A Search for the Higgs The Four Muon Channel μ Z* μ u Author: Alexander Burgman Supervisor: Oxana Smirnova **Division of Particle Physics** Lund University μ

Content

- Background Facts
 - Some theoretical background
 - Machines at CERN
- This Project
 - Invariant mass calculation
 - Background ZZ estimation

The Standard Model

• Bosons (force carriers)

– Some, not all, have mass

- Fermions (matter particles)
 - Quarks, have mass
 - Leptons, have mass

SM Higgs Boson

- Mass Mechanism (Higgs Mechanism)
 - Breaking of electro-weak symmetry
 - 3 massive vector bosons (Z, W⁺, W⁻)
 - 1 massive scalar boson (Higgs)
- Particle mass is gained through interaction with Higgs

Alexander Burgman, Bachelor's Thesis

SM Higgs Boson

- More interaction \leftrightarrow Higher mass
- Interaction probability (width) Γ
 - $\ \Gamma_{\rm H \rightarrow \, ff} \approx (\alpha_2 \ m_f^{\ 2} \ m_{\rm H}) \ / \ (4 m_W^{\ 2})$
 - $\Gamma_{\rm H \rightarrow WW} \approx (\alpha_2 \, m_{\rm H}^{3}) \, / \, (16 m_{\rm W}^{2})$
 - $\Gamma_{\rm H \rightarrow ZZ} \approx (\alpha_2 \, m_{\rm H}^{3}) \, / \, (32 m_{\rm W}^{2})$

LHC

- Collides p-p, Pb-p, Pb-Pb
- Highest energy in the world

• ATLAS, ALICE, CMS, LHCb

- Results from ATLAS used in this project

Alexander Burgman, Bachelor's Thesis

Page 8 of 29

Alexander Burgman, Bachelor's Thesis

Page 10 of 29

Higgs Detection

Alexander Burgman, Bachelor's Thesis

Page 12 of 29

Method – Four Muons

• Invariant mass of four muon system

$$\begin{split} m_{4\mu} &= \sqrt{(E^2 - p_x^2 - p_y^2 - p_z^2)} \\ E &= E_{\mu 1} + E_{\mu 2} + E_{\mu 3} + E_{\mu 4} \\ p_x &= p_{x,\mu 1} + p_{x,\mu 2} + p_{x,\mu 3} + p_{x,\mu 4} \\ p_y &= p_{y,\mu 1} + p_{y,\mu 2} + p_{y,\mu 3} + p_{y,\mu 4} \\ p_z &= p_{z,\mu 1} + p_{z,\mu 2} + p_{z,\mu 3} + p_{z,\mu 4} \end{split}$$

Page 13 of 29

Method – Four Muons • $m_z = \sqrt{((E_{\mu 1} + E_{\mu 2})^2 - (p_{x,\mu 1} + p_{x,\mu 2})^2 - (p_{y,\mu 1} + p_{y,\mu 2})^2 - (p_{z,\mu 1} + p_{z,\mu 2})^2)}$

- Leading Z boson: muon pair with the mass closest to $\ensuremath{\mathsf{m}_{\mathsf{Z}}}$
- Sub-leading Z boson: remaining muon pair with highest mass

Method – Selection Criteria

7*

- Uncharged Z bosons
- p_T-triggers
- Additional p_T criteria
- Restrictions on Z masses
- Pseudorapidity (polar angle) restriction

Method – Selection Criteria

- Separation in the quadruplet
- Track isolation

 $m_{\mu\mu} > 5 \text{ GeV}$

- Proximity to the primary vertex (d_0, z_0)
- All possible opposite charge muon pairs:

Results – ATLAS Official

Results – Muon Quadruplet

The Invariant Mass of the Four Muon System

Results – Muon Pairs

The Invariant Mass of the Muon Pairs

Results – Muon Pairs

The Invariant Masses of Z1 and Z2, and their Correlation

Method – Recombining Z

- Same selection criteria
- Estimates the invariant mass of a system of nonrelated Z bosons
 - ONLY good estimator for ZZ background
 - NOT other background

Results – Recombined Z

The Invariant Mass of the Four Muon System

Results – Recombined Z

The Invariant Mass of the Four Muon System, Estimated Background Subtracted

Results – Recombined Z

The Invariant Mass of the Four Muon System

Expansion of this Project

- Data analysis
 - MC simulation to estimate FSR
 - MC simulation to estimate Higgs signal
- Recombination of Z
 - Why some Z bosons deviated
 - MC simulation to investigate recombination

Conclusion

- Peak at 120-125 GeV
 - More prominent than any other
 - Remained (significantly) more prominent after background subtraction
- Conclusion: 120 GeV $\leq m_{\rm H} \leq 125$ GeV
- ATLAS results: $m_{H} = 126 \text{ GeV}$

References

- G. Kane, *Modern Elementary Particle Physics The Fundamental Particles and Forces?* (Updated Edition), Perseus Publishing, Cambridge MA (1993)
- J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)
- The ATLAS Collaboration, *Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC*, Physics Letters B 716 (2012)
- L. Evans et al., *LHC Machine*, Journal of Instrumentation Volume 3 (August 2008)
- Communication Group, *CERN-Brochure-2009-003-Eng*, Publications Section CERN, Geneva (2009)
- The ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, Journal of Instrumentation Volume 3 (August 2008)
- ATLAS Experiment © 2013 CERN, *ATLAS Photos* (URL: http://www.atlas.ch/photos/full-detector-cgi.html), (2013)
- The ATLAS Collaboration, *ATLAS TDR 14, CERN/LHCC 99-14*, Technical Design Report ATLAS (1999)
- The ATLAS Collaboration, ATLAS Fact Sheet, CERN, Geneva (2011)
- LHC Higgs Cross Section Working Group, *Handbook of LHC Higgs cross sections 1. Inclusive observables*, arXiv:1101.0593v3 [hep-ph] (2011)
- LHC Higgs Cross Section Working Group, *Handbook of LHC Higgs cross sections 2. Differential Distributions*, arXiv:1201.384v1 [hep-ph] (2012)
- The ATLAS Collaboration, *Measurement of the total ZZ production cross section in proton-proton collisions at* $\sqrt{s} = 8$ TeV in 20 fb⁻¹ with the ATLAS detector, ATLAS Note (2013)
- The ROOT Team, ROOT User's Guide ROOT An Object Oriented Data Analysis Framework, (2013)
- The ROOT Team, *About* and *Why ROOT* (URL: http://root.cern.ch/drupal/content/about), (2013)
- The ATLAS Collaboration, *Updated results and measurements of properties of the new Higgs-like particle in the four lepton decay channel with the ATLAS detector*, ATLAS Note (2013)

Extra Slide – The Standard Model

Fermion-Type	Particles	Charge	Mass (MeV)	
Quarks	u c t	2/3	2.3 1 280 174 000	
	d s b	-1/3	4.8 95 4180	
Leptons	ε μ τ	-1	0.511 106 1780	
	ν_e ν_μ ν_τ	0	$\lesssim 1 * 10^{-6}$	
μ				
Boson-Type	Particles	Charge	Mass (GeV)	
Boson-Type	Particles Γ	Charge 0	Mass (GeV) 0	
Boson-Type	Particles Γ Ζ	Charge 0 0	Mass (GeV) 0 91.2	
Boson-Type Guage	ParticlesΓZW+W-	Charge 0 0 +1 -1	Mass (GeV) 0 91.2 80.4	
Boson-Type Guage	Particles Γ Ζ W ⁺ W ⁻ g	Charge 0 0 +1 -1 0	Mass (GeV) 0 91.2 80.4 0	

Υ.

Extra Slide – Data Treatment – TDAQ

Part of TDAQ	Method	Incoming Event Rate (s ⁻¹)	Outgoing Event Rate (s ⁻¹)	Reduction Factor	
Level 1	<u>Hardware</u> , special purpose processors	40 000 000	100 000	400	
Level 2	<u>Software</u> , computing farms	100 000	3 000	33.3	
Event Filter (Level 3)	<u>Software</u> , computing farms	3 000	200	15	
Entire TDAQ	Both <u>hardware</u> and <u>software</u>	40 000	200	200 000	

1.6 Mb / event \rightarrow 1 Mb / event \rightarrow 0.1 Mb / event

Extra Slide – Data Treatment – STACO

- Algorithm for muon data
- Statistically combines tracks from
 - The ID (Inner Detector)
 - The MS (Muon Spectrometer)
- Done for all muon-tracks in ID and MS, until there are no more possible combinations

Extra Slide – Data Treatment – ROOT

• Object oriented framework

– Mostly for HEP, also used in

astronomy, biology, medicine, finance

- Built-in HEP applications
 - ROOT data format
 - Histograms and graphics

Extra Slide – Results – Recombined Z

The Invariant Mass of H, Correlated with the Z1 and Z2 it came from

Extra Slide – Results – Recombined Z

The Invariant Mass of H, Correlated with the Z1 and Z2 it came from

