincide. The plant is behaving more as 

expected and therefore the adjustment on turbine wideness would be somewhat different. It could 

however be more insecure since the measurements aren’t as extensive as they are with lower 

temperatures. Another alternative could have been to adjust the dry efficiencies instead of the 

wideness of the turbines and a somewhat different result would have emerged. Instead of using the 

BPV as parameter, perhaps fouling of the HPFH’s could have been used as well. A plausible argument 

is that all these factors somehow should be adjusted in order to fit the measurements even better. The 

measurements is however the next problem, one tries to adjust the model according to these, but they 

have in themselves an uncertainty. They are also in general located in the extractions close to the FH’s 

but the model used (and the one provided from turbine supplier) uses data in the extractions just after 

the turbine section which should give a difference. 

The table calculation could have been done with shorter interval giving a smoother production curve, 

the calculating time has to be put against the increased accuracy, but the curve seems rather smooth 

and a decreased interval would probably not give that big a change. 

 

6.2 Discussion of the Results 

Probera Design 

The biggest difference between the designed plant and the Probera Design model is the flow from 

extraction 6 which is higher in Probera. This indicates that the wideness of the HP2 should be higher 

to let more steam through; this would however lower the pressure in extraction 6, which to some 

extent could be good since the pressure in extraction 6 is slightly high, but it can’t be that wider since 

the pressure difference isn’t that big. Since the flow to the reheater and the flow through the Bypass 

valve is about the same as designed this means that the flow from extraction 4 is much lower than 

designed. To sum up: the feed water is heated about the same in the Probera Design as in the Design 

from turbine supplier, but more high-quality steam is used instead, causing a slight loss in power 

output. The efficiencies of at least some of the turbine sections are probably higher according to 

turbine supplier than assumed in the Probera model explaining the remaining difference in power 

output. 

Adjusted Model 

To fit the data accordingly to measurements, the adjustment tool had to increase the wideness of the 

HP1 and HP3 turbine sections together with an increased condenser pressure. These two changes 

contributes far more to the drop in power output compared to the other changes which are relatively 

low, or at least contributes much less. The wide HP turbine makes the bypass valve shut more, since 

the pressure in the reactor still needs to be constant. This means that a higher pressure drop occurs 

over the control valves and a loss in power output. The high condenser pressure affects mainly the last 

stage of the LP-turbine causing a lesser flow from extraction 1. On the assumption that the condenser 

is clean, the only factors that shows a significant change is the flow from extraction 1 proving the 

statement above about the condensers affect on the LP-turbine. The higher pressure also means that 

the expansion is reduced thus reducing the power output.  
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Power output and Condenser pressure at varying cooling water temperature 

First, the Probera design curve needs to be discussed; it indicates a slightly less power output than 

provided by the turbine supplier at 5°C but seems to explain the behavior in a good way. It has almost 

the same power output as designed at 18°C with a difference less than 0.5 MW. It seems reasonable 

that the production curve has a maximum at somewhat lower temperature than designed (5°C), but it is 

not reasonable that the power keeps increasing when the condenser pressure/temperature drops. 

Somewhere the exhaust loss should start to be much more significant, as indicated in the section about 

choked flow. From a suppliers point of view you wouldn’t want to sell a plant which has its maximum 

performance outside the normal operating area.  

The difference between the Probera design and Adjusted model is 14.5 MW at 5°C which mainly is 

caused by the wide HP-turbine. The behavior over the temperature span is about the same, but in 

comparison to the measured curve it differs quite a lot; it doesn’t really add up with the previous 

discussion about the performance. It’s not until a variable blocking of the tubes in the condenser is 

implemented as the modeling matches the measurements in a good way. As the cooling water 

temperature decreases more and more of the tubes are blocked causing a higher condenser pressure 

than expected and a lower power output. But at about 2-3°C the production curve drops due to the 

exhaust losses, which actually makes the power output at 0°C almost the same with 17% blocked tubes 

as with 0%! The loss in power output varies, but at 5°C it is about 8 MW. If the condenser is replaced 

in the future, one has to take into account this variation and make a study on which temperature span is 

the most common one the plants operates in to make a legitimate economical calculation. 

 

Part load 

The difference in power output at part load is troubling; there should be enough tubes or heat transfer 

area to condensate the steam at a lower pressure. This doesn’t however seem to be the case and as with 

the full load, the analysis shows that the condenser pressure is higher than expected. In absolute 

numbers the pressure is lower than at full load obviously, but it should still be lower given the lower 

load. As with the full load case, it looks like the loss in power output could be explained by a variable 

blocking of tubes in the condenser. One should however be careful with extrapolating the results to 

other temperature ranges, as indicated in the section about condenser pressure at part load. The 

polynomial fit doesn’t seem perfect and is probably not valid at other temperature ranges. 

   

Deviation Analysis 

Quite a few reasons to the higher condenser pressure have been presented in this section, some perhaps 

more plausible than others. Trouble with the ejector system felt initially as the most plausible one, a 

higher condenser pressure increases the suction capacity of the ejector and hence more gases are 

ejected. This in turn gives a decrease in the thermal resistance and enables a better heat transfer and 

condensing which lowers the condenser pressure. Some sort of equilibrium should then be present and 

therefore the deviation at higher cooling water temperatures is none. Another reason could be an off-

design operation of the motive steam. The discussion is however somewhat more troublesome when 

one takes into account the higher than expected condenser pressure at part load since it is a lesser 

amount of gases that needs to be ejected. It could however be a new equilibrium established at a lower 

pressure; the ejectors are once again unable to eject enough gases due to an off-design operation, lack 

in design or higher amount of gases than expected. 
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Choked tubes are a quite plausible reason for the condenser pressure when one takes into account the 

behavior at part load. The lower pressure than the one at full load increases the specific volume of the 

steam and even though the exhaust loss could be lower due to a lesser mass flow, the increase in 

specific volume counteracts the mass flow rate and gives a volume flow rate about the same and 

therefore the exhaust loss is about the same as well. To refer to the previous discussion about the 

ejector system, the flow pattern could have changed in a way that air pockets that before were ejected 

have moved away to a different location in the condenser making the degasification process much 

more difficult. 

A lower water level than expected in the condenser could explain the behavior both at full load and at 

part load, since it is a problem on the tube side with fairly the same conditions. But why should the 

blocking of the tubes be reduced when the cooling water temperature rises? A warmer cooling water 

contains less air due to Henry’s law and since the temperature rise is less at part load the amount of air 

released from the cooling water is lower and in turn less air needs to be extracted. The pressure 

variation would however be seen in the pressure measurement, although measurements in turn could 

be uncertain and it is also performed after a water separation tank that perhaps could affect the 

measurement? A measurement of the temperature at the inlet and outlet of the condenser could give an 

indication if the tubes are in operation or not. One should also take into account that it is the upper 

tubes that stand for a greater part of the condensation process; therefore a blockage here would be 

worse. 

Air on the inside of the tubes could in itself act as a blockage if enough air is released as stated in the 

result section. One needs to bear in mind that the calculations are performed with the assumption of 

equilibrium which very well might not be the case. A lot of assumptions are made and the result 

shouldn’t be regarded as an absolute truth but more of an indication. The release of air is non-linear 

and increases with decreasing CW inlet temperature and it seems to be indicated that plugs occur near 

the outlet of the condenser. 

The plausible explanations to the higher than expected condenser pressure could stand both for 

themselves, but they are even more plausible together! Some choking or disturbed flow pattern of the 

condenser for example should give a worse extraction of gases which starts a build-up of gases as a 

film on the tubes increasing the thermal resistance. On the tube side the release of air could perhaps be 

higher giving a two-phase flow with an increase in thermal resistance and together with a water level 

for example caused by a lack of suction capacity in the air pumps, a variable blockage of the tubes as 

seen in the results seems reasonable. There is however a fair chance that other phenomenon could 

explain the behavior of the condenser with a variable blocking of the tubes. 

  

6.3 General Discussion 
The purpose with this thesis was to identify differences in the achieved power output after the power 

uprate in comparison to what was designed before the project. In this thesis two major differences 

have been found, a wide HP-turbine and higher condenser pressure than expected. The aim with the 

thesis is therefore considered to be achieved and the purpose fulfilled.  
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7. Conclusions and Recommendations  
 

The high-pressure turbine capacity is too high which gives a loss in power output in the region of 

about 9-14 MW. 

The condenser pressure is higher than expected, which gives a variable loss in power output, but at 

5°C in CW-temperature the loss is about 8 MW. 

The variable deviation in the condenser pressure could be explained by a variable blocking of the 

tubes in the condenser as the CW-temperature drops. 

 To rule out some of the suggested causes to the higher condenserpressure, the following is suggested: 

 Measuring of the ejector inter-condensers, at least temperature but preferably also differential 

pressure to rule out or confim off-design operation. 

 Temperature measurements on strategically tubes in the condenser, both tubes at the top and 

tubes at the center at least in the outlet. This could rule out or confirm both problems with 

water level in the waterboxes as well as choking of the tubes.  

 If the condenser is replaced, an analysis on which temperature span is the most common is 

very important to be able to do an economical calculation. As stated the deviation varies with 

the CW-temperature. 
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9. Appendix 
 

9.1 Calculation of turbine capacity and other factors 

To calculate the designed values of the turbine constant CT,B, equation (9) is used. Therefore, the 

following must be known: 

 Mass flow rate 

 Assumed or calculated values of Kµ, µdes and µ. 

 Inlet condition (pressure and enthalpy in this case) 

 Outlet condition 

 Number of stages in the turbine section. 

With the use of XSteam, an add-on to Matlab, which uses IAPWS IF-97 standard formulation for 

thermo hydraulic data on steam and water, specific volume and other conditions could easily be 

calculated. After use of equations (4, 6-9) The initial, designed, values on constant CT,B were 

calculated. Due to the fact that no disclosure to third-parties is allowed from the supplier, the exact 

data used in the calculations aren’t presented. However, the turbine constants were calculated as: 

Table 7, initial values of the turbine capacity, calculated from the designed values achieved from turbine 

manufacturer. 

Turbine Section Swallowing Capacity CT,B [m
2
]  

HP1 0,05448 

HP2 0,16570 

HP3 0,17948 

LP11 0,09887 

LP12 0,09041 

LP21 0,27016 

LP22 1,02481 

LP31 5,31591 

LP32 5,31453 

 

Due to the unsymmetrical extractions in the LP turbine, some assumptions have been made regarding 

the mass flow rate, since it wasn’t a known value. These values are also just the initial, approximately 

designed ones. Some adjustments need to be made in order to match the measured data to the model in 

a good way. Below is a table showing the factors used in the heat balance model, Baumann, ηdry, CT,B, 

Kµ and µdes are applied values whereas µand ηwet are calculated values . Note that the Baumann factor 

doesn’t affect the LP11 section since it is not operating in the wet area.  
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Table 8, factors used in Designed plant. 

Turbine Section Baumann ηdry [%] ηwet [%] CT,B [m
2
] Kμ μ μdes 

HP1 0.37 95 91.4 0.054381 1 1 1 

HP2 0.32 93.25 89.6 0.176100 1 1 1 

HP3 0.33 92 87.3 0.190480 1 1 1 

LP11 0.35 92 92 0.099469 1 1 1 

LP12 0.36 92 91.4 0.089200 1 1 1 

LP21 0.34 90.5 87.5 0.268000 1 1 1 

LP22 0.32 90.5 87.4 1.044810 1 1 1 

LP31 0.32 85.5 82 5.315910 1.02 1.0664 1 

LP32 0.31 85.5 82.1 5.314530 1.02 1.0424 1 

 

Table 9, factors used in Modeled plant. 

Turbine Section Baumann  ηdry [%] ηwet [%] CT,B [m
2
] Kμ μ μdes 

HP1 0.37 95 91.6 0.059282 1 1 1 

HP2 0.32 93.25 89.6 0.170583 1 1 1 

HP3 0.33 92 87.5 0.208275 1 1 1 

LP11 0.35 92 92 0.097183 1 1 1 

LP12 0.36 92 91.3 0.086292 1 1 1 

LP21 0.34 90.5 87.3 0.265074 1 1 1 

LP22 0.32 90.5 87.3 1.049690 1 1 1 

LP31 0.32 85.5 82 5.423210 1.02 1.04966 1 

LP32 0.31 85.5 82 5.574320 1.02 0.99831 1 

 

Below in Table 10 is measured temperatures for the extractions and coolingwater used to adjust the 

model to measurements. To be able to make comparisons the data had to be taken when the 

temperature in the coolingwater was 5°C, the chosed time was 17/1 -13 at 16:51 and a 10 minute 

average was used. 

Table 10, Measured temperatures from measurementpoints on the 17/1 2013. 

  Measurementpoint Temperature [°C] 

inlet coolingwater 112KB502 4.999 

outlet coolingwater 112KB503 15.375 

Extraction 1 423KA506 51.223 

Extraction 2 423KB509 86.739 

Extraction 3 423KB512 127.265 

inlet MSR (extraction 4) 423KB503 178.592 

Extraction 5 423KB502 202.757 

Extraction 6 423KB501 221.607 
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9.2 Calculation of the solubility of air in water 

Assumption: air with a composition of 79% nitrogen and 21% oxygen and with a molar weight of 32 

g/mol (O2) and 28 g/mol (N2) respectively. With a use of an add-on to Probera which decides the 

Henry’s constant as a function of molar weight and temperature, the mole fractions could be decided 

according to Henry’s law [18].  

𝑦𝑖,𝑙𝑖𝑞𝑢𝑖𝑑  𝑠𝑖𝑑𝑒 =
𝑃𝑖,𝑔𝑎𝑠  𝑠𝑖𝑑𝑒

𝐻
…(14) 

Were yi is mole fraction, H Henry’s constant and Pi is partial pressure (yi=Pi/P for ideal-gas mixtures) 

The inlet pressure is assumed to be 1 atm for the air which gives a partial pressure of 0.21 for the 

oxygen and 0.79 for the nitrogen which is used in the equation.  Below is a table of the constants used 

in equation (14) above. 

Table 11, Henry’s constant for oxygen and Nitrogen at a total pressure of 1 bar as a function of 

inlet CW-temperature. 

Inlet CW-Temperature [°C] Henry O2 [bar·kg/mg] Henry N2 [bar·kg/mg] 

0 0.014557 0.034841 

1 0.014943 0.035665 

2 0.015331 0.036491 

3 0.015722 0.037319 

4 0.016115 0.038149 

5 0.016511 0.038979 

6 0.016909 0.03981 

7 0.017308 0.04064 

8 0.017709 0.04147 

9 0.018111 0.042299 

10 0.018514 0.043126 

11 0.018919 0.043951 

12 0.019323 0.044773 

13 0.019729 0.045593 

14 0.020134 0.046409 

15 0.02054 0.047221 

16 0.020945 0.048029 

  

The outlet pressure (pressure at the outlet water box) is assumed to be about 0.3 bar; Measurements 

indicate a pressure of about 0.23 bar but the pressure is measured after a water separation tank so 0.3 

bar should be a conservative assumption. The amount of air released could now be calculated with the 

assumption of phase equilibrium and ideal-gas behavior. The cooling water is heated about 10.5°C 

regardless of the CW inlet temperature since it is the same amount of heat flux that needs to be cooled. 

A cooler water have a higher solubility however, as seen in the table with a decreasing Henry’s 

constant as the temperature increases, which gives a non-linear relationship of the amount of air 

released. The result can be seen in Figure 15. 

For the Baker-plot, some parameters needed to be calculated: 
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𝐺𝑔 =
𝑚 𝑔

𝐴𝑠𝑒𝑐𝑡𝑖𝑜𝑛
…(15) 

𝐺𝑓 =
𝑚 𝑓

𝐴𝑠𝑒𝑐𝑡𝑖 𝑜𝑛
…(16) 

Were the mass flow for the gas (steam, see Figure 15) and for the fluid (water, approximately 55000 

kg/s) is used. Using the area for one tube and making the assumption of same flow in all tubes this 

leads to values on Gg/λ and Gf·ψ as seen in Table 6. Below is the equations for λ and ψ [15], which 

both becomes equal to one since air and water is used. 

𝜆 =  
𝜌𝑔

𝜌𝑎𝑖𝑟

𝜌𝑓

𝜌𝐻2𝑂
 

1
2

… 17  

𝜓 =
𝜎𝐻2𝑂

𝜎
 
𝜇𝑓

𝜇𝐻2𝑂
 
𝜌𝐻2𝑂

𝜌𝑓
 

2

 

1
3

… 18  

 

 

 

 

9.3 Heat balance models 
Figure 18 and Figure 19 below are print screens of the modeled plant in Probera. 

Note that the factor “avvikelse” in the downright corner is a measure of the error from the actual 

measurements. For all measurement points one could supply a non-correlated factor which describes 

how much one could “trust” a measurement. The better the measurement method – the lower the factor 

and the trustworthiness of the measurement is higher. Probera takes all these factors into account when 

calculating the “avvikelse”-factor using a least-square method. According to Bertil Persson [22] a 

value less than 2 is very good. 
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Modeling of Designed plant 

 Figure 18, Approximation of the designed plant at a coolingwater temperature of about 5°C. 
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Adjusted heat balance model 

Figure 19, adjusted heat balance model according to actual measurements. 
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Non-wide HP1 Turbine section 

Below is the HP1 Turbine section’s affect on production curve presented. The wideness have been 

changed to its original value as was used in the Probera Design model. It seems like all power output 

difference between Adjusted model and Probera Design could be explained by a wide HP1-turbine.  

 

Figure 20, Non-wide HP-turbine section affect on production curve. 

 

 

Differences between Beckmann and Stodola 

Figure 21 shows a production curve presented with both Stodola and Beckmann together with a 

measured curve over the power output for comparison. 
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9.4 Part load data 

 

The following figures shows the raw material for the equations used in the part load analysis of 105.01 

% (average) reactor thermal output. 130 data points of 10-minute average values is used from the 

period of 27/7-11/8 2012. 
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Figure 21, Comparison between Stodola and Beckmann modeling. Measured data with 2
nd

 order polynomial fit. 
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Figure 22, Measured reactor thermal output as a function of cooling water temperature. Part load. 

 

 

Figure 23, Measured condenser pressure as a function of cooling water temperature. Part load. 
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Figure 24, Measured power output as a function of cooling water temperature. Part load. 

 

9.5 Full load data 
The full load (129.1 % RTO) data consists of daily values from measurement points which is retrieved 

during the period of 17/6 -12 to 14/4 -13.  

 

Figure 25, Measured reactor thermal output as a function of cooling water temperature. Full load. 
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Figure 26, measured condenser pressure as a function of cooling water temperature. Full load. 

 

Figure 27, measured power output as a function of cooling water temperature. Full load. 
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Below is the difference shown between two power output measurements as a function of cooling water 

temperature. The difference is 3.7 MW at 5°C and varies between 3.3 MW at 0°C to 2.7 MW at 16°C 

with a peak on 3.7 MW.   

 

Figure 28, Differences between Power output measurement points, approximated with a 2
nd

 order 

polynomial. 
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9.6 Sensitivity Analysis of modeled plant 

This section contains a sensitivity analysis of the modeled plant, showing the most important factors in 

the turbine model’s affect on the production curve. The affect on individual turbine sections are not 

included. In the end of the section a discussion of the analysis is presented. 

 

Figure 29, the Baumann-factors affect on power output as a function of cooling water temperature. 

Designed plant. 
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Figure 30, the Blade angles affect on power output as a function of cooling water temperature. Designed 

plant. 

 

Figure 31, Dry efficiency’s affect on power output as a function of cooling water temperature. All Turbine 

sections. Designed plant. 
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Figure 32, Cotton-correction of wideness’ affect on power output as a function of cooling water 

temperature. All turbine sections. Designed plant. 

 

Discussion 

As seen in Figure 29-Figure 32 there is a lot of factors that affect the production curve. The Baumann-

factor, dry efficiency and cotton-correction of wideness has a similar impact on the production curve 

throughout the entire temperature span. The affect on individual turbine sections is however not 

shown. Some turbine sections operate only in the wet-area and some don’t which certainly affect both 

the cotton correction but also the Baumann affect on efficiency. A higher efficiency of a turbine 

section gives a lesser moisture content in the outlet thus affecting the previous factors impact on the 

result. The modeling is therefore somewhat complicated and extensive and especially individual 

turbine sections should perhaps be investigated further at other temperature ranges, part-load 

conditions etc. to be able to give a correct description of the behavior of individual parts in the plant. 

The blade angles affect on the production curve is more interesting and isn’t as entwined as the three 

factors discussed above. Just a slight change with two degrees affects the curve quite much. It must 

however be stated that the designed curve matches the measurements very well in the high-

temperature region and a change in blade angle doesn’t seem reasonable there. A combination 

however of a bigger blade angle together with a decree in, for example, Baumann-factor would give a 

different production curve. This would imply a somewhat higher power output than the model used at 

lower temperatures of the cooling water, but about the same as the used model for higher 

temperatures. 
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9.7 Maximera elproduktionen - Populärvetenskaplig artikel 

 

För att klara av framtidens utmaningar om 

en klimatneutral elproduktion är det viktigt 

att producera så mycket el som möjligt från 

alla anläggningar i drift. I termiska 

kraftverk, som till exempel kärnkraftverk, 

kan tillståndet i anläggningen utvärderas 

med hjälp av värmebalanser. På så vis kan 

avvikelser upptäckas och åtgärder vidtagas 

för att hela tiden hålla anläggningen i gott 

trim.  

Den stora utmaningen världen står inför i och 

med klimatförändringarna är att minska 

växthusgasutsläppen men samtidigt kunna 

behålla levnadsstandarden för människor i den 

rika världen och dessutom lyfta folk ur 

fattigdom. Detta kommer att kräva massor med 

åtgärder i alla sektorer; byggnader, service, 

industri, transport och inte minst elproduktion. 

Sverige är lyckligt lottat i sammanhanget- vår 

elproduktion består till cirka hälften vattenkraft 

och knappt hälften kärnkraft som båda släpper 

ut väldigt lite växthusgaser i jämförelse med 

andra kraftslag, till exempel kolkraft. 

Elbehovet i framtiden kommer sannolikt 

dessutom öka, även om energieffektivisering 

också är en viktig åtgärd. Till exempel kommer 

transportsektorns behov av el att öka vid 

elektrifiering/hybridisering av sektorn för att få 

bukt med utsläppen. Att varje kraftverk 

producerar så mycket som möjligt är därför 

viktigt för hela samhällsekonomin, företagen 

och alla konsumenter. Arbetet bakom denna 

artikel handlar om just det- att maximera och 

optimera elproduktionen hos kärnkraftverket 

O3 i Oskarshamn som i dagsläget är världens 

största kokarreaktor. 

O3 byggdes på 80-talet och har genomgått ett 

par effekthöjningar genom åren. Nu senast i ett 

projekt som kallas PULS (Power Uprate with 

Licensed Safety) höjdes reaktoreffekten från 

110 % av ursprungseffekten till 129 %. Detta 

har gjort att man bytt en rad komponenter i 

anläggningen men samtidigt att man till 

exempel har komponenter som man valt att 

behålla som därmed lastas högre. Detta gör att 

det är svårt att säga exakt hur mycket 

elproduktionen kommer att öka när man höjer 

reaktoreffekten, leverantören av utrustningen 

säger en sak men utfallet kan bli ett annat. 

Arbetet bakom denna artikel har fokuserat på 

att utvärdera och utreda skillnader mellan det 

man har sagt att anläggningen kommer att 

leverera och det faktiska utfallet. 

Hur får man då ut el i ett kärnkraftverk?Jo! 

Egentligen är det helt enkelt så att en reaktor är 

en stor vattenkokare som kokar vatten till ånga. 

Denna ånga har ett högt tryck och en hög 

temperatur (admissionstryck och –temperatur) 

vilket gör att värmeenergin är hög. Sedan låter 

man ångan passera en turbin som omvandlar 

värmeenergin till rörelseenergi vilket 

generatorn i sin tur omvandlar till elektrisk 

energi. För att få ut så mycket energi som 

möjligt ur ångan, försöker man expandera den 

ned till så låg temperatur och tryck som 

möjligt. Det låga trycket får man i en stor 

värmeväxlare som kallas kondensor som 

kommer efter turbinen och som kyls med 

havsvatten, det är alltså kylningen av ångan 

som gör att (kondensor-)trycket sjunker. 

Ångan får då alltså ett lågt tryck och en låg 

temperatur vilket gör att expansionen blir lång 

och elproduktionen hög. 

 

Figur 33, Expansionslinje för en turbin. 
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Figur 34, Schematisk bild över O3
1
. 

Om till exempel kylningen av kondensorn med 

hjälp av havsvattnet fungerar dåligt- en mängd 

olika faktorer kan tänkas påverka! Så kommer 

man inte erhålla det låga tryck och den låga 

temperatur som man räknat med och 

följaktligen sjunker elproduktionen.  

Det har i arbetet visat sig att just 

kondensortrycket är lite högre än man räknat 

med och därför skulle O3 kunna producera 

ytterliggare ca 4-10 MW mer el vilket ungefär 

motsvarar årsbehovet hos mellan 1000 till 

2500 eluppvärmda villor
2
. Förklaringarna kan 

vara många, kondensorn består av ca 54000 

tuber där havsvattnet passerar och kyler ångan 

och värmeöverföringen i dessa tuber fungerar 

                                                      
1
 

http://okg.se/Documents/Karnkraft/Processchema_

O3.pdf 2013-05-17 
2
 

http://www.energiradgivaren.se/2011/09/elforbrukn

ing-i-en-genomsnittlig-villa-respektive-lagenhet/ 

2013-05-06. 

troligen sämre än beräknat. Det visade sig att 

en variabel blockering av tuberna fick 

värmebalansmodellen att stämma bäst mot 

mätdata. Det innebär att ju kallare det blir i 

havet, ju fler tuber blir ”blockerade” och 

därmed kan inte ångan kylas ordentligt, 

kondensortrycket ökar och elproduktionen 

minskar.  

Modelleringsmässigt ser det alltså ut som att 

man får en ökad ”blockering”av tuber ju 

kallare det blir i Östersjön. Vad kan detta bero 

på då rent fysikaliskt? Några tänkbara orsaker 

som presenteras är 

 Förändrat/chokat flöde 

 Ejektorproblem 

 Luftbekymmer 

Eftersom kondensorn inte har ersatts med en 

ny efter PULS och det trots allt går flera 

hundra kilogram mer ånga genom kondensorn 

nu än innan PULS, är det inte otänkbart att 

man fått ett förändrad strömning i kondensorn 

http://okg.se/Documents/Karnkraft/Processchema_O3.pdf
http://okg.se/Documents/Karnkraft/Processchema_O3.pdf
http://www.energiradgivaren.se/2011/09/elforbrukning-i-en-genomsnittlig-villa-respektive-lagenhet/
http://www.energiradgivaren.se/2011/09/elforbrukning-i-en-genomsnittlig-villa-respektive-lagenhet/
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som gör att ångan får svårt att kondensera 

tillbaka till vatten. Detta kan dessutom som 

följd få att ejektorerna inte suger ut gaser som 

de ska. En ejektor drivs av färskånga från 

reaktorn och genom ett lavalmunstycke uppnår 

ångan kraftig överljudshastighet. Denna 

hastighet gör att man kan suga ut gaser från 

kondensorn. Gaser följer alltid med från 

reaktorn och kan i sin tur förstöra 

värmeöverföringen. Har strömningen ändrats 

kan således dessa ”nästen” med ansamlingar av 

gaser har flyttat på sig och ejektorerna blir 

oförmögna att suga bort dom.  

Luft som tar sig in i systemen måste man alltid 

beakta. Ett par bekymmer som skulle kunna 

uppstå är att man får för mycket luft i 

kondensorn på tubsidan vilket gör att 

vattennivån i vattenkamrarna sjunker och som 

följd finns inget vatten i de övre tuberna! 

Luften kan såklart ta sig in lite varsomhelst, 

men dessutom är det så att det frigörs luft från 

havsvattnet eftersom det värms upp. 

Lösligheten av luft i vatten är dessutom högre 

vid en lägre temperatur vilket gör att mer luft 

frigörs när havsvattentemperaturen sjunker 

vilket kan förklars det variabla beteendet som 

upptäcktes i modellen. 

Självklart står inte alla förklaringsmodeller för 

sig själva utan snarare blir det mer troligt om 

man kombinerar ihop dom. Dessutom är det så 

att det blir mest en form av spekulation 

angående orsakerna. För att verkligen kunna ta 

reda på vad som kan tänkas ”blockera” 

tuberna, bör ett antal temperaturmätningar 

genomföras både i kondensorn och i 

ejektorsystemet för att bekräfta eller avvisa 

troliga orsaker. 

En annan stor skillnad som förklarar 

effekttappet är att högtryckturbinen är för vid. 

Högtrycksturbinen är den turbin ångan 

passerar först efter reaktorn och levererar ca 

40% av eleffekten. En för vid turbin innebär att 

turbinen släpper igenom för mycket ånga vilket 

bland annat gör att trycket innan turbinen 

sjunker och som tidigare påpekats är högt tryck 

och temperatur innan turbinerna viktigt för att 

producera så mycket el som möjligt. 

Följaktligen innebär detta en minskad eleffekt 

på troligen ca 9-14 MW vilket motsvarar 

årsbehovet hos 2500-3500 eluppvärmda villor.  

De två stora avvikelser från beräkningarna, det 

vill säga ett högre kondensortryck och vid 

högtrycksturbin, innebär alltså en tappad 

produktion motsvarande årsförbrukningen hos 

3500-6000 eluppvärmda villor! Det ska bli 

spännande att se om man kan komma tillrätta 

med vissa av bekymren framöver och kräma ut 

lite mer effekt ur turbin. 


