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Tillämpning på Träd Fenologi och Examens Tid för Ingenjörer 
 

 

När trädens blad knoppar på våren och färgas på hösten är två exempel på tid-till-händelse 

processer som är påverkade av klimat data. Tid till examen eller till att avbryta studier för 

ingenjörer är ett annat exempel på tid-till-händelse data, med den ytterligare komplikationen 

av att ha två möjliga sluttillstånd. I denna masteruppsats vidarutvecklas en modell först 

presenterad av Song (2010). Tid-till-händelse modellen utökas till att hantera många olika 

tidsberoende variabler och olika regulariseringsmetoder tillämpas för att hitta statistisk 

optimala modeller. Klimat variabeln ackumulerad temperatur visar sig kunna förutsäga 

knoppsprickning med stor precision, se Figur 1, medans tidpunkten för höstlövsfärgningen är 

mycket svårare att modellera med den givna klimatdatan. Motsvarande prediktioner för 

examens studenter presenteras i Figur 2. Examensmodellen visar sig vara lik 

knoppsprickningsmodellen och ackumulerad poäng för studenter spelar samma roll som 

ackumulerad temperatur för träd. För examensmodellen är det möjligt att klassificera om 

studenten kommer ta examen eller hoppa av under studiegången termin för termin. Songs 

modell visar sig vara effektiv och flexibel för modellering av tid-till-händelse data. 

 

 

 

 

 

 

 

 

 

 

 

Figur 1 Prediktion av knoppsprickning 

för Björk träd i Finland 

Figur 2 Examensprediktion för ingenjörs 

studenter vid Lunds Tekniska Högskola 





  

 

 

Abstract 

 

The day of bud burst (DBB) and leaf senescence are two examples of time-to-event 

phenological processes influenced by climate factors. Time to graduation or quitting for 

engineering students is another example of time-to-event data, with the added complication of 

having multiple possible outcomes, or absorbing states. This master thesis elaborates upon the 

models presented in Song (2010) “Stochastic Process Based Regression Modeling of Time-to-

event Data”. The time-to-event model is extended to use many different covariates, and Lasso 

regularization techniques are used for variable selection, resulting in compact and statistically 

relevant models. Models with multiple outcomes are shown to be able to perform 

classification of students sequentially over time. For the phenological examples, DBB is 

predicted with an accuracy of a couple of days while leaf senescence proves to be a harder 

problem, possibly in need of additional climate data not included in this analysis. Overall the 

model of Song is shown to have great promise and versatility for modeling of time-to-event 

data. 
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1. Introduction 

In this Master’s thesis a method for analyzing time-to-event data is tested and evaluated. 

Time-to-event analysis is sometimes also called survival analysis. The objective is to model 

the timing of specific events through a discrete time approximation of the intermediate time 

steps leading up to the event itself. The model used in this thesis is taken from Song (2010) 

‘Stochastic Process Based Regression Modeling of Time-to-event Data’. 

 

Two different models for time-to-event data will be analyzed, using one or two distinct 

endpoints respectively. The single transition model is used to analyze the day of bud burst 

(DBB) and leaf senescence (when the leaves color at fall) for birch trees in Finland and the 

United Kingdom. For the dual transition analysis the time to examination or to quitting, for 

engineers at LTH is modeled.  

 

The first model is used for the phenological states of trees. It is a single state transition model 

where the system (tree) goes from one state to another (no bud burst to bud burst). The state 

of bud burst and the state of leaf senescence are well separated in time and are not likely to be 

influencing each other (more than in the sense there has to be bud burst in order to have leaf 

senescence) however the possibility is explored. The data used in the analysis do not contain 

any censored observations. In addition there might be factors in the environment of the tree, 

perhaps during the beginning of the year, affecting leaf senescence.  

 

The model for engineers is, on the other hand, a dual state transition where the system 

(student) can go from one state (studying) to one of two (exam or quitting). This system could 

also be viewed as two separate single transition models, but then the observations have to be 

separated into those known to have graduated and those that quit. Unfortunately it is not clear 

how to classify students in the middle of their education. Therefore, a model having both 

transition cases is constructed. It is shown that the multiple transition models easily generalize 

to k-states, in an extension of Song’s model.  

 

The model also uses the application of many (hundreds of) covariates in the analysis. They 

are, through Lasso regularization (Tibshirani, 1996) and grouping (in the case of engineers the 

14 different programs are grouped into 3 clusters), reduced to statistically significant 

depending covariates. The full model described by all the covariates (and their interactions) is 

often too complex leading to over fitting. The full model is therefore not a good predictor on 

new data. Cross validation (CV) and regularization is implemented to find covariates that best 

describe the given data set. 

 

In the following sections the analysis of the phenological states will implement hundreds of 

climate data derived covariates in order to find models that best describe the data (DBB and 

leaf senescence). It is shown that the growing degree days covariate analyzed by Song is 

effective for predicting DBB. The model for the leaf senescence is however not successful, 

given climate data at hand. One possibility would be to incorporate sun exposure time as a 
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covariate for the leaf senescence. The analysis of the engineer’s path to graduation or quitting 

is modeled both as single transition models and a dual transition model. The single transition 

models for the examination and quitting prove to have similar structure as the DBB models 

for the Finland and UK data. The dual transition model for the engineers is used for 

classification of student’s probability to examination and quitting. It is shown that the 

classification can be made on censured data i.e. on students at various stages in their 

education. 
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2.  Data 

All analysis in this thesis was done using the open source computing environment R (R core 

team, 2012). The R-package glmnet (Friedman, 2010) provides tools for Lasso analysis of 

logistic (and other) regression. Specifically version 1.9-3 (March 2013) which supports 

regularization without an intercept, was used.  

2.1 Phenological data 

 

During one season/year a tree goes through a series of phenological stages as budburst and 

leaf senescence (LS). Leaf senescence is when the leaves change color during the fall to save 

minerals before falling off. There are many deterministic models that try to identify dependent 

factors concerning DBB and senescence. For the DBB an important factor is the accumulated 

temperature described and analyzed by Song (2010). Other factors affecting DBB include 

chilling degree days (Vegis, 1964) & (Cannell & Smith, 1983). Other models propose the 

amount of daylight as a key triggering factor for budburst (Kramer, 1994). The idea of 

chilling or daylight is to prevent early DBB due to warm winter that then risks damage in the 

case of cold spring months. Further the amount of rain during the year before could affect 

budburst; stress due to drought could affect the winter rest needed. Therefore climate/weather 

during different time periods over the previous year are used as covariates. The amount of 

rain along with number of rain days over these periods are used as constant covariates. For 

senescence, the covariates decreasing temperatures at fall, possibly in combination with day 

length is used (Delpierre, 2009). 

 

Phenology data was taken from the PEP725 project (2012). The tree analyzed is birch (lat. 

Betula Pendula). Two phenological phases are studied; the day of bud burst (DBB) as event 

11 in the BBCH scale (Feller, 1995), which is when the first leaf has unfolded; and event 94 

leaf senescence, which is when 50% of the leaves have colored during the autumn.  

 

Phenology data for trees have been collected irregularly across Europe. In this thesis the 

climate data is furthermore interpolated from a regular grid. Data from Finland and the United 

Kingdom are analyzed.  

 

Climate data on a 0,5 x 0,5 degree grid was obtained from Haylock (2008). Phenological 

observations are assigned to the closest grid cell. For Finland the grid resolution of the climate 

data allows for a unique association of each phenology stations. In the case of the UK the 

number of phenology stations is much larger than the number of climate stations, and many 

stations have the same climate data despite a substantial spread in DBB within each climate 

grid cell. See table 2.1 and figures 2.1a-b.  

 

Coastal data are dropped due to lack of climate data. Temperature and precipitation data is 

collected from the closest climate cell relative the phenology station. The climate data 
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consists of daily average, minimum, maximum temperatures, as well as daily precipitation 

(amount of rainfall). 

 

The day length data, or number of hours of light, is calculated from the time of year and 

latitude for each station. 

 

Finland 

 

The number of DBB observation sites in Finland is 29 and the number of observation sites for 

leaf senescence is 31. Figure 2.1c shows the distribution of the observation sites and the 

choice of training/validation sets for DBB data. The distribution of the observation sites is 

similar for the leaf senescence data. In figure 2.1d the distribution of observations over the 

years is shown for each observation site in the case of DBB. A similar distribution holds for 

leaf senescence data. For the Finland data 2/3 of the stations are selected for the training set 

and the remaining 1/3 for the validation set. 

 

United Kingdom 

 

For the UK the number of DBB observation sites is 3169 and the number of observation sites 

for leaf senescence is 2364. Figure 2.1c shows the distribution of the observation sites and the 

choice of training/validation sets for DBB data. The distribution of the observation sites is 

similar for the leaf senescence data. In figure 2.1e the distribution of DBB observations over 

the years is shown. A similar distribution holds for leaf senescence data for the UK but only 

over the years 1999-2005, i.e. no data for senescence exists before 1999. Due to computer 

memory limitations only 1/3 for DBB and 1/4 for leaf senescence of the UK data are used for 

the training set.  
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 Years Number of 
phenology 

stations 

Number of 
climate stations 

Median 
observation 

min/max 
observation 

Number of 
observations 

FI - DBB 1997-2005 29 29 138 119/172 240 

UK - DBB 1972-2005 3169 418 103 32/150 6637 

FI - LS 1998-2011 31 31 252 210/290 290 

UK - LS 1999-2005 2364 418 297 223/362 4450 

Figure 2.1a Histogram for the UK data showing the distribution of observation dates. 

Figure 2.1b Boxplot of weather station 363 UK data showing the variability of observations 

within a year. To the left is DBB data having 3-19 observations. To the right is leaf senescence 

data having 1-15 observations. 

Table 2.1 Data for Finland and the UK describing the distribution of observation dates and stations. 
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Figure 2.1d The Finland DBB observation 

for each year and phenology station. 

Figure 2.1e UK phenology stations and their 

observations over the years. Almost all 

observations are from 1999-2005 

Figure 2.1c Phenology stations for the DBB data with the training set as well as remaining 

validation set. The climate grid locations closest to each phenology stations are shown. 

The associated climate stations from Haylock (2008) are taken from a 0.5 x 0.5 degree grid 
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2.2 Examination data 

 

The data for the analysis of engineer examination is taken from LTH (faculty of engineering 

at Lund University (LU)) and consists of 18434 students at 14 different programs during the 

years 1993-2012. Each student is represented during each semester from registration at a 

program to either graduating or quitting. Some students may be represented multiple times 

with different identification numbers due to change of program. However it is not possible to 

distinguish these cases from other cases. Therefore a portion of the quitting students only 

change program and are registered cases more than once. This affects the true number of 

quitting students. Of the data the following information is used: 

 

 Program – Engineering program identification letter 

 Identification – Individual identification number for each registration 

 Female – Indicates a female student 

 Class – Registration year and semester.  

 Semester – The current semester. 

 Status – Activity status for the specific semester: Quitted, Graduated, Inactive, Foreign 

studies, Study break 

 Points – Registered points for the current semester in the LADOK system of Lund. 

 Study semester – The study semester number ordered from start for each student. 

 

The engineering programs are identified by letters, with some programs started after the first 

year for which the data set contains students, see table 2.2. The number of student 

registrations per year divided into male and female is shown in figure 2.2a. Figure 2.2b shows 

the distribution of how many students take exam and quit per year in the data set. 
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Programs Years 

D E F K L M V 1993-2012 

I W 1998-2012 

B C 2001-2012 

P 2002-2012 

G N 2003-2012 

Table 2.2 Engineering programs in data set that span 1993-2012.  

Figure 2.2a Histogram of student registrations from first semester Fall-1993 to Fall-2012.  

Figure 2.2b Distribution of the number of students taking out exam and terminating 

studies. The first examinations come roughly 5 years after the first students started their 

program. Note the increase in quitting around year 2011, it is due to a large database 

clean out of inactive students. 
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3. Model setup 

In this thesis time-to-event data is analyzed using the stochastic regression model proposed by 

Song (2010, chapter 2.2). Formally time-to-event is defined as a sequential process over time 

0,1,...t   going through state transition. The states are described by an indicator variable 

, {0,1}i tY   where the index i  represents each individual or case studied see figure 3.1. In case 

of budburst 0 stands for ‘budburst has not occurred’ and 1 stands for ‘budburst has occurred’. 

Correspondingly for the engineer’s data the indicator variable has three states {1,2,3} where 1 

stands for ‘studying’, 2 stands for ‘exam’ and 3 stands for ‘quitting’. Now let iT  be the time 

to event for observation i  then: 

 
,

,

0,  

0,  

i t i

i t i

Y t T

Y t T

 

 
 

In addition we assume there are time dependent vectors of covariates, ,i tX  which affect iT . 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Markov chain transition model as a logistic regression 

 

The conditional probability of transition at time point it given covariates is: 

 ,0 ,1 , 1 , , 1P( | ) P( 0, 1 | )
i i ii i i i i i t i t i t iT t X Y Y Y Y Y X            

This states that the probability of transition at it  is the probability of having the chain of 

indicator events up to and after the transition. Since we are interested in the time-to-event 

conditionally on the covariates ,i tX  we write the probability for the chain of events ,0:tiY given 

,0:i tX as: 

 ,0: , ' ,0 ,0 , ' , , ,0: 1 , '

1

P( | ) P( | ) P( | , )
t

i t i t i i i t i s i s i s i t

s

Y X Y y X Y y Y X   



    

It is now easy to show, due to the sequential nature of the time-to-event model, that the 

probabilities on the right hand side of the above equation only depend on , 1i sY  (Song, 2010, 

(2.5)). The model simplifies to: 

Figure 3.1 Two state Markov transition model. The Markov chain (Norris, 2009) is in the 

’zero’ state and remains there at each time point  with probability . Consequently the 

chain changes state with probability  at each time point . When the Markov chain has 

changed state to the ’one’ state it will remain there with probability 1 and has thus been 

absorbed by the ’one’ state. 
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 ,0: , ' ,0 ,0 , ' , , , 1 , 1 , '

1

P( | ) P( | ) P( | , )
t

i t i t i i i t i s i s i s i s i t

s

Y X Y y X Y y Y y X    



     

And we get: 

,0 ,1 , 1 , , 1

, , 1

,0 ,1 , 1 ,

P( | ) P( 0, 1 | )

                         = {since P( 1 | 1) 1 0}

                         = P( 0, 1 | )

               

i i i

i i

i i

i i i i i i t i t i t i

i t i t

i i i t i t i

T t X Y Y Y Y Y X

Y Y

Y Y Y Y X

  

 

  



        

    

    

 ,0

1

, , 1 , , 1

1

          = using the markov property and inital assuption of ( 0) 1

                         = P( 0 | 0, ) P( 1 | 0, ) 
i

i i

i

t

i s i s i i t i t i

s

P Y

Y Y X Y Y X


 



 

 
     

 


       (1) 

By the construction and assumptions of causality (see figure 3.1 for illustration of the Markov 

model) it is clear that the covariates can only influence transitions up to their present time, 

thus 
iX should be replaced by ,0:i sX  in the above equations.  

 

We now assume that the transition probabilities can be written as: 

1

1

1
( =1| =0,X)= logit ( )

1
t t t X

P P Y Y X
e 



 
 


 

Then the probability of having transition at time T t  is: 

 

1

1

1

1

( 1 | 0)

( 1)

( ) (1 )   ,  1

t t t

t

s t

s

P P Y Y

P T P

P T t P P t







  

 

    

 

And the probability of transition not later than T t  is: 
1

1

1 2 1

( ) ( ) (1 )
t t u

s u

u u s

P T t P T u P P P


  

         

3.2 Regression 

The method of linear regression is commonly used to model the dependence between 

explanatory variables and the response variable of interest (Rawlings, 2001).  Least squares 

(LS) minimization is applied to the coefficients of the explanatory variables in order to 

minimize the squared error between the fitted model and the original data. The residual error 

of the model is assumed to be Gaussian with mean 0 and variance 2 . The setup for multiple 

linear regression is: 

 0 1 1 ...i i p pi iY X X e        

The explanatory variables can have many forms: continuous, constant (the intercept being the 

default constant equal to one) or categorical. However, the responseY must be continuous in 

order for least squares to make sense. So in the case of a categorical response as the 0/1 state 

coding of Y in the time-to-event transition model, linear regression is not applicable 
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3.3 Multiple logistic regression 

 

When the response is binary, such as {0,1}iY  in the time-to-event Markov chain (see figure 

3.1), iY can be modeled as (1,p) (p)Bin Bernoulli . Trying to set up a regression modeling the 

success probabilities ip  as, 

 0 1 1 ...i i pp ip ip X X X         

fails since [0,1]ip  and we cannot guarantee that [0,1]i ip X   . In order to overcome this 

problem one can use a link-function such as the logistic function: 

 logit( ) log
1

i
i

i

p
p

p

 
  

 
 

This transformation maps the probabilities to .  

 

The single transition model will for each observation fit a value on the real line and the 

transformation, using the inverse logistic function: 

 1 1
( ) logit ( )

1 x
P x x

e




 


 

converts the values back to probabilities. So the model: 

 0 1 1logit( ) ...i i p ip ip X X X         

inverted with the logistic function gives 

 
1

1 1

i

i i

X

i X X

e
p

e e



 



 
 

 
 

which can be estimated by maximizing the binomial likelihood (Christensen, 1990, ch 2.6): 

 
 1

1

1 1 1

1 1
(1 )

1 1 1

ii iii

i i

i i i

yy XyXN N N
y y

i i X X X
i i ii

ee
L p p

y e e e



  




  





  

    
      

      
    

We have the response iy for the observation vector iX  .The maximization of the likelihood 

gives the estimate of and the transition probabilities are given by (X )i iP  . Note that the 

maximization is done over all observations iT  represented by the corresponding sequences

; : ii o ty .  

 

The resulting model has the properties of a general linear model (GLM) among which is that 

the coefficient estimations are consistent maximum likelihood estimates. Simulation studies 

(Song, 2010, ch 3.4-3.5) confirms the consistency of the estimates. 

3.4 The multinomial case 

 

For the examination data, the two separate absorbing states results in the use of a multinomial 

analogue to the binomial distribution (figure 3.4). The derivation in chapter 3.1 holds, with 

the modification of (1) allowing for multiple transitions.  
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The distribution function for k categories is: 

 
1

1

111 1

!
,   when

! !(y , , y ,n, , , ) ,  with 1

0                               otherwise

k

k
yy

i ik ij

ji iki ik i ik

n
p p y n

y yf p p n




 




    (2) 

The corresponding binomial case has k=2 categories, one for success and one for fail. Here 

we have 3,  y  is one of (1,0,0),(0,1,0),(0,0,1)ik  so that only one of the response states is 

possible for each observation i . The probabilities are for the transition to the ‘exam’ state, the 

transition to the ‘quit’ state and of remaining in studies which is given by the probabilities of 

the two transition states since the total probability sums to one i.e. 

 
1

1,  
k

ij

j

p i


    

Since there are more than two states in the logistic regression model one state has to be 

chosen as a reference state. Compared to the logistic function, in the divisor is the failing 

case,1 p , for the binomial logistic regression and the dividend, p , the success. With more 

than two categories the divisor is chosen to be the ‘no event’ probability or simply 1 minus 

the sum of the probabilities of the absorbing states. Since we have 1k  probability sequences 

for the different transition states the logistic regressions becomes: 

 
( 1)1

1 1ln ,   ,  ln
i ki

i i k

ik ik

pp
X X

p p
 

  

   
    

   
  

Exponentiation and solving for the probabilities gives: 

    1 1 ( 1) 1exp , , expi ik i i k ik i kp p X p p X        

Since the probabilities must sum to 1 we get: 
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

 

 

 

   

  
   (3) 

The connected equations described by (3) are then solved using ML over the multinomial 

distribution (2) giving the multinomial log likelihood, 

Figure 3.4 The multinomial Markov chain. For each observation i  there is a probability 1ip of 

going to the absorbing state 1 and a probability 2ip of going to the absorbing state 2. 

Consequently there is a probability 3 1 21i i ip p p   of staying in the state 3. The observation 

i  is part of a sequence making up the Markov time chain. 

Figure 3.4 The multinomial Markov chain. For each observation  there is a probability of 

going to the absorbing state 1 and a probability of going to the absorbing state 2. 

Consequently there is a probability of staying in the state 3. The observation 

 is part of a sequence making up the Markov time chain. 
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Here the 3 state is the ‘no transition’ state and the states 1 and 2 the two absorbing transition 

states. The probability of transition within each observation sequence as calculated in chapter 

3.1 is similar for the multinomial model. In this thesis the two coefficient sequences 1 2, 

represent the same covariates (the ‘grouped’ option in glmnet). It is possible to have different 

covariates for the two transition states (the corresponding ‘ungrouped’ option). Intuitively it is 

though plausible to use the grouped model since often a good covariate for examination is bad 

for quitting and vice versa. For example: points is good for examination and bad for quitting, 

consequently the probabilities will go up for examination and held down for quitting. 

Summary 

 

As shown the time-to-event data has a stochastic process based regression representation 

(Song, 2010) in the form of a Markov chain where dependence on covariates can be estimated 

using logistic regression. One key aspect of the regression is that each observation  event is 

made up of a sequence of time points coding the chain. For the phenological data the 

sequence consists of all the days from January 1 up to the phenological event. For the 

engineer’s data the sequences are the semesters autumn/spring up to the event exam/quit. The 

logistic regression itself makes no distinction between the sequence parts of the observations. 

For example: day 15 in observation i is treated the same as day 123 in observation j. What 

make the two elements different is the covariates. The logistic regression gives the same 

answer for any elements that have the same covariates. This makes the time constraints on the 

covariates more apparent since the covariates bear all information of the time dependence 

throughout the logistic regression. However the binomial distribution of the observations 

defines the relative probabilities within an observation set. For predictions there will be a 

difference since the probabilities are sequentially summed within each observation sequence. 

The logistic regression finds the coefficients that provide the best overall fit to all 

observations. Therefore it is (again) essential that there are mathematical structures in the 

covariates that capture the direction from time point 1 up to the transition point in order for 

the regression to generate models with good predictive properties. It is, however, a model 

assumption that the covariates influence the time-to-event. It is also why the accumulated 

version of any given affecting covariate, in this model, can make a good predictor, since the 

accumulation defines a time direction within each observation sequence. 
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4. Variable selection by regularization 

In a regression model the problem of finding good predictors and discarding irrelevant ones 

becomes increasingly hard as the number of possible covariates increases. The regression will 

use as many variables as possible to minimize the sample error, often leading to over fitting. 

This can be resolved by penalizing models with many parameters, allowing a compromise 

between model complexity and fit. Different forms of information criteria have been 

developed to help choose between models with differing sets of covariates. The two most 

common are the Akaike information criteria (AIC) (Akaike, 1974) and the Bayesian 

information criterion (BIC) (Schwarz, 1978). The general form of the AIC is:  

 2 2ln( )AIC k L    

where k is the number of the parameters in the model and L is maximum likelihood of the fit. 

A low value of the AIC indicates a better model. This measure is only relative, allowing us to 

compare different models; it does not say if a particular model provides a good fit to data. 

Typically one uses AIC or BIC to choose between nested or related models already known to 

be reasonable predictors. 

 

Another slightly subtle form of over fitting occurs when validating several models. Say that 

the given data set is divided into two groups, a training set used to estimate model parameters, 

and a validation set for evaluation of the models. Each model will then be given a validation 

error and it is natural to choose the model with the smallest validation error as the best. 

However, here the validation error is explicitly minimized and therefore biased towards the 

validation set. To overcome this problem the training set is further divided into groups so that 

cross validation (CV) can be applied (Picard, 1984). The idea is to successively hold out one 

group when estimating parameters and then use that group for validation. The number of 

cross validation groups is often set to 10 and the resulting 10 validation errors are weighted to 

form a final validation error. The model with the lowest combined error is then chosen and 

can thereafter be independently validated on a remaining validation set.  

 

It is often desirable to automatically find a good reduced model when the number of 

covariates is very large. Using information criteria or cross validation over all possible subsets 

is only computationally feasible for a limited number (about 10) of covariates. The idea of 

penalizing the model for having many parameters as done for the AIC and BIC information 

criterions can be applied more directly in the regression estimation itself. Adding a term 

involving the magnitude of the regression coefficients scaled by a factor to the log-

likelihood forces some coefficients to become small. The model selection process can then 

focus on coefficients above a certain threshold. The overall process involves selecting the

parameter, often through CV, and scaled by a threshold. When applying regularization it is 

important to standardize the covariates so that they have the same scale. This is done by 

centering, that is subtracting the mean, and scaling, dividing by the standard error. If the 

model is without an intercept one can only scale. Constant covariates are not scaled and 

categorical covariates are not standardized at all. 
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4.1 Ridge regression 

 

One common method of regularization is ridge regression, or Tikhonov regularization 

(Tikhonov, 1943). As penalty the sum of the squared coefficients is added. For linear 

regression the minimization becomes: 

 2 2 1

0

1 1 1

ˆ arg min ( ) ( )
p pN

ridge T T

i ij j j

i j j

y x


      

  

 
      

 
   X X I X y  

The intercept is not penalized in order to avoid dependence on the origin of y. Although this 

expression is the sum of the squared errors (with an extra penalizing term) it can also be seen 

as the maximization of the log likelihood of joint Gaussian distribution where the penalizing 

factor becomes a Bayesian prior, on the coefficients, 

2
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( ) exp  or (0,1 / (2 ))
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j j

j

p N    


 
  

 
  

4.2 Lasso 

 

Tikhonov regularization accomplishes the goal of reducing the number of covariates, if a 

threshold is chosen. The Lasso (Tibshirani, 1996) overcomes the problems of choosing 

coefficient threshold by using the sum of the absolute values of the coefficients in the 

penalizing term. Contrary to ridge regression the regularization in Lasso is not smooth at the 

origin, forcing coefficients to zero as lambda increases. 

 2

0

1 1 1

ˆ arg min ( ) | |             
p pN

lasso

i ij j j
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    
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 
    

The Lasso has no closed form solution, but it constitutes a quadratic programming problem, 

related to convex optimization (Hastie, 2009, ch 3.4.2), and efficient algorithms exists. The 

corresponding Bayesian prior distribution is ( ) exp( | |),p      a Laplace distribution 

(Tibshirani, 1996, ch 8). For the logistic regression the Lasso estimation is: 

  
1 1

ˆ arg min ln(1 exp( )) | |
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lasso

i i i j

i j

y X X


     
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 
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 
    

4.3 Elastic net 

 

When Lasso is used for variable selection it still has a few shortcomings. For strongly 

correlated covariates Lasso tends to select only a few of the correlated covariates, and it has 

been empirically observed that ridge regression provides better predictive performance for 

highly correlated predictors. Further, if the number of predictors is larger than the number of 

observations, p n  , Lasso select at most n  variables. To alleviate these limitations a 

combination of ridge and Lasso regularization can be used. The property of the ridge 

regression to group strongly correlated covariates is combined with Lasso’s ability to do 

variable selection by forcing coefficients to zero. Moreover the combined regularization 

allows for more predictors than observations. The combined regularization prior is known as 

the elastic net (Zou, 2004) and consists of a by-linear combination of priors, 
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 2

2 1( ) exp( ( | | (1 ) | | )),0 1p               

Where 0   corresponds to Lasso and 1   to ridge regression. 

It has also been shown (Zou, 2004) that an efficient algorithm exists (LARS-EN) to solve the 

elastic net optimization; empirically elastic net outperforms both Lasso and ridge regression. 

4.4 Relaxed Lasso 

 

For Lasso and elastic net the penalty parameters ,   are often chosen through CV. The cross 

validation procedure often chooses more covariates than needed. These covariates, called 

noise features, are the result of how the Lasso algorithm shrinks the coefficients and mainly 

occur for high dimensional data. An alternative algorithm, the relaxed Lasso (Meinshausen, 

2006), uses a variation of the Lasso algorithm where each model produced for a given   

parameter, is re-estimated through a new Lasso regularization with an extra parameter 

 0,1  relaxing the   penalty. The re-estimation uses only the covariates selected by the 

first Lasso regularization but with a relaxed penalty  , 
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Intuitively Lasso shrinks the parameters in the selection process. The resulting model will 

therefore have smaller coefficients than the corresponding GLM estimate. Due to this 

shrinkage the Lasso model can have a number of noise features, variables with small 

coefficients that over fit the data. Relaxing the penalty will grow the coefficients, punishing 

(by increasing the CV-error) models with too many parameters.  

 

For 1   we get the ordinary Lasso solution but for smaller values the combined penalty is 

reduced. At 0  , which is a degenerate limiting case of the relaxed Lasso, each model is 

simply re-estimated without any penalty corresponding to an ordinary regression. It has been 

shown that the corresponding subset of models favor sparser models at the minimum, with 

equal or improved predictive power (Meinshausen, 2006). For the purpose of this thesis the 

relaxed Lasso with parameter 0   is used. 

 

4.5 Cross Validation to select penalty 

 

Regularization is essential when having a large set of covariates. The goal is to find a model 

that is as compact as possible while providing maximal predictive power. If the model 

contains too many parameters the fit to the training set may be good, but at the risk of over 

fitting, making the model poor on new data. When applying regularization a range of values 

for the parameter is fitted as penalty. This gives a range of models with different model 

sizes. As the penalty grows for the Lasso regularization the resulting model is typically 

smaller since coefficients are forced to zero.  
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In order to get an unbiased cross validation all parts of the training set are used by 

dividing the training set into k parts each in turn used for cross validation. The total 

error is then weighted. This can be an important step especially if the training set is 

small (compared to the model size) since the validation can (strongly) vary due to 

outliers. Essentially cross validation is a much more stable estimate than using the whole 

training set for model estimation (the effect of outliers are averaged). 

 

By an outlier is meant an observation that is badly modeled in the sense that it gives an 

unusually large error. Sometimes it can be due to measurement errors but it can also happen 

that the data includes some exceptional cases. The resolution could be to either remove the 

outlier (in the case of error in data measurement) or to extend the model in an attempt at 

capturing the exceptions. 

 

The regularized models will have a CV standard error as seen in figure 4.5. The model with 

the smallest CV error is chosen to be the best. However within one standard error from the 

optimal model there are often models with smaller model size. One can argue that models 

within one standard error of the optimal model cannot be statistically distinguished. It is 

therefore recommended to pick the model with smallest model size and smallest error within 

one standard error of the optimal model. This selection can be used both for models generated 

by the Lasso (elastic net) regularization and the corresponding models from the relaxed Lasso. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 The cross validation give rize to a sequence of values of lambda 

having different CV-error as well as CV-variance. 
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Summary 

 

When choosing a model through regularization several criteria are often set, some are: 

 

 Ability to handle high dimensional data where possibly p n  

 Computational efficiency without compromising model quality 

 Consistency in variable selection 

 Optimal predictive power 

 

These constraints seem to be met by a combination of covariate selection (prior to the model 

estimation), the elastic net regularization, relaxed Lasso and one standard error approximation 

of the model. In this thesis the minimum model and the smallest one standard error model for 

both the elastic net and the relaxed Lasso are compared for a range of elastic net  - values. 
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5. Methods for model evaluation  

When a model has been decided on (i.e. estimated) it needs to be evaluated. The 

standard approach is to test the model on data not used in the estimation process and 

measure the misalignment or error. The data to be modeled is therefore divided into 

two parts: The first is called the training set and usually makes up most of the data (here 

2/3). The second part is called the validation set and is the remainder of the data (here 

1/3). The training set is used to estimate the parameters of the model, possibly using CV. 

The model found using training data can then be evaluated using the validation set.  

5.1 Error estimates 

 

As a part of the validation process there needs to be some measure of model fit. 

The most common error estimate used for cross validation is the root mean square error 

(RMSE).  

 2

1

1
ˆ( )

N

i i

i

RMSE y y
N 

    

Another option is the mean absolute error (MAE).  

 
1

1
ˆ| |

N

i i

i

MAE y y
N 
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Due to the square, RMSE is more sensitive to large outliers. 

5.2 Prediction intervals 

 

The error estimates for a given model produces a rough indication of the variance of the 

estimation. In fact the MSE is related to the variance by: 

  
2

2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , )MSE E Var Bias         
 

  

This is also sometimes referred to as the variance bias tradeoff. As the model size increases 

the variance will typically increase and the bias will decrease. The error is minimized for a 

certain model complexity. For a model with small bias the MSE is an estimation of the 

variance. For the 10-fold CV taking the square root of the MSE and multiplying with 1.96 to 

give an approximate 95% prediction interval: 

 0.95
ˆ ˆ1.96 , 1.96 ,PI MSE MSE    

 
   

since the MSE is approximately normal for a large training set. The prediction interval length 

is then 2 1.96 RMSE  . For the GLM estimation the MSE is normally calculated with respect 

to the probabilities but in this thesis the MSE with respect to the predicted transition time is 

the error used for CV model selection. For the dual models the combined prediction errors are 

used for the model selection.  

 



26 

 

5.3 The coefficient of determination 

 

There is a measure of the statistically explanatory power of the underlying data for each of the 

models called the coefficient of determination 2R . It measures the amount of variation in the 

data explained by the model and is defined as, 
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If the error estimate is close to zero 
2R  will be close to one, which is the optimal value. 

However, if the estimates predict the true values worse than the observation mean, 
2R  will be 

negative. In this thesis 
2R is used to evaluate the fit to the data. 

 

In a linear model with repeated observations 

 ij i ijy X      

jy  has the same covariates for all j. In this case it is possible to split the variance in two parts 

(Montgomery, 2001), 

 ( ) ( ) ( )      (4)ij i ij i i iV y X V y y V y X       

It is clear that the total variance will always be at least as large as the first term in (4). 

Assuming perfect predictions the second term of (4) will be zero. The largest possible 
2R  

value will therefore be, 

 2

max

( )
1

( )

ij i

ij

V y y
R

V y y


 


  

 

As an example; if the climate covariates for a set of phenological observations have low 

geographical resolution, as for the UK data, the geographically close observations will get the 

same covariates, the first term of (4) will be positive and 2

max 1R  . 

 

5.4 The Null model 

 

As a reference model of the efficiency of a specific model one can use what is sometimes 

referred to as the null model. By the construction of the coefficient of determination one sees 

that a simple model containing no covariates at all but has as predictor the mean of the 

observations in the training set would give a 
2R of roughly zero (depending on the statistical 

variability between the training set and the validation set). Thus a model using the mean of 

the observations as prediction is introduced as our null model. The error estimates are 

calculated in the same way over the validation set using the mean of the observations in the 

training set. The confidence intervals are formed as above using the RMSE of the training 

data. 
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Summary 

 

In order to assess the quality of a given model the model’s ability to do prediction on new 

data is evaluated. As it turns out the RMSE of the cross validation gives a rough estimation of 

the prediction interval for the model. One sees that the estimated transitions actually are point 

estimates making the PI approximation plausible. The process of assessing the quality of a 

model is hierarchical as the evaluation of a model not only takes into account the performance 

on data but also against the reference null model which opens up the possibility of comparing 

models. When comparing models it is preferred that the dataset is identical and even the 

training and validation set identical or at least the validation set identical. Therefore, in 

practice, the comparison is only general.  
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6. Analysis – Phenology 

This analysis sets out to investigate which climate factors best predict the day of bud burst 

(DBB) for birch (lat. Betula pendula) and the day when 50% leaf senescence for trees in 

Finland and the United Kingdom. Observations (location and year) of DBB are given together 

with climate covariates; temperature, precipitation, day length, latitude and elevation which 

are considered in different combinations.   

 

The analysis for DBB is inspired by Song (2010) who analyzed the DBB of different tree 

species in Canada with respect to growing degree days (GDD). This analysis expands on the 

work of Song by investigating the effects of many factors, and how they best can be used to 

construct a forecast model for predicting DBB and senescence. 

 

For leaf senescence the work of Delpierre et al. (2009) is considered as inspiration for 

covariate selection. Variations on the idea of decreasing degree days after the summer solstice 

are explored. However the prediction of leaf senescence proves to be exceptionally difficult 

and no conclusive explanatory factor is found. Instead attempts to identify covariates are 

explored and some suggestions are made regarding additional climate data that could possibly 

be used to form good predictors.  

 

The aim of this analysis is to take a statistical approach to modeling of bud burst and leaf 

senescence. For previous models it has been common to look at mechanistic factors such as 

GDD, chilling followed by forcing temperature and photoperiod. The purely statistical 

approach taken here could aid in finding other relevant biological factors linked to the DBB 

and even so could be used with climate models for prediction. Furthermore a range of 

statistical modeling techniques are compared to assess the consistency of the derived models 

and the obtained relevant covariates. 

6.1 Covariates 

 

The possible covariates for the phenology analysis are based on climate data consisting of 

temperature, precipitation, elevation and geographical location. Time and geographical 

location also provides information on day length. For the DBB data the covariate accumulated 

growing degree days (agdd, defined in appendix A) is the most important and a variation of 

agdd; accumulated decreasing degree days (addd), for the leaf senescence.  

 

The method of analysis in this thesis suggest that time direction in the covariates is of 

importance and therefore accumulated versions of the basic climate covariates such as 

precipitation and day length are also investigated. 

 

Together with the varying covariates, time constant covariates containing climate information 

for the previous year are included. The idea is to investigate the effects of climate conditions 

on current phenological observations. 
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In addition interactions between time varying and constant covariates are included. However,  

interactions between varying and varying as well as between constant and constant covariates 

are excluded. The main reason is to avoid ambiguity of time references due to the nature of 

the implemented stochastic regression model. Informal experimental tests supported the 

exclusion of interaction between time dependent covariates.  

 

A list of covariates and their definitions is given in Appendix A – Phenological Covariates. 

6.2 Data selection 

 

The training data for the Finland analysis is chosen as 2/3 of the available phenology stations.  

It is noticeable that the remaining 1/3 validation data contains less than 100 observations 

(table 2.1) making the prediction intervals sensitive to single observations. 

 

For the UK a smaller subset 1/3 (DBB) and 1/4 (LS) is used due to computer memory 

restrictions. The smaller ratio for LS despite less total observations than DBB is due to the 

way the observations becomes larger due to later date of occurrence and since all sequences 

encoding start at January 1.  

 

6.3 Parameter estimates 

 

The models are estimated using the elastic net regularization with {0.6,0.8,1.0} (chapter 

4.3). The regularization shrinks the coefficients and give a sequence of models with 

decreasing model sizes (not strictly decreasing) as seen in figure 6.3a-b.Furthermore the 

obtained model sequences are re-estimated using the relaxed Lasso (chapter 4.4) for 0 

corresponding to a GLM estimation of the model. The obtained model sequences from the 

regularization are cross validated with 10 groups in order to find the model with minimal CV 

error (min). Among the models within one standard error from the optimal CV-model the 

model having the fewest parameters is chosen as the optimal one standard error (1se) model. 

This choice is made among all elastic net models, CV-errors together with confidence bands 

are shown in figures 6.3c-f.  

 

This gives, for the two countries (Finland and the United Kingdom), two phenological 

transitions (day of bud burst and leaf senescence), Lasso and relaxed Lasso, and min/1se 

model a total of 42 16 possible models. 

 

The validation results (table 6.4a-b) show that the one standard error relaxed Lasso models 

having smallest model sizes are as good as the optimal CV elastic net models. The only 

exception is the Finland LS model. In table 6.3a the covariates for the smallest models are 

shown. 

 

A type of consistency test of the various regularizing methods is to see if the smaller models 

as generated by varying the   parameter contain the covariates of the larger models. 
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Intuitively one would like the smaller models to have all their covariates in common with the 

larger models. 

 

In general the covariates in the smallest models are also in the larger models. Table 6.3b lists 

the missing covariates for the different models. Most of the missing covariates are interactions 

with agdd (DBB) or addd (LS) which have been replaced by similar covariates. Overall the 

models seem to be consistent.  
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Figure 6.3a Finland DBB coefficient shrinkage for the different elastic net models. It’s clear that smaller 

values of alpha keep coefficients longer. 

 

Figure 6.3b Finland leaf senescence coefficient shrinkage for the different elastic net models. It’s clear that 

smaller values of alpha keep coefficients longer. The coefficient paths are more irregular than for the DBB. 
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Figure 6.3c Finland DBB cross validation plots for regularization penalty parameter lambda and the standard 

errors. Solid colored circles are those lambdas within one standard error from the minimum. The smallest 

error is for elastic net parameter alpha=1.0. The smallest models for the three choices of alpha (0.6, 0.8, 1.0) 

is respectively (18, 17, 12). Consequently the smallest model within 1se is for alpha=1.0 (Lasso). It’s clear 

that the elastic net keeps more and more covariates as alpha decreases. 

Figure 6.3d Finland DBB cross validation plots for regularization penalty parameter lambda and the standard 

errors for the relaxed Lasso models (re-estimated models). Solid colored circles are those lambdas within one 

standard error from the minimum. The smallest error is for elastic net parameter alpha=1.0. The smallest 

models for the three choices of alpha (0.6, 0.8, 1.0) is respectively (11, 10, 6). Consequently the smallest model 

within .1se is for alpha=1.0 (Lasso). It’s clear that the relaxed Lasso reduces the model sizes. 
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Figure 6.3e Finland leaf senescence cross validation plots for regularization penalty parameter lambda and 

the standard errors for the relaxed Lasso models (re-estimated models). Solid colored circles are those 

lambdas within one standard error from the minimum. The smallest error is for elastic net parameter 

alpha=0.8. Note that no model for alpha=1.0 is within one standard error. The smallest models for the three 

choices of alpha (0.6, 0.8, 1.0) is respectively (31, 29, NA). Consequently the smallest model within 1se is 

for alpha=0.8. It’s clear that the relaxed Lasso reduces the model sizes, but not always within one standard 

error. 

Figure 6.3f UK DBB cross validation plots for regularization penalty parameter lambda and the standard 

errors. Solid colored circles are those lambdas within one standard error from the minimum. The smallest 

error is for elastic net parameter alpha=0.8 but clearly the difference from the other alpha parameters is very 

small. In fact, due to the large standard errors for all three models, all choices of the lambda are within one 

standard error. The smallest models for the three choices of alpha (0.6, 0.8, 1.0) is respectively (32, 20, 8). 

Consequently the smallest model within .1se is for alpha=1.0 (Lasso). It’s clear that the elastic net keeps 

more and more covariates as alpha decreases. 
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Finland 

DBB 

United Kingdom 

DBB 

Finland 

 LS 

United Kingdom 

LS 
agdd5 adaylength addd26 daylength:number.fall 
continentality.cic:agdd5 chill5:adaylength addd28 chillm5:agdd5 

chill10:agdd5 continentality.cic:agdd5 chillm5:agdd5 continentality.cic:addd22 

number.spring:agdd5 chill5:agdd5 mean.year:addd22 continentality.cig:addd22 

mean.year:growthseason chill10:agdd5 continentality.cic:addd26 chill0:addd22 

 number.spring:agdd5 total.spring:addd26 mean.year:addd22 

  continentality.cic:addd28 mean.fall:addd22 

  total.spring:addd28 chill5:addd26 

  number.summer:addd28 mean.fall:addd26 

  number.fall:addd28 number.spring:addd26 

   mean.fall:addd28 

   number.spring:addd28 

   total.summer:lastfrost 

    

 FI DBB FI LS UK DBB UK LS 

Lasso min chill10:agdd5 number.summer:addd28 

number.fall:addd28 

chillm5:agdd5 

adaylength 

chill10:agdd5 

continentality.cic:addd22 

continentality.cig:addd22 

mean.year:addd22 

Lasso 1se agdd5 Smallest model chill10:agdd5 continentality.cic:addd22 

number.spring:addd26 

Reest min agdd5 number.summer:addd28 

number.fall:addd28 

  

Reest 1se Smallest model  Smallest model Smallest model 

Table 6.3b Covariates in the smallest models for the Finland and UK DBB and senescence 

models not contained in the larger models.  

Table 6.3a The covariates for the smallest models. 
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6.4 Predictions 

 

The estimated models in section 6.3 are evaluated on the validation sets and the result is 

shown in tables 6.4a-b. The prediction interval coverage is good (figure 6.4d), except for the 

Finland leaf senescence model. The Finland leaf senescence model is actually the only model 

having better R2 in the validation set, R2=0.49, than in the training set, R2=0.30 clearly 

indicating a mismatch between the validation and training sets. The low R2 also suggests a 

generally bad fit. 

 

For all models, except FI LS, the optimal alpha value in the elastic net for the one standard 

error approximated models is 1.0 corresponding to a standard Lasso. This indicates that there 

is no need for elastic net regularization if one only seeks to find the most compact 1se model. 

The model sizes are larger for the Lasso than the relaxed Lasso models (except for Finland 

leaf senescence) supporting the conclusion of the relaxed Lasso (chapter 4.4). Note that the 

models are chosen using CV with weighting of the RMSE for the 10 different CV-models. 

The choice of optimal model and the one standard error imply that the RMSE for the optimal 

model is always smaller than the one standard error model, but since the model selection is 

made on the training set and the final validation set is different this is not always the case 

(tables 6.4a-b). 

 

As seen in figure 6.4a the predictions for the Finland DBB follows the observation curve very 

closely, with R2 above 0.9 giving high confidence for the validity of the model. The 

prediction for the Finland leaf senescence, figure 6.4b, on the other hand fails to follow the 

observation curve at the beginning and the end. This suggests that the fit is mainly 

approximately averaged over all observations.  

 

Not surprisingly all the models for the UK data sets fail to follow the observation curve due to 

the large variability in the data sets for observations within each climate grid cell, see figures 

2.1a-b. The climate data cannot differentiate between different observations in a satisfying 

way. As a consequence all predictions look similar to the one in figure 6.4c. 
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 MAE RMSE Bias 95 % PI 

coverage 

95 % PI 

length 

R2 R2 

Max 

Model 

size 


  

Finland DBB          

Null Model 10.4 12.0 4.4 100% 46.1 -0.15  1  

Lasso .min 2.6  3.4  0.9  96% 12.5   0.90 1.0  29 1.0  

Lasso .1se 2.5 3.3 0.8  96% 13.6  0.91 1.0  12 1.0 

Relaxed Lasso .min  2.7  3.5  1.0 95% 12.6  0.90 1.0  16 1.0 

Relaxed Lasso .1se 2.6 3.3 1.2 97% 13.3 0.91 1.0 6 1.0 

UK DBB          

Null Model 9.3 11.8 0.0 95% 44.9 0.00  1  

Lasso .min 7.8  10.2  0.7  94% 38.1  0.25 0.51 82  0.8 

Lasso .1se 7.9  10.3  -0.5 94% 38.4  0.23 0.51 8  1.0 

Relaxed Lasso .min  7.9  10.4  -0.1   93% 38.0  0.22 0.51 38  0.6 

Relaxed Lasso .1se 8.0 10.4 1.1 94% 38.3 0.22 0.51 7 1.0 

FI Leaf senescence          

Null Model 10.2 12.3 2.2 99% 57.3 0.00  1  

Lasso .min 7.2  8.6  2.1   100% 50.7  0.49 1.0  47 0.8 

Lasso .1se 7.5  9.3  -0.4  100% 54.1  0.42 1.0  11 1.0 

Relaxed Lasso .min  8.2 10.4  2.6   98% 47.9  0.26 1.0  49 0.6 

Relaxed Lasso .1se 7.4 9.3 1.1 100% 49.8 0.42 1.0 29 0.8 

UK Leaf senescence          

Null Model 12.3 15.8 -0.2 95% 63.5 0.00  1  

Lasso .min 11.3  14.7  1.1   95% 59.2  0.13 0.48  67 0.6 

Lasso .1se 11.6  15.0  0.5   95% 60.3  0.10 0.48  16 1.0 

Relaxed Lasso .min  11.7  15.1  0.8   94% 58.9  0.09 0.48  30 0.8 

Relaxed Lasso .1se 11.6 14.9 1.3 95% 59.9 0.11 0.48 14 1.0 

 MAE RMSE Bias 95 % PI 

coverage 

95 % PI 

length 

R2 R2 

Max 

Model 

size 


  

Finland DBB          

Null Model 9.4 11.8 0.4 96% 46.1 0  1  

Lasso .min 2.2  2.9  -0.4    96% 12.5  0.94 1.0  29 1.0  

Lasso .1se 2.5  3.3  -0.7   95% 13.6  0.92 1.0  12 1.0 

Relaxed Lasso .min  2.3  3.0  -0.3   96% 12.6  0.94 1.0  16 1.0 

Relaxed Lasso .1se 2.4 3.3 -0.3 93% 13.3 0.92 1.0 6 1.0 

UK DBB          

Null Model 8.9 11.5 -0.4 95% 44.9 0  1  

Lasso .min 7.3  9.5  0.6   96% 38.1  0.31 0.55 82  0.8 

Lasso .1se 7.5  9.8  -0.7  95% 38.4  0.27 0.55 8  1.0 

Relaxed Lasso .min  7.4  9.7  0.1  94% 38.0  0.29 0.55 38  0.6 

Relaxed Lasso .1se 7.5 9.8 0.9 95% 38.3 0.27 0.55 7 1.0 

FI Leaf senescence          

Null Model 12.7 14.6 0.4 97% 57.3 0  1  

Lasso .min 9.6  12.2  1.0   98% 50.7  0.30 1.0  47 0.8 

Lasso .1se 10.9  13.3  -1.3   98% 54.1  0.17 1.0  11 1.0 

Relaxed Lasso .min  8.0  10.6  1.3   98% 47.9  0.47 1.0  49 0.6 

Relaxed Lasso .1se 8.6 11.5 1.4 97% 49.8 0.38 1.0 29 0.8 

UK Leaf senescence          

Null Model 12.5 16.2 -0.4 95% 63.5 0  1  

Lasso .min 11.4  14.9  1.5   95% 59.2  0.15 0.51  67 0.6 

Lasso .1se 11.6  15.2  0.9   96% 60.3  0.11 0.51  16 1.0 

Relaxed Lasso .min  11.4  14.8  1.5   95% 58.9  0.16 0.51  30 0.8 

Relaxed Lasso .1se 11.5 15.1 1.9 95% 59.9 0.13 0.51 14 1.0 

Table 6.4a Prediction results on the validation data for the Lasso optimal (min) and one standard error approximated 

(1se) as well as for the corresponding relaxed Lasso models.  

Table 6.4b Prediction results on the regression data (data that estimated the coefficients)  
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Figure 6.4a DBB prediction for both validation and regression set for Finland .1se models with original 

observations as the black line (ordered from earliest to latest). The predictions follow the original 

observations very well, with R2 0.91-0.92. 

Figure 6.4b Leaf senescence prediction for both validation and regression set for Finland .1se models with 

original observations as the black line (ordered from earliest to latest). The predictions follow the original 

observations somewhat in the center but fails toward the endpoints. The PI is larger than for DBB and the 

models differ much more, with R2 varying from 0.17-0.42. 
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Figure 6.4d Prediction plots for the Finland DBB. The prediction slope is steep and PI narrow. 

Figure 6.4c DBB prediction for the validation set for the UK .1se model with original observations as the 

black line (ordered from earliest to latest). Clearly the predictions do not follow the black line and the R2 

is only slightly above 0.2. The prediction curves for all other UK models are similar. 
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6.5 Attempts to improve the model 

 

For the leaf senescence data in Finland several test where made to find better covariates. One 

was to start each sequence from the time of DBB (using the subset of observations that 

coincided), but it seems that the alignment of the time dependent covariates failed in the 

model (producing models not better than the null model). However test showed that different 

starting days for the DBB observations, by removing 75% of the days leading up to the DBB, 

gave as good a result as the analysis on full data (Song’s model works but needs good 

covariates which growing degree days is for DBB). The implemented version of a constant 

threshold date at day 150, for the covariate addd, together with observation start at 1 January 

gave a result as good as any other. The addd is calculated from day 150 and set as zero for 

days 1-149. Different covariates were also constructed to try to find better models. 

Accumulated rainy days as well as non-rainy days and accumulated day length of non-rainy 

days etc. were tried. It seemed like the version of accumulated decreasing sunny days (or 

accumulated increasing non-sunny time) had statistical significance, as well as some other 

variants. The idea was that precipitation could give some information on cloudiness. 

 

However none of the models gave better predictions than those presented here and they are 

therefore left out of this presentation. More direct information on actual sun exposure could 

provide a statistically relevant covariate, but then estimations of cloudiness would be required 

for future predictions. 

 

Summary 

 

The proposed models for regularization provide consistent covariate selections in the sense 

that all the larger models contain most of the covariates in the minimal model. The predictions 

remain as good for the smallest models as in the optimal CV models and the smallest model 

can therefore be used for predictions. In this case the smallest model corresponded to the one 

standard error relaxed Lasso model. The growing degree day covariate proved to be a very 

good explanatory variable for DBB. The model(s) for leaf senescence on the other hand had 

R2 below 0.5. Examining the prediction plots and results clearly showed lack of fit and the 

use of addd cannot conclusively be attributed as an influencing factor of leaf senescence. For 

the UK, having a large variability within each grid, the analysis could clearly not do much. R2 

of the UK models were below 0.3 and in parity with some of the FI leaf senescence models, 

having R2 between 0.17 and 0.49. See figures 6.4b-c. 
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7. Analysis – Examination of engineers 

For the modeling of the engineer’s path to exam it is clear that if the covariates have exact 

information on how many points have been taken and when, the prediction of examination 

would be trivial and the model would be perfect. Nonetheless such a model could be efficient 

in determining factors affecting time to examination. Some might hasten (completing many 

points the first year) or prolong (completing few points the first year) the time to exam.  

 

The analysis of the examination data will focus on using the available information to build a 

model that can capture the variation as well as possible. The part of the data concerning the 

examination has much of the variation in the amount of points taken since there is a required 

amount of points that each student needs to have. The information on student inactivity is 

modeled directly through constant covariates. For the graduating students the variation on 

inactivity captures random information not really easily model able otherwise. For the 

quitting students inactivity is an integral part since it makes up the most of the registered 

studying time, and so providing the exact number of inactive semesters more or less tells the 

regression when the student was de-registered (quitted). Hence the model will disregard most 

of the other data in the analysis making classification between graduated and quitted students 

impossible. Therefore the model for quit does not use the full information on inactivity more 

than for the dual model analyzed for predictions, instead a weaker indicator version is 

implemented. The constant covariate for inactivity is in the indicator case either 0 or 1 

standing for has not had inactivity and has had inactivity respectively. 

7.1 Data preprocessing and covariate selection 

 

For the students who graduate the registration of the exam is often delayed to a semester after 

they finished. This delay can be several years. Since our main interest is when a student is 

formally eligible to graduate the examination is moved back in time to the last semester 

during which points were taken. 

 

Another issue is the points for foreign studies. Examining the data and assuming (for students 

starting before 2007) a program points total of 270hp it seems reasonable to assign 30hp for 

foreign studies when no points have been registered. However, if points have been registered 

no adjustment is made. The correction for the exchange students is made before the correction 

of the time of exam. Finally cases of students quitting during the first semester are removed, 

since there is no information to base predictions on in those cases. The cases of students 

having a previous exam with points and therefore graduating with total accumulated points 

less than 270hp are kept and constitute one source of uncertainty in the model.  

 

To fit the data to Song’s model all students are assumed to start at the same time lined up 

beside each other. This is much the same as for the tree analysis where each observation year 

is treated similarly. The covariates are placed in three groups as varying, constant or 

categorical. Interactions are taken between varying and constant covariates much the same as 
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for the phenology analysis and finally interactions between categorical and both the constant 

and varying covariates are formed. For the examination data there are three constant 

covariates measuring the number of study breaks, foreign study semesters and inactive 

semesters. The different covariates used in the analysis are listed in Appendix B.  

 

7.2 Program grouping and categorical standardization 

 

Since there are 14 different programs the models generated with the programs as categorical 

covariates tends to be very large. It is therefore of interest to group related engineering 

programs. One way of achieving that is by applying GLM to the part of the data set where 

students have graduated. Since the program covariates are categorical one program will be left 

out. The idea is to take the coefficients of the program interactions and place them in a matrix. 

The left out program in the GLM regression will then have zero coefficients for its entire row. 

One then performs k-means (Hartigan, 1975) clustering of the programs according to their 

coefficients. Similar programs will hopefully have similar coefficients. A new model is then 

fitted using the clustered programs and one can assess the predictive quality of the new 

smaller model. In this way the model for examination was reduced from about 80 to 40 

covariates.  

 

A consideration when using glmnet regularization is the standardization of the covariates. In 

order for the regularizations to work optimally each covariate needs to have the same scale. 

However, categorical variables should not be scaled in order to preserve coefficient 

interpretability. If one scales categorical variables then as in this case, programs will have 

coefficients at different scale, implying Lasso penalties that depend on the number of students 

in each program. 

 

It is also possible to have full representation of categorical covariates if one removes the 

regression intercept. This is done in some cases and when using the full set of categorical 

covariates it is possible to implement at the same time another group of categorical covariates 

by leaving one of the categories out as done for the female/male categorical covariates. 

 

7.3 Models 

 

The covariates for the engineer’s data are presented in Appendix B. The constant covariate for 

study inactivity counts the number of inactive semesters for the student. This proves 

necessary for good modeling of graduating students. Intuitively inactivity is hard to model in 

any other way using the available data. For the quitting student model, on the other hand, that 

covariate explains too much and the predictions become almost deterministically exact. For 

classification the balance between graduation and quitting will be over biased towards 

quitting. Therefore in those cases, the covariate for inactivity is used as an indicator only.  

The models analyzed are: 
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Exam/Quit 1: Programs are not used as covariates, all other covariates are used. Since both 

male and female are used the model is without intercept. Total number of covariates is 

3 5 3 5 2 (3 5) 39       .  

 

Exam/Quit 2: Programs without clustering and without the male covariate. The intercept is 

included. The fit is made with only 1/20 of the data. The covariate for inactivity set as 

indicator. Total number of covariates is 1 3 5 3 5 (13 1) (3 5) 136         . 

 

Exam Group3: The program covariates in 3 groups and all other covariates except categorical 

male. The intercept is not included. Total number of covariates is

3 5 3 5 (3 1) (3 5) 57        . 

 

Exam All Programs: All (14) categorical program covariates and all other covariates except 

categorical male. The intercept is not included. Total number of covariates is 

3 5 3 5 (14 1) (3 5) 143          

 

Quit: Same as for the Exam model. The covariate for inactivity set as indicator. 

 

7.4 Parameter estimates 

 

For all models the parameters are calculated using elastic net parameter {0.6,0.8,1.0} . The 

best models are computed in the same way as for the phenology analysis. The second dual 

model is used for classification. Since the covariate for inactivity is set as an indicator the R2 

for the exam part of the model becomes negative. This is because the model is too weak for 

predicting the examination time with good precision, and the model is not presented in the 

prediction tables. However for classification of students as graduating or quitting, the exact 

timing is of less importance.  

 

CV standard errors, shown in figures 7.4a-d, are very small, and for the elastic net 

regularization the one standard error reduction of model size is negligible. However, the 

relaxed Lasso versions provide a substantial reduction but again the difference between 

minimal and one standard error model sizes is modest.  

 

Covariates for the smallest model are presented in figures 7.5c-e. Note that even with 

grouping of programs the exam model has 38 covariates, compared to the full program model 

which has 90 covariates in the smallest model. 

 

 

 

 

 

 



44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4a Regularization errors due to probabilities for the dual transition model exam/quit. 

The regularization favors a small penalty parameter and a small elastic net parameter The 

standard errors of the 10 fold CV is very small and the one standard error model is the optimal 

model itself. 

Figure 7.4b Regularization errors due to probabilities for the dual transition model exam/quit 

for the relaxed lasso. The standard errors of the 10 fold CV are very small but since the errors 

are almost the same the one standard error model is different. 
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Figure 7.4c Regularization errors due to probabilities for the examination only model with 

programs in 3 groups. The regularization favors a small penalty parameter  model. 

 

Figure 7.4d Regularization errors due to probabilities for the examination model for the 

relaxed lasso.  
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7.5 Predictions & Classification 

 

The prediction curve for the Quit model (figure 7.5a) looks similar to the one for the UK 

models in the phenology analysis (figure 6.4c). The corresponding prediction curve for the 

Exam model (figure 7.5b) is on the other hand similar, although not as smooth, as the 

prediction curve for the FI DBB analysis (figure 6.4a). The prediction results are shown in 

tables 7.5a-b. For the Exam and the Quit models the PI have a slightly too small prediction 

cover. The relaxed lasso provides the most compact models and all of the four model versions 

have comparable predictive power. The prediction for the Quit model has slightly worse 

results on the training set. 

 

The predicted smallest models are shown in figures 7.5c-e. The model for examination has as 

many as 38 covariates. R2 for the full Exam model was between 0.85-0.87 slightly better than 

the Exam model with programs in 3 groups. Both of the Exam models used the same training 

and validation sets. 

 

Classification is made using the two dual models. The prediction curves for the two transition 

models are compared at each semester and for each semester the curve with largest 

probability, or the one above the other, is used as classifier (figures 7.5f-g). This way even 

incomplete covariate sets such as students still studying can be classified. As seen in table 

7.5c the classification only really works for the relaxed Lasso one standard error Exam/Quit 2 

model. It gives good classification after semester 3 in the sense that for semester 3 and 4 any 

classification for quitting has large probability since the students graduating only have 4% 

misclassification. At semester 7-8, and after, the classification for graduation is good since the 

misclassification for the quitting students is low.  
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 MAE RMSE Bias 95 % PI 

coverage 

95 % PI 

length 

R2 Model 

size 


  

Exam/Quit 1(Quit)         

Null Model 8.5 10.4 -0.6 93% 40.5 0.00 1  

Lasso .min 0.1  0.7  0.1  99% 2.6  1.00  38 0.6 

Lasso .1se 0.1  0.7  0.1  99% 2.6  1.00  38 0.6 

Relaxed Lasso .min  0.03  0.3  0.0 98% 0.8  1.00  21 1.0 

Relaxed Lasso .1se 0.01 0.1 0.0 99% 0.5 1.00 15 0.6 

Exam/Quit 1(Exam)         

Null Model 1.6 2.5 -0.3 96% 10.4 -0.01 1  

Lasso .min 0.6  1.4  0.2  96% 5.5  0.68  38 0.6 

Lasso .1se 0.6  1.4  0.2  96% 5.5  0.68  38 0.6 

Relaxed Lasso .min  0.5  1.0  0.1   96% 5.2  0.83  21 1.0 

Relaxed Lasso .1se 0.6 1.1 0.1 98% 4.5 0.80 15 0.6 

Exam Group 3         

Null Model 1.7 2.6 -0.4 96% 10.2 -0.02 1  

Lasso .min 0.5  1.0  0.1   90% 4.0  0.83  45 1.0 

Lasso .1se 0.5  1.1  0.1  96% 4.1  0.82  43 1.0 

Relaxed Lasso .min  0.5 1.0  0.1   90% 3.5  0.86  39 0.8 

Relaxed Lasso .1se 0.5 1.0 0.1 90% 3.6 0.86  38 1.0 

Exam All Programs         

Null Model 1.7 2.6 -0.4 96% 10.2 -0.02 1  

Lasso .min 0.5 1.0 0.1 91% 3.9 0.85 106 1.0 

Lasso .1se 0.5 1.0 0.1 91% 4.0 0.85 100 1.0 

Relaxed Lasso .min  0.4 0.9 0.0 91% 3.5 0.87 93 1.0 

Relaxed Lasso .1se 0.4 0.9 0.0 91% 3.6 0.87 90 1.0 

Quit         

Null Model 8.4 10.3 -0.5 93% 40.7 0.00 1  

Lasso .min 3.6  6.1  -0.5   92% 20.2  0.64  21 0.8 

Lasso .1se 3.8  6.3  -0.8   92% 20.5  0.63  8 1.0 

Relaxed Lasso .min  3.6  6.1  0.1   93% 20.0  0.65  11 0.6 

Relaxed Lasso .1se 3.7 6.2 0.0 92% 20.4 0.64 5 1.0 

 MAE RMSE Bias 95 % PI 

coverage 

95 % PI 

length 

R2 Model 

size 


  

Exam/Quit 1(Quit)         

Null Model 8.5 10.3 -0.4 93% 40.5 0.00 1  

Lasso .min 0.1  0.7  0.1  99% 2.6  1.00  38 0.6 

Lasso .1se 0.1  0.7  0.1  99% 2.6  1.00  38 0.6 

Relaxed Lasso .min  0.03  0.3  0.0 99% 0.8  1.00  21 1.0 

Relaxed Lasso .1se 0.01 0.1 0.0 99% 0.5 1.00 15 0.6 

Exam/Quit 1(Exam)         

Null Model 1.7 2.6 -0.4 96% 10.4 -0.02 1  

Lasso .min 0.6  1.4  0.2  96% 5.5  0.73  38 0.6 

Lasso .1se 0.6  1.4  0.2  96% 5.5  0.73  38 0.6 

Relaxed Lasso .min  0.5  1.0  0.1   97% 5.2  0.85  21 1.0 

Relaxed Lasso .1se 0.6 1.1 0.1 97% 4.5 0.81 15 0.6 

Exam Group 3         

Null Model 1.7 2.6 -0.3 96% 10.2 -0.02 1  

Lasso .min 0.5  1.0  0.0   91% 4.0  0.86  45 1.0 

Lasso .1se 0.5  1.0  0.0  97% 4.1  0.85  43 1.0 

Relaxed Lasso .min  0.4 0.9  0.0   92% 3.5  0.88  39 0.8 

Relaxed Lasso .1se 0.4 0.9 0.0 92% 3.6 0.88  38 1.0 

Exam All Programs         

Null Model 1.7 2.6 -0.3 96% 10.2 -0.02 1  

Lasso .min 0.4 1.0 0.0 92% 3.9 0.86 106 1.0 

Lasso .1se 0.5 1.0 0.0 92% 4.0 0.86 100 1.0 

Relaxed Lasso .min  0.4 0.9 0.0 92% 3.5 0.88 93 1.0 

Relaxed Lasso .1se 0.4 0.9 0.0 92% 3.6 0.88 90 1.0 

Quit         

Null Model 8.5 10.4 -0.5 93% 40.7 0.00 1  

Lasso .min 3.8  6.4  -0.7   91% 20.1  0.62  21 0.8 

Lasso .1se 3.9  6.5  -1.0   92% 20.4  0.61  8 1.0 

Relaxed Lasso .min  3.8  6.3  -0.1   92% 19.9  0.63  11 0.6 

Relaxed Lasso .1se 3.8 6.4 -0.2 92% 20.3 0.62 5 1.0 

Table 7.5a Prediction result on validation set for the dual transition model and the 

single models. 

Table 7.5b Prediction result on regression or training set. 
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 Exam/Quit 1 , alpha=1.0 

Semester 1-8 and classification % 

 Exam/Quit 2, alpha=0.6 

Semester 1-8 and classification % 

 1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8 

Lasso 1se Exam 1 2 3 9 19 41 59 73  0 0 0 0 1 8 16 39 

Lasso 1se Quit 72 68 63 58 55 52 51 51  100 100 100 100 100 99 99 98 

Lasso min Exam Same as for Lasso 1se  0 0 0 0 1 7 14 35 

Lasso min Quit  100 100 100 100 100 99 99 98 

Reest 1se Exam 37 38 37 38 58 80 82 88  91 97 96 96 87 83 72 72 

Reest 1se Quit 65 62 63 60 58 57 55 55  10 36 67 76 87 90 94 95 

Reest min Exam Same as for Reest 1se  0 1 1 3 8 14 20 51 

Reest min Quit  98 98 98 98 98 98 98 98 

Figure 7.5a Prediction curve for the observations with PI for the quitting model. Clearly 

a R2 of 0.64 does not necessarily indicate a good fit. 

Figure 7.5b Prediction curve for the observations with PI for the examination 

model. The predictions follow the original observations fairly well and R2 is 0.85 

 

Table 7.5c Classification results, using the two dual models. The classification percentage is 

calculated as the ratio of correct classification for both the graduation validation data and the 

quitting student’s data. The relaxed Lasso one standard error model for the second dual model 

provides good classification from semester 3-4 especially for quitting classification since only 4% 

of graduating students get misclassified. 
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Figure 7.5e Smallest Quit model 

Figure 7.5c The smallest dual transition model covariates. There is no intercept 

and the male/female covariates are the combined intercept. Since the model is dual 

the coefficients are not easily interpreted. 

Figure 7.5d Smallest Exam model. 



50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5f Classification curves for graduated students using the Exam/Quit 2 

model for the one standard error relaxed Lasso. The examples are a random 

selection from the validation set. Misclassified quitted student at top right, between 

semesters 6 and 9, and bottom right, between semesters 7 and 9. 

Figure 7.5g Classification curves for quitted students using the Exam/Quit 2 

model for the one standard error relaxed Lasso. No clear cases of misclassifying of 

the graduated students. The examples are a random selection from the validation 

set. 
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7.6 Simulation 

 

Among the students having graduated the ones with no inactivity, break or foreign studies and 

finishing exam within 10 semesters were selected. The students where then assigned one 

foreign study semester and predictions on exam time was made before and after. The 

difference in expected study time is presented in table 7.6. Surprisingly some students were 

actually expected to finish faster than without foreign studies. The Exam model for 1  was 

used in the simulation. 

 

 

 

Unchanged Slower Faster Total 

2380 306 43 2729 

 

Summary 

 

The model of Song is transferrable to the examination data. The dual transition version allows 

for classification of the two absorbing states exam and quit. This enables a direct method of 

assessing the potential number of expected future examinations. The dual model with 

quantified inactive covariate proved to be too contaminated by future information to be a 

good classifier, a consequence of the model forcing the probabilities down for as many 

semesters defined as inactive. The weaker version on the other hand was efficient only when 

fit with a small number of training data contradicting the notion that more training data gives 

a better model. One explanation could be that the large amount of training data and unique 

covariate sets for each student possibly over fit the regularization process. Even so the 

standard errors will be extremely small (figures 7.4a-d) making the selection process, due to 

one standard error, ineffective. The classification could perhaps be improved by un-grouping 

the dual model covariates. Having the same covariates for both the examination and quitting 

transitions is probably not optimal. However test on the Lasso un-grouped dual regularization 

model showed no improvement in classification. The found classifier proved to be efficient 

and there were signs of improvement for smaller values of the elastic net parameter . The 

model could perform simulations such as changing the status of students with no foreign 

studies to students with foreign studies and then compare the change in predicted examination 

time. On the other hand one could examine the classification as the foreign studies changes as 

well. It is easy to think of a variety of analyzing possibilities making the approach attractive. 

 

 

 

 

 

 

 

Table 7.6 Simulation of expected time to exam for students without foreign 

studies. By assuming one foreign study term the predictions changed. 



52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

8. Conclusions 

The ‘Stochastic Process Based Regression Modeling of Time-to-event Data’ model of Song 

has been applied to both phenological data as well as to examination data. Song’s model 

could be efficiently extended to use many covariates as well as many transition states. The 

phenological analysis of Song was reproduced in this new setting and worked well. The 

sequential model of Song was not verified due to the lack of relevant covariate data. For the 

leaf senescence it was clear that the covariates could not provide an efficient model, probably 

due to lack of relevant climate data. The analysis of the Engineer’s path to examination or 

quitting was successfully modeled with Song’s model. The model for the quitting students 

was, as expected, not good for predictions due to the unpredictability of when the students 

quit. The model could capture the difference in a student about to quit or complete his/hers 

exam. The examination was well modeled even with incomplete data. The different 

regularization techniques proved to behave as expected and provides powerful tools in the aid 

of selecting suitable covariates.  

8.1 Future work 

 

The analysis of phenology can be explored deeper with Song’s model. The classification 

could perhaps be improved by implementing the un-grouped version (allowing the different 

transition states to have different covariates) of multinomial regularization using the relaxed 

Lasso. The prediction intervals need improvement, especially for discrete or coarse data. The 

examination model suggests that many phenomena in society could be modeled in the same 

way provided suitable covariates exist. The multiple transition models could perhaps be used 

for classification even for improper state transitions. One can imagine splitting the 

examination students into non overlapping groups taking into account the grading at 

examination. The probability of graduating with a specific grade could then be modeled 

although information on grading would be needed. The effect of having two similar covariates 

as points and grading is though not possible to foresee. Overall the ability to choose  which 

covariates to use, what data to look at and in which way provides combinations of ever 

growing complexity making the work on any model extendable and improvable limited only 

by imagination and available data. 
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Appendix A– Phenological Covariates 

Constant Formula Variable(s) 

Chilling days last fall  Threshold values -5, 0, 5, 10 degrees Celsius.  

1

{ 5,0,5,10},  chillT(n) 1( ( ) 0)
n

t obs t

i

T T i T


      

The number of days last fall having minimum temperature 

below thresholds. Calculated over Oct-Dec 

chillT 

Last year mean 

temperature  

 mean.year 

Last fall mean 

temperature 

Calculated over Oct-Dec mean.fall 

Number of rain days 

last year divided into 

periods 

Calculated over periods: spring (May-June), summer 

(July-August), fall (September-December) 
number.spring, 

number.summer, 

number.fall 

Total rain last year 

divided into periods 

Calculated over periods: spring (May-June), summer 

(July-August), fall (September-December) 
total.spring, 

total.summer, total.fall 

Latitude of station  latitude 

Height of station Height for climate and DBB stations height.dbb, 

height.climate 

Continentality A = max(T_mean_monthly)- 

min(T_mean_monthly); 

     CI_c = 1.7*A'./sin( (lat+10)*pi/180 ) - 14; 

     CI_g = 1.7*A'./sin( lat*pi/180 ) - 14; 

   where T_mean_monthly is the average monthly 

temperature (average over days in 

   month and all years) for each month. 

continentality.cic, 

continentality.cig 

 

Varying Formula Variable(s) 

Growing degree days 

GDD 

Accumulated temperature above a threshold  

1

{ 2,0,5},  gddT(n) max( ( ) ,0)
n

t obs t

i

T T i T


     

degrees Celsius from January 1 

gddT 

Chilling degree days 
CDD 

Accumulated cold temperature below a threshold 

1

{ 2,0,5},  cddT(n) min( ( ) ,0)
n

t obs t

i

T T i T


    in 

degrees Celsius from January 1 

cddT 

Growth season Number of days since the beginning of the growth season. 

I.e. the first occurrence of four consecutive days with 

temperature above 5 degrees Celsius 

growthseason 

Frost days Number of days with frost since the beginning of the 

growth season. I.e. number of days with temperature 

below -2 degrees Celsius 

frostdays 

Last frost Number of days since the last frost beginning from the 

growth season 
lastfrost 

Day length Day length in hours daylength 

Temperature Average daily temperature temperature 

Accumulated day 

length 

Accumulated day length from 1 jan adaylength 

Accumulated rain Accumulated amount of rain from 1 jan. arain 

Decreasing degree days  Accumulated temperature below a threshold 22, 26, 28 
degree Celsius starting from day 150. 

adddT 
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Appendix B– Student data Covariates 

Constant Formula Variable(s) 

Reported study break Number of semesters student had a study break as 
an constant covariate 

study.break 

Reported abroad studies Number of semesters the student had foreign 

studies as a constant covariate  
study.abroad 

Inactive Either number of semesters student has been 

inactive or as an indicator for students having had 

at least one semester of inactivity 

study.inactive 

Varying Formula Variable(s) 

Points taken LADOK points for each semester points 

Accumulated points taken 

1

accp(t) points(i)
t

i

   
accp 

Time The semester order from the beginning of studies 

1,2,3… 
time 

Semester registration ( ) {1,...,10}regist t  if no inactivity otherwise 0 regist 

Activity Accumulated active study time. All time except for 
reported quitting, study break and inactive semester 

with no study points registered. 

active 

Categorical Formula Variable(s) 

Woman/man Indicator if woman or man. Two different 

covariates. 
female, male 

Program  Indicator for program belonging. 14 different 

covariates. 
D E F K L M V I W B C 

P G N 

Grouped programs Indicator for belonging to program group. Three 

different covariates. 
C BGILMN 

DEFKPVW 
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