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Abstract

The aim of this thesis has been to implement a computer program capable of modelling
radial compressors. The work was conducted at the Division of Thermal Power Engineering,
Department of Energy Sciences at the Faculty of Engineering, Lund University.

With such a large field as radial compressors, some decomposition of the subject was
necessary. This thesis focuses on modelling the impeller and diffuser of the compressor, where
the components are individually studied. By doing this division between different parts of the
compressor, the individual components can be designed in isolation. If, for instance, only a
vaned diffuser is to be designed, no impeller design must first be found.

The resulting computer program called LURC (Lund University Radial Compressor) have
two different design tools for the impeller, one in-depth impeller flow analysis, one vaneless
diffuser design tool and one vaned diffuser design tool. The compressor designer can easily
perform different analyses with LURC, all design tools being easily accessible at all times. Also,
several of the different analysis tools are interconnected, allowing easy data exchange.

The so-called preliminary impeller design tool requires minimum input data from the
user, quickly yielding a promising impeller design. It is a one-dimensional analysis method,
where most parameters are specified on the mean streamline. The complete impeller geometry
is directly generated, making it a perfect tool for the non-experienced compressor designer.
Further, the result can be used as input data in any of the two diffuser analyses.

In the detailed impeller design tool more input data must be specified. Also, the geometry
and blade shapes are under full control of the designer. This analysis is also one-dimensional
but has the capability of creating three-dimensional impeller geometries. Such a tool is well
suited to the more experienced designer, knowing what he or she want to achieve. The result
can be used in both diffuser analyses, but also in the in-depth impeller flow analysis.

The in-depth impeller flow analysis is based on a quasi three-dimensional calculation
method. In this case a streamline curvature method is coupled with a stream function flow
analysis, allowing the three-dimensional problem to be composed of two two-dimensional ones.
From this analysis tool the velocity distributions along the blades may be found, giving the
experienced designer a vital piece of information.

Vaneless diffusers are very common in radial compressors, making it important to incorporate
these in LURC. Input data may be entered manually or imported from a previous impeller
analysis. The analysis is based on one-dimensional theory, including effects of wall friction. The
complete geometry is generated and the key results, such as discharge pressure and velocity,
are calculated.

The vaned diffuser design tool are focused on channel diffusers of the wedge type. Also
included in the analysis are the vaneless space right after the impeller discharge. As was the
case for the vaneless diffuser design tool, inlet data can be entered either manually or fetched
from an impeller analysis conducted earlier. The whole diffuser geometry is generated, that is,
both the vaneless space and the channel diffuser part. One-dimensional compressible channel
flow is the basis for this analysis.

LURC fulfils its main objective; being a fast design tool for establishing promising compressor
stage designs. Although mainly based on one-dimensional analyses, it is a very efficient and
powerful tool for determining important design parameters in a timely fashion.



Sammanfattning

Malet med detta examensarbete var att implementera ett datorprogram som modellerar
radialkompressorer. Arbetet har utforts pa Avdelningen for Kraftverksteknik, Institutionen for
Energivetenskaper vid Lunds Tekniska Hogskola, Lunds Universitet.

Med ett sa brett omrade som radialkompressorer, behévde dmnet brytas ned i mindre delar.
Detta examensarbete ar inriktat mot modellering av impeller och diffusor i en kompressor,
dar varje komponent &r analyserad var for sig. Genom att goéra denna uppdelning av de olika
delarna av kompressorn kan varje komponent designas individuellt. Om, till exempel, endast
en beskovlad diffusor ska utformas, krévs det inte att ndgon impeller designas forst.

Det resulterande datorprogrammet bendmnt LURC (Lund University Radial Compressor)
har tva olika designverktyg for impellrar, en djupgaende flédesanalys av impellrar, ett de-
signverktyg for beskovlingslosa diffusorer samt ett designverktyg for beskovlade diffusorer.
Kompressordesignern kan enkelt gora olika analyser med hjalp av LURC, da alla designverktyg
hela tiden ar enkelt atkomliga. Dessutom &dr manga av de olika analysverktygen kopplade till
varandra, vilket mojliggér smidiga datautbyten.

Det sa kallade preliminéra designvertyget for impellrar krdver minimalt med indata fran
anviandaren, dir en lovande impellerdesign snabbt fas fram. Det dr en endimensionell analys,
dér de flesta paramterarna specifieras pa medelstromlinjen. Hela impellergeometrin genereras
direkt, vilket gor det till ett utméarkt verktyg fér den oerfarne kompressordesignern. Vidare
kan resultaten anvindas som indata i nagon av de tva diffusoranalyserna.

I verktyget for detaljerade impelleranalyser maste mer indata specifieras. Dessutom &r
aven geometri och bladutformning under designerns fulla kontoll. Denna analys dr ocksa
endimensionell, men har moéjligheten att generera tredimensionella impellergeometrier. Ett
verktyg av denna karaktar kommer vél till pass for den erfarne designern som vet vad han
eller hon vill uppna. Resultaten kan anvéndas i bada diffusoranalyser, men ocksa i den mer
djupgaende flodesanalysen av impellrar.

Den djupgaende flédesanalysen for impellrar dr baserad pa en kvasi-tredimensionell
berdkningsmetod. Héar ar en stromlinjekurvatursmetod kopplad med en stromfunktionsanalys,
vilket tillater att det tredimensionella problemet delas upp i tva stycken tvadimensionella prob-
lem. Med hjélp av detta analysverktyg kan hastighetsfordelningarna lings bladen bestdmmas,
resultat som den erfarne designern kan finna stor anvindning for.

Beskovlingslésa diffusorer dr mycket vanliga bland radialkompressorer, vilket gor det véldigt
viktigt att inkludera dessa i LURC. Indata kan skrivas in for hand, eller importeras fran
en tidigare impelleranalys. Analysen &r baserad pa endimensionell teori, vilken inkluderar
vaggfriktionseffekter. Hela geometrin genereras och resultaten av storst vikt berdknas sasom
utloppstryck och utloppshastighet.

Verktyget for beskovlade diffusorer dr inriktat mot kanaldiffusorer av kiltyp. Utrymmet
utan blad precis efter impellern ar ocksa inkluderat i analysen. Precis som fér designvertyget
till de beskovlingslosa diffusorerna kan indata antingen matas in for hand eller himtas fran en
tidigare utford impelleranalys. Hela diffusergeometrin genereras, det vill sdga bade utrymmet
utan blad och kanaldiffusordelen. Endimensionell kompressibel kanalstrémning star som basis
for denna analys.

LURC uppfyller det huvudsakliga malet; att vara ett designverktyg for att snabbt komma
fram till lovande kompressordesigner. Trots att det till stor del ar baserat pa endimensionella
analyser, ar det ett vidigt effektivt och kraftfullt verktyg for att bestdmma viktiga design-
paramterar pa kort tid.
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absolute flow angle, measured from meridional direction or constant in Runge-
Kutta integration

relative flow angle, measured from meridional direction
streamline/stream surface slope

quasi normal angle as measured from axial direction
blade angle at mid impeller passage

blade angle, measured from meridional direction or constant in Runge-Kutta
integration
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angle defining a wedge diffuser geometry

mass flow
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ratio of specific heats at constant pressure and volume or angle between similar
points in a vaned diffuser

velocity distortion or streamline/stream surface curvature

tip distortion factor, impeller tip absolute tangential to meridional velocity ratio
or coordinate along impeller flow passage

head coefficient or dynamic viscosity
specific volume

angular velocity
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diffuser stagnation pressure loss

half divergence angle of vaned diffuser wedge

flow coefficient
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stream function
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shear stress

tangential (polar) coordinate or vaned diffuser (half) divergence angle
coordinate between blade surfaces in a flow passage
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unit vector in tangential direction

unit vector in normal direction

vector tangent to mean camberline

vector normal to blade surface

dimensionless distance along blade element or angle defining a wedge diffuser
geometry

dimensionless meridional distance inside impeller

passage area, a constant defining the blade angle distribution, parameter in
blade-to-blade flow analysis or parameter determining vaneless diffuser geometry

sonic velocity, a point defining a geometry, incremental area, parameter defining
a linearised stream function or function used in Runge-Kutta integration

diffuser area ratio

a constant defining the blade angle distribution, blockage factor, parameter in
blade-to-blade flow analysis or parameter determining vaneless diffuser geometry

hub to shroud passage width, stream sheet thickness, a point defining a geometry
or function used in Runge-Kutta integration

non-dimensional passage width in vaneless diffuser
empirical constant
blade loading

absolute velocity, constant defining the blade angle distribution, parameter in
blade-to-blade flow analysis or parameter determining vaneless diffuser geometry

viii
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DR

point defining a geometry

friction coefficient

specific heat at constant pressure

fluid constant in Sutherland’s formula
specific heat at constant volume

static pressure recovery coeflicient

absolute slip velocity

computational fluid dynamics

diameter or parameter determining vaneless diffuser geometry
a parameter defining wedge diffuser geometry
hydraulic diameter

diffusion ratio

variable in blade-to-blade flow analysis or parameter determining vaneless diffuser
geometry

a parameter defining wedge diffuser geometry

function of, variable in blade-to-blade flow analysis or parameter determining
vaneless diffuser geometry

function of, variable in blade-to-blade flow analysis or a parameter defining wedge
diffuser geometry

variable in blade-to-blade flow analysis

variable in blade-to-blade flow analysis or a parameter defining wedge diffuser
geometry

graphical user interface
variable in blade-to-blade flow analysis

specific enthalpy, a parameter defining wedge diffuser geometry or Runge-Kutta
integration step

work input coefficient

incidence angle or a parameter defining wedge diffuser geometry
blade work input coefficient

parasitic loss coeflicient

parameter adjusting the blade angle distribution
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R¢
Rp

specific Bezier reference point or constant determining the friction factor
parameter needed to determine the tip distortion factor A
total number of stream surfaces

linear extension of circular arc or three-point cubic spline, total length of line,
blade segment length or channel diffuser length

line segment length or spacing between points

blade mean camberline length

mean streamline length

mean streamline line segment length

Mach number or parameter defining a three-point cubic spline
coordinate in meridional direction

stream sheet mass flow per stream sheet thickness

machine Mach number

rotation speed (revolutions per minute) or an index denoting the total amount of
specific points or increments

coordinate in normal direction or number of Bezier reference points
amount of evenly distributed points

point defining a geometry

power

pressure

non-dimensional pressure in vaneless diffuser
pressure ratio

arbitrary function

specific gas constant

radius or radial coordinate

rothalpy

radius of circular arc

non-dimensional radius in vaneless diffuser
Reynolds number
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S specific entropy

T temperature

tp blade thickness, as measured normal to mean camberline

U impeller speed or dimensionless distance along a Bezier curve
U arbitrary direction

w relative velocity

w wedge diffuser width

X x value characterizing a circular arc or three-point cubic spline
x coordinate in the x direction

Y y value characterizing a circular arc or three-point cubic spline
Y coordinate in the y direction

z coordinate in the z (axial) direction

Zp number of vaned diffuser blades

Zr number of impeller blades

Subscripts

0 stagnation property or property at compressor inlet

1 property at impeller inlet

2 property at impeller exit

3 property at diffuser blend radius

4 property at vaned diffuser throat

5 property at diffuser exit

X parameter in the x direction

n parameter in the 1 direction

00 property relating to an infinite number of infinitesimally thin blades
A parameter in the A direction

0 parameter in the tangential direction

S parameter in the ¢ direction

A area enclosed by closed path

annular variable referring to an annular parameter
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property available for the local flow
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parameter on streamline/stream surface or closed path
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parameter on the hub

compressor stage inlet property or impeller parameter

index indicating a specific point

compressor stage discharge property

an increment of the parameter
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leading edge
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a maximum value of the parameter
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Chapter 1

Introduction

This part serves as an introduction to the subject of radial compressors, as well as describing
what is to be achieved with the analysis conducted. The reader is assumed to have some basic
knowledge of terms typically used in turbomachinery, even though a simple description of the
components of a radial compressor follow below.

1.1 Overview

One general subdivision of compressors is to separate between turbomachinery and displacement
compressors. The distinction between the two types lies in what way mechanical power is
transferred to the fluid being compressed. In displacement compressors the compressed fluid is
delivered non-continuously, typically involving pistons. Turbomachinery compressors instead
continuously supplies energy to the fluid, by the dynamic action of moving parts such as a blade
row or an impeller, see Dixon (1998) [1]. Turbomachinery compressors is further subdivided,
usually based on the direction of the main flow. Two types of machines is thereby easily
distinguished; axial and radial compressors'. Axial compressors have the main flow along the
axis of the rotation, and usually rather small amounts of fluid transport in the radial direction.
The opposite of this would become a radial compressor, where instead a large portion of the
fluid transportation is in the radial direction and, compared to the axial compressor, a very
short axial path is followed. A third type of compressor could be a combination of the other two
types, a so called mixed flow compressor, but these are rarely employed in practice. Following
the main subject of this analysis treating radial compressors, the other two configurations are
not pursued any further.

1.1.1 Radial compressor configurations

Before any further discussions and analyses a simple description of the typical radial compressor
layout is in order. A schematic sketch of a compressor stage together with notations for the
various locations along the flow path used throughout this report is seen in figure 1.1. To
separate the two main surfaces of the flow path, the surface being concave in the impeller is
called the hub, while the convex surface is termed shroud. In subsequent analyses the subscript h
will denote variables associated with the hub while subscript s denotes corresponding variables
on the shroud. The fluid being compressed, typically air, flows into the compressor intake at

'Radial compressors are quite commonly also termed centrifugal compressors
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Figure 1.1: Schematic radial compressor stage layout with the different station numbering used
in subsequent analyses

location 0, and encounters the impeller inlet? at station 1. The impeller is the component
transferring energy to the fluid. Within the impeller diffusion takes place, increasing the
pressure. In figure 1.1 an axial inlet of the impeller is shown, a so called inducer. When
designing an impeller one may also use inducers not being axial, or actually not employ an
inducer at all. Examples of three different types of inducers is depicted in figure 1.2. Which
inducer type most suited to a specific compressor depends on several factors. As described by
Aungier (2000) [2], the general shape of the impeller, especially the inducer, is a strong function
of the dimensionless mass flow into the compressor, the so called flow coefficient. Referring to
figure 1.2, the flow coefficient would be smallest for the impeller to the right with no inducer,
while being largest for the left one with the full inducer. Impellers which falls in between these
two will naturally also have a flow coefficient somewhere in between. By choosing an impeller
with no inducer, the impeller blading usually employed is of a rather simple nature making
them comparatively cheap and easy to manufacture. The main drawback is that impellers with
these two-dimensional blade® shapes usually suffer from lower efficiencies due to friction effects
stemming from long blade passages. Instead, by selecting an impeller with a full inducer one
must resort to the more expensive and complicated three dimensional blade shapes. However,
the efficiency is usually higher for these kind of impellers but can become somewhat limited
because of the strong curvature needed to turn the inlet axial flow into radial. Once again, the

2The inlet part extending radially from the impeller hub to the shroud is sometimes referred to an impeller
eye. In figure 1.1 this coincides with the impeller inlet.
3Sometimes impeller blades are instead referred to as vanes



Full inducer Semi inducer No inducer

Figure 1.2: Different kind of impeller inducers. Blades are shaded gray, for the semi inducer
and no inducer impeller the compressor inlet is shown dotted

semi inducer impeller would be expected to have efficiency levels somewhere in between the
two other types. This analysis focuses on full inducer impellers.

Another rather important distinction between impellers can be made, based on the impeller
tip construction. In many applications, typcially in vehicle turbochargers, the impeller is
uncovered at the tip, meaning that the shroud just outside the impeller is stationary. In the
opposite case, the impeller can also be covered and thus having the shroud attached to the tip
of the impeller blades. Which design to choose depend on mainly two things; strength and
clearance considerations. Attaching a shroud to the impeller can sometimes be advantageous,
see for instance Japikse (1996) [3]. Omne of the main reasons is to avoid leakage between
different blade passages. However, by adding extra mass at the end of the blade tips, the
mechanical stresses in a shrouded impeller will become much higher, thus limiting the impeller
rotation speed to values below that of uncovered impellers. Sometimes the clearance between
impeller and the compressor casing is a matter of concern, especially when designing multistage
industrial compressors. In these cases the rotating shaft tends to be relatively long, and it thus
becomes hard to keep clearances small enough to maintain high efficiencies for unshrouded
impellers. Here a shrouded impeller could be employed, being rather insensitive to clearance
differences as noted by Aungier (2000).

When the flow leaves the impeller at station 2 it enters the so called vaneless space. As
the name implies, this is a region where no blades is present, and the fluid is allowed to move
radially outwards. The vaneless space can be chosen to be followed by a vaned diffuser, or
alternatively to be continued as a vaneless diffuser. The diffuser’s task is to increase the static
pressure by lowering the flow velocity. Which diffuser type to choose for a given duty is a
rather complicated issue, and each design case will have to be individually studied. Some
basic differences can nonetheless be outlined. Starting with the vaneless diffuser, the most
striking feature is its mechanical simplicity. No blades have to be designed or manufactured,
resulting in a solution associated with low cost. An additional advantage is the quite wide
operating range allowed by a vaneless diffuser, since the vaneless space usually is less prone
to choke as compared to a vaned ditto, see Japikse (1996). If instead a vaned diffuser is
employed, the vaneless space ends at station 3 and a semi vaneless space appears until the
throat section of the diffuser is reached, station 4. With the aid of a vaned diffuser the radial
extent of the diffuser can be minimized, thus leading to a significantly smaller compressor



stage for a given application. Further, the design point efficiency can usually be higher than
for a vaneless diffuser, though generally with deteriorated performance at off-design conditions.
The actual vanes can be constructed in various ways, one design solution is to employ airfoil
vanes. Another solution is to construct channel diffusers from wedges or drilled conical holes.
Common to all diffusers is the, by most authors termed, "extremely complicated flow field"
entering the component, making it very hard to model them accurately.

Finally, the flow leaves the diffuser part at station 5 and enters either, as shown in 1.1, a
volute or a return channel. A volute is typically applied to the last stage of a compressor unit,
where the kinetic energy will not be utilized in downstream parts. The flow is collected and
usually led to a single exit pipe. It is important to note that the volute has a major influence
of all upstream components in a radial compressor, and may even cause changes in the flow at
the impeller inducer, see Breambussche (2013) [4]. If, instead, the compressor stage is not the
last one, the flow is lead into a return channel. The purpose of a return channel is to direct
the flow from a position of large radius to a position of a smaller radius. To gain an as high
efficiency as possible of the downstream stage, it is necessary to remove the swirling flow. This
can be achieved with the aid of blades in the return channel passage.

1.1.2 Radial compressor characteristics

In order to determine the behaviour of a radial compressor, different designs are usually
compared on a non-dimensionalized basis. Following the procedure outlined by Dixon (1998),
non-dimensionalized groups can be found based on various thermodynamic properties. These
are the stagnation pressure ratio, porr/por = PRstage,tot—tot, the change in stagnation temper-
ature over inlet stagnation temperature, ATy/Tp; and the efficiency, n, of a turbomachine.
Throughout this analysis subscript 0 denotes thermodynamic stagnation conditions, while
subscript I and II denotes compressor stage inlet and outlet, respectively. The dimensionless
parameters can be written as

porr ATy ) mvRIoy ND R
Ty T - 2 9 , 1€, 7y (11)
por  Tor D=pos RTor

where 7 denotes the mass flow, R the specific gas constant, D a characteristic diameter, NV
the rotating speed, Re the Reynolds number and ~ the ratio of specific heats. For a specific
turbomachine handling a single fluid, the parameters D, R and « can be regarded as constant.
Further, if the turbomachine is operated at high speed (fully developed flow) the Reynolds
number Re can also be dropped. The final result is
pour ATy {WTTH N }
por~ Tor’

(1.2)

por  Tor

Of course, by disregarding these parameters the groups are no longer non-dimensional, nonethe-
less equation 1.2 is widely used in practice. An example of a schematic compressor curves
showing the relationship between the dimensionless groups and the "dimensionless" parameters
is seen in figure 1.3. In this figure a number of features can be identified. What is shown is a
plot of various constant speed lines, each line spanning from low flow levels near the surge line
to higher flow rates where the flow is near or at choke. The surge line indicates the minimum
value of the mass flow representing stable flow at the current pressure ratio and rotating speed.
Any lowering of the mass flow (or decrease of rotational speed) would cause an inception of the
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Figure 1.3: Schematic compressor map of stage pressure ratio versus "dimensionless" mass flow.
Included are the surge line, constant speed lines and contours of constant efficiency

unstable flow phenomena called surge?, hence the name surge line. If, instead the mass flow is
increased (or equally, the rotating speed increased) the flow would eventually not be able to
be increased any more, and the compressor is said to be choked. This has occurred for the
constant speed line representing the highest rotational speed, as can be seen by the vertical line
in figure 1.3. Also shown in the figure is constant lines of the compressor efficiency, reaching a
maximum somewhere on the performance map. The relation for temperature is not presented,
but is related to the total pressure ratio by the polytropic relationship including the compressor
efficiency. As an additional example, a map from the investigation of Rodgers (1964) [5]
is depicted in figure 1.4. In this figure, the (squared) characteristic diameter has not been
dropped and is retained as the impeller inlet area. In this case this is a suitable form, since
different impeller types was tested and compared. Another feature of this diagram is that the
efficiency is plotted separately, which sometimes can make readings from the graph somewhat
easier. As can be seen, the overall trend is similar to the one schematically shown in figure
1.3. These groups of parameters are usually applied when determining the overall performance
and behaviour of a compressor. However, different groups are usually employed specifically for
radial compressors as described by Aungier (2000), and are used throughout this analysis. The
flow coefficient has already been mentioned above and is defined by

m m

o m
poorr3Uz 5o 22,

(1.3)

4Surge can be attributed to the fluid’s compressibility. Energy is stored in the compressed fluid, and if surge
occurs it discharges rapidly with impeller back flow as a consequence. One way to look at it is by recognize
surge as a condition where the impeller pressure rise is to high compared to the mass flow it passes
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Figure 1.4: Compressor maps shoving compressor pressure ratio and efficiency as a function of
"dimensionless" mass flow and rotational speed. From Rodgers (1964)

where pgp represents the density at the compressor inlet based on stagnation properties, 79
is the impeller tip radius and Us denotes the impeller (tangential) tip speed. When different
compressor analyses are being compared, caution must be exercised, because sometimes the
term 7/4 is dropped and sometimes it is retained. In this study the complete expression
including 7 /4 is employed, since the physical meaning behind the expression is clearer. Another
dimensionless parameter is the head coefficient® 1, representing how heavily loaded the stage

is. This is written as
B Ahgs

5
here, Ahgs represents the isentropic change in specific stagnation enthalpy needed to obtain
the compressor stage’s total pressure rise. An isentropic (adiabatic process, with no change in
entropy) is regarded as the ideal compression process as outlined by many basic textbooks
on the subject, see for instance Dixon (1998) or Cengel and Boles (2007) [6]. Having a high
difference in enthalpy over the stage while operating at low rotating speed will yield a large
head coefficient and thus a large stage loading. The opposite case with a low head coefficient
would of course instead yield a lightly loaded stage. An example of a schematic head - flow
coefficient characteristic is seen in figure 1.5, giving an idea of the typical behaviour of a stage.
From the head coefficient curve in this figure, one can conclude that the flow is stable at most
operating points. This can be seen from the fact that where the curve has a negative slope
(du/d¢p < 0) a sudden drop in mass flow would increase the work input, thus striving to restore

(1.4)

5The name head coefficient has its origin from pump practice, where the term head refers to the geometrical
height of a water column. In axial compressors it is instead denoted stage loading and is usually assigned the
Greek letter ¥
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Figure 1.5: Typical head - flow characteristic of a radial compressor. A schematic point of the
unstable flow phenomena surge is also displayed

the mass flow to its original value. Also depicted in figure 1.5 is the onset of surge at low flow
coefficients. This phenomena has already been briefly discussed above, and here it suffices to
say that the initiation of surge is to a large extent the result of operating in a region where
the work input reduces with a dropped mass flow, see for instance Cumpsty (2004) [7] for
an in-depth analysis. Finally, a third parameter called the rotational Mach number, or the

machine Mach number is defined by
My = U2 (1.5)
aoo
where agg is the sonic velocity based on inlet stagnation thermodynamic conditions. The
machine Mach number is a measure of the general Mach numbers in the compressor and is
restricted by the largest tolerable rotating speed. This parameter will thus, to a large extent,
be limited by the material of choice for the impeller.
The main working principle of a radial compressor stage has now been outlined, together
with typical parameters determining the performance and efficiency. The various components
will be studied in greater detail when they are modelled in the subsequent chapters.

1.2 Analysis techniques

Throughout the industry a number of different approaches for determining the actual design
of a radial compressor is being employed. They span from being non-dimensional to three-
dimensional. One division between different methods is outlined by Japiske (1996), where three
different levels of design and development are defined. The level one design employs similitude
meaning that new compressor designs would, to the highest degree possible, be scaled. A scaling
design methodology implies already having a finished, and preferably successful, compressor
and is therefore not applicable when having no previous experience in the field. When a
similitude approach can be utilized, it often is. One reason is the obvious cost-advantage
of the reduced development work needed. Further, a known and trusted design will usually
perform in a similar way, even when scaled down or up. There are limitations to this method



though. In all cases a similitude design strategy cannot be justified, typically when the duty is
of a significantly different nature. One example of this is if the scaled version of the existing
compressor would demand extremely high rotational speed to obtain complete similitude. The
maximum rotational speed is typically determined by the structural integrity of the impeller,
and must therefore be limited to reasonable levels. Another problem with scaling stems from
the fact that the Reynolds number rarely can be scaled properly, partly loosing the complete
similitude. The level two design also relies on experience to a certain extent, in this case
different relationships for important parameters must be known. These typically involves
correlations for impeller efficiency, or the whole stage efficiency. The correlations are used to
back up one dimensional calculations throughout the whole compressor stage. With this design
strategy the compressor is divided into the different main components, for example compressor
inlet, impeller, diffuser and volute. These main components must, however, work well together
and one component should not be designed without the other components in mind. For instance,
a very strong coupling exist between the diffuser and the impeller, and a compressor design
without proper matching of the stage as a whole would never perform satisfactory. To quite a
large extent the level two modelling does not require the full understanding of the internal flow
phenomena. One-dimensional methods are typically employed, neglecting many fundamental
features of the flow. However, experience gained from previous compressor developments will
many times suffice to recognise good or poor designs. One advantage with the method is
the speed with which satisfactory solutions can be found. A one-dimensional calculation is
completed in the order of magnitude of seconds, while actually gaining more information about
the compressor than a level one design approach allows. The level three design is instead very
detailed and take as many gas dynamic effects as possible into account. An analysis of this
complexity is justified in many cases, typically involving compressors to be produced in large
series, or compressor stages being extremely critical for its application. Again, it is necessary
to partially resort to empirical data, and for this method to be as advantageous as possible a
large number of previous compressor builds is essential for obtaining input data.

Nowadays, practically no turbomachinery is designed and evaluated without the aid of
detailed three-dimensional computer analyses, as outlined by Cumpsty (2004). A computational
fluid dynamics, CFD, approach is almost always justified, and computer running times are
constantly being reduced. A typical CFD application could for instance be a detailed study of
a flow at a certain region of the compressor. Still, the emphasis of CFD should not be over
estimated. One reason is the very non steady flow encountered in most components of the
stage, combined with the strong coupling between different components. Another reason is
the fact that conducting multiple CFD calculations (including the above mentioned effects) is
no guarantee for a good and reliable compressor design. Almost in all cases experience and
engineering judgement regarding "good" design must be employed. This is partly because of
the need to reduce development time, partly to actually obtain a compressor which works
efficiently while still being manufacturable, reliable and having an as large operation range as
possible.

As already noticed above, empirical data is needed as input almost regardless of which
design methodology one chooses to follow. Therefore experiments are very useful and, when
performed correctly, can give a lot of applicable results. Since the internal flow is of such
complexity, actual test runs are the only way to assess the final performance of turbomachinery,
Japikse (1996). The disadvantages lies within the time and cost involved of conducting such
experiments. Tests can be performed following company specific test procedures or more
generally according to different test codes, for instance the VDI 2045 (1993) [8].



1.3 The aim of the study

The objective of this analysis is to construct a computer program capable of quickly coming up
with radial compressor component designs. It is preferable if as little input data as possible is
needed. However, the accuracy of the calculation may not be compromised, nor the applicability
of the program itself. Further, parameters that are critical in the view of performance influence
should be under the control of the designer. Depending on the parameter in question, it could
either be specified as design input or given as a calculation result. Another important part is
the visualisation of the compressor geometry generated, since this tells the designer a great
deal of information. Typical characteristics made visible includes the severity of the turning
from axial to radial flow in the impeller, or just how (geometrically) large the compressor will
be during certain constraints. The program must be able to compute the overall trends in
critical parameters such as the impeller discharge total pressure or vaned diffuser inlet flow
angle, just to mention a few examples. An additional objective of the program is to let users
with almost no experience in the design of radial compressors understand what parameters
have a large impact on the compressor itself.

Different compressor components must be possible to analyse individually. As has already
been stressed, no compressor component can be viewed in complete isolation if a successful
design is to be arrived at. However, if the computer program can be split up in several
sub programs where the result data from one analysis can be used as input to another, no
connection between components is lost. The advantage would be that individual components
still can be designed. If for instance an existing compressor stage is being retrofitted with a
vaned diffuser, the impeller outlet parameters are already specified. Then, there is little merit
of first having to re-model the impeller and not until after this actually being able to look into
the component of interest, the vaned diffuser.

In order to complete these objectives the following questions must be answered:

e How can the impeller of a radial compressor be modelled in an accurate, yet simple and
fast way?

e Is there a method to cover a more in-depth analyse of the impeller, based on the simpler
model mentioned above?

e How can a model for vaneless diffusers be implemented?
e In what way can the geometry and performance of a vaned diffuser be determined?

Answering these questions will require in-depth analyses of each separate component, with
emphasis on different physical models.

1.3.1 Report structure

Chapter 2 is a common base for the main part of the analyses. Here, concepts used in several
of the subsequent in-depth models are covered in order to ease the understanding and avoid
mentioning similar details multiple times.

In chapter 3 to 4 two different ways of modelling the impeller is brought up; the first
following the approach described by Aungier (2000) while the other, to a large extent, follows
the method of Japikse (1996). The main difference between those methods is the way empirical
data is being used. The first method uses a built in "recommended" target efficiency, mainly
depending on the flow coefficient and generates an impeller geometry typical of the compressor



design target. Instead, the other method allows the user to completely determine the target
efficiency or stage pressure rise, and the impeller geometry itself can be customized. In this
study the method covered in chapter 3 is referred to the preliminary design, whilst the method
in chapter 4 is denoted detailed design. It is important to note that the detailed design does
not by itself generate more detailed or accurate results, but the design input (and how the
calculated results should be interpreted) is of a more detailed character.

To get a more in-depth analysis of the impeller design generated, chapter 5 presents a
method to determine the three-dimensional flow within the impeller itself. The method is
based on dividing the complicated three-dimensional problem into two simpler two-dimensional
ones. The main theory behind this method is adopted from Aungier (2000).

In the following two chapters different diffuser designs is instead modelled; vaneless diffusers
in chapter 6 and channel diffusers of the so called wedge type in chapter 7. The channel diffuser
calculation also takes the vaneless space between the impeller and vaned diffuser into account.
Both methods generate the geometry based on user input, and calculate main parameters
of interest. For vaneless space calculations the method of Stanitz (1952) [9] is used, taking
many different aspects into account. The geometry of the wedge diffuser is adopted from
Japikse (1996) and employs traditional compressible channel flow calculations.

Chapter 8 presents the computer implementation of the different component models. No
programming details are brought up, the study being of a nature towards the turbomachinery
field rather than computer science. What type of results one can obtain from the different
tools are explained, together with different features of the program, in order to get as much
useful information as possible out of an analysis.

In chapter 9 conclusions are being drawn. The chapter has its main focus on the four
questions brought up earlier in this section and gives some reflections on the resulting computer
program. Also, potential improvements of the compressor modelling techniques are briefly
outlined.

Finally a set appendices are included, dealing with some of the more detailed calculations
and concepts. These are included to show important methods and theories applied within
the chapters. They have been regarded too bulky and extensive to be presented within the
chapters considering the different analyses. The appendices may be skipped without great loss
of understanding, but are recommended for the curious reader.
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Chapter 2

Common modelling and methods

This chapter serves as a basis for the following five chapters explaining the physics and
implementation of the various compressor components. Here, fundamental concepts common in
two or more of the implementation chapters are described making the reading somewhat easier.
It also allows the reader to quickly understand what typical methods have been employed in
all analyses and which overall approximations have been made.

In order to quickly come up with promising radial compressor designs with minimum input
data one-dimensional approaches are adopted for all but one analyses, corresponding to the
level two design approach outlined above. This ensures speedy calculations which generally
are accurate enough to base early design decisions on. An additional advantage is of course
that the amount of input data is reduced, and enables novice designers to get a feel for various
design parameters.

Common to the modelling of all components is the handling of gas properties. Throughout
the study the gaseous fluid being compressed is assumed ideal, with constant specific heats’.
No compressibility factors are employed, hence, the equation of state becomes the ideal gas law

p = pRT (2.1)
and
h=¢,T (2.2)
With the specific heats being constant, the ratio of the same is also constant according to
p
=2 2.3
v= (2.3)

where ¢, and ¢, is the specific heat at constant pressure and volume, respectively. Compressible
flow analysis regarding perfect gases almost always involves calculations between temperature
and pressure ratios, and the basic relationships are given below, from Greitzer, Tan and
Graf (2006) [10]. The relation between specific stagnation enthalpy, specific static enthalpy
and velocity C' is given by

02

and since specific heats are considered constant, a combination of equation 2.2 and 2.4 yields
C2

To=T+ — 2.5

0 + 2%, (2.5)

L An ideal gas, having constant specific heats is sometimes termed a perfect gas
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To relate pressure p to temperature the relation
.
To\ 1
Po _ <0> ! (2.6)
P T

is valid for isentropic processes, or properties in one single point. Sometimes it is instead useful
to have temperature and pressure ratios related to the Mach number M defined by

M = \/STT (2.7)

Using the Mach number, the relation for temperature ratios is given by

—=14+—M 2.8

By combining equation 2.6 and 2.8 the pressure ratio can be written

1 v
%: <1+72 MQ)” 1 (2.9)

Equation 2.6 can also be modified to include the polytropic efficiency 7,, enabling the expression
to be used between any two working points if the efficiency is known. This is well illustrated by
Dixon (1998) and Rogers, Cohen, Saravanamuttoo and Straznicky (2009) [11]; the stagnation

pressure ratio is given by
YMp

bort_ (TOH>“ (2.10)
por Tor
In some cases the viscosity of the fluid being compressed is needed. For most gases it is found
that the viscosity mainly varies with temperature, and not pressure. A somewhat "classic"
relation determining the dynamic viscosity p at any temperature is Sutherland “s formula, see
for instance Anderson (2011) [12], and is given by

Tref + Cy T \?2
= 2.11
U= [ref T ¥ C, Tref ( )

Here, fiycf and Ty is a viscosity and temperature, respectively, at some reference condition.
The constant Cs depends on the fluid, and must also be specified.

The specific entropy s may also need to be determined, and a suitable relation can be found
with Gibbs’ second law as a basis (see for instance Cengel and Boles (2007))

Tds = dh — vdp (2.12)
where v is the specific volume. The differential specific enthalpy change may be written
dh = d(c,T) = ¢, dT (2.13)

which holds for constant specific heats. v may be found from the ideal gas law, equation 2.1,
noting that it is the reciprocal of the density. Inserting these relations into equation 2.12 yields

T
Tds = cpdl — ]idp (2.14)
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or equivalently

ar - d
ds = ¢ - R?p (2.15)

Upon integration from state 1 to state 2, one find the following useful relationship

15 D2
S9— 81 =cpln— — Rln— 2.16
2= s =g o (2.16)

Hence, the absolute value of the specific entropy at any point can be determined from an
arbitrary chosen reference condition. Which temperature, pressure and specific entropy used
for the reference condition does not matter; as long as the same reference condition is used for
all calculations, the entropy differences are consistent with each other.

A very useful relation, when looking at the impeller, is the Euler turbomachinery equation.
This equation relates the change in tangential velocity over the impeller to the power input into
the machine. It is derived in most basic turbomachinery textbooks, for instance Dixon (1998)
or Rogers, Cohen, Saravanamuttoo and Straznicky (2009) and may be expressed according to

Ahg prades = w(r2Cpa — 11Co1) = U2Cha — U1Coy (2.17)

where Ahg piades denotes the actual work supplied from the blades to the fluid, w the angular
velocity of the impeller and subscript 6 a component in the tangential direction. In equation 2.17
the relation

U=wr (2.18)

was used to relate the angular velocity and radius to the tangentially directed machine velocity U.
From equation 2.17 one notice that if preswirl?> (Cp; # 0) is present at impeller inlet, the
work input will be reduced. Hence, in order to maintain a prescribed pressure rise, the outlet
tangential velocity must increase. This in turn leads to higher (absolute) exit Mach numbers,
with the risk of complex shock structures at impeller exit and diffuser inlet. As described by
Braembussche (2013) these shocks can actually be beneficial for the efficiency. This can be
understood from the fact that the static pressure rise over a shock can be rather efficient as
compared to the corresponding pressure rise due to channel diffusion.

The power P required to drive the compressor can be found from

P = mAhO ~ mAhO,blades (2.19)

where Ahg represents the specific stagnation enthalpy difference over the impeller. This is not
in general equal to the work supplied by the blades to the fluid, since parasitic losses such as
disc friction must also be taken into account, see Dixon (1998).

An additional feature of all component calculations is the assumption of an adiabatic
compressor. This highly simplifies the calculation procedure, and is usually regarded as a
good approximation. The effect of this assumption is, for instance, no stagnation temperature
changes in stationary components.

Another useful feature employed in many calculations is the cylindrical coordinate system,
sometimes a natural choice since the machine itself is circular. The coordinates utilized in most
studies is seen in figure 2.1. Many times the cylindrical coordinate system z — r — 0 is used
directly, but of great importance is the two-dimensional z — r representation. This so-called
meridional z — r plane is typically employed when looking at stream surfaces in different
components. In addition, a curvilinear coordinate system is very useful when conducting an

13



Figure 2.1: The coordinate systems used in subsequent analyses. As is seen, both a Cartesian
and a cylindrical coordinate system is typically employed

analysis along a flow path such as that depicted in figure 2.2. The curvilinear coordinate system
has the meridional component m parallel to the stream surface at the current point, and the
normal component n normal to it. In figure 2.2 both the z — r and the m — n coordinate
system is depicted for one and the same polar angle 6. Also included in the figure is the slope
of the stream surface at the current point, here denoted a. Throughout this study all flow
and blade angles are defined from the meridional direction, with the obvious exception of the
local stream surface angle defined in figure 2.2.

When performing calculations in any general gas path, for instance the impeller flow
passages or in a vaneless diffuser, the concept of quasi-normals can be advantageous to utilize.
A quasi-normal, as the name implies, is a line segment almost normal to the flow. Ideally
these lines would be perfect normals, but it is impossible to achieve this when having passages
with generally shaped walls. The quasi-normals are connected from the component’s hub
contour to it’s shroud contour, between points of the same non-dimensional passage distance.
Figure 2.3 gives a typical example of this concept. Here it is clearly shown that the quasi
normal only approximates a normal to both the hub and shroud wall. The angle ¢ denotes the
difference between an actual normal and the quasi normal, defined at both hub and shroud. Any
calculation should compensate for the "non-normalness" inevitably created by quasi normals,
typically by utilizing €. A typical task well suited for the use of quasi-normals is, for instance,
when calculating passage areas in a general flow path. Also, blade angles can be set to vary
linearly from a value at the hub to another value at the shroud along these line segments,
which will be demonstrated later.

When analysing turbomachinery one almost always encounters different velocity triangles.
This is simply velocity vectors in specific planes, typically a developed stream surface, normal
to the meridional plane. Velocity diagrams are very useful for relating velocities and their

2Preswirl is sometimes employed in order to reduce the relative inlet Mach number and/or to increase the
operating range. This can be introduced with the aid of /G Vs, inlet guide vanes
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Figure 2.2: A z-r coordinate system displaying a particular point with a curvilinear coordinate
system m — n included. Both coordinate systems are depicted for the same polar angle 6. The
slope of the stream surface at the point of interest is .

different directions and is a fundamental part of this study. The velocity diagram for an
impeller inlet is shown in figure 2.4. Note that this velocity diagram is not representative of
typical designs, but is very useful when setting up algebraical relations, since all angles are
shown in the positive direction. If all mathematical expressions are set up with correct angle
definitions, no problems will occur if velocity vectors suddenly acquire negative angles. The
angles shown are the absolute flow angle o, the relative flow angle o/, the blade angle 5 and
the incidence angle i. Incidence is the difference between the blade angle and the relative flow
angle according to

i=B—d (2.20)

If the incidence is equal to zero, the relative flow follows the blade mean camberline exactly.
Also shown in figure 2.4 is the different velocity vectors. Both the absolute velocity C' and
relative velocity W have velocity components in the meridional and tangential direction. Of
course, the blade speed is entirely in the tangential direction. Also note that all velocity
components with a vertical alignment is termed meridional velocity (subscript m), while any
horizontally aligned velocity components is called tangential (subscript 6).

Performing calculations within a rotating part of any turbomachinery a very useful quan-
tity Rp, the rothalpy, may be derived from the Euler turbomachinery equation and the above
presented velocity triangle. Insertion of equation 2.4 in equation 2.17 yields

C? C?
ho + 72 —UsCpo = hy + 71 —UiCpy (2.21)

From the velocity triangle it is easily seen that the squared absolute velocity can be expressed
as

C?=C2 +C2=C2%+ (Wy+U)?
=W2 +W§ +2UW, + U? (2.22)
=W?2 4+ 2UWy + U?
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Detail A

Detail A

Figure 2.3: Schematic sketch showing the use of quasi-normals. Here, five quasi-normals are
shown connected between points on the hub and shroud, each pair of points with the same
dimensionless passage length along it’s respective contour. Detail A shows one quasi-normal
with higher resolution, where it is seen that the line segment is not exactly normal to either
the hub or shroud

Suction side Pressure side
\n/ LS

Figure 2.4: Sketch of an impeller inlet velocity triangle in a developed stream surface, coinciding
with a developed tangential plane. Here, all velocities are drawn with positive angles, on the
right hand side of the meridional direction. Also, the pressure and suction side of the blade
are indicated
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Figure 2.5: Sketch of an impeller exit velocity triangle in a developed stream surface. The
stream surface on which the velocities are shown is in this case parallel to the x — y plane.
Here, all velocities are drawn with positive angles, on the right hand side of the meridional
direction. Note that this impeller has forward swept blades, which would normally not be used
in practice

and the following relation must hold

C? w? w? U
2.23
Sy W 22

2 2 2 2
Inserting this result into equation 2.21 one obtain

w3 Uj wi Uf
2 72 — 2 2.24
ho + 5 5 hy + 5 5 (2.24)

Obviously the quantities on either side of the equality is conserved over the component of
interest. Consequently the rothalpy Ry is defined as

Ro=h+ =~ (2.25)

It is easily seen that the conservation of rothalpy reduces to the conservation of stagnation

enthalpy for a stationary component (U — 0 and W — C'). Sometimes it is more useful to

directly work with the Euler turbomachine equation, and the rothalpy can instead by expressed
according to

Ro=ho—UCy (2.26)

Also, a relative specific stagnation enthalpy h{, may be written as

W2
h = h+ - (2.27)
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This quantity can be directly related to the definition of rothalpy, equation 2.25. Hence

U2
hi = Ro + 5 (2.28)
must hold along any streamline. Note that rothalpy is conserved in both the stationary and
rotating frame of reference. However, the rothalpy cannot be conserved between a stationary
and rotating component since there is a discontinuity in U (from zero to a finite value).

Another detail found in figure 2.4 is the different names of the blade’s sides. The side on
which the velocity will be the highest, and hence the pressure the lowest, is called the suction
side. The opposite is true of the other side and is therefore called the pressure side. One can
also imagine the pressure side as the side that will "push', or press, fluid in the direction of
rotation, while at the suction side fluid will follow the blades’ rotation. However, as noted
by Braembussche (2013), in the radial part of the compressor, it is not always clear which
blade side is the pressure or suction side. This stem from the fact that the normal velocity
gradient has two contributors with opposite sign; one from the blade curvature and one from
the Coriolis acceleration. Hence, in the rear part of a radial compressor, where the Coriolis
acceleration is substantial, the convex side may turn out to be the pressure side.

Similarly as for the inlet, a velocity triangle is constructed at the impeller exit as seen in
figure 2.5. Once again, all angles are drawn positive yielding a configuration not reflecting
actual designs. As was the case for the inlet velocity triangle, a sketch of this type simplifies
the algebraical procedures by defining a common positive direction for the angles. In fact, this
figure shows an unrealistic impeller configuration in that the impeller has forward swept blades
(B2 > 0). Employing forward swept blades will yield an unstable compressor, causing severe
operating difficulties as noted in most of the literature covering radial compressor design, see
for instance Cumpsty (2004).
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Chapter 3

Preliminary impeller design

The purpose of the preliminary impeller design is to very easily and quickly generate a candidate
design from which further analysises can be conducted. The strength of having such a method
is to yield reasonable designs, capable of reaching the performance target. If used properly
large time savings in a design process can be realized since quickly arriving at a good design
certainly will minimize the quantity of in-depth calculations.

First, the main relations are presented together with the physical reasoning, after which
the geometrical construction is presented. The last section explains the calculation procedure
of the preliminary impeller design.

3.1 Basic relations

The basic calculation procedure is outlined by Aungier (2000), based on a previous paper from
the same author; Aungier (1995) [13]. The current study is restricted to flow coefficients in the
range typically encountered when using impellers with full inducers, 0.025 < ¢ < 0.2. Further,
it is assumed that the inlet velocity distribution is uniform, without any velocity differences in
the radial direction. Some parts of the analysis require property differences between impeller
outlet and inlet. Since the relative properties change in the radial direction (the tangential
speed increases when moving radially outwards), properties on the mean stream surface are
utilized. The mean stream surface contain some arbitrariness in how it is defined. Here it is
taken to be the surface which separates equal amount of fluid mass flow below and above it.
Also, the surface itself is assumed to be uniform in the tangential direction. The inlet flow
coefficient can be calculated from the inlet stagnation conditions, the desired inlet mass flow
and the impeller tip radius according to formula 1.3, repeated below for clarity
m
pooraUs (3:-1)

By knowing the impeller rotational speed, the impeller tip speed Us is easily determined by
using equation 2.18, repeated below for clarity

UQ = WTr9 (3.2)
Aungier (2000) introduce an additional parameter I in analogy to the head coefficient, but

instead of using the isentropic stagnation enthalpy difference, the actual stagnation enthalpy
difference is used, representing the work actually being supplied to the flow. The so-called

19



work input coefficient can thus be written as

Ahg

1==2
U3

(3.3)
where Ahg is the actual specific stagnation enthalpy difference over the impeller. The author
gives relations between the impeller work input coefficient and the flow coefficient, enabling
calculation of the enthalpy rise over the impeller from known parameters. Also, different
correlations are given depending on whether the impeller is shrouded or not. For shrouded
impellers the work input coefficient is given by

b )3 0.0014
1=062—— —_— 3.4
(0.4 + 10) (34)
while for unshrouded impellers I is written as
é >3 0.002
I1=068—— N .
0.68 (0‘37 + (3.5)

An estimation of the amount of the externally supplied work actually being transferred to
the blades is given by the blade work input factor Ig, again in analogy with the work input
coefficient. The difference between the work input coefficient I and the blade work input factor
represents the parasitic loss! coefficient Iar. Aungier (2000) gives a correlation for Ip,,, simply
dependent on the inlet flow coefficient according to

0.0014
Ipar == (3.6)

This equation is valid for shrouded impellers. When instead using an unshrouded impeller the
parasitic losses becomes somewhat higher and is instead given by

0.002
Tpar = = 5 (3.7)

Hence, the work input to the blades (and thereby the fluid) can be determined by

Ip =1 — Iy (3.8)
The blade work input factor itself corresponds to the work supplied determined by the Euler
turbomachinery equation 2.17 and Ip thus becomes

Ahoplades Co2  UiCop
1. = Bhoplades _ Co2 3.9
B U2 Us U2 (3.9)

In the same manner as for the impeller work input coefficient, Aungier (2000) supplies relations
for the polytropic head coefficient and the polytropic efficiency of the compressor stage. Again,
different relations are given for shrouded and unshrouded impellers, with the added dependence
of which kind of diffuser found downstream of the impeller (vaneless, subscript V' LD, or vaned,
subscript V' D, diffusers). For unshrouded impellers the head coefficient is determined by

0.00025
¢

IParasitic losses typically involves "disc friction losses" meaning friction work are being done by the impeller
on the stationary compressor shroud. This means extra work input, without doing any useful work on the fluid

ppvp = 0.51+ ¢ — 7.6¢° —

(3.10)
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and the polytropic efficiency 7, takes the form of

0.017
= - 3.11
IpVLD = Tp VD = Gin T ho+ TI;VD (3.11)
continuing, the corresponding parameters for unshrouded impellers is given by
0.00025
tp.vp = 0.59 + 0.7¢ — 7.5¢* — 5 (3.12)
and 0.017
Np,VLD = Tp,VD — ' (3.13)

0.04 +5¢ + 13 p

Polytropic parameters have the advantage over isentropic ditto of being independent of the
pressure ratio. The drawback of the isentropic parameters stems from a thermodynamic effect,
having its root in the divergence of constant pressure line in a h-s diagram, as explained by
Dixon (1998), for instance. As is seen in relation 3.10 to 3.13 it is necessary to determine
efficiencies out of the polytropic head. This presents no problem since the polytopic head
coefficient y,, can be written as

Ahg,
Hp = (3.14)
P U22

here, Ahg, denotes the specific stagnation enthalpy change under an ideal polytropic compres-
sion. In a similar manner the polytropic efficiency becomes

Ahg,
= 3.15
77:0 Aho ( )
By combining the last two equations one end up with
U2
p = M’Ailio (3.16)

enabling easy conversions from polytropic head coefficients to efficiencies, and vice versa. The
polytropic enthalpy change can also be directly related to the pressure rise by combining
equation 2.2 and 2.6 by writing

Ahgp = ho2p — ho1 = ¢p (Tozp — To1)

To2p ) <p02> = (3.17)
=cdo1 | = — 1) =14 — -1
POl (T01 N

A measure of the internal efficiency of the impeller itself would not take the parasitic losses into
account, and only consider flow phenomena and losses within the fluid passage. It is defined
as the ratio of the polytropic head coefficient to the impeller blade work input factor, and is
estimated by

n="L =095 - —— (3.18)

The impeller tip is a region of an extremely complicated flow field, and still today all flow
phenomena are not fully understood. Empirical data can be used to support a one dimensional
analysis and to improve a new design, looking at designs from successful development programs
in the past. On the contrary, Japikse (1996) notes that, for instance, employing a blockage
factor when using calculations based on homogeneously mixed flow is conceptually wrong.
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Nevertheless Aungier (2000) recommends the use of a so-called tip distortion factor A, depending
on multiple factors. It is defined according to

1

A=
1— By

(3.19)

where By is a blockage factor at the impeller tip. The main dependence has, again, been found
to be on the inlet flow coefficient but another factor, K}, is also included according to

0.00175\% 0.0015
> + —0.22ln¢ (3.20)

¢ ¢

The tip distortion factor should also recognize what kind of impeller being used, and when
employing an unshrouded impeller A, as given by equation 3.20, should be increased by a
factor 1.02. The factor K is dependent on several parameters. These include not only the
blade angle 5 and passage area A at both inlet and outlet, but also the passage width b at
outlet and the blade mean camberline length L. The last variable, L p makes the calculation
procedure somewhat difficult, since the blade camberline length is not known until the impeller
geometry is determined. On the other hand, the geometry depends on the value of the tip
distortion factor, hence an iterative approach is needed. K is expressed as

b2 )2> bQA% COS2 ,82

K,=1 0.3 — -
A + ( + (LB Lp A3 cos? By

)\:K)\-i-(

(3.21)

Depending on what type of diffuser used in the compressor stage different absolute exit flow
angles as from the impeller should be aimed at. Once again correlations was found based on the
flow coefficient since this parameter, to a large extent, determines which type of loss dominates
the flow. For low flow coefficients rather narrow flow passages appear, and to minimize wall
friction losses, as wide passages as possible should be strived for. This can be accomplished
by choosing an as large outlet angle as possible (this would minimize the meridional velocity
component, forcing the passage width to be larger from continuity considerations). On the
opposite, a high flow coefficient stage yields comparatively wide passages, giving rise to losses
associated with less guidance, typically diffusion losses. Here, the flow angle is preferably as
small as possible giving rise to higher meridional velocities. The impeller exit flow angle when
using vaneless diffusers is given by

= ! 3.22

N2 = 5o 34 (3:22)
For vaned diffusers good design point performance cannot be considered alone, since the aspect
of the off-design behaviour often determine the stage’s practical usefulness. Often a trade-off
has to be made between high design point efficiency and a wide operating range. Thus, it is
important to choose outlet angles making the diffuser as insensitive as possible to changes in
the outlet flow from the impeller. This criteria yields rather large impeller exit absolute flow
angles, which can be determined from

s =72° — 0.51n¢ — 585¢> (3.23)

An important concept regarding the impeller tip region is the so-called slip factor. The slip
factor represents the relation between the actual tangential velocity and an ideal ditto®. An

2Tt should be noted that the slip factor is in total analogy with the deviation usually encountered in axial
blading
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ideal tangential velocity could be the velocity obtained with an infinite number of infinitesimally
thin blades. With radial blading (82 = 0) this would make the fluid have the impeller tip
speed as the tangential velocity component. However, the "american" slip factor is used in
this analysis, where not only this "ideal" tangential velocity is taken into account, but also the
impeller tip speed Us. A thorough description of the slip factor o is outlined by Cumpsty (2004),
and is here defined as

092,00 - 092 Cslip

=122 3.24
0, 0, (3.24)

where Cpa « represents the tangential velocity under the idealized case of an infinity amount
of blades and Cyy, is the difference between this velocity and the actual tangential velocity. In
practice it exists many different empirically derived expressions to determine the slip factor.
The one adopted here is the Wiesner slip factor at zero flow, written according to

\/€os Py sin acg

0.7
ZI

oc=1-—

c=1-— (3.25)
here, Z; denotes the number of impeller blades. Further, equation 3.24 at zero flow (Cg2 o =
(9,00 = Us) reduces to
y o Co2
092,00

The slip factor can be directly related to the impeller work input, equation 3.9 and the
one-dimensional continuity equation at the tip including tip blockage through equation 3.19.
Incorporating the above mentioned tip blockage, the available flow area Ag 4444 is the passage
area less the value predicted by the blockage factor

(3.26)

Az
Az avail = A2 (1 — B) = N (3.27)
The one dimensional continuity equation at the impeller tip demands
. CmoA
m = paCma A2 qvait = % (3.28)

The ratio of the ideal tangential velocity (with an infinite number of blades) to the impeller
tip velocity can be written

Co2,00 _ Uz — (U — Ch2,00) 1 Chn2 tan o

3.29
U Uy Us (3:29)

with the aid of figure 3.1 showing the impeller tip velocity triangle. As seen in this figure
the ideal flow direction equals the blade angle 5. The relative flow velocity is denoted W.
Combining equation 3.28 and 3.29 yields

Co2,00 _ Aritan Bo

=1 3.30
Us p2 AU, (3:30)
Finally, using equation 3.9, 3.26, and 3.30 one end up with
A tan Bg) U1091
Ip = 1-— — 3.31
B=0 < p2A2Us U3 (3.31)

Another important parameter is the blade loading. Keeping the blade loading within
certain limits is one way to control the severity of the impeller flow field. If previous designs
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Figure 3.1: The impeller tip velocity triangle for an idealized flow with the relative flow velocity
W following the blade with no deviation. Only one blade is shown for reasons of clarity

have worked well with a certain amount of blade loading, a good starting point for a new
design would be similar values. One common method of determining the amount of loading
is by relating the inlet and outlet relative velocities to the velocity difference at the blade’s
suction and pressure side. Aungier (2000) defines the blade loading BL as

20W

BL=———
Wi 4+ Wa

(3.32)
where AW is the average blade velocity difference between the suction and pressure side of a
blade. This difference can in turn be estimated from a simple irrotational flow approach by

47TT2U2[B

A —
W ZrLp

(3.33)

The value of the blade loading is suggested to be kept below 0.9.

In order to yield a good impeller design suggestion, the mean camberline blade angle
distribution must be specified. From Aungier (1995) blade angles along the shroud contour are
given by

Bs = Bus + (B> — Bu) (3¢* — 2¢%) (3.34)

where ¢ denotes the dimensionless meridional distance along the impeller fluid passage. In a
similar manner, the blade angle distribution along the hub is expressed as

B = Pin + AC + BG® + C¢P (3.35)

here, A, B and C are constants, given by

A=—4 (52 — B+ 51h) (3.36)
B = 11835 — 163), + 5611 (3.37)
C = —6032 + 8B, — 2B (3.38)

and ), is the blade angle along the hub contour at mid passage, determined by

(1—K) (B2 + Bin)
2

B, = 90K +
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rake angle

Figure 3.2: Schematic sketch showing the rake angle, here at the impeller inlet. View in the
axial direction, looking downstream. Only one blade is shown for reasons of clarity

The parameter K is used to adjust 5, in order to keep the rake angles® reasonable. Rake
angles are angles between the blade hub-to-shroud surface and a meridional surface passing
through the impeller rotating axis as illustrated in figure 3.2. One reason for making use of rake
angles is the effect they have on creating backsweep with radially shaped blades. This lowers
the mechanical stress levels in the blades since no bending stress appears in radial blading,
see Cumpsty (2004). Breambussche (2013) further notes that altering rake angles can be an
efficient way to redistribute the impeller tip velocity, and thereby improve the downstream
diffuser performance.

The blade angles at locations other than hub or shroud is set to vary linearly along the
passage width. The blade themselves have a finite thickness which must be taken into account
when calculating flow passage areas. Because of the blade’s thickness ¢, the available flow area
is reduced with an amount depending on both the number of blades and the blade thickness.
For the preliminary design the blade thickness are assumed to be equally thick in the hub
to shroud direction, but have a thinner leading edge than trailing edge. The leading edge
thickness is set to increase linearly until 10% of the meridional passage length, from which point
the thickness are held constant. Any extra blockage effect from rake angles being non-zero is
neglected, a reasonable assumption for relatively small angles.

3.2 Geometrical construction

Aungier (2000) also found a correlation between impeller axial length, inlet flow coefficient and
the radius ratio r15/re, giving a very important parameter needed to construct the impeller
geometry. The impeller axial length Az; can be determined from

A
= 0.014 4 0.023—2 + 1.58¢ (3.40)
2 T1h

1

3Rake angles are sometimes also called lean angles
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Figure 3.3: The basic layout of a circular arc with angles ac1 and acs at the beginning and
end, respectively. Also, linear segments are added at the two end points. The arc’s radius is
denoted R¢

How the hub and shroud contour are chosen is a non-trivial matter. In the work of
Aungier (2000) it is recommended to use a circular arc of an as large radius as possible for
the hub contour. Depending on the slope of the hub at inlet and exit it may be necessary to
add linear line segments in the beginning and/or at the end of the arc. Figure 3.3 shows the
features of such a circular arc. From this figure it is seen that the differences in x- and y-values
is given by

Xy — X1 = Re (sinags — sinaey) + Lo cos acs + Ly cos ac (3.41)

Yy — Y] = Re (cosaey — cos aea) + Lo sinage + Ly sin aeq (3.42)
Equation 3.41 and 3.42 can be combined to yield

(Yo — Y1) (sinaee —sinaey) — (Xo — X1) (cos a1 — cos aea)

Ly— Ly = (3.43)

1 — sin a¢ sin aco — cos ap COS a2
hence, the linear line segments L and Lo cannot be chosen independently of the curve slopes
at the beginning and end of the line. When actually constructing a circular arc it is useful to
make use of the arc centre determined according to

Xo = X1+ Licosacy — Resinae (3.44)

Yo =Y1+ Lisinact + Re cos oo (3.45)

For the shroud contour generation a three-point cubic spline curve is used. It is well suitable
to this task, since it can be made to fit at both impeller inlet and exit, while controlling an
additional point along the gas path. This extra point is here chosen at midpassage in order to
give passage area distributions in line with good design practice. Aungier (2000) suggests a
linear annular area distribution from the impeller inlet to discharge. The cubic spline curve
used in this preliminary analysis is shown in figure 3.4. In order to ease calculations the slope
of the initial and final line segment can be written as

Y = tan acq (3.46)
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Figure 3.4: The basic layout of a three-point cubic spline arc with angles a¢1 and acs at the
beginning and end, respectively. Also, linear segments L; and L3 are added at the two end
points. Note the third point in the middle of the line

Yy = tan acs (3.47)

To construct the line, three different coefficients are used, defined by

6(Ys — Y5 6(Ys — Y 2(Y{ -Y]
M, — (Y3 — Y3) B (Y2 —V11) L2 - Yy) (3.48)
(X3 —Xo) (X3 —X1) (Xo—X3)(X3—X1) X3 — Xo
3(Ya—Y 3Y/ M.
L= (Y2 1)2 _ LS (3.49)
(XQ — X1) X2 - Xl 2
3y 3(Ya—Yy) My
M; = I — - == 3.50
’ X3 — Xo (X3—X2)2 2 ( )
which is used to define the cubic polynomial according to
_ My (X — 2)® | My (z— X))
6 (Xk — Xk—1) 6 (Xr — Xg—1)
) My, (X — Xk—l))
— — Xk
" (Xk — Xj_1 6 (@ = Xe) (3.51)

n ( Vier My (X — Xj1)
Xp— Xp 1 6
where X1 < x < X

)(Xk—fﬁ);

hence, the calculation of the polynomial is divided into two parts, one where = varies between
X1 and X3, the other where x varies between Xo and Xj3. With these curve types, both
contours of the impeller can geometrically be constructed. One potential danger when using
tan a¢o for the curve slope is the occurrence of 90° angles. This leads to an infinite slope, and
would certainly lead to numerical problems. A rather simple way of avoiding this situation is
to employ a rotated coordinate system, as outlined in appendix A.
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Various strategies for the blade geometrical construction can be employed. The blade
angles are given by equations 3.34 and 3.35 and the blades themselves consists of straight line
elements connected from the same dimensionless passage position along the hub and shroud.
In order to determine the blade shape at impeller inlet Aungier (2000) suggests setting the
relative flow angle to 60° and letting the hub incidence become one forth of the incidence at
shroud.

3.3 Calculation procedure

As has already been stressed above, the calculation procedure takes an iterative form since
many variables depend on each other. The essential reason for this is that no geometry is
known from the beginning, the geometry being something many other parameters heavily
depends on. An overview of the calculation order and iteration loops is given in figure 3.5. As
is seen, several calculation steps are necessary and many of them contain different iterations.
One main iteration loop can be identified; this loop is continued until the number of blades
has converged. Within this loop several iteration loops exist, for instance when determining
the impeller inlet design and the shroud contour of the impeller.

3.3.1 Input parameters

One purpose of the preliminary design is to generate an impeller with as little data input as
possible. However, some data must be supported in order to yield designs following the main
performance targets.

Rather obvious is the specification of the fluid parameters. No calculation can be undertaken
until it is known what properties the fluid being compressed possess. Following the ideal gas
assumption the specific gas constant R must be given. Additionally, any polytopic compression
process end up with the ratio of specific heats, v, with also must be supplied. Following
the assumption of a perfect gas, that is constant specific heats, the specific heat at constant
pressure is needed in order to relate temperature to enthalpy. One may notice that these three
gas properties are interrelated; the third one can be found from the other two. However, some
merit of specifying all three exist. For example, if some corrective measure for the temperature
rise over the compressor is desired, the value of ¢, can be adjusted, while letting the other two
parameters be non-changed.

In order to determine the absolute impeller exit conditions it also necessary to specify
the inlet stagnation properties. Most analyses specify the inlet stagnation temperature and
pressure, a practice also adopted here. It can also be noted that the preliminary impeller design
assumes zero loss in the intake, implying that both the impeller inlet stagnation temperature
and pressure are known (and equal to the intake properties).

As has been described above, some correlations taking the following diffuser into consid-
eration are necessary. Thus, the diffuser type is something that has to be specified by the
designer. Having to specify the overall stage configuration already at this stage also reminds
the inexperienced designer of the tight relationship between various compressor components.
In the same manner the impeller shroud design must also be provided, that is, if a shrouded or
unshrouded design is employed.

Another set of parameters characterizing the impeller is the rotational speed and the inlet
mass flow. Both of these are usually known in advance, especially the mass flow. The rotational
speed N determines, together with the impeller tip radius ry (also specified), the maximum
stress levels in the impeller. These parameters are therefore limited to certain levels, but the
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Give:
Gas properties and inlet conditions: R, v, ¢, Tog, Poo
Vaned or vaneless diffuser, shrouded or unshrouded impeller
Rotating speed and mass flow: N, m
Impeller tip radius, impeller inlet hub to tip radius ratio: ry, ryn/r;
Inlet abs. flow angle, mean rel. flow angle, mean inlet incidence: @;, @, 1,
Dimensionless blade thickness at inlet and at rest of passage: tg,/r;, tz/r;
Maximum blade loading: BL .

Y Y
Calculate: Calculate from correlations:
Inlet flow coefficient: ® Work input coef.: |
Inlet hub radius: ry;, Parasitic loss coef.: |,
Impeller tip speed: U, Hydraulic efficiency: n,
Impeller axial length: Az

Calculate:
Blade work input coef.: Ig
Tip tangential velocity.: Cq,

Y

Calculate from tip velocity triangle:
All velocities.: Cpy, Cyy Wiz, Wez, W,
All thermodynamic data.: Tgy, Ty, Poz, P2, P2
Relative tip flow angle: a;
Impeller exit area in the meridional direction: A,

Y

Guess:
Number of blades: Z,
Impeller backsweep angle: B,

A

Iterate for:
Inlet mean radius: ry,
Inlet blade angle distr.: B,

Y

Generate a "suitable” impeller
geometry from specified contour
curves, including an iteration
for the mid passage flow path area

Internal iteration loops

Calculate:
Blade mean camberline length: Lg
Tip distortion factor: A
New number of blades from
maximum blade loading criteria: Z,
Slip factor: o
New impeller backsweep angle: B,

Number of blades
converged?

Impeller design done

Figure 3.5: The calculation procedure for the preliminary design, showing the main features of
the iterative process. Note that certain parts of the main iteration loop contain iterations of
their own
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relation between them can be adjusted. The mass flow 7 have a large impact of the design,
in how "wide" the impeller needs to be for compressing the desired amount of fluid. This is
typically a parameter known, since a given duty often requires a specified amount of mass
flow. Further, in order to determine the inducer size, some inlet radius is required as input
data. Here, the parameter chosen is the inlet hub radius non-dimensionalized with the impeller
tip radius. One reason for choosing such a parameter is that the radius ratio, instead of an
absolute radius, can be obtained from previous (successful) designs of sizes different from the
impeller currently being designed.

The inlet region also requires a set of angles to be specified. In the preliminary design,
values at the "mean" radius are sometimes specified, where "mean" can be interpreted as at the
mean stream surface. Two of these parameters include the relative mean inlet flow angle &}
and the inlet mean incidence ;. Additionally, the inlet flow can be chosen not being completely
axial, and thus have a homogeneous inlet angle a; relative to the meridional direction. This
input can be useful if, for instance, inlet guide vanes have been placed in front of the impeller
and a performance analysis is requested.

Some characteristics must also be said about the blades. The blade thickness must be
chosen to give sufficient mechanical strength, still thin enough to give an as small negative
impact as possible on the aerodynamic performance. The blade thickness distribution is further
complicated by various resonance phenomena, and many times blade shaping is dominated by
mechanical considerations. Cumpsty (2004) gives a great overview of this. Here, the blade
thickness at inlet £p1 must be specified, non-dimensionalized with the impeller tip radius. Also,
the thickness tp at other locations than the inlet region is non-dimensionalized and specified.
Another parameter connected with the blades, especially the number of blades, is the blade
loading. Here, a maximum blade loading BL,,,. is specified in order to ensure results with
reasonable loadings.

3.3.2 Calculation model

A number of calculations can be conducted without any iterations, starting with the determina-
tion of the flow coefficient ¢. This in turn requires the inlet density and impeller tip velocity to
be found. Therefore, the inlet stagnation temperature and pressure is used in equation 2.1 to
yield the inlet stagnation density ppg. The impeller tip velocity is determined by equation 3.2
by using the given rotational speed (converted from revolutions per minute to radians per
second). Also, the parameters given in non-dimensional form can be recalculated to give the
absolute values. This includes the inlet hub radius and blade thickness.

Since the flow coefficient now is known all empirical relations using ¢ as a parameter can
be calculated. The compressor configuration is also specified. Hence the impeller exit absolute
flow angle, work input coefficient, parasitic loss coefficient, hydraulic efficiency and axial length
can be determined. With the aid of equation 3.8 the blade work input coefficient Iz can be
calculated. Assuming the inlet impeller velocity U; is much smaller than it’s tip velocity Us,
and a small inlet absolute flow angle a1, equation 3.9 reduces to

e

Ip = 292
B 7

(3.52)
This relation enables the tip tangential velocity Cys to be determined. Since the absolute flow
angle is also known, the impeller tip velocity triangle is fully determined. The thermodynamic
condition at the impeller tip can also be established. Using the definition of the work input
coefficient, equation 3.3, the stagnation enthalpy can be calculated at impeller discharge and
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thereby the stagnation temperature. Having both the velocity and stagnation temperature,
determining the static temperature is straight forward. Further, the stagnation pressure can
also be established by combining equation 3.14, 3.17 and 3.18. Knowing both the stagnation
temperature, static temperature and the stagnation pressure enables a simple calculation of the
static pressure by using equation 2.6. Since all data is known at the impeller tip, the necessary
passage area can also be determined from a simple one-dimensional continuity equation. As
is understood by studying the impeller tip velocity triangle, figure 2.5, it is the meridional
velocity components determining the mass flow. Hence

_m
p20m2

Az (3.53)

So far no iterations have been necessary. However, the rest of the impeller design will be
of an iterative nature. As was shown in figure 3.5, one main iteration loop determining the
number of blades must be employed. This iteration loop consists of several other iterations, see
figure 3.6. After giving reasonable start values to the number of blades and the backsweep angle,
the next step is to determine the inlet annular area. This requires an iterative solution since
the inlet shroud and mean radius is unknown. After giving initial values to these parameters
the absolute inlet velocity C can be determined from the inlet flow angle, the specified mean
radius relative flow angle and the rotating speed. This can be understood by looking at the
inlet velocity triangle, figure 2.4. The exact same logic is used to determine the relative flow
angles at hub and shroud, but in reversed order. Here we want the relative flow angle, but now
know the absolute velocity (since the velocity is assumed non-distorted). From these relative
flow angles the blade angles can be specified by using the specified mean radius incidence and
the constraint of a hub incidence 25% of the shroud incidence. Since the impeller considered is
of a full inducer type, the whole inlet is completely radial in the » — z plane. Therefore the
blade angle 8 at radial position r is given by

r—=Tih

B =————(B1s — Bin) + B (3.54)

T1s — T1h
By combining this relation with the definition of incidence, equation 2.20, together with the
constraint i1 = 0.25715 a simple algebraic exercise yields
ay + i1 — oy — = (o) — o)

1— 3 ri—Tip
4 T1s—T1h

ih = (3.55)

Now, the blade angles at hub and shroud can be calculated by again using the incidence
definition. The situation is also similar to the one found at the impeller tip; the stagnation
temperature is known together with the absolute velocity. Also, the stagnation pressure is
known, and all thermodynamic properties can be determined at the inlet as well. Therefore,
all parameters needed to calculate the impeller inlet annulus area, and thereby the inlet tip
and mean radius, is determined. However, the amount of blade blockage depends on the blade
angle which in this case varies from hub to shroud. To overcome this problem it is needed to
split up the calculation in discrete steps where the blade angle is considered constant. The
smaller the steps, the more accurate the result. Here, the inlet area is divided into equal parts,
and each area increment can approximately be calculated by

2 ) _ Zitg

Aviner = (31 — 13 cos By ; it L) (3.56)
52
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Guess:
Number of blades: Z, 3
Impeller backsweep angle: B,
Y
Guess:
Inlet tip radius: ry -
Inlet mean radius: T,

Y

Calculate:
Inlet velocity: C,
Relative flow angles and blade angles at hub and shroud: aj,,, ajs, B, Bs
Thermodynamic conditions: Cq, Ty, Py, Py
New inlet tip radius, new mean radius: ry, T

!

Inlet

tip radius

and inlet mean
radius

converged?

No

Yes

Internal iteration loops

Generate hub geometry
Calculate blade angle distributions along hub and shroud

Y

Guess:
Passage mid point of shroud contour

A

Y

Generate shroud contour through the passage mid point

Correct
mid passage
area?

Calculate:
Blade mean camberline length: Ly
s . Number
Tip distortion factor: A No
> of blades
New number of blades from "\ converged?
maximum blade loading criteria: Z, seds
Slip factor: ¢
New impeller backsweep angle: 8,
iYes

Impeller design done

Figure 3.6: The calculation procedure for the preliminary design, showing the internal iteration
loops of greatest importance
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Figure 3.7: Sketch showing the main features of the inlet annulus area calculation. To the left
a section of the inlet is shown with the incremental area A1 i, arbitrarily positioned. To the
right is a schematic drawing showing a blade section at radius r;, and the resulting blockage
that occurs

where 71 ; is the small radius and 71 ;41 is the large radius of the area increment, see figure 3.7.
Knowing the incremental area A i, equation 3.56 can be solved for the "next" radius 711
through

T4l = +71, (3.57)

2
Zitp . Zrtpi _ Zitpiriy 4 Al iner
2mcos B 2w cos B mcos B T

Of course, the area increments themselves can be determined directly from the continuity
equation
m
Al iner = ———
1,2ncer Npl le
here, N denotes the number of area increments. By calculating the "next" radius r;y; for all
area increments, the last radius determined will equal the shroud radius. It is advantageous to
choose equal number of area increments in the calculations, since this automatically will yield
a mean radius according to

(3.58)

™1 =TN/241 (3.59)

The calculations are repeated until the shroud radius has converged. After converging, the
blade angles at impeller inlet and exit are known, enabling the determination of any blade
angle along the hub and shroud by using equations 3.34 to 3.39.

After sizing the inlet, the rest of the impeller can be shaped. The first step is to generate
the hub contour with a cirular arc as outlined above. In this case, no straight line element is
used at inlet but may appear at the impeller tip. Further the hub slope at inlet, acip, is set
to zero. In order to determine the hub contour at impeller tip, the hub slope at impeller tip,
Qoon, is initially set to 90°. However, this could yield a negative length of the straight line
element Lo when using equation 3.43, which has no physical meaning. If this happens acgop,
is reduced until the line segment is larger than or equal to zero. This situation appears for
impellers with large flow coefficients and will thus yield a mixed-flow impeller. The line is
represented by a set of discrete points which will generally not be equally spaced along the arc,
especially when a linear extension Lo is employed. Equally spaced points are necessary when
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subsequently making use of quasi normals extending from hub to shroud at equal amounts
of fractional passage length. Hence, the method described in appendix B is used to obtain a
suitable description of the hub contour.

The final geometrical part, and the most intricate to determine, is the shroud contour. The
annulus area at both impeller inlet and exit is determined, hence the annulus area at mid
passage (annulus area is set to vary linearly along the passage length) becomes the mean value
of these. The starting point of the shroud contour is determined by the impeller inlet sizing,
while the shroud contour end depends on the chosen tip radius, calculated impeller axial length
and the impeller tip width determined from

A
by = 2

2mryg —

(3.60)

Zitp
cos (B2

This relation also takes the blockage effect from the blades into account. Note that the
calculation at the impeller tip is much simpler than at the inlet, since here the blade angles are
constant over the whole width. The iteration begins width guessed values of the mid passage
location along the shroud, in order to get a calculation starting point. When having a starting
point, mid point and end point a three-point cubic spline can be constructed, see section 3.2
above. Initially, the inlet slope, ac1s, is set to zero and the exit slope, acgs, to 90°. Once
again, it is necessary to distribute points with equal spacing along the line (see appendix B),
in order to determine the actual mid point of the generated line. It is very important that
the shroud contour suits the already set hub contour, and yield an impeller with reasonable
passage area distributions. For instance, Aungier (2000) recommends the use of a "similar"
straight line segment on the shroud contour to the one employed at the hub contour. Here, the
length of the linear tip segment at the shroud is set to the same relative length the straight line
Lo occupies at the hub contour. This is true until too lengthy line segments are encountered,
after which the shroud segment is set to a constant value. For similar reasons the inlet and
exit slopes are also "tuned" for the specific design. The inlet contour angle of the shroud is set
to scale with the relative length of the shroud to the hub contour. Instead, the exit contour
angle scales with the flow coefficient where larger ¢’s is associated with smaller angles. When
the parameters are tuned a new cubic spline can be constructed, with the corrected values.

Since both the hub and the shroud contour now are determined one can calculate the actual
mid passage annular area and compare it with the correct value. This is performed along a
quasi normal connected between the mid passage length at hub and shroud. To accomplish
this, a curvilinear coordinate system is employed, with the y-axis located along the quasi
normal. At both the hub and shroud the deviation from an actual normal, €, is calculated, and
the mean value is used to correct for the quasi normal only being approximately a normal. As
was the case for the impeller inlet, the blade angles vary linearly along the quasi normal, and
to accurately determine the annulus area (including the effect of blade blockage) a method
with passage width increments is necessary. With the aid of figure 3.8, an area increment is
approximately determined by

Zt
Aincr,QN = (Xi-i—l - Xz) (27Tfi - ? > COos € (361)

cos [3;

where the mean blade angle f3; is defined by

B = % (3.62)
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Detail A /

Detail A

Figure 3.8: Schematic representation of the mid passage area calculation. To the left is the
impeller shown as a whole, with both the hub and shroud contour. In the middle the quasi
normal of interest is shown in greater detail, including the curvilinear coordinate system y — 7.
To the right is a blade element used for calculations shown, including the different blade angles
at various locations along the quasi normal

and the mean radius 7; of the blade segment is written

_ Tt i

= (3.63)

Subscript i + 1 refers to the blade segment’s end point closest to shroud, while subscript 4
denotes the corresponding end point closest to the hub. Summing all calculated increments yield
the current annular area. If this is not equal to the correct area, new mid point coordinates at
the shroud are set, and the whole process repeated until convergence. This procedure has many
aspects similar to the passage area and mean stream line calculation outlined in appendix C.
For more details the curious reader is referred to this appendix.

When the geometry generation is completed the impeller passage area and mean streamline
are determined by the method outlined in appendix C. Having calculated the mean stream
line length Lp the "new" number of blades can be calculated to yield a blade loading smaller
or equal to the specified maximum blade loading, BL,q;. Further, the tip distortion factor
can also be determined using equation 3.20 and 3.21 since Lp is now known. Knowing the tip
distortion factor enables the backsweep angle (85 to be calculated and used in the next iteration
loop.

All calculations, from the impeller inlet design to the impeller backsweep angle, is repeated
until the number of blades have converged.
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Chapter 4

Detailed impeller design

The detailed design, as has already been stressed in chapter 1, does not employ more advanced
or more accurate mathematical models as compared to the preliminary impeller analysis, but
does instead require more knowledge of the designer. Used in the right way, this is a very
powerful design tool since many aspects of the modelled compressor are in direct control of the
designer. However, this is also it’s largest drawback. Less guidance than in the preliminary
impeller design method is given and more input and decisions from the designer are needed.

This chapter follows the same steps as in chapter 3 by first introducing the main physical
reasoning, then the geometrical construction and finally how the problem is solved and
calculated as a whole.

4.1 Basic relations

The main part of the detailed impeller design is based on traditional one dimensional relations,
most of them presented by Japikse (1996). Compared to the preliminary impeller design,
chapter 3, less empirical correlations are used. Also, the flow is assumed to be mixed out at
the impeller exit.

Starting with the inlet inducer, it is now well established that there exist an optimum inlet
shroud radius (and therefore also an optimum inlet shroud blade angle) which minimizes the
relative velocity Wi for a given mass flow. This is outlined by Korpela (2011) [14] and Casey
and Rusch (2012) [15]. If the inlet tip radius is chosen too large, the relative Mach number
will be high because of the large impeller tip velocity (Ujs). If instead the radius is picked too
small, the meridional velocity component must become high in order to pass the desired mass
flow. Again, the inlet tip Mach number would increase. There must exist an optimum where
both of these effects are suppressed.

Minimizing the relative tip velocity is beneficial since this reduces the overall Mach number
levels in the whole impeller. As noted by Japikse (1996), an inlet relative Mach number of 0.7
will yield "high local Mach numbers", indicating that substantial acceleration takes place in
the inlet region. Too high a Mach number will eventually lead to substantial losses associated
with shocks, a situation preferably avoided. Different relations expressing the these kind of
losses have been developed, one reported by Braembussche (2013), directly relating the shroud
Mach number with the compressor efficiency.

Another reason for decreasing the inlet relative Mach number is the impact it has on
the operating range. Generally, a higher tip Mach number will yield an impeller inlet more
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sensitive to changes in incidence. Consequently, the operating range is reduced between too
large incidence (risk of stall and/or surge) and too low (choke).

Further, a small relative tip speed implies a small impeller tip radius. Therefore, the
compressor itself get smaller, something very important in for instance the automotive or
aeronautical industry.

The relations between different velocity components can be seen in figure 2.4. In this
analysis, as compared to the preliminary impeller design, an inlet velocity distortion is modelled
as described by Herbert (1980) [16]. The velocity distortion x is defined as

les
éml

(4.1)

where C),15 denotes the inlet meridional velocity at the shroud, and C,,; is the mean inlet
meridional velocity. The velocity Cy,1 at any inlet radius r; is determined by

Cnt = Com1 (1 +(k—1) W) (4.2)

s — Tlref

Herbert (1980) presents a proof from continuity reasoning, showing that the reference radius
T1,ref can be determined by

27'%5 + 11T + 15,
3 T1s + T1p

Tl,ref = (43)

In this case the absolute flow angle «; is regarded constant, a reasonable assumption for a well
designed inlet.

If using the tip meridional velocity for calculating the impeller inlet area, the proposed
formula from Japikse (1996) including blockage effects can be used. It is given by

Al gvait = m
1l,avail — plles (1 — Bl)

(4.4)

where B; denotes an inlet blockage factor. In this case this includes the effect of blade blockage,
and the velocity distortion. In an iterative procedure, this blockage factor can be adjusted to
give the correct inlet area. The correct inlet area can in turn be determined by the exact same
way as in the preliminary impeller design, see section 3.3.2. As was the case previously, the
blade angles are set to vary linearly along the passage width.

Another parameter instead relating to the impeller exit flow is the diffusion ratio, defined
by
Wls
W

As noted in Cumpsty (2004) a large set of different diffusion factors and ratios have been
defined. Many of these have their origin in axial compressors but are nevertheless transferred
to the design of radial compressors. The diffusion ratio gives an idea of how much pressure is
being built up by lowering the fluid (relative) velocity. As is also described by Cumpsty (2004)
the major part of the pressure rise in a radial compressor stems from the change of radius and
not the slowing down of the fluid. The pressure rise obtained by this effect comes from purely
kinematic reasoning and is thus completely loss free. This is the reason why radial compressors
can have rather high efficiencies with major parts of the flow separated in the impeller passages.
A typical maximum value of the diffusion ratio is about 1.7. If it is increased too much, losses
in the impeller passages will be sufficiently large to yield an unusable design.

DR =

(4.5)
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As a complement for the absolute exit flow angle of the impeller, the parameter Ay is
used to describe the ratio between the impeller tip absolute tangential to meridional velocity
according to
e

CmQ

As is described by Japikse (1996), there exist an optimum value of Ay where the pressure
recovery is as at maximum. Each side of the maxima represents either having insufficient
pressure recovery or an inefficient pressure recovery. The exact level of this optimum value
depends on the impeller and especially on the following diffuser. Also, the velocity ratio
determines the impeller tip width, as can be seen from continuity reasons at the tip. A larger
value suggests a wider impeller tip, keeping other parameters constant.

Another parameter determining the behaviour of the flow at impeller exit is the slip factor.
The same slip factor as was employed in the preliminary analysis (see section 3.1), the Wiesner
slip factor, is used here as well. One difference, however, is that no restriction to zero flow is
made. In this case the influence of the exit contour slope is neglected (that is, a completely
radial flow is assumed), and equation 3.25 reduces to

\/cos By

0.7
ZI

A2 = tan ag (4.6)

c=1-

(4.7)

By introducing the slip velocity Cy;, at the tip, defined as the difference between the
ideal absolute tangential velocity (that is, with no "slip" of the fluid) and the actual absolute
tangential velocity one obtain

Cslip = C@Q,oo - 092 (48)

The two different velocity triangles for an ideal and a real flow is shown in figure 4.1. The
triangles are drawn for the same impeller tip velocity U, and the same mass flow (thus equal
meridional velocities, assuming other parameters are held constant). As can be seen in this
figure, the ideal relative tangential velocity can be written

Wo2,00 = Cma2 tan B (4.9)

In order to determine the absolute tangential velocity Cyo an additional relation can be found
with the aid of figure 4.1, namely

Cpa = Uz + Wya = Uz + (Wh2,00 — Csiip) = Uz + (Crpa tan B — Cyip) (4.10)

Note that the relative velocity vectors are drawn in the negative direction and hence the
relative tangential velocities in equation 4.10 would become negative. As opposed to figure 2.5
serving as a basis for the sign convention employed, figure 4.1 shows the typical appearance of
a tip velocity triangle. From the definition of slip factor, equation 3.24, the slip velocity turns
out to be

Csiip = U2 (1 — o) (4.11)

As is obvious from the tip velocity triangle, figure 4.1, are the following two relations
Uy = Cypa — Wpo (4.12)
W3 =W2,+Wg (4.13)
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Figure 4.1: Two velocity triangles representing an ideal and a real flow, the ideal velocity
vectors being shown dashed. The triangles are drawn for the same impeller tip speed U and
the same mass flow. Also shown are the different velocities, including the slip velocity Cyp

Combining these equations with equation 4.6, 4.10 and 4.11 yields two useful relationships in
determining the impeller tip flow state. These are

2
Crnz = (oW2) . (4.14)
(tanﬁQ—i-O')\Q—AQ) + 02

and
sz ()\2 — tan Bz)

o
By knowing the presented parameters and the exit static or stagnation pressure, the impeller
tip flow is fully determined. A number of different ways to determine these pressures exist, some
of them requiring information of the following diffuser. One of the more simple parameters
is the impeller pressure ratio. If the designer know what pressure is needed right after the
impeller this is the parameter to give. The stagnation pressure ratio PR; is given by

PRy =22 (4.16)

Poo

Us =

(4.15)

A different way of determining the impeller exit is by specifying the impeller polytropic
efficiency. The definition of this has already been covered in chapter 3 and by combining
equation 2.2, 3.15 and 3.17 the following relation results
a1
Y
= (4.17)
Too

from which the exit stagnation pressure can be determined after specifying the efficiency. A
third way to find the exit pressure is by knowing the whole stage static to stagnation pressure
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ratio, together with the diffuser static pressure recovery coefficient. One huge advantage
with such a method is that it incorporates the diffuser, and therefore describes the tight
relationship between these components. With the aid of the stage total-to-static pressure ratio
PRtage tot—stat, the stage discharge static pressure ps can be calculated from

PRstage,tot—stat = pi (418)

Poo

With the use of the diffuser static pressure recovery coefficient, C, p, defined by

_ D5 — D2

= 4.19
Po2 — P2 ( )

Cp,D

the impeller exit pressure can be determined. Finally, a fourth method to determine these
pressures is by using the stage polytopic efficiency together with a total pressure loss over
the diffuser. Here, the efficiency is calculated from stagnation properties alone (a so called
total-to-total efficiency), through

(8)7 -
Tlp,stage,tot—tot = pOOTO2—1 (4.20)
TZ —

Consequently, the compressor discharge stagnation pressure can be calculated upon specifying
the total-to-total efficiency. A stagnation pressure loss wg;r¢ of the diffuser is also given, and
written

Waiff = ———— (4.21)

again, the impeller exit pressure can now be determined.

Once knowing either the impeller exit static or stagnation pressure all other conditions at
impeller outlet can be calculated. The tip passage width must take the blade blockage into
account, and the very same procedure as for the preliminary impeller design can be used.

4.2 Geometrical construction

One main difference from the preliminary impeller design is how the geometry is created. In
chapter 3 very little geometry input was needed to be provided by the designer. In this analysis
however, only the inlet and exit widths are provided by calculation procedures. The actual
hub and shroud contours are to be supplied by the designer.

When leaving such important impeller characteristics to the designer, it is very important
to enable easy usage and full control of the actual contours. A now well established way of
allowing curves to be interactively modified is the usage of so called Bezier polynomials. One
example of Bezier polynomials implemented into a turbomachinery design process is described
by Casey, Gersbach and Robinson (2008) [17]. The main features of Bezier curves are outlined
by Aungier (2000). These polynomials are described by a set of reference points, which typically
are in control of the designer, see figure 4.2.

It is worth mentioning that a Bezier polynomial always remains continuous, a feature easing
the design process. Also, the curve passes through the two endpoints and the end point slopes
can be controlled by the points adjacent to the end points themselves.

When constructing a Bezier polynomial n + 1 reference points is utilized. These are
numbered from 0 to n with the current point denoted k. The polynomial is defined as a
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Figure 4.2: A typical example of a Bezier polynomial having six reference points shown by
squares. The reference points do generally not lie on the Bezier polynomial but determine the
general shape of it

function of U, following the line itself. It can be interpreted as a non-dimensional curvilinear
coordinate varying from 0 to 1 along the line. The corresponding z and r coordinates of the
polynomial can be determined by

n

lzv o] =Y [z 7] B (U) (4.22)
k=0

where B;! is the Bezier polynomial itself defined according to

Br(U) = (:) Uk -yt (4.23)

and the binomial coefficient (Z) is written

(Z) _ n(n—1) (n—z!)...(n—k—l—l) (4.24)

In practice, equation 4.22 is most easily divided into two parts, one for each component in the
two directions. This yields

ZUu = i ZkB]? (U) (4.25)
k=0

ry = i By (U) (4.26)
k=0

Hence, U is varied from 0 to 1 n times, one time for each reference point. The result of each
variation of U is summed up to yield the coordinates of the polynomial.
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The Bezier polynomial is used for constructing both the hub and shroud contour. Also,
Bezier curves are used to define the blade angle distribution along the hub and shroud.
This approach was also implemented in the analysis conducted by Casey, Gersbach and
Robinson (2008) and provide a very powerful mean to quite arbitrarily choose the blade angle
distribution. Therefore, the blade angle distribution is also under full control of the designer.
As is the case for the impeller contours, this is ideal for the more experienced designer, knowing
what kind of shapes and distributions to be aimed at.

An additional geometric feature of any detailed impeller calculation is the three-dimensional
representation of the impeller itself. In order to determine the shape of an impeller blade,
the mean camberline must be known, and hence not only the blade angle distribution and
extension in the z — r plane. The blades are thought of as being constructed of straight blade
elements between the equally spaced points defining the hub and shroud contour, see figure 4.3.
Here, two arbitrary points ¢ and ¢ 4+ 1 are shown on either a developed plane of the hub or

rdé

Figure 4.3: A schematic sketch in a developed hub or shroud plane. The solid lines shows two
half blade elements having the exact slope defined by 5. The dash-dotted line represents the
straight line elements resulting from the outlined method

shroud surface. The solid lines shows two imaginary blade segments having the slope of the
prescribed blade angles 5; and ;41 in the points of interest. Also shown is a dash-dotted line,
representing the blade segment resulting from the method outlined below. The meridional
distance between point ¢ and ¢ + 1, with points located sufficiently close to each other, can be
approximated by

Am = \/(Zz'+1 — )"+ (riga — )’ (4.27)
In order to determine the tangential angle Af between the points, a mean radius 7 is defined as

Tit1 +7i
2

F=

(4.28)
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One additional constraint is needed to determine Af. By assuming the line segments I; and o
are equally long, the simple geometry supplemented by figure 4.3 yields

_ Am sin 3; + sin 341

Af
7 cos fB; + cos Bit1

(4.29)

By specifying an inlet rake angle!, the tangential positions of all points defining the hub and
shroud blade mean camberline may be found. A rake angle, together with the inlet geometry
fully determines the tangential offset between the hub and shroud mean camberlines and may
be determined from figure 4.4 and the law of cosines. Points o, a and c¢ is known directly from

Figure 4.4: The parameters needed to determine the tangential offset of the hub and shroud
mean camberline in order to satisfy the desired inlet rake angle o

the impeller inlet geometry, while point b is easily determined from the inlet rake angle o; and
the other points. Letting subscripts « and y denote the respective component of each point, it
is seen that

by = ¢ — chsinoy (4.30)

by = ¢y + cbcos oy (4.31)

where cb is the length of the line segment between point ¢ and b. ¢b may be found from the
law of cosines rewritten according to

cb =occos (m — 01) + \/ 062 cos? (7r—01)+%2—%2 (4.32)

here, ob and o¢ are the lengths of the line segments between the points of interest. Again,
using the law of cosines, the tangential offset angle Af; may be found from

(4.33)

__9 —2 . —2
A6y = arccos <0a +ob —ab )

2 oa ob

'Inlet rake angles are sometimes termed lean angles, in analogy with axial turbomachinery
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where again ab and oa represents the length of the lines between the different points. Thus,
starting from the inlet, all tangential locations of the mean camberlines may be determined,
by adding A#; to the tangential angle "accumulated" up to point . Knowing the tangential
position of any point defining a mean camberline, it is an easy matter to find the corresponding
x and y value. These coordinates are found from

x; = r; COos b; (4.34)

and
yi = risinb; (4.35)

Of course, the z coordinate is unchanged, and thus also known. Thereby, the mean camberlines
at hub and shroud are fully determined in all three dimensions.

Aungier (2000) presents a novel method to find the blade surfaces from the blade thickness
distribution and mean camberline coordinates. Here, linear line segments between hub and
shroud points are employed, a reasonable approximation for the impeller blades. Three units
vectors are defined (see figure 4.5); S tangent to the mean camberline on any stream surface, B
along the blade element and T normal to the blade surface. All of these vectors are orthogonal

Figure 4.5: The three vectors defining the important directions while determining the blade
surface coordinates

to each other, and by knowing S and B” the third vector T may be found from the cross
product of the other two
T=Sx8B (4.36)

The different components of S can be determined from

Sy = sin #sin ac cos f + cos O sin (4.37)
Sy = cos 0 sin ac cos B — sin §sin (4.38)
S, = sinag cos (4.39)

where a¢ is the slope of the stream surface at the blade (or equally hub or shroud contour).
In a similar manner the components of B is possible to express as

Ts — Th

By ==

(4.40)
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B, =% (4.41)

L
Zs — Zh
B, = 4.42
L (4.42)
where L is the length of the blade segment, in turn found from
L= (s — a4+ (s — )* + (20— 21)° (1.43)

here, parameters with subscript h and s represents coordinates at the hub and shroud surface,
respectively. Inserting the components of S and B into equation 4.36, the components of T'
are determined by

T, = S.B, — S,B. (4.44)
T, = S.B. — S.B, (4.45)
T, = S,B, — S.B, (4.46)

Finally, the blade surface coordinates zps, yps and zps in the three different directions may be
expressed as

1

ITps = T + §tBTx (4.47)
1

Ybs = Y + §tBTy (448)
1

Zhs — % + itBTZ (4.49)

where z, y and z represents mean camberline coordinates and tp is the blade thickness of the
blade element in question. It is understood that the blade surface is defined at the equally
spaced points along the hub and shroud. From the surface coordinates at hub and shroud, the
blade is constructed by connecting these points by straight lines.

4.3 Calculation procedure

The calculation will start with an optimization of the impeller inducer. This requires an
iterative approach, in order to come up with the correct inlet area. However, the rest of the
calculation is rather straight forward, and no main iteration covering an as large part as in the
preliminary impeller design is needed. This can be attributed to the absence of any advanced
geometry generation. The different steps in the detailed calculation can be seen in figure 4.6.

4.3.1 Input parameters

As was the case for the preliminary impeller calculation, it is necessary to know what the fluid
properties are. Again, it is only necessary to specify the specific gas constant R, the specific
heat at constant pressure ¢, and the specific heat ratio . Also, the inlet stagnation properties
need to be given in the form of stagnation temperature Tyg and stagnation pressure pgg The
intake loss is neglected, hence the impeller inlet stagnation properties are the same as for the
intake.

The rotational speed N need also be specified, being a parameter usually known at early
stages in any compressor design process. Also, as was noted in the preliminary design analysis,
the rotational speed is in tight relationship with the mechanical stresses in the impeller. Further,
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Give:
Gas properties and inlet conditions: R, Y, ¢,, Too, Poo
Rotating speed and mass flow: N, m
Impeller inlet hub radius or tip radius ratio: ry,, ry,/rqs
Inlet abs. flow angle, tip incidence, hub incidence: a, iy, iss
Inlet velocity distortion: kK
Absolute blade thickness at inlet and at rest of passage: tg;, tg
Impeller tip tangential to meridional velocity: A=Cq,/C,,,
Impeller diffusion ratio: DR=W,,/W,
Impeller backsweep angle and number of blades: B,, Z,

Iterate for:
Optimum impeller inlet by finding the
inlet tip radius yielding the lowest
shroud relative tip Mach number

Y

With this optimum tip radius, calculate:
Inlet velocity distributions: C;, W,
Inlet relative flow angles: aj
Inlet blade angle distribution: B,
Inlet thermodynamic state: Ty, py, p;

Iteration loop

Calculate:
Slip factor: o
Relative exit velocity: W,
Impeller tip speed: U,

Y

From the impeller tip velocity triangle, calculate:
Exit absolute velocity: C,
Exit absolute flow angle: a,

Y

Calculate:
Impeller exit stagnation temperature from
the Euler turbomachinery equation: T,
The impeller exit pressure from one of the following methods:
The impeller pressure ratio: PR,
or the impeller polytopic efficiency: n,
or the stage total-to-static pressure ratio and the diffuser
static pressure recovery coefficient: PRyige tot-staty Cpp
or the stage total to total polytropic efficiency and the diffuser
stagnation pressure l0ss: N sage tot-totr Wiiits

Y

Calculate:
Impeller exit density: p,
Impeller exit passage width: b,

Y

| Impeller design done |

Figure 4.6: The main calculation procedure to determine the impeller inlet and exit states.
Note the internal iteration loop necessary to size an optimum inlet
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the target mass flow 1 is generally always known, since a specific compressor is typically
designed for a given duty requiring a specific mass flow.

One of the few geometrical parameters needed for the detailed calculation is some infor-
mation regarding the inlet size. Here, the designer can choose to either specify the absolute
inlet hub radius r1j or the inlet hub to tip radius ratio, 15, /71s. Having this choise, a designer
can more quickly come up with a solution suited for his or her duty cycle. An absolute radius
is useful to specify if, for instance, the inlet hub radius must be larger than a certain value
to provide space for a front bearing. Instead, the radius ratio is useful when not having a
constraint on the hub radius absolute value. This is typically the situation if one want to
choose a compressor configuration similar to a past design (with a known inlet hub to tip
radius ratio).

In order to handle situations with non-axial flow, the inlet absolute flow angle a; must be
specified. This could for instance be the case if inlet guide vanes are used, or the impeller
is one of a series in a multi stage compressor. Also, in order to have full control of the inlet
region both the incidence at hub, iy;, and shroud, 715, should be specified. The incidence
plays a major part in determining the flow field of the inducer region, see Japikse (1996).
A major reason for the importance of a well designed inducer region is the high velocities
encountered, followed by a strong diffusion. Hence, ability to choose correct incidences is of
prime importance, even in the early steps of a design. Also coupled to the inducer design is the
inlet velocity distortion k. This parameter can be picked to yield velocity profiles representing
the effect of viscous effects in the intake. Sometimes the intake must be made rather long, and
additionally with rather large curvatures. This will give rise to a distorted flow, having an
adverse effect on the impeller flow field. Even though the velocity distortion is a simple model
of usually complex intake flows, it has it’s place in the early stages of a compressor design.

As was the case for the preliminary design calculation, the blade thickness must be chosen at
both inlet, t51, and over the rest of the impeller passage, tz. This is not only for aerodynamic
reasons, but also to avoid resonance of the impeller blades. Of course, the choice of blade
thickness depends on the passage width, and hence how "slender' the blades become. The
passage width does itself depend on the blade thickness, and therefore the designer may be
forced to resort to an iterative approach, in finding the correct width-to-thickness ratio.

Now, turning the attention to the impeller exit region, a direct measure of the impeller
exit velocities is the diffusion ratio DR. This parameter gives the designer some control of the
diffusion level in the impeller and is one of the governing parameters in the two zone modelling
presented by Japikse (1996). Further, Braembussche (2013) notes that the diffusion ratio
should take the downstream diffuser into account. If DR > 1.4, the stage efficiency becomes
increasingly more dependent on the diffuser performance.

Naturally, the ratio of the impeller absolute tangential to meridional velocity Ao is a key
parameter in determining the impeller exit flow. As was described above, it is in total analogy
with an absolute exit flow angle. It is vital that A\s is chosen to suit the diffuser following the
impeller, and the designer must make wise decisions based on previous experience. Finally, the
backsweep angle S must be specified. Having full control of this angle is rather beneficial since
the stability of the whole compressor is highly dependant on the backsweep. Also, if preswirl
is employed at reduced mass flows, the backsweep can keep the work input almost constant
and thereby counteract the effect described related to the Euler turbomachinery equation in
chapter 2. A thorough description is provided by Breambussche (2013), and the fundamental
reason for the effect can be attributed to the alternating absolute tangential velocity at the tip
when decreasing the meridional velocity component. This may easily be seen in a tip velocity
triangle. A third influence the backsweep angle may have is it’s effect on blade loading, and
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chosen wisely the blade loading at impeller tip can be minimized. Thus, the backsweep angle
is a very powerful parameter, and must be chosen carefully at the design stage.

To take the discussion even further, the diffusion ratio and the backsweep angle will, for
a given pressure rise, to large extent determine the impeller tip width to tip radius ratio
(ba/R2). This parameter is important, in that the loss source will depend on it’s value. For
large values, the clearance and friction loss will become relatively small. If instead a small
value is obtained, the losses associated with flow separation will be smaller (larger curvature
radius of the shroud contour). Consequently, the combination of these two input parameters
are of very high importance and must at all design problems be chosen wisely.

Additionally, the number of blades need specification. It is a non-trivial matter to determine
the amount of blades, and a balance must be found between diffusion losses, friction losses and
blockage considerations. Braemsbussche (2013) states that 14 to 18 blades generally lead to
good performance, while a larger stable operating range can be found with 10 to 12 blades. Of
course, the blade loading is significant and may be reduced by employing an increased number
of blades.

Finally, two parameters the designer must specify, not shown on figure 4.6, are the impeller
axial length and inlet rake angle. These are not a part of the impeller inlet and discharge
calculation, and are thus left out of this figure. The impeller axial length is of great importance,
not only because of the size and weight of the compressor, but also because it largely determines
the flow condition inside the impeller. Too short an impeller, the smaller must the curvature
radius of the shroud become. Decreasing this radius increases the risk of a massive flow
separation on the shroud end wall resulting in large losses. If instead the axial length is chosen
too long, large friction losses may occur, and an as good compromise as possible must be found.
The value of this parameter is typically based on previous designs and are thus scaled with
the impeller tip radius. Instead, turning the attention to the inlet rake angle, it is a degree of
freedom necessary to control the impeller exit rake angle. It is typically chosen to keep the
hub and shroud mean camberline at a reasonable tangential distance from each other in an
as large part of the impeller passage as possible. Sometimes this parameter is not capable to
achieve reasonable and realistic blade shapes alone. In those cases the designer may have to
resort to altering either the hub and shroud contours or the blade angle distribution.

4.3.2 Calculation model

As is outlined in figure 4.6, the calculation is begun by optimizing the impeller inducer. This
is based on an iterative procedure, and is presented in figure 4.7. The iteration is initiated by
guessing a value of the inlet blockage factor By. This factor compensates both for the blade
blockage and the inlet velocity distortion, and enables an inlet area to be calculated from the
tip meridional velocity. Casey and Rusch (2012) presents a set of analytical expressions for
determining the inlet parameters for an optimized inlet. However, this does not include any of
the above mentioned effects. Here, instead, a rather crude approach is used; vary the absolute
tip meridional velocity, calculate the tip condition, and find which value of C,,1s minimizes
the tip relative velocity Wis. For each value of C,,15 the first step is to calculate the absolute
velocity at the tip, simply from the absolute flow angle, see the inlet velocity triangle presented
in figure 2.4. From the stagnation temperature and the absolute velocity, the static temperature
follows. Further, with aid of equation 2.6, the tip static pressure can be calculated. Thus, the
thermodynamic condition at the impeller tip is fully determined, including the density from
the ideal gas law, equation 2.1. With the assumed amount of blockage, the inlet area follows
directly from equation 4.4. After determining this area, the impeller inlet tip radius can be
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Guess:
Inlet blockage from blades and |-«
velocity distortion: B,

'

Loop:
For a range of C,, determine, with aid of the inlet velocity triangle:
All velocities: Cgys, Cys, Ugs, Wy
Thermodynamic conditions: T, P1s, P1s
Tip radius: ry

'

Find:
From the above calculated range:
The lowest value of Wi
Use velocities and the thermodynamic condition corresponding to this velocity

¢

Calculate:
Inlet reference radius: ry¢
Inlet absolute velocity distribution: C,
Inlet blade angle distribution: B,

¢

Calculate:
Actual mass flow with the velocity distribution and
thermodynamic condition, including the effects of
blade blockage

Alter the inlet blockage B; accordingly

¢

Correct
mass flow?

No

Figure 4.7: The iterative calculation procedure utilized to size the impeller inducer. After
finding a solution, the lowest possible inlet relative Mach number is found, based on constraints
added by the user
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determined. Depending on what parameter given (r1; or r15,/715) by the designer, different
formulas must be used. If the absolute hub radius is given, the tip radius is given by

A .
e = 1,;1)(111 + T%h (450)

while if the radius ratio r;,/71s is specified, the tip radius can be calculated from

Al,avail

T (1 - (Tlh)2>
T1s
and the hub radius follows directly from the given radius ratio.

In order to determine whether the guessed blockage factor is correct, the mass flow is
calculated with the current tip radius. As was the case in the preliminary analysis, the blade
angles vary from hub to tip, and hence the amount of blockage. Therefore, a similar calculation
as outlined in section 3.3.2 must be employed. However, in this case the area increments
need not be of the exact same size, it suffices to use equal radius increments. Using these
radius increments instead of area increments simplifies the calculation procedure in that no
iterative solution is needed. To enable such a calculation, it is necessary to determine the blade
angle distribution from the relative flow angles. Hence, the impeller velocity at both hub and
shroud is needed. These are calculated from the rotational speed and the different radii using
equation 2.18. The tip relative flow direction follows directly from the tip optimization, but
to calculate the flow condition at any other radius it is necessary include the inlet velocity
distortion. With equations 4.1 to 4.3 the absolute meridional velocity (equal to the relative
ditto) at any radius can be determined. Thus the relative flow angle at hub can be calculated,
again using the inlet velocity diagram.

Knowing the relative flow angles at both hub and shroud, the blade angles at the same
locations are easily calculated from the specified incidences, equation 2.20. Since the blade
angles are assumed to vary linearly along the passage width, the blade angle 81 at any radius r;
follows from

T1s =

(4.51)

g=_L—Tih (B1s — Bin) + Bin (4.52)

T1s — T1h
The size of an area increment as shown in figure 4.8 can be determined by

Zitp
2 2 IUB1
Al,incr,i — (7‘172' 1 T17i> m — cos —l,i (7“@+1 - 7"1') (453)

where BL%’ is the mean blade angle at the mean radius of 71 ; and r1 ;41, simply calculated from

Bri= B +251,z'+1 (4.54)

At each incremental flow area the incremental mass flow is also determined with the velocity
obtained from the distorted inlet velocity distribution. As was described above for the inlet tip,
the thermodynamic condition can also be fully determined at each radius 71 ;. The incremental
mass flow 7 ; at area increment Aj jner; becomes

ml,i = ﬁl,iéml,iAl,incr,i (455)

where the local density pq; and the local meridional velocity éml,i are determined at the mean
radius of the area increment. Summing all incremental mass flows yields the total mass flow,
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Figure 4.8: The main parameters in determining the inlet flow area, including effects of blade
blockage. The figure is similar to the one shown in section 3.3.2, however the inlet shroud
radius r1 is in this case known

which can be compared to the value specified by the designer. In general, these mass flows will
not be equal, and the whole inlet sizing and optimization is repeated until convergence. If the
calculated mass flow was to large, the blockage factor B; should be decreased during the next
iteration in order to reduce the impeller inlet shroud radius. Of course, is the calculated mass
flow to small, the blockage should instead be increased.

Having sized the impeller inlet section, the next step is to determine the impeller exit
condition. The slip factor follows directly from equation 4.7, inserting values of the number
of blades and the impeller backsweep angle. Similarly, having sized the inducer, determining
the relative exit velocity from the specified diffusion ratio, equation 4.5, is a straight forward
task. Using these parameters together with the given impeller tip absolute velocity ratio Ao
the meridional flow velocity and the impeller speed at the tip can be calculated directly from
equations 4.14 and 4.15. Having specified Ay the absolute impeller exit angle is determined
through equation 4.6. From the tip velocity triangle all other velocities can be calculated.

After choosing one of the four different ways to calculate the impeller discharge pressure, the
thermodynamic condition is fully determined. Hence, the impeller tip width can be calculated
following the exact same reasoning as in Section 3.3.2, including effects of blockage. Therefore,
after employing equation 3.60 the impeller inlet and exit is fully sized. Other parameters, for
instance the mean stream line coordinates, need the hub and shroud geometry to be established.
Thus, after the designer has chosen hub and shroud contours, together with the blade angle
distribution, the whole impeller geometry is specified and the analysis finished.
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Chapter 5

Impeller internal flow analysis

After establishing a promising impeller design in a one-dimensional manner, it is of huge
interest for the designer to verify whether the compressor will perform satisfactory. A very
common way of doing this is by performing some three-dimensional flow field analysis, within
the blade passages. One of the more accurate ways of doing this is by exporting the determined
design to a CFD solver. Some disadvantages comes with this technique; it is usually very time
consuming and sometimes hard - not to say impossible - to interpret the result. As noted by
Cumpsty (2004) one of the greatest limitations of CFD is most designers inability to think in
three dimensions.

To overcome these disadvantages and still yield results taking the most important effects
into account, a streamline curvature method together with a blade-to-blade flow analysis is most
useful. This type of solution procedure was originally devised by Wu (1952) [18], presenting
a very thorough analysis and derivation. The main idea is to split up the complicated three-
dimensional flow into simpler flows acting in two different planes. Some simplifications from
the original model are made, and here the analysis closely follows the quasi three-dimensional
analysis proposed by Aungier (2000). Further, only inviscid flow is considered. Speaking in
general terms, streamline curvature models are widely accepted throughout the industry and
are still in use and under development, see Casey and Robinson (2008) [19].

In this chapter the governing equations are first presented, together with the basic tools to
solve them. No derivations are presented, the curious reader are referred to either Wu (1952)
or Aungier (2000). No geometric construction is needed, in that the impeller design is given
as input to the analysis. Finally, how the different equations are solved and implemented are
shown.

5.1 Basic relations

As has already been briefly mentioned above, the three-dimensional flow field is split up in two
different simpler surface representations. These two different types of surfaces are shown in
figure 5.1 and are denoted S1 and S2. Surfaces S1 and S2 are here referred to as blade-to-blade
and hub-to-shroud surfaces, respectively. Generally these surfaces will have some extent of
twist, being hard to explain in any coordinate system. However, if assuming the amount of
twist to be negligible, it simplifies the analysis somewhat. This means that the blade-to-blade
surfaces reduces to axisymmetric surfaces while the hub-to-shroud surfaces reduces to planes
of constant tangential angle, i.e. a r — z (meridional) plane using cylindrical coordinates.
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Figure 5.1: The two different surfaces S1 and S2 in a quasi three-dimensional analysis. Note
the twisting of the different surfaces. From Wu (1952)

The equations to solve in the hub-to-shroud plane are

(W + EnroW, =0 (5.1)

Wy 0 (rivy + rU) ow, OR 0s

2 MOV TTY) Wm _ Y0 Y2
Fom W + r on W on on T(?n (52)
‘981;0 0 (5.3)

where k denotes the stream surface curvature, n a direction normal to some stream surface
and subscript n parameters in the normal direction to a stream surface. This set of equations
can be though of as describing an averaged flow within a blade passage, while being exact for
vaneless passages. Further, it is assumed that both entropy and rothalpy are constant around
the complete circumference of a specific stream surface.

Outside any blade passage the tangential momentum must be conserved, which can be
written as

oWy +rU)  0rCy
om  Om

This relation enables the flow angles to be calculated from known inlet conditions anywhere in
vaneless passages. For blade passages these angles must be determined from a blade-to-blade

=0 (5.4)
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analysis. On these blade-to-blade surfaces the equations to solve are

orbpW,, N obpWy

o 0 0 (5.5)
Wy O(rWo+1rU)

0 o =0 (5.6)

Ry = const. (5.7)

s = const. (5.8)

here, b denotes the stream sheet thickness (the distance between two stream surfaces creating
a stream sheet).

The main idea is therefore to first solve the hub-to-shroud equations with relative flow
angles from the last blade-to-blade flow analysis. The hub-to-shroud solution then provide the
following blade-to-blade flow analysis with the stream sheet thickness. Thus, the two analyses
are strongly coupled to each other. To solve the equations some discretization must be done,
since any geometry must be possible to analyse. This discretization is performed with aid of
quasi normals, placed along the flow passage. By using these quasi normals, derivatives along
the quasi normal rather than the ones with respect to the exact normal direction is desired.
These derivatives are related to each other by

0 ! <6 — sin ea> (5.9)

on - cose \Jo om

where o denotes the quasi normal direction, see figure 5.2.

>
Z

Figure 5.2: A stream surface crossing a quasi normal at position o. Note that o equals zero on
the hub contour
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5.1.1 Hub-to-shroud flow analysis

The hub-to-shroud analysis solves the mass conservation and momentum equations in a r — 2
plane. The momentum equation is used to find fluid dynamic parameters along a quasi normal.
These properties must be consistent with the mass conservation equation, in order to yield the
correct mass flow. Mass conservation may be expressed as

Os
m =27 KprpWy, cose do (5.10)
0

where Kp is a blockage factor, taking the blade blockage into account. The momentum
equation is different depending on whether blades exist or not at the quasi normal of interest.
When no blades exists (and the flow angle may be determined from equation 5.4) it is given by

oWy,
Oo

sine@Wm> Wy 0(rCy) 1 (8R0 _T88> (5.11)

+ W (I{m cose Wy Om rW,, do W, \ do do

When blades do exist, the flow angle is found from the blade-to-blade flow analysis and is
explicitly incorporated in the formula. It is then given by

1 oW, L ( sine  OW,, n tan o/ (87" tan o/ . Ortand/ ))
_— Ko COS € — —sine————
cos?2a/ Oo A Wy, cos?2a/ Om r oo om

1 6R0 Js
2wt ! — i i =—|— —-T—
+ 2wtana’ (cos agy — sin ac sine) W < 5 80)

(5.12)

where agy is the quasi normal angle measured from the axial direction, as depicted in figure 5.2.
As may be seen from the above formulas, regardless if blades are present or not, the
meridional velocity derivative along a quasi normal can be written

f3(o)
Win

oW,
Jo

= fi(o)Wp, + fa(o) + (5.13)

The functions fi(o), fa(o) and f3(o) are different depending on whether blades are present at
the quasi normal or not. Inside the blade passage, these may be written

ine oW, tana’ (Ortanao/ Ortan o
fi(o) SICOm | cos? o (—I@mCOSG— ano ( rana —sinerana)> (5.14)

- W, Om T do om
f2(0) = —2wsin’ cos o’ (cos agn — sin ac sine) (5.15)
OR, 0s
—cos2o [0 P2
f3(o) = cos” « ( 5o Taa) (5.16)

If the quasi normal is positioned in a vaneless passage, the functions are instead given by

in e OW,
fi(o) = —Kp cose + %Tn;n (5.17)
f2(e) =0 (5.18)
ORy 0s  CyorCy
-0 _ ==

f(0) do doc r Oo
The last set of equations is easily employed outside the impeller. However, it may be more
useful to write equations 5.14, 5.15 and 5.16 in the absolute, non-rotating frame of reference.

(5.19)
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The main reason for this is that the absolute flow angles are more likely to be known at the
passage inlet, rather than the absolute tangential velocities. This yields the following relations
for the three different functions

o2 _ tanadrtana | sine 8Wm>
fi(o) = cos a( Ko, COS € . o + W om (5.20)
fo(e) =0 (5.21)
OR 0s
— 2 0 _p%
fa(o) = cos” « ( o T@a) (5.22)

By studying these equations it is noted that the solution of W, contain meridional derivatives
of itself. To avoid this, the conservation of mass for a stream sheet may be incorporated by
writing

Ariv = pW,, AA (5.23)
where A is the mass flow in the stream sheet and AA is the cross sectional area of the stream

sheet at the quasi normal. Taking the derivative of this equation and noting that A does not
vary in the meridional direction one obtain

1 oWy, 1 OpAA
W, Om  pAA Om

(5.24)

Density will still depend on the solution, but to a lesser extent than the meridional velocity.
Further, it is seen that equation 5.13 becomes very large for small meridional velocities
(OW,,, /00 — oo when Wy, — 0). Again using equation 5.23, a new function f4(¢) may be
written

pAA

fa(o) = falo) + fa(o) (5.25)
while the momentum equation instead takes the form of
oW,
9 f1(@)We, + fa(o) (5.26)
o
With such a differential equation a solution may be found from
Wi = Win(0)F(0) + F(o) [ 149 4, (5.27)
o F(o)

here it is understood that W, (0) is the meridional velocity at hub. The function F(o) is in
turn given by

F(o) = exp ( /0 " (o) da) (5.28)

It is easily seen that F' takes the value of 1 at hub, and equation 5.27 reduces to the hub
velocity. These equations are solved by iteratively updating the hub meridional velocity until
the conservation of mass is fulfilled. After convergence is reached, the mass flow within each
stream sheet will usually not be equal. Hence, the current stream surfaces must be repositioned,
and the momentum and conservation of mass equations recalculated to conform to this new
geometry. This must be repeated until the stream surface positions no longer change, and
overall convergence is reached.
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Figure 5.3: A schematic sketch of the two-dimensional blade-to-blade flow problem. Note that
the blade passage is characterized by the tangential angle 6, the meridional distance m, the
coordinate A following the passage itself and ¢ having a constant meridional position. Adapted
from Aungier (2000)

5.1.2 Blade-to-blade flow analysis

The blade-to-blade flow analysis is based on a stream function flow solution, and can thus only
handle subsonic flow velocities. This method assumes the flow within each blade passage equal
to other passages, therefore only one passage need attention. The solution of the governing
equations takes place at three different main locations; at the blade pressure side, the blade
suction side, and at a mean position located in the middle of the other two locations. A
schematic sketch of the two-dimensional problem is seen in figure 5.3. As is seen, the blade
surfaces are characterized by the tangential angle # and the meridional position m. Two
additional coordinates are; A following the flow passage, and ¢ across the passage. ¢ varies
between 0 and 1, having the lower value on the pressure side. Hence

(5.29)

is valid, where 6, is the local tangential angle of the pressure surface while 6 is the corresponding
angle at the suction side. Knowing the blade angles on the pressure and suction side, the
angle S of any other constant ¢ line may be found from

tan § = tan 3, + ¢ (tan By — tan 3,) (5.30)

What is also shown in figure 5.3 is the mean station, in the middle between the pressure and
suction side. All parameters at this location is denoted with an overbar. It is easily seen that
this "mean" position occurs at ¢ = 1/2.
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Another parameter simplifying the expressions to be developed is the (local) blade passage
width S. Having axisymmetric stream surfaces it may be written as

S =10, —0,) (5.31)

Further, two additional velocity vectors Wy and W, is defined according to figure 5.4.
These are easily related to the meridional and tangential velocities by

A)\ / / /
/) Am

AN N
i ; Am

e Y

3

Figure 5.4: A control volume defined in the blade-to-blade plane. Two velocity vectors are
defined; one parallel to the A direction, Wy, and one normal to the same direction, W,,. Adapted
from Aungier (2000)

Wy = W, cos 8+ Wysin 8 (5.32)

Wy, = Wycosf — Wy, sin 8 (5.33)
and similarly

Wi = Wy cos 8 — W, sin 3 (5.34)

Wy = W, cos 8+ W) sin 8 (5.35)

By taking a simple mass balance of the control volume presented in figure 5.4 one end up with

2Am —
cos 3 (A s—Ag) cos 3 (A s+A9) (5.36)

+ 206 ((SpbWon) (- sy — (SODWin) g amg) ) = 0

where, again, b is the stream sheet thickness, perpendicular to the plane shown in figure 5.4.
Letting A¢ — 0 and Am — 0 a differential equation describing conservation of mass is found.

It can be written
9 (pan> L 0(SpbW)
Os \ cosf3 om

=0 (5.37)
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At this point an additional assumption is introduced; the flow remains irrotational through-
out the impeller. This may be expressed as

VxC=Vx (W+rw€9)20 (5.38)

here, €y is a unit vector in the tangential direction. With aid of equation 5.38 Stokes’s theorem,
see for instance Andersson (2011), may be written

fcw-cﬁ://‘@*m(ﬁxW))da:—/AG?n'(ﬁxrw&;))da (5.39)

where subscript C' stands for a closed path, subscript A the area enclosed by the closed path,
dl an incremental length, da an incremental area and €, an unit vector in the normal direction.
By again using the control volume indicated in figure 5.4, the above equation becomes

2Am<< W )_(WA ))
€08 3 (et A¢) cos 3 (5 c—Aq) (5.40)

S Oriw
+ 2A¢ ((Swe)(mfAm,c) - (5W9)(m+Am,c)) = 4A§Am; ar

Using the same approach as above, letting Am — 0 and A¢ — 0, one find
0 ( Wi ) _0SW,

s

= + 2Swsinac (5.41)

cos 3

This equation may be integrated, preferably in the ¢ direction. By noting that no normal
velocity component can exist at the blade surfaces, equation 5.41 becomes upon integration
W. W, _ [*0SW,

— = ds + 2Swsi 5.42
cosBs  cosfp p Om ¢+ eowsinag ( )

In order to solve the two-dimensional problem, a stream function ¥ is defined by

.oV

My = —pb (Wy — Wy, tan ) (5.43)

and 50
DY b, 44
M SpbW, (5.44)

From these equations, the tangential and meridional velocity components are easily found, and
are given by

m oW
m (tan SOV OV
_m _ 4
We pb < S 0Og 8m) (5.46)

In order to find a solution to the stream function Aungier (2000) presents a linearised solution.
This method will be adopted here. The stream function is written

U =V (m,s)=a(m) (g - g2> + 62 (5.47)

here, a is a parameter only varying in the meridional direction. The derivatives of the stream
function in the meridional and ¢ direction can thus be written

g—i =d (q - §2) (5.48)
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ov
— =a(l—2)+2 5.49
gc —e1-2)+2% (5.49)
where the ’ denotes meridional derivatives.

Equation 5.42 requires some additional work. On any blade surface, the velocity can be
written

Wi 1 1 0¥
W= cosfB cosfBSpb ds (5.50)

Inserting the linearised stream function, equation 5.47, into the above expression one obtain

4% ma
= .51
cosfB,  Spbcos? 3, (5:51)
W _ m2-a) (5.52)

cos fs - Spb cos? By
at the pressure and suction surface, respectively. The first term on the right hand side of

equation 5.42 must also be expressed in a different way by again introducing the stream
function. Equations 5.46 and 5.47 can be combined to yield

m

SWy =
0 b

(tan B(a—2as +2)—ad'S (g - §2)) (5.53)

Two additional variables, f and g, are introduced to simplify the soon to be found equations
somewhat. They are defined according to

mtan 3
_ — .54
f=10ms) =" (5.54)
ms
= == 5.55
9 =g(m,<) o (5.55)
Therefore, the meridional derivative of equation 5.53 can be expressed as
oSW,
8m€ = f'(a—2as + 2¢) + (1 — 2) fa' — (9a" + ¢'d’) (g — §2) (5.56)

where ” denotes second order derivatives with respect to the meridional direction. All integrals
in the ¢ direction are approximated with

/S Q(s)ds = W (5.57)
p

In this expression @) represents an arbitrary variable. It is thus emphasized that all parameters
need only to be found at three locations; the blade pressure side, the mean location and the
blade suction side. This highly simplifies all calculations, since no complicated calculation grid
need to be constructed. Using the integral approximation of equation 5.57 in equation 5.56 the
following expression arises

afy+ fpd +4f —gd" —gd + [ (2—a) - fid

5 0SWy
ds = .
L om S 5 (5.58)

A linear differential equation may then be found as a solution to equation 5.42 by using
equation 5.51, 5.52 and 5.58. It can be written as

a’ 4+ Ad' + Ba=C (5.59)
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here, A, B and C are given by

o
A= A(m) = gng’JrfS (5.60)
fe— f;/; 6 E 9p
B=Bm) ==L = | Gt b (5.61)
12Swsin e + 4f + 2f! 12g,
= = - . 2
C =C(m) i 75%0s20 (5.62)

This provides a complete solution for the blade-to-blade flow. However, boundary conditions
at both leading and trailing edge must be determined. Since inviscid flow is analysed, the
tangential momentum in vaneless parts of the flow channel is conserved. This means that the
mean tangential momentum is known at the leading edge, therefore also the relative tangential
velocity (at a given radius). Letting the average tangential velocity Wy i be approximated by
equation 5.57, equation 5.46 yield the following relation

6SWy Le = fpa+4f —ga' + fs (2 — a) (5.63)

This equation may be expressed as

a+ Ba=C (5.64)
Bi and C] are easily shown to equal
B; = fs _ I (5.65)
g
Af +2f5 — 6SW,
o, =22 - OLE (5.66)

Instead turning the attention to the impeller’s trailing edge, the Kutta condition (see
Anderson (2011)), can be introduced. This condition require the velocities at both suction and
pressure side to be equal, hence also the densities. Combining equation 5.51 and 5.52 yields

oy 2cos B, (5.67)

cos 3, + cos s
Depending on the amount of meridional grid points, multiple equations coupled to each
other must be solved simultaneous. Aungier (2000) presents a very novel matrix method to
efficiently solve these equations. All meridional derivatives are approximated with three-point-
differences, where all meridional points have been evenly distributed within the calculation

domain. For interior points (i.e. not on the leading or trailing edge) these can be written

CQir1— Qi

= ""oAm (5.68)
p Qir1 —2Qi + Qi1
Q;, = (Am)2 (5.69)

where again ) represents an arbitrary variable, subscript i! a calculation point index and Am
the difference in meridional distance between two adjacent points. For points located at the
leading edge (with ¢ = 1), the derivatives are instead given by

4Q2 —3Q1 — Q3
2Am

'In this chapter, subscripts ¢ will in general denote a "current" point. Subscript i — 1 would imply a point
before the "current" point, while ¢ + 1 a point ahead of the "current" one, and so forth

Q= (5.70)
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" _ Q3_2Q2+Q1

1 (Am)?
Finally, derivatives for points positioned at the trailing edge (with the last point index
denoted N) are approximated by

(5.71)

r_ 3FN —4FN_1 +2FN_2

F .72
N 5Am (5.72)
Fn —2FNn_1+ Fn—
Fll — N N 12+ N—2 (5.73)
(Am)

Approximating all derivatives with respect to the meridional direction with the above
relations, equation 5.59 and it’s parameters A, B and C can be presented in the following
matrix form

[ E1 F1 H1 0 0 e 0 0 0 17T al i I Gl
DQ EQ F2 0 0 0 0 0 a9 GQ
0 D3 E; Fz3 O 0 0 0 a3 G3
= . (5.74)
0 0 0 0 0 DN_1 EN_1 FN_1 anN_—1 GN_1
L 0 0 0 0 ... 0 0 Dy Exy || an | | Gn
At the leading edge the parameters E1, Fy, H; and G; are given by
E1 = 2B1Am -3 (575)
=4 (5.76)
Hy=-1 (5.77)

which follows from the leading edge boundary condition and the approximate numerical
derivatives. Similarly, for an interior point ¢, the parameters are instead given by

D; =1—0.54;Am (5.79)
E; = B; (Am)* — 2 (5.80)
Fy=1+05A4,Am (5.81)

Gi = C; (Am)? (5.82)

which again follows from the numerical derivatives, but this time in combination with equa-
tion 5.59 and it’s parameters. A;, B; and C; refers to values of equations 5.60, 5.61 and 5.62
at the specific interior point ¢. Finally, at the trailing edge Dy, En and Gy are equal to

Dy =0 (5.83)
Ey =1 (5.84)
G = 2cos 3, (5.85)

cos B + cos fBs

This is of course a direct consequence of the trailing edge boundary condition.
To determine the values of all the gridpoint’s a:s, a simple matrix inversion may be
performed. Since the matrix mainly contain zeros, inversion can be expected to be rather fast.
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5.2 Calculation procedure

In order to solve the quasi three-dimensional flow the hub-to-shroud flow and blade-to-blade flow
equations must be solved together, in a highly iterative manner. The calculations are initiated
by assigning reasonable start values to most parameters, not until then a first hub-to-shroud
analysis can be conducted. From the found stream surface shapes, blade-to-blade analyses
are run at all surfaces, yielding new relative flow angles as input to the next hub-to-shroud
analysis. The main iteration procedures for a complete quasi three-dimensional analysis can
be seen in figure 5.5.

5.2.1 Input parameters

Surprisingly little input are needed to the impeller internal flow analysis, bearing in mind
that the geometry has already been determined previously. Of course, all inlet and running
conditions have also been specified before, but it usually of huge interest to alter some of the
most important parameters. As was the case for the other analyses, the fluid being compressed
must be defined. This is again accomplished by specifying a specific gas constant R, the specific
heat at constant pressure ¢, and the ratio of specific heat at constant pressure and volume, ~.

In order to handle non-uniform inlet conditions, the parameters relating to the passage inlet
are set at both hub and shroud. Both the inlet stagnation temperature Tpg and the stagnation
pressure pgo must be set, since these conditions set the overall temperature and pressure level
inside the impeller. Further, the inlet angular momentum must be determined at the impeller
inlet in order to solve the above presented equations. This is most easily done by specifying the
passage inlet absolute flow angle ag. The inlet flow angle is typically known when designing
an impeller. Also, different operation conditions can be studied including altered inlet angles
from, for instance, inlet guide vanes.

Finally, two additional operating conditions must be set; the rotating speed N, and the
target mass flow . The rotating speed typically has a large impact on the blade loading
but are also related to the mass flow passed through the impeller. Again, various operating
conditions can be studied by varying N. The target mass flow is the desired mass flow the
impeller is intended to pass. However, the generated geometry may not be able to pass this
mass flow, that is, a choked condition has appeared. If a choked flow is encountered, the mass
flow may be lowered during the solution, consequently the name target mass flow.

5.2.2 Calculation model

As is seen in figure 5.5, a complete solution will require quite a lot of calculations. Here, the
most important features of these calculations are presented, providing the fundamental aspects
of the analyses.

Hub-to-shroud flow analysis

In order to begin the first hub-to-shroud calculation initial values need to be assigned, the
most important being initial stream surface positions. Aungier (2000) recommends placing the
first stream surfaces with equal passage areas at each quasi normal; it is used in this analysis.
The placement of these surfaces are possible since the impeller geometry is given, and equally
spaced quasi normals (along hub and shroud) ar easily set. To obtain more accurate values
of the stream surface properties (local surface angles a¢ and curvature &, for instance) two
quasi normals are also placed outside the impeller, both upstream and downstream, see figure
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Figure 5.5: The main iteration loops for a complete quasi three-dimensional analysis. Note that
several analyses require solution for all quasi normals. These calculations contain themselves
iteration loops
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Figure 5.6: Placement of quasi normals in the hub-to-shroud solution. Note that two quasi
normals are placed outside the impeller, both upstream and downstream of it. Also, quasi
normals are placed at the mean camberline leading and trailing edge

5.6. Another reason for using quasi normals outside the blade passage is that the inlet flow
properties are usually not known exactly at the impeller leading edge, but rather at some
upstream position of the impeller inlet. As is also seen in this figure, quasi normals are placed
at the leading and trailing edge, for the mean camberline of the blades. Having set the quasi
normals once, the need not be replaced during any subsequent calculation. Placing the surfaces
with equal passage areas may be performed with aid of the procedure outlined in appendix C.
By knowing the stream surface locations, not only the axial and radial position at each quasi
normal are known, but also the meridional distances. Here, the impeller leading edge quasi
normal is defined as the reference point. The meridional distance m; for a point 7 on a stream
surface may be calculated by

m; = m;_1+ \/(Zl — 21;1)2 + (T‘i — 7‘2',1)2 (5.86)

where index i — 1 represents a point preceding the current one, located on the same stream
surface. In a similar manner, the o coordinate of all surfaces along each quasi normal are easily
determined. Since o = 0 at hub, any other ¢ coordinate (at the same quasi normal) may be
found from

o= \/(ZC — )+ (re — 1)’ (5.87)

here, index C' denotes stream surface coordinates and h values at hub.

Having placed the stream surfaces, some properties can be determined instantly. Firstly, the
distribution of inlet stagnation properties can be determined. These are given at the passage
inlet, i.e. at the first quasi normal. This quasi normal is placed at a specific axial position, and

66



has thus only a radial extension, see figure 5.6. The inlet properties at an arbitrary stream
surface radius r¢o can be determined from

rCc — Toh

Too = Toon, + (Toos — Toon) ——— (5.88)
Tos — Toh
TC — Toh

Poo = poon + (Poos — Poon) ——— (5.89)
Tos — Toh
TC — Toh

a0 = agon + (oos — oon) (5.90)

Tos — Toh
where rg;, and rgs is the passage inlet hub and shroud radius, respectively. As one note from
the above equations, the inlet properties are assumed to vary linearly over the passage width.

Secondly, the stream surface slopes and curvatures can be determined. The slopes are

defined by

or
A (591)

while the curvatures in the meridional direction can be written

Odagc
Fm = ——— 5.92
In order to yield as accurate results as possible, and avoid numerical instabilities, these
are defined in a somewhat more rigorous way as compared to the other analyses presented
before (see for instance appendix C). Aungier (2003) [20] presents the following numerical
approximations to derivatives for interior points (i.e. points not on a calculation grid end
point)

(aQ)i - ((Qi — Qi) T Qi — Q) W) (5.93)

ou Uip1 — Ui—1 Ui — Uj—1 Uip1 — Uj

where, again, () represents an arbitrary variable, and wu is a direction in which ) varies.
Numerical derivatives relating to end points may also be found. For start points (i.e. with
i = 1) the following relation holds

QN 1 uz — uq Uz — U1
((%c)l ug—ug ((Q2 Pl CLC o m) (5:94)
Similarly, for end points (with i = V)
d 1 — un— —un—
(52) = (@ - Qu-) =2 Q- Q) ALY (s.95)
u/N UN—-1 — UN-2 UN — UN-1 UN — UN—-2

These expressions are the more general expressions for three-point numerical derivatives,
allowing non-equal differences between points, as compared to the ones employed in section 5.1.2.
Aungier (2003) recommends using the more numerically stable two-point difference for end
points when determining meridional derivatives. These may be written

QY Q22—
<8u>1 = (5.96)

for start points, while

<5Q>N _ QN —Qna (5.97)

ou UN — UN_1
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holds for end points.

With these expressions for numerical derivatives, the stream surface slopes and curvatures
are easily determined. Further, from the stream surface slopes a¢ and the quasi normal
angles agn, the local deviation € of quasi normals from the normal direction are easily
determined by

€=ac — QN (5.98)

When performing the first calculation of an analysis, the density are of course not known
from a prior iteration. Again, the recommendation of Aungier (2000) is used; the static densities
are set equal to the local stagnation density. Within the impeller the relative stagnation density
are used. In order to determine the relative thermodynamic conditions inside the impeller, the
concept of rothalpy comes into use. Since the angular momentum are preserved in the inlet
portion, the rothalpy at any leading edge position are easily determined from equation 2.26.
From the now known rothalpy (being conserved along each stream surface), the relative
stagnation temperature follows from equation 2.28. The relative stagnation pressure is then
determined from equation 2.6, where the inlet stagnation properties may be inserted, since
the stream surfaces are assumed isentropic. All stagnation properties are not only used to set
initial density values, but also to determine the static temperature and pressure when solving
the momentum equation.

Another set of parameters not known before a blade-to-blade flow calculation has been
conducted are the relative flow angles inside the impeller. Especially in the inlet region, the
flow will deviate quite significantly from the local blade angles. In the first 15 % of the impeller
passage Aungier (2000) presents the following equation to set as good start values as possible

1 m—-—mrg )2

0.15mrg — mrE

tana’ = tan o p + (tan 8 — tana’ g) ( (5.99)
where o/} ;; are the relative flow angles at leading edge and my g and myp are the meridional
position of the leading and trailing edge, repsectively. In the rest of the flow passage, the
relative flow angles are set equal to the local blade angles.

In all hub-to-shroud analyses, the parameter pAA need to be determined at all calculation
points. However, the parameter AA cannot be directly related to a stream surface, being
infinitesimally thin. To overcome this problem, a rather simple solution may be found. The
mean density is calculated between two adjacent stream surfaces. The passage area, AA, of
the stream sheet between these surfaces are well defined. Hence, a value of pAA is found at a
location in the middle of two stream surfaces. By simple linear interpolation, the value of pAA
are found at all stream surfaces.

A general case is shown in figure 5.7. In this figure, an arbitrary quasi normal are shown,
with different (known) o positions of the stream surfaces. The mean positions are denoted &
with the subscript j, where o; > 0;. A mean radius 7; at 6; may be found from

P = % (5.100)

Similarly, the average angle € at this middle location are determined by

g = St (5.101)

2

Finally, the blade angle at this location is written
Bj = bt bt Bﬁi_l (5.102)
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Figure 5.7: A sketch of a set of stream surfaces along a quasi normal, where properties are
known at locations in between these surfaces (indicated by crosses). By linear interpolation the
properties may be found at the calculation points, here shown as solid dots. Also, a developed
quasi normal plane are shown

The approximate local passage area can thus be calculated by

AA = Ag;j (27@- - Z’t]_3> CoS & (5.103)

cos 3;

where Ao = 0; — 0;,_1. Following the same procedure as above, the density, p;, at the mean
location is determined by

__ pitpi

Pj = 9
Thus, the quantity (pAA) ; may be found at all intermediate points. In order to find this
parameter at the calculation points, the already mentioned linear interpolation is employed.
First, all properties not on the hub and shroud must be found. The ¢ position of the mean
points shown in figure 5.7 are easily determined by

(5.104)

5, = Zit i1 (5.105)
2

and o

Gip1 = % (5.106)
pAA at point i can finally be expressed as
_ _ _ 0; — 0j
(pAA), = (pAA); + ((pAA) 1,1 — (pAA),) ———L
A (5.107)
0; — 0i—1 '

= (pAA). + ((pAA). ., — (pAA).
(pAA);+ ((pAA) 11 = (pAA);) 2=
where equations 5.105 and 5.106 have been used to simplify the expression. Note that even
though pAA do not have a direct meaning at a single point, it do refer to the meridional
velocity as was shown in section 5.1.1. The meridional velocity is easier and more straight
forward to understand as a single point property. For the hub and shroud surface the value
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of pAA can now be found, (pAA); being a mean value of the same parameter of the surface at
and closest to the contour.

All derivatives in the momentum equations with respect to the o direction are determined
with equations 5.93, 5.94 and 5.95. As has already been mentioned, meridional derivatives
uses equation 5.93 for interior points, but the simpler two-point difference for start and end
points, equations 5.96 and 5.97 respectively.

In order to solve the momentum equation, integrals must also be determined numerically.
Again Aungier (2003) lists useful expressions to approximate these. To obtain an as high
accuracy as possible, the second order derivative for interior must also be incorporated. It can

be written
(32Q> _ 2 (QiJrl_Qi B Qi_Qi1>

(5.108)

ou? Uip] — Ui—1 \ Uipl — U U — U1

were again () represents an arbitrary parameter and u some direction in which the derivative
is to be found. For interior points the integral can be expressed as

U; . 2 Loy 2
[ Qdu= (i~ i) (Q(w)—(%),“z i +<Z§).(”Z é“‘l) ) (5.109)

while for last points it is instead given by

uN o 2 o 2
/ Qdu = (un —un-1) (Q (un-1) — (qu?)zv 1 N 2UN_1 - <88ug> (un gN_l) >
e - N-1

(5.110)
Note that no numerical integral need to be found for the first point, since the integration
always starts from hub. Thus, the integral becomes zeros for all hub points.

When solving the momentum and continuity equation, it is possible to encounter choked
flow. If not any special measures are taken to cope with such a condition, it is quite likely
that the whole solution will fail to converge. Thus, the hub-to-shroud analysis must be able to
identify such a condition. Mathematically a choke can be written

om

) 0 (5.111)

The interpretation of this expression is that the mass flow does not increase when increasing the
meridional velocity at hub. If this situation occurs, the mass flow must be lowered in order to
yield a solution. The easiest way of accomplish this is to simply calculate the maximum mass
flow the choking quasi normal can pass, and set the new target mass flow to this. Not only
are the whole hub-to-shroud solution based on this lowered mass flow, but also the following
blade-to-blade flow analyses. However, after rearranging stream surfaces and finding new
relative flow angles, the impeller may actually be able to pass the desired mass flow. Hence,
if a choke has appeared, the mass flow should be set to the desired one after completing
the blade-to-blade flow analysis and entering a "new" hub-to-shroud analysis. Further, it is
understood that as soon as a choked flow condition has appeared, all upstream quasi normals
must be recomputed, since down stream quasi normal solutions depend on the upstream dittos.

The overall solution procedure for all quasi normals in a hub-to-shroud analysis are shown in
figure 5.8. In this figure it is shown that some parameters downstream of one quasi normal can
and must be determined as a consequence of it’s solution. One example is the last impeller quasi
normal. After solving the momentum and continuity equation here, the absolute tangential
velocity can be determined. Therefore, the absolute angular momentum is also known. Since
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Figure 5.8: The solution procedure of all quasi normals, and the intermediate calculations.
Note that if a choke occurs, all upstream quasi normals need recalculation

71



the angular momentum is conserved along each stream surface in vaneless passages, all absolute
(and relative) tangential velocities can be determined in the vaneless outlet passage, downstream
of the last impeller quasi normal. The tangential velocity must be known when solving the
momentum equation for vaneless passages.

When the momentum and continuity equation have been solved at all quasi normals, new
stream surface positions must be determined. This is accomplished at all quasi normals, making
use of the o coordinate. First, the mass flow per stream sheet thickness, my, is determined for
each stream sheet by
A
Ao
where subscript j denotes the stream sheet in question, Arin the mass flow in the stream sheet
and Ao the stream sheet thickness as measured in the quasi normal direction. The stream
sheet thickness Ao;q, needed to pass an equal amount of mass flow in all stream sheets can
then be determined by

myj = (5.112)

m
Mp,j (Kss - 1)
here K5 represents the total number of stream surfaces employed in the analysis. After
determining Ao, for all stream sheets, the new stream surface positions can be determined

by

AGjeq = (5.113)

Os
0; = 0;—1 + Ao'jﬁq Kol

>, Avjeq
j=1

(5.114)

where subscript ¢ denotes the "current" stream surface. Of course, stream surfaces at hub and
shroud will not alter during iterations. In order to reduce the possibility of too large changes
in stream surface positions (especially during early iterations) some numerical damping must
be employed. Aungier (2000) describe two different damping factors, depending on whether
blades are present or not. For stream surfaces in vaneless parts of the passage, the damping
factor Fye is written

(1—M2) (05 — Uh)2> o (5.115)

2
(Ammm) Bss
AmMmynin 18 the minimum meridional distance of the current quasi normal with one of the two

adjacent quasi normals, B, is an empirical constant and M, is the meridional Mach number
defined as

Fyy = <1+

Wi

For passages with blades, the damping factor instead takes the form of

1— M Nog—on))?) "
Fiy = (1 4 (ZE;OS'O‘)% o)) ) (5.117)
where M’ is the relative Mach number defined as
M = w (5.118)

VYRT

Thus, instead of directly moving the stream surfaces to the newly calculated position, they are
moved a fraction Fig of the distance.

The hub-to-shroud analysis has converged when the stream surfaces no longer need reposi-
tioning. It is also good practice to make sure that both velocities and densities have converged
and thus no longer change between iterations.
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Blade-to-blade flow analysis

Having finished the hub-to-shroud flow analysis, a blade-to-blade flow analysis is to be carried
out on the determined stream surfaces. Thus no new geometry need to be determined when
carrying out the blade-to-blade analysis. However, interpolations will be necessary to find
corresponding values on the calculation points of the stream surfaces, since the two analysis will
not use the same calculation spacing. As has already been mentioned above, equal meridional
distances of the discrete points is necessary if the method of section 5.1.2 is to be used.

The calculation domain of the blade-to-blade flow analysis is of course within the blade
passage. Aungier (2000) notes, however, that placing the end points of the calculation grid
at the exact leading and trailing edge can cause numerical problems. In order to avoid such
problems, the first ¢ line (closest to the leading edge) is placed at the largest meridional position
of the pressure and suction side, without any leading edge extension. This is illustrated in
figure 5.9. Another advantage of this method is that no special leading edge extension must

Mean camberline

y”

First ¢ line

Leading edge extension

0

Figure 5.9: The solution domain of the leading edge region. Note that the blade surface of the
largest meridional position determines where the first ¢ line is placed

be created, enabling use of only the actual pressure and suction side surface. The exact same
procedure holds for the trailing edge, with the obvious difference of which surface determine
the end of the calculation domain; the blade surface with it’s endpoint located at the smallest
meridional position sets the location of the last ¢ line.

Knowing the actual domain of the calculation, the geometry from the hub-to-shroud analysis
can be transferred to the blade-to-blade analysis. The first thing to do is finding z,y and
z coordinates where the stream surfaces connects with the blade surfaces. Knowing these
coordinates enables determination of all other geometrical properties needed for the analysis.
How these coordinates are found is presented in appendix D. Of course, the coordinates must
be found for both the pressure and suction side.
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Having expressed the stream surfaces in all three coordinates (at the blade surfaces),
calculation points of equal meridional distances must be found. Expressed in another way; the
coordinates at these locations must be found. A rather simple procedure is employed. The
coordinates are linearly interpolated along each stream surface, with equal meridional spacing.
Thus, the z, y and z coordinate are known at each point of interest. Additionally, the blade
angles are also found by linear interpolation. However, one extra feature of the blade angles at
the surfaces must be kept in mind. If an inlet blade taper is used, the blade surface angle at
this location will differ from the blade’s mean camberline angle. Such a situation is illustrated
in figure 5.10. As one notice, the blade angle of the suction surface is smaller than the mean

Mean camberline

Suction side ﬂ/

Pressure side

v

Figure 5.10: The features of a tapered leading edge. The blade surface angles on the suction
side will be lower than the mean camberline blade angle. The opposite is true for the pressure
side

camberline blade angle. On the pressure side, the angle is instead larger. The blade angles in
this inlet taper region can, with aid of figure 5.10 be expressed as

B, = B — arctan | B8 (5.119)
2)\tape7“
and
8, = B + arctan | BB (5.120)
2>\taper

where Aigper denotes the mean camberline length of the inlet taper.
Since all Cartesian blade surface coordinates now are known at the calculation points of the
blade-to-blade flow analysis, the tangential coordinates of the blade surfaces can be determined

from

0ps = arcsin Lbs (5.121)
Tbs

from which the local passage width can be calculated by equation 5.31.
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Figure 5.11: The blade-to-blade flow iteration in detail. One can observe that the densities lag
the relative velocities by one iteration

In order to solve the blade-to-blade flow governing equations, the property 7/b must be
determined from the hub-to-shroud analysis. As was the case for the property pAA in the
above hub-to-shroud flow section, it cannot be directly connected to stream surfaces being
infinitesimally thin. However, the exact same interpolation procedure as for pAA is employed,
and need no further explanation. Again, linear interpolation along each stream surface is
necessary to find the value of 11/b at the points used by the blade-to-blade flow analysis.

One final set of parameters must also be determined; the stagnation properties at each
calculation point. Relative stagnation temperatures are easily determined from equation 2.28,
using the fact that the rothalpy of the impeller stream surfaces are known. The relative
stagnation pressures can in turn be found from equation 2.6, applicable along any stream
surface since the entropy remains unchanged along these.

Since all geometric and other, during the blade-to-blade flow analysis, constant parameters
now are known, the flow analysis itself can begin. As was seen in figure 5.5, one must resort
to an iterative solution in order to find the relative velocities. The different steps of the
blade-to-blade flow analysis is shown in greater detail in figure 5.11. A first guess of the static
densities is necessary to start the computation. Again, the static density is approximated
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with the relative stagnation density yielding quite reasonable start values. The solution of the
blade-to-blade flow must be carried out on each stream surface, one at a time. Thus for the
current stream surface, values of f and g are found from equations 5.54 and 5.55. Further,
the derivatives of f and g in the meridional direction are calculated with equations 5.68, 5.70
and 5.72. Knowing these parameters, solving the matrix 5.74 is straight forward. Finally, having
the values of all a:s, the relative meridional and tangential velocity follows from equations 5.45
and 5.46. With these velocity components a static temperature can be computed, from which
new densities can be found. Consequently, the iterative solution continue until both the relative
velocities and static densities no longer change. The blade-to-blade flow analysis is finished
when the velocities in all stream surfaces have been found.

In order to use the result from the blade-to-blade flow analysis in the hub-to-shroud flow
analysis, new relative flow angles within the impeller must be found, before starting the
next hub-to-shroud calculation. These are found from the relative meridional and tangential
velocities. Mass averaged velocities are used, with values from the pressure side, passage mean
location and the suction side. The mass averaged meridional velocity W,, can be expressed as

1
[ pbW2 ds
5 0
Wy =1T""—" (5.122)
| pbWds
0
while the mass averaged tangential velocity Wy takes the form of
1
| pbW,,,Wyds
0
Wy = (5.123)
| pbW,ds
0

These integrals are approximated with equation 5.57, using values at all three locations. One
can note that the stream sheet thickness b is constant for one and the same stream sheet (at
a certain point) and can therefore be dropped in the two above equations. The relative flow
angle is finally given by

tana’ = W (5.124)
W,

m

Since the blade-to-blade flow analysis use different spacing between the calculation points as
compared to the hub-to-shroud analysis, meridional interpolations along each stream surface are
necessary when transferring the relative flow angles to the hub-to-shroud analysis. The whole
quasi three-dimensional analysis is continued until these relative flow angles have converged at
all positions within the impeller.
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Chapter 6

Vaneless diffuser design

Having sized an impeller for a given duty, the next component of prime importance is the
diffuser. This section focuses on the vaneless diffuser, a rather common diffuser in radial
compressor stages. One reason for it’s popularity is, of course, the cost advantage due to it’s
mechanical simplicity.

Because of the absence of blades and rotating parts within the flow path, it is easily believed
that the vaneless diffuser is a simple component to model, and all flow phenomena associated
with it is well understood. However, this is not the case. The flow field downstream of the
impeller is extremely complicated and thus very hard to model accurately. Not only is the
flow to a large extent heavily distorted, it is also unsteady. This is a fact many authors have
recognized, see for instance Japikse (1996) and Cumpsty (2004).

This chapter is disposed similarly to the impeller modelling chapters. First, the basic flow
physics and relations are described, then the geometrical description of the hub and shroud
contours follow. Further, how the different equations are solved is showed in the last section.

6.1 Basic relations

In the analysis of vaneless diffusers, a one-dimensional approach is followed. The simplest way
of modelling a vaneless diffuser is by assuming the tangential momentum is conserved, and
hence the tangential velocity would vary inversely with radius according to

rCy = const. (6.1)

Such an assumption implies negligible wall friction and is a rather crude assumption. To
improve the modelling in this analysis, wall friction effects are included by specifying a wall
friction coeflicient by

Tw

Cr = =

P
where 7, is the wall friction shear stess. Most of the following relationships are based on the
force balance of a fluid element in an arbitrary annulus flow path, as presented by Stanitz (1952).
A section of a vaneless flow passage is shown in figure 6.1. In turn, a fluid element in such a
passage is shown in figure 6.2. This figure shows the fluid element in relation to three different
planes. To the right is the fluid element depicted as one would see it when looking in the axial
direction. In the middle is shown how the fluid element is inclined with the local streamline
slope a¢. Finally, to the left is the element’s actual side shown in the mean stream surface
plane.

(6.2)
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Figure 6.1: An arbitrary section of a vaneless flow passage. All velocity components are shown
along with the local passage width b. Note the mean stream line slope a¢ at the point of
interest. Adopted from Stanitz (1952)

When deriving relations for compressible flow inside passages, the Mach number M is a
parameter easing the process. It is defined in equation 2.7, repeated below for convenience.
) C?

M* = o (6.3)

By taking the derivative of the Mach number with respect to the radius r, one obtain

LA et aar
M2 dr  C? dr T dr

(6.4)
by regarding both the ratio of specific heats, «, and the specific gas constant, R, constant. As

was described in chapter 2, the stagnation temperature is related to the velocity by equation 2.5.
With aid of equation 2.8 it can instead be written

1
To=T (1 + 72M2> (6.5)

and taking the derivative, again with respect to the radius, yields

1dl, 1dT M2 1 dM? (6.:6)
To dr T dr 1-1-“YT*1M2 M2 dr '
By combining equation 6.4 and equation 6.6, the resultant relation becomes
1 dC? 1 1 dM? 1 dTq
~2 - .y} EYD) + 770 (67)
C? dr 1+7TM2 M?2 dr To dr
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In plane of mean stream surface

dr
sin(ac)

.. Inr-z plane

In r-0 plane

/ r+dr

Figure 6.2: An incremental fluid element in a vaneless annular flow passage. Three different
views of the element are shown; one simply in the r — 6 plane, one in the » — z plane and
finally one in the plane of the mean stream surface. Adopted from Stanitz (1952)

This equation couples the change in velocity C' with both the change in Mach number M and
stagnation temperature Ty along the radius r. Next, the mass continuity is considered. It can
be expressed as

m = pCp,2mrb = const. (6.8)

or equally
pCrrb = const. (6.9)

the meridional velocity C), being the velocity component responsible for the mass transportation
in and out of the diffuser. Differentiating this equation with respect to the radius yields

1dp 1 dC, 1db 1
pdr  Cp, dr bdr r

_ldp 1 d(Ccosa) 1db 1

Tpdr  Ceosa  dr bdr 1
This equation instead relate the change in meridional velocity C,, to the change in density p
and passage width b along the radius . An additional relation is obtained by differentiating
the ideal gas law, equation 2.1, and dividing the result with the same equation. This give
rise to the following equation relating the change in pressure to differences in density and
temperature along the radial direction

Ldp_1dp | 14T
pdr  pdr T dr
Two additional equations can be found when analysing the force balance of a fluid element,

and the derivation of these relations are outlined in appendix E. From equation E.10, the force
equilibrium equation in the meridional direction is

(6.10)
=0

(6.11)

2 : 2
1dp+C CTcosar (Csina) _Ccosad(Ccosoz)

- 6.12
pdr I bsin ac r dr ( )
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while the corresponding equation in the tangential direction, equation E.15, reads

C?sina dC'sin o Csino
—_— = CcosaT + Ccos
r

_ 6.13
I bsin oo ( )
All governing equations are now known, and they must be combined to yield a set of ordinary

differential equations. By combining the meridional and tangential equilibrium equations, one

obtain

1@__ C2cosa_ C?sin?a 1
pdr N fbsinac / bsin oo cosa
d i d
_ OsingdlCsine) ., d(Ccosa) (6.14)
dr dr

o C? 1 1dC?
fbsinaccosa 2 dr

This equation is rearranged into

1 dp _ Cpseca 1 dC?
pC2dr  bsinac 202 dr

(6.15)

However, the quantity pC? can be expressed as a function of the Mach number by employing
the ideal gas law, equation 2.1, and the definition of the Mach number, equation 6.3. Hence

C? _ ypC?
o= 1P _ — A pM? 6.16
g gl vRT ~ 7 (6.16)

Upon combining equation 6.7, 6.15 and 6.16 the following relation is found

1d M? 1 1 dM? 20
lap _ 7 ) o mrseea (6.17)
pdr 2 e M? dr bsin ac

when assuming the diffuser is adiabatic, that is dTy/dr = 0. From here on the final equations will
use non-dimensionalized quantities. The pressure is non-dimensionalized with the compressor
inlet stagnation pressure, while the passage width b and radius r is normalized with the impeller
tip width and radius, repsectively. Thus

Pp=— 6.18

P Poo ( )

Bp = b (6.19)
by

Rp = — (6.20)
T2

Introducing these variables, equation 6.17 takes the form of

1 dPp yM? 1 1 alM2+ 2Cseca 1o
14+ 251M2 ) M?2dRp ~ Bpsinac by

PpdRp 2

(6.21)

This is an auxiliary equation needed in subsequent calculations. One of the final ordinary
differential equations is the squared Mach number M? related to the non dimensional radius
Rp. This is determined from the differentiated continuity equation, but first some of the terms
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in this relation need to be determined. Inserting equation 6.16 in the meridional equilibrium
equation one obtain

1 d(Ccosa) tan’a secaldp Cyseca

_ 6.22
C cos a dr r ~YM?2 pdr  bsinac (6.22)

In the same manner, inserting equation 6.7 into the differentiated ideal gas law, equation 6.11,
yields

1dp 1d L2 1 dM?
R (12> — (6.23)

pdr  pdr +'YT*1M2 M2 dr
after, again, assuming the diffuser is adiabatic. Combining equation 6.10, 6.22 and 6.23 while
introducing the non-dimensional parameters presented above gives

1dPp vy M? 7T_IM2 LdMQ_ Cseca Q+idBD+seCZa
PD dRD N ’yMQ—secza 1—|—’YT_1M2 M2 dRD BDsinac bg BDdRD RD
(6.24)

Finally, the term 1/Pp - dPp/dRp can be eliminated by inserting equation 6.21 into the above
expression. The squared Mach number at any radius Rp is then determined by

M2dRp M? —sec? o

6.25
Bpsinacg by BpdRp Rp ) ( )

~1
1 dM2_ 2(1+'YTM2) <(7M2_tan2a)0fsecar2 1 dBp sec’a

Another of the final ordinary differential equations is the relation determining the flow angle «
at any non-dimensional radius Rp. As was the case for the squared Mach number, a few
algebraic manipulations need to be conducted first. To begin, the relation

Cy
t = 2 2
ana = (6.26)

m

is differentiated and divided by itself to yield

1 dtana_ing_ide
tana dr  Cy dr Cp dr

(6.27)

By inserting equation 6.13 and 6.22 into the above relation, including the non-dimensional
parameters Pp, Bp and Rp, the result is

1 dtana sec2a 1 dPp  sec?«

= — — 6.28
tana dRp ~yM? PpdRp Rp (6.28)

Finally, the flow angle can be determined by combining the auxiliary equation 6.21, the
expression for the squared Mach number, equation 6.25, and equation 6.28. The final expression
is given by

1 2 1 2
dtana _ sec’ o <(1+(7—1)M2) WW_M_M) (6.29)

tana dRp M2 —sec? Bpsinacby BpdRp Rp
Thereby, solving equation 6.25 and 6.29 simultaneous will determine the whole flow field in

the vaneless diffuser. It is also of interest to determine the pressure at any non-dimensional
radius Rp from the impeller discharge conditions, and this is a rather straight forward task.
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Combining the continuity equation 6.9, the ideal gas law, equation 2.1, and the definition of
the Mach number, relation 6.3, one obtain

p—QMg coS aipToby = 2_Mcosarb (6.30)

VT, VT
and by inserting equation 6.5 together with the non-dimensional parameters Pp, Bp and Rp
into the above relation, the pressure can be found through

Pp 1 cosap My |14 25+ M3

po  RpBp cosa M 1+VT_1M2

(6.31)

The last equation to solve is the one describing the trajectory of a fluid particle, and a schematic
sketch of the developed mean stream surface is shown in figure 6.3. As can bee seen from this

KRD—deﬂ/f Co

Figure 6.3: A developed view of the mean stream surface, showing the incremental change in
position of a fluid particle. Reproduced from Stanitz (1952)

figure, the direction of the fluid particle can be written

Rpdd
tana = —7=— (6.32)
sin a¢
and hence the change in the tangential direction with the radius turns out to be
do t
and (6.33)

dRp B Rpsinac

Thus, by integrating the above relation over the whole diffuser channel, the position of a fluid
element during it’s transportation in the annulus space can be determined.

As can be noted, a whole lot of number crunching was necessary to end up with the final
expressions. However, this is well worth the effort, since much more accurate results can be
obtained than using simple relationships such as equation 6.1.

To use the above relations, some knowledge of the friction factor is required. Here, the
form recommended by Japikse (1996) is employed as seen below.

] 5 0.2
Cr=k (1.8R30> (6.34)
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where k is a constant and Re the Reynolds number, in turn defined by

_ pCh
"

Re (6.35)

here, p denotes the dynamic viscosity. Japikse (1996) notes that there has been a large range
of values applied to k, and the model is therefore probably not sufficient to explain all flow
phenomena in the vaneless diffuser. Nevertheless it is used in this analysis. Also note that the
friction factor varies along the flow path, since both the density, velocity and passage width
change along the same.

One important conclusion drawn by Braembussche (2013) is that the action of friction
forces results in a type of blockage, as compared to an ideal frictionless case. The friction
reduces the increase of static pressure, and hence the density at all radii. The decreased static
pressure results in lower densities, and consequently higher meridional velocities; the exact
same result as with increased blockage. Further, an increased meridional velocity implies a
smaller flow angle thus compensating somewhat for the long flow passages generally found in
vaneless diffusers.

6.2 Geometrical construction

The geometry of a vaneless diffuser is by itself very simple. However, there exist a number of
different way the diffuser walls can be designed as shown in figure 6.4. This figure shows a

Figure 6.4: Different type of vaneless diffusers. To the left a diffuser with completely parallel
walls, in the middle a diffuser with "front pinch" and to the right, a diffuser with both the hub
and shroud wall inclined to the radial direction

couple of different diffuser configurations, but is by no means exhaustive. Employing parallel
hub and shroud contours yields one of the more simpler diffuser geometries possible. Having
non-parallel walled diffusers seem to give some advantages though, mainly by stabilizing the
highly unsteady flow. Also, as noted by Cumpsty (2004), the higher meridional velocity
associated with a pinched diffuser reduces frictional losses by giving a shorter fluid flow path
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within the diffuser, other parameters held constant. Further, for reasonable amounts of pinch,
no throat of the vaneless diffuser exit. This is why the vaneless diffuser is quite insensitive to
different operating conditions and thus has a large operating range.

Here, the geometry recommended by Aungier (2000) is employed. Using these guidelines
generally lead to pinched designs similar to the middle diffuser of figure 6.4. The hub contour
is given by a polynomial at any tangential angle 6 in the form of

zn = A+ Br + Cr? (6.36)

where A, B and C are constants in turn defined by

cot acop,
C=—"""— 6.37
2(ry —1r3) (6.37)
B = —2r3C (6.38)
A = —2y, — Bro — Cr3 (6.39)

where r3 is the so-called blend radius, the radius at which the diffuser pinch is turned into
straight line segments, see figure 6.5. This geometry ensures that the diffuser’s hub contour

bs

Figure 6.5: The geometric construction of the vaneless diffuser walls. Note that the hub contour
slope of the vaneless diffuser at 75 equals the slope of the impeller’s hub contour at the same
position

slope is equal to the impeller hub’s slope at the radius ro. After the blend radius, the vaneless
diffuser’s hub contour is purely radial, and extends to the exit radius r5. Instead, the shroud
contour slope at ro may differ from the slope of the impeller contour at the same location.
Hence, some pinch at the diffuser inlet may appear. Also, the straight line element does not
need to be fully radial, and will have a slope defined by

/ _bS_bS
235 =

6.40
rs — T3 ( )
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The shroud contour is also defined by a similar polynomial as the hub contour, namely
zs =D+ Er + Fr? (6.41)
where once again D, E' and F' are constants expressed as

_22—Z3+Zé(7’3—7"2)

F = S (6.42)
(rs —12)

E =2, — 2r3F (6.43)

D = 295 —19FE — r3F (6.44)

Hence, rather simple expressions for the geometry are given and after constructing a hub
contour, the shroud contour easily follows.

6.3 Calculation procedure

The calculation procedure is rather straight forward. After generating the geometry from
specified design parameters, the main calculation can be started. It mainly consists of solving
the above presented ordinary differential equations, after which all results of interest can be
determined. A main difference from the impeller analyses can be observed; no iterative solution
is necessary as seen in figure 6.6, showing the different calculation steps.

Give:

Gas properties and inlet conditions: R, v, ¢,
Outlet conditions from impeller: Ty, or T,, pg; OF P2, Cy, @
Impeller tip geometry: r,, by, dc,

Vaneless diffuser geometry: r3, b3, r5, b5
Friction factor and viscosity parameters: k, T ¢, Hrer, Cs

Y

Generate diffuser geometry

Y

Determine:
Passage width and mean streamline
slope at multiple radii

Y

Numerically solve the governing
equations at the different radii

Y

All results found

Figure 6.6: The different steps needed to determine all results of interest for the vaneless
diffuser, from a set of input parameters
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6.3.1 Input parameters

As is the case for any fluid dynamics problem, some medium properties need to be specified.
Comparing with the previous impeller analyses, the same parameters determining the gas
behaviour need to be given. This includes the specific gas constant R, the ratio of specific
heats « and the specific heat at constant pressure. However, as will be seen below, some
additional gas properties must also be specified in this analysis.

Following the medium specification, are the inlet parameters. In this case the inlet condition
equals the exit condition of the impeller. The exit absolute velocity Cy is a typical parameter
known at the design phase, and a major influence factor on both the size and performance
of any diffuser. Together with the velocity, the flow angle o into the diffuser must also be
specified. This parameter is almost of even greater importance than the velocity itself, since
not only do the losses and discharge pressure depends heavily on it’s magnitude, but also the
stability. Choosing a too large angle will yield a very long flow path with large friction losses.
Also, too large an angle, yields very low meridional velocities, with potential back flow as a
result. Is the angle instead chosen too small the friction losses would be rather small, but
instead the discharge kinetic energy quite high. A high meridional discharge velocity implies
large exit losses, causing a large efficiency reduction. Japikse (1996) also describes how the
amount of pinch can influence the rapid change of flow angle at the diffuser inlet part.

Further, the inlet thermodynamic condition must be specified. Having already given the
velocity (Y, it suffice to specify either the static, T» or stagnation temperature Tp2, since they
are directly related to each other through equation 2.5. To fully determine the thermodynamic
condition something must be said about the pressure as well. Again, either the static ps or
stagnation pressure pgz may be specified, since knowing one of these parameters and both the
static and stagnation temperatures, the unknown can be calculated by direct application of
equation 2.6.

Turning the attention to the diffuser geometry, the impeller tip radius 7o and width bs
must, of course, be given in order to size the diffuser to this boundary condition. As was seen
above, the hub contour also demands some information of the impeller tip hub contour slope,
another parameter needed to be specified. Further, to control the amount of pinch the blend
radius r3 and passage width bs must be in full control of the designer. Already mentioned is
how the pinch can influence the flow right at the impeller discharge. How much pinch one
should employ must be evaluated at each separate case, and is dependent on both the inlet
flow angle and velocity magnitude. Finally, the overall size of the vaneless diffuser is set by
the discharge radius r5, together with the passage width b5 at this location. The size can be
restricted by its application, for instance by weight or space reasons. Also, the length of the
flow passage, as well as the discharge conditions, is directly coupled to both r; and bs. The
length of the diffuser section can be changed in order to allow greater impeller absolute exit
flow angles without the risk of return flow in the vaneless diffuser. Shorter diffusers can handle
larger ay angles, because of it’s better stability, see Breambussche (2013). The same author
also describes how more narrow diffusers tolerate more distorted flow fields. However, both a
shorter and narrower diffuser will lead to higher exit meridional velocities, and hence lower
amounts of diffusion. Wide diffusers, being more unstable, are nevertheless less dependent on
the diffuser pinch since any flow stability will occur further downstream. Hence these could be
a good choice if the diffuser is to be short, and no experience with pinch exist.

Finally, some parameters determining the friction factor need to be specified. As is seen in
equation 6.34, the constant k need a value assigned to it. How this value should be chosen
is non-trivial, and Japikse (1996) reports values ranging from 0.0056 to 0.025. Here, some
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experience is needed to pick values suitable to the type of radial compressor being designed.
The constant k may also vary along the flow path, enabling more control of the friction factor’s
variation as a fluid particle is transported within the diffuser. Since the friction factor has a
Reynolds number dependence, the viscosity must also be calculated for the fluid at each radius.
This is most easily done by specifying a reference viscosity pi,.s at a reference temperature 1.y
and using formula 2.11 to calculate the viscosity from the known static temperature. Also, the
constant Cs in equation 2.11, being only dependent of the fluid to be compressed, must be
given.

6.3.2 Calculation model

The whole vaneless diffuser analysis begins with generating the geometry of the flow path. By
knowing the impeller exit radius ro, the hub tip slope a9y, the diffuser blend radius rg and
the diffuser discharge radius r5 the hub geometry can be generated with aid of equations 6.36
to 6.39. By also knowing the different passage widths b2, b3 and b4 the whole shroud geometry
is determined as well through equations 6.40 to 6.44. Since the whole geometry now is specified,
using the method outlined in appendix C yield not only the passage width distribution, but also
the mean streamline coordinates. Both of these results are necessary to enable any subsequent
calculation of the flow properties within the diffuser.

The next step is to solve the ordinary differential equations 6.25, 6.29 and 6.33. Here,
this is done with a fourth order Runge-Kutta numerical integration whose main logic and
underlying mathematics is presented in appendix F. This integration is performed at discrete
steps with numerical estimates of the derivatives in the differential equations. In order to
obtain an as high accuracy as possible, the steps need to be rather small. However this presents
no difficulties, since the calculation itself is rather straight forward. Hence, the calculation
starts at the impeller discharge radius, where all properties and conditions are known. From
this radius the properties at the next radius step is determined. This procedure is repeated
until the last radius step, the discharge radius rs, is arrived at. At each step the known passage
width is used as geometry input. Also, the mean streamline slope ac must be determined,
which is most easily done from the mean streamline coordinates. The procedure for doing
this is schematically depicted in figure 6.7. A very simple technique is applied, working better
for larger amount of radius steps than smaller. Since the numerical Runge-Kutta solution
procedure requires a large number of calculation points anyway, the accuracy of the stream
line slope can be expected to be rather high. As is seen in this figure, the slope at an arbitrary
radius 7;, not coinciding with the start or end point, can be determined by

i+l — Ri—1

QU { Ay = Arccos - - (6.45)
\/(Zz'+1 = 2i-1)" + (Pig1 — rie1)
if the change in radius would be negative, it is necessary to compensate for this by
QG _Ar =27 — Qi Ay (6.46)

Would the point of interest be the first one of the mean streamline, no point prior the current
exist, and the solution is to use the current point in determining the slope through

22— 2

\/(ZQ — 21)2 + (ro — r1)2

Q4 Ay = arccos (6.47)
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Figure 6.7: The determination of the local streamline slope. Shown to the left and right are
the special cases of the first and last point of a streamline respectively. In the middle is the
typical case of a point with adjacent points on each side of it

The same procedure is used for the last point IV, and the resulting slope would be

ZN — ZN-1

\/(ZN —an-1)’ 4 (v —Tv-1)?

Qi + Ay = aTccos (6.48)

where a similar compensation as suggested by equation 6.46 is needed for negative radii changes
in either of the two cases. Also, at each radius step, the friction factor need to be determined.
Because of this, the thermodynamic properties is also needed at every radius since the friction
factor depends on the Reynolds number, as seen in equation 6.34. At each calculation step,
the static temperature need to be determined through equation 2.5. The pressure is also easy
to calculate with the above derived relationship, formula 6.31. Therefore the thermodynamic
state is fully known, and therefore also the Reynolds number.

Following this procedure at each and every incremental radius station, the properties
are known everywhere in the diffuser. This completes the one-dimensional analysis of this
component.
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Chapter 7

Vaned diffuser design

Many times a vaneless diffuser can not do the job of diffusing the flow efficiently enough, and
it is then necessary to use diffusers of other types. By employing vaned diffusers, a given
diffusion level can often be supported with a significantly smaller exit radius r5, as compared to
a vaneless diffuser. One reason is that employing vanes gives an additional degree of freedom in
controlling the flow, see figure 7.1. Also, as noted by several authors, for instance Japikse (1996)

Fluid path in vaneless diffuser

Figure 7.1: Comparsion between vaned and vaneless diffusers. The fluid path in vaneless
diffusers can be expected to be much longer. The vaned diffuser is of a wedge type

and Cumpsty (2004), the efficiency of a vaned diffuser is usually higher, at least at the design
point. The higher efficiency is mainly a result of the shorter fluid passage. Further, employing
vanes also gives some control of the fluid exit direction, and if designed properly this can
minimize losses in components downstream of the diffuser.

This analysis is restricted to vaned diffusers of the wedge type, having the general appearance
seen in figure 7.1. The wedge diffuser is a member of the channel diffuser family, a group
of diffusers usually not employing airfoil cascade type of vanes. Another typical type of
channel diffusers employ conical passages, drilled around the circumference of the diffuser part.
Breambussche notes that channel diffusers are used at higher pressure ratios (PRsmge > 3) as
compared to other types of vaned diffusers.
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Figure 7.2: A typical wedge diffuser, showing its diverging rectangular channel. Only two of
the wedges are shown for reasons of clarity

This chapter starts with presenting the basic relations and fundamental concepts. Following
this section is the geometrical relations and design aspects of the wedge diffuser. Finally,
the method of calculation is presented, describing how the preceding sections are used to
characterize any chosen wedge diffuser design.

7.1 Basic relations

Any vaned diffuser design employs a certain amount of vaneless space between the impeller
discharge and the diffuser itself. It is needed, not only to even out unsteady fluctuations to
some extent, but also to diffuse very high speed flow to more manageable levels. As thoroughly
discussed by Japikse (1996), it is a very complicated and non-trivial matter to choose the
extent of the vaneless space. From chapter 6, the vaneless space can be fully determined by
solving the ordinary differential equations 6.25, 6.29 and 6.33. By doing this, the condition at
the vaned diffuser inlet is fully determined. The subsequent analysis assumes full knowledge of
the vaned diffuser inlet state.

As was the case for the vaneless diffuser, ordinary differential equations must be solved
to get a reasonable accuracy of the diffuser performance prediction. However, the analysis
become somewhat simpler, since the flow within the channel diffuser is considered steady
and one dimensional. Also, the velocity has only one component along the channel. Under
this assumption, "classic" compressible channel flow relations can be used, greatly easing the
calculation procedure. The derivation of the governing equations are quite similar to the one
found in chapter 6, and are presented in appendix G. In what follows, the main equations are
just presented and modified to suite the wedge diffuser geometry. A schematic sketch of a
wedge diffuser is shown in figure 7.2. A reasonable assumption, and a major simplification, is
an adiabatic diffuser. Since, no rotary parts exists within the vaned diffuser, this implies a
constant stagnation temperature. Hence

a1y _

=0 (7.1)
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=z 126 Y w+dw

Figure 7.3: The definition of a channel diffuser’s divergence angle 20. What is shown is a
schematic one-dimensional diffuser, with a change in width w over the incremental step dx

where the coordinate x is directed along the channel’s length, in line with the analyses conducted
in appendix G. As is seen in figure 7.2, the passage area A can be written

A =bw (7.2)

An additional constraint on the analysis is now imposed; the hub to shroud passage height b is
set to a constant value. Consequently, the channel area found between two adjacent wedges
only diverges in one of the two possible directions. Thus, the change in passage area along
the z coordinate can be written

dA_ydu

de dx
Further, by studying figure 7.3 and introducing the diffuser divergence angle 26 it is seen that
the change in width can be expressed according to

(7.3)

1dw
tanf = - — 7.4
a 2 dx (74)
Inserting these relations into the governing equations G.20 and G.26 found in appendix G, one
obtain ) L
1 dM 1+5-M 1 1 2
LA (P (L DY aze, - 2 a) .
M? dx < 1— M2 )((b_'—w)’y Cr w (7.5)
and 1d 1 1
Po 2
— =24+ =) CM 7.6
(55O (7.6
where the hydraulic diameter dz has been substituted in the form of
4A 4wb 2wb

wetted perimeter 2w 4+2b  w+b (7.7)
The friction factor Cfy is, within the vaned diffuser channel, assumed to be well approximated by
"traditional" pipe friction correlations. Aungier (2000) presents a convenient way to calculate
the friction factor depending on the Reynolds number and surface roughness. Here, however,
the walls are assumed smooth enough to make the surface roughness negligible. The friction
factors are based on the local Reynolds number within the flow channel, where the Reynolds
number itself is defined as

pCdy

ReVD = (7'8>
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and is thus based on the hydraulic diameter of the channel. For laminar flow, here defined as
Reyp < 2000, the friction factor C'y; can be calculated by
16
Reyp
If instead the flow is turbulent, Reyp > 2000, the turbulent friction factor C'y; is found from

1 2.51
= -2l _ 7.10
A 4Cf,t 0910 (ReVD,/4Cf7t> ( )

Oy = (7.9)

7.2 Geometrical construction

First, the vaneless space geometry must be determined. In fact, the geometry used is the exact
same as in the vaneless diffuser analysis, and here it suffice to note that the vaneless space
is used to turn the hub and shroud contour into fully radial. Following the vaneless space is
the wedge diffuser itself and some basic geometrical features of a such a construction is seen
in figure 7.4. All of the wedges’ sides are constructed from straight line elements, somewhat

Wedge centre line

Figure 7.4: The basic geometric parameters for determining a wedge diffuser design. Note the
diffuser divergence angle 26. Only two wedges are shown for reasons of clarity

simplifying the analysis. Also, the angle defining the wedges’ own (half) divergence angle, ®, is
equal on both sides of the wedge centreline. A leading edge thickness of tp3 is included, while
the trailing edge thickness is fully determined by the geometry. By employing Zp number of
wedges, the angle v between any similar point of two adjacent vanes can be expressed as

27

-7 (7.11)

v
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Figure 7.5: Some geometrical features in detail, used to find a relation between the wedge
divergence angle ®, the channel divergence angle 20 and the tangential angle between adjacent
wedges v

Another important geometrical relation can be found by studying the different angles in more
detail, see figure 7.5. From the various angles it is clear that

B3 +2(®+06) =+ 53 (7.12)
which reduces to
o= % ) (7.13)

Two other geometric parameters of great importance are the area ratio AR and length to
width ratio L/w. AR is the channel’s exit to inlet area ratio, and since the passage width
between hub and shroud is set constant, it is here directly related to the passage widths at

these locations by

A5 b5w5 Wg
AR = —" = =2
R As bywyg wy

(7.14)

As the name implies, the L/w is the ratio of the passage length to width. The width is here
defined as the inlet width wy, and the length L defined in figure 7.4. Hence

L_ L (7.15)

however, it is not at all obvious which length to use, since the passage has different lengths on
the wedges’ suction and pressure side. However, using the definition here, the actual channel
length to width ratio will never become too small, a situation that could occur if L is defined
differently.

7.3 Calculation procedure

As has already been stressed, the first step is to perform a vaneless space calculation, in order
to come up with the conditions at the radius where the vaned diffuser is begun. After doing
this, the whole geometry of the vaned diffuser must be determined. It suffices to perform the
calculation for two adjacent wedges, the rest of the geometry is just evenly distributed over
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the annulus. When having established the geometry, the channel flow calculation can begin.
This is done over several steps, where the ordinary differential equations are solved repeatedly.
The calculation procedure is outlined in figure 7.6.

7.3.1 Input parameters

Similar to all analyses, the gas properties must be known prior any calculation. Again, the
needed parameters are the specific gas constant R, the ratio of specific heats v and the specific
heat at constant pressure c,. These three gas specific parameters determine the behaviour of
the gas, but as will become apparent, parameters characterizing the viscosity must also be
provided.

Further, the inlet condition to the whole diffuser must also be known. This "station" along
the compressor coincide with the impeller exit condition, hence the impeller exit state is of great
importance. The exit (absolute) velocity Cj is a component of large significance to the diffuser,
and one of the major reasons for employing a vaneless space at all. Usually this velocity is
very high, and need some diffusion before actually entering the vaned diffuser. Were it not for
this vaneless space, the operating range would be extremely restricted, with a large possibility
of choking at comparatively low mass flows. From this velocity, and after specifying either the
stagnation Tyy or static temperature 75, the non-specified temperature can be determined,
simply by using equation 2.5. On a similar basis the stagnation pgs or static pressure py can
be calculated by specifying one of them, and employing relation 2.6 to find the other. The
absolute flow angle as at the impeller exit is another parameter needed as input. This angle is
often determined from an impeller analysis, but as has been described in previous chapters, it
is usually set to match the downstream diffuser. When choosing this angle for vaned diffusers,
one must keep in mind that the selected value is usually only valid at the design conditions.
If, for instance, reducing the impeller rotating speed, this angle can be expected to change.
Depending on how much the angle changes, the performance of the vaned diffuser will be
lowered, finally leading to choking or flow instabilities, see Cumpsty (2004). Further, some
geometric data of the impeller exit is needed in order to enable the construction of the vaneless
space’s hub and shroud contours. As was the case for the vaneless diffuser analysis, the impeller
tip width b, tip radius r9 and tip hub contour slope a9, must be specified.

Instead turning the attention to the vaneless space itself, some geometric features must
be known. This includes the radius r3 where the vaneless space ends and the wedge diffuser
instead takes over. Specifying this radius together with the corresponding width b3 enables
the whole geometry up to this point to be determined. How to correctly choose these two
parameters is extremely hard, and this region is associated with high Mach numbers, unsteady
flow and various viscous effects, see Japikse (1996). Hence, some experience is needed to make
wise choices. Further, the simple methods of this analysis will not suffice to model the flow
even close to the actual situation encountered in reality. However, it serves it’s purpose of
providing first estimates of the overall performance. Moving on, the friction factor for the
vaneless space calculation need a specified value of the constant k. This parameter is also
non-trivial to pick correctly, but any designer with modest experience has some idea of what
level to expect. Also, the option to specify a k value ranging form one value at the impeller
discharge to another at the vaneless space exit exist. This is a powerful way to more precisely
model the flow, where the friction factor can be made directly dependent (other than the
Reynolds number dependence already included) on the actual position along the flow path.
Additionally, to enable the viscosity to be determined anywhere, some extra gas properties
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Give:
Gas properties and inlet conditions: R, v, ¢,
Outlet conditions from impeller: Ty, or T, po, ofr py, Cy, @,
Impeller tip geometry: r,, b,, dcy,
Vaneless space geometry: r;, b;

Friction factor and viscosity parameters: k, T,, Hrers Cs
Vaned diffuser incidence and leading edge thickness: i;, tg;
Channel divergence angle and length to width ratio: 26, L/w
Target exit radius: rs

'

Create geometry for:
Vaneless space

'

Model:
Vaneless space

'

Guess:
Number of wedges: Zp

'

Determine:
Diffuser geometry

'

Correct No

exit radius?

Numerically solve the equations
governing the channel flow

'

All results found

Figure 7.6: The different steps needed to determine the performance of a wedge diffuser. Note
the iteration for the correct geometry
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must be given. These are the reference viscosity p,.y and temperature 7}..¢, together with the
gas dependent parameter Cs in Sutherland’s law, equation 2.11.

Finally, parameters relating to the wedge diffuser itself needs specification. In order to
situate the wedges to the flow direction some knowledge about the incidence i3 is required.
The choice of incidence plays a huge part in the resulting performance. However, as described
by Japikse (1996), the actual inlet incidence is very hard to determine in practice, making
the design incidence decision even harder. Also, the wedge leading edge thickness tp3 must
be specified, a parameter influencing the amount of diffuser inlet blockage. A thinner leading
edge is from an aerodynamic point of view advantageous, but some consideration to structural
integrity must be made. Further, a set of very important parameters determining the wedge
diffuser performance are the flow channels’ divergence angle 20 and length to width ratio L /w'.
When analysing any diffusion process in channels, these are the variables to consider. It is
now widely known that the divergence angle 20 of a channel diffuser must be kept relatively
low, around 10°, see Aungier (2000). Increasing the value too much will inevitably lead to flow
separation, and hence large losses. If instead picking a too small angle, quite long channels
will result for a given pressure rise. Too long a channel will result in large friction losses, again
reducing the efficiency of the diffuser. Instead, the length to width ratio gives the designer
direct means to control the channel’s length, and thereby the amount of friction losses to be
expected. Ideally, this ratio should be in the order of 15 to 20, see Japikse (1996). Many times
designers are forced to use smaller values, since space reasons usually are of high importance,
and an as good compromise as possible must be found. To directly address the issue of
space limitations, the diffuser’s exit radius r5 must also be specified. One of the reasons for
employing a vaned diffuser at all, is the weight and volumetric advantage it posses over the
vaneless diffuser. Hence, it is reasonable to assume that the designer must work with an upper
limit of this radius while finding a compressor configuration. The divergence angle, length to
width ratio and the exit radius are all of high importance and determine, to a large extent,
the diffuser’s performance. Many times, choosing parameters very near the stall limit of the
channels yield high diffuser efficiencies. However, any experienced designer know that margins
are needed in order to have reasonable efficiencies at off-design operation as well. Typically, a
decreased channel divergence angle would give the needed margin, see Braembussche (2013).
Therefore, a compromise based on engineering experience and judgement is needed.

7.3.2 Calculation model

After using the input parameters relating to the vaneless space in the exact same manner as
outlined in chapter 6, the design of the wedge diffuser can take place. It should be noted that no
in-depth analysis of the so-called semi-vaneless space, the region where one wedge is present for
the flow about to enter the diffuser’s channels, are performed. However, as a first approximation,
the flow in the semi-vaneless space can be assumed isentropic. Cumpsty (2004) notes that a
large part of the pressure recovery takes place in this region. It is also here the operating range
between surge and choke of the whole stage may be determined, see Breambussche (2013).
Because of the importance of this highly complex region, a flow separation here would be
considered catastrophic. With isentropic flow, both the stagnation temperature and pressure is
preserved, making the calculations rather easy. An one-dimensional continuity equation takes
the form of

m = p303 COS 043143 = p4C4A4 (7.16)

IThe area ratio AR could also be included, but is dependent on 26 and L/w
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Figure 7.7: The different points used in order to set up the diffuser geometry. Two wedges
must be analysed in order to determine the channel inlet width wy

Using this equation together with relation 2.1, 2.5 and 2.6 enables the throat condition to be
fully determined.

When determining the geometric construction of the diffuser, the first step is to determine
the exact wedge geometry by considering two adjacent wedges. The first wedge is most easily
placed with the leading edge directly above the z axis as was shown in figure 7.4. Also, to
ease the construction of the wedges, points according to figure 7.7 is inserted at locations of
interest. A good starting point is to determine the centreline angle of the first wedge. From
the known flow angle a3 it is set from the given incidence

P = a3 — i3 (7.17)

Knowing (3, creating the leading edge from the specified thickness tp3 is a simple matter,
see the left sketch of figure 7.8. Point a is located above the z axis, at a radius equal to the
vaneless space exit radius r3. The other two points b and ¢ are located at the edges of the
leading edge, and their respective coordinates may be found by simple trigonometry. In what
follows, an iterative solution is necessary, beginning with a guessed amount of wedges Zp.
From this guess, the angle between the wedges v and the wedge divergence angle ® (not to be
confused with the channel divergence angle §) may be calculated using formula 7.11 and 7.13.
Knowing these angles, the leading edge of the adjacent blade may be determined, again using
figure 7.8 as a guide.

In order to make the following analyses easier, a rotated coordinate system is employed and
can be thought of as being placed with it’s origin at point b. This is also depicted in figure 7.7,
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First wedge LE Adjacent wedge LE

Figure 7.8: The leading edges of the first wedge, and the adjacent wedge. The geometric
features are necessary to study when determining the wedge diffuser’s channel properties

and the rotated coordinate angle may be written

¢coord = - (ﬂS + CI)) (718)

measured from a Cartesian coordinate system, typically placed in the origin o. By working in
the rotated coordinate system, it can be seen from figure 7.4 that the passage width w4 can be
determined from L

_ b

= Nl
e cosf (7.19)

where Wx denotes the vectorial length between point b and f along the y axis. Knowing wy
implies knowing the point g which now also is easily determined from simple trigonometric
relations. Further, since w, has been determined, the channel length is found directly from
the specified length to width ratio and equation 7.15. From the value of the channel length L,
point h can be found with aid of figure 7.9. Working with the rotated coordinate system, the
wedge’s wall length of the channel can be calculated by

— L

h =
9l cos b

(7.20)

here, gihn denotes the vectorial length between point g and h along the n axis. Now, point h is
fully determined. As a matter of fact, the outer radius rs of the whole diffuser is also known,
since point h is located right at this radius. Generally this radius will not equal the target
exit radius, and the number of wedges must be changed accordingly. If the newly determined
radius is smaller than the desired, the amount of wedges must decrease. This can explained by
the fact that fewer wedges would force the length L of the channel to increase as a consequence
of a wider inlet width wy, keeping the length to width ratio unchanged. Hence, the above
procedure is repeated until convergence.
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Figure 7.9: The channel length L and it’s relation with the wall length gh and channel
divergence angle 6

After the correct exit radius has been found, the amount of wedges may not be an integer.
Therefore, the result from the above iteration must be rounded off. This, however also affects
the geometry, and a recalculation of the exact same form as outlined above must be made. Of
course, the exit radius will not longer exactly match the desired value.

One more point defining the wedge remains to be determined, namely point . Again, a
small trigonometric exercise is necessary, using figure 7.10 as a basis. The angle § may be
found directly from the known points o and ¢, along with the length of the line o¢. From
figure 7.4 it is obvious that the slope of the line ci is 83 — ®, as measured from the y direction.
Further, the angle £ is determined by

=m—P3+P—-9¢ (7.21)

Applying the law of cosines, the length of the line element ci turns out to be

|ci| = [oc| cos & + \/|%|2 cos2 & + 12 — |oc| (7.22)

where |oc| is the length of the line extending from o to ¢. Now, point 7 is fully determined from
the length |ci| and the slope of the same line.

Knowing all points defining the wedge, all other wedges may be determined by simply
rotating each point by an angle . Hence, the geometry of the whole wedge diffuser, including
the vaneless space is now determined, and the next step is to solve the flow within a single
channel. This is done by solving equations 7.5 and 7.6 with Runge-Kutta integration as
presented in appendix F. The method of inserting quasi normals need not be applied here,
since the passage area vary in a purely linear (and known) form, as was seen in equation 7.4.
Having solved the ordinary differential equations, all parameters of interest are determined,
and the wedge diffuser analysis is done.
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Figure 7.10: The geometrical features needed to find the last point of interest, namely point ¢
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Chapter 8

Computer implementation

All analyses presented in chapters 3 to 7 have been implemented into a computer environment.
This chapter begins with describing the main features of the result, without going in to any
programming details. The chapter continues with introducing each analysis in its implemented
form, describing what results the designer can find using the code. The program suite was
named LURC, Lund University Radial Compressor, in order to distinguish it from similar
work from the same university division focusing on other types of compressor turbomachinery,
see for instance N. Falck (2008) [21].

8.1 Basic program structure

MATLAB® was chosen as a programming language, being familiar to many engineers. Also
some convenience when implementing the code itself can be found. The MATLAB® suit
contain tools for creation of GULs (graphical user interfaces), making implementation of such
features rather straight forward. Also, tools for plotting, vector algebra etc. are available and
at hand. The MATLAB® version R2012b (8.0.0.783) was used throughout the project.

The computerized analysis consists of several so-called functions, many of them being
interconnected. In this context a function means an executable program, in need of input data
to work properly. A schematic sketch of the most important interrelations are presented in
figure 8.1. Here it is seen that a main GUI is used to enable the user to communicate with
the different analysis functions. Two-way arrows indicate that information must be carried
both ways; from the GUI to the analysis function and from the analysis function to the GUI.
Information towards a function from the GUI is typically input data, such as rotating speed
or mass flow. Conversely, information in the opposite direction would be some type of result,
after running one of the design tools. The results themselves can in turn be simple variables,
such as a discharge static pressure but also vectors containing multiple data points used for
graphical representations.

Between different functions some data exchange must also be possible. If, for instance, an
impeller has been designed in the impeller preliminary design tool it must be possible to use the
discharge data as input in any of the two diffuser analyses. The same applies for the detailed
impeller calculation tool. However, one extra link exist from the detailed impeller analysis; the
possibility to use the generated three-dimensional geometry in a subsequent internal impeller
flow analysis.

In order to keep the GUI function what it is meant to be, a mean to translate user input
into computer terminology, it has been aimed to perform as few calculations within the GUI
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Figure 8.1: The interrelations between the different main functions of the analysis program
LURC. Note that many analysis functions must be able to communicate with each other

itself as possible. In some instances, some calculations have been necessary, typically when
handling graphical results having no strong relation with the analysis tool in question.

To ease any further work, such as new analysis tools or extension of current design methods
all files have been commented in an as large extent as possible and necessary. This ensures
that the program can be held up to date and extended when desired.

8.2 Common features and components of the analysis tools

While implementing the GUI the aim has been to keep all analysis tools as similar as possible.
By doing this, any user will quite quickly get a feel for where and how a certain action may be
executed and where to find the results. Further, so called tool-tips have been implemented
giving a short explanation of the different variables encountered, when hovering the mouse
pointer over the parameter of interest. An example of both a tool-tip and a text box where
data should be entered is shown in figure 8.2. A text box where data should be entered is
always shown with a white background, typical of most modern computer programs. A short
description of the parameter to be entered is given before the text box itself. Following the
text box is the unit of the parameter in question, ensuring that the user understand what is to
be entered. In the example given in figure 8.2 above the axial tip width should be entered.
From the tool-tip string one find out that it is the impeller width defined purely in the axial
direction. Finally, the width should be entered in units of meter as indicated by the unit text.
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Axial tip width:% 0o1T | m

Hw‘[ b2, the impeller tip width in Eﬁe axial direction ]

[ Import values from impeller analysis ]

Figure 8.2: A data input box, also showing a tool-tip string when hovering with the mouse
pointer over the description of the parameter

Results involving single parameters, such a pressure or temperature are also presented in
text boxes, however these are always greyed out, as shown in figure 8.3. Of course, a greyed out

Static PrEsSUre recovery (0368424 | ()
coefficient:
Total pressure loss [ I
coefficient: Q MR )
[omega_loss=(p02-p0S){p02-p2) |

Figure 8.3: A result text box, with its greyed out background. Also note that tool-tips are
available for result parameters

result text box cannot be modified by the user. As is also obvious in figure 8.3 is the inclusion
of tool-tips for results as well. Further, units are always written out. In the above example, a
total (stagnation) pressure loss was found to have the value of 0.43794. It is dimensionless, as
indicated by the unit text "(-)". The tool tip string reveals how the pressure loss is defined.
Buttons are used whenever the user want to change the current design tool, for instance
from the preliminary impeller analysis to the wedge diffuser tool. Also, they are used when
some action need to be taken, such as when starting a calculation or importing results from
another analysis. Two examples of such buttons are shown in figure 8.4. In some instances

Functions

([ Impeller Preliminary Design ‘ ’ Impeller Detailed Design l reaie ]zl
L3

[Perform the preliminary calculation and display the result

“I Use minimum input to create a simple impeller geometry I

Figure 8.4: Two examples of different buttons. To the left a button to change the current
design tool to another, to the right a button to initiate a calculation

buttons are greyed out. This means that the button is currently inactive, and some other
action must be performed before the task of interest can be initiated. Again, tool-tips are used
in order to clarify what will happen when the specific button is clicked.

One type of GUI element allows different data to be entered, depending on what the user
knows. These elements are so-called radio buttons, where one of multiple options must be
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Friction coefficient constant———————————— Friction coefficient constant

(%) Non-varying: 0.01 -) () Non-varying: -)
O Warying from: (-) (%) Varying from: 0.02 (-)
to: ) to: 0005 | (=)

Figure 8.5: One example of a typical use of radio buttons. Here, two different options are
available to two the user, where one must be chosen

chosen. One example is shown in figure 8.5. Apparently, two different options are at hand; a
non-changing friction factor constant or a varying friction factor constant. By clicking on the
corresponding radio button, the different text boxes for data entering changes. Selecting the
above option activates the text box where non-changing friction factor data should be entered.
The other text boxes are automatically greyed out and made inactive, in order to ensure the
users understands what and where to enter data.

Check boxes are instead used for non-mandatory options, such as displaying specific
graphical output. A check box for turning the visibility of the mean streamline on and off is
presented in figure 8.6. Another difference, besides being non-mandatory to check, compared

[[] Show mean streamline

[Toagles mean stream line onfoff |

Figure 8.6: A check box for showing and hiding the mean stream line of an impeller design

to the radio buttons is that, if available, multiple check boxes may be checked. They are thus
less restrictive than the radio buttons, ideal for presenting results in a way fully determined by
the user.

8.3 Results of the individual analyses

This section describe the results from each of the analyses presented in chapters 3 to 7, together
with the main features of the computer program. The focus lies on how the different results
are presented. What input parameters necessary for each analysis has already been described
in previous different chapters and will not be repeated here again.

8.3.1 Start-up of LURC

Using LURC requires having the MATLAB® suit installed on a computer. LURC is simply
started by double-clicking on the MATLAB® function LURC.m. By doing this the program is
started, showing the start-up view as seen in figure 8.7. Having started LURC, the different
design tools are available by clicking on the corresponding buttons located at the top of the
window. The start-up view itself serves no purpose more than introducing the program, giving
feedback to the user that it is ready for further actions.
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) LURC - Lund University Radial Compressor Design Tool
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Figure 8.7: The start-up view of LURC. Note the different menu options at the top bar of the
window
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Figure 8.8: The view of the preliminary impeller design, before any user actions have taken
place. Note the different axes, intended for presenting results
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8.3.2 Preliminary impeller design

By starting the preliminary impeller design tool a screen as depicted in figure 8.8 shows up.
Here, a control panel is displayed to the left, where the user is required to enter design data. In
the middle, bottom, a panel for results are shown while the rest of the window have different
axes', prepared to show calculation results.

By filling in design data and pressing the button labelled Create impeller the complete
analysis is run. All results are calculated immediately, no further actions from the user are
required. In the result panel at the bottom, various single-parameter results are presented
in greyed-out text boxes. A typical view is seen in figure 8.9. This result panel shows the

— Calculation results

Inlet flovw coefficient: 0.0644928 | (-) Impeller tip rel. velocity: 106391 | mis
Inlet absolute velocity: 682936 | mis Impeller tip speed: 238237 | mis
Inlet mean relative velocty: | 136588 | mis Zero flow slip factor: 0888231 | (-)
Inlet wicth (hub-=shroud): 00335517 | m Impeller internal efficiency: 0942247 | (-)
Tip wicth (hub-=shroud): 0.0122069 | m Number of impeller blades: 20 )
Impeller tip total pressure: 1.52861 bar(a) Impeller blade loading: 0.880673 | (-)
Impeller tip total temperature: | 327.855 | K Impeller blade aspect ratio:  |0.0994747 | (-)
Impeller tip abs. flow angle: | 656067 deg Mean streamline length: 0122714 | m
Impeller tip rel. flow angle: -46.7541 deg Powver reguired: 40.0543 Ky
Impeller tip blade angle: -34.1733 | deg [] Show mean streamline

Impeller tip abs. velocity: 176.495 mis

Figure 8.9: A typical view of preliminary impeller calculations, showing the result panel

main results of interest. Included are not only geometrical features such as inlet and discharge
hub-to-shroud widths but also, for instance, thermodynamic discharge conditions. A result of
huge importance are the flow coefficient, since many of the different parameters described in
chapter 3 are highly dependent on this. Most of the presented parameters follows directly from
the analysis, while some require a few simple extra calculations. This include, for instance, the
required power input which is easily found from equation 2.19. The impeller blade loading
is also presented, generally differing somewhat compared to the desired one entered in the
control panel. This does of course stem from the fact that the number of impeller blades must
be an integer. The analysis makes sure that the design becomes somewhat conservative; blades
are added until the blade loading is less or equal to the set value.

The impeller hub and shroud contours found by the preliminary impeller design tool are
also presented, and a typical result is seen in figure 8.10. These curves are one of the main
results from this analysis, giving the designer a vital piece of information. Such contour plots
are typically used for checking whether the found impeller geometry will have reasonable shapes
with not too large curvatures. Further, since no generation of these contours are required from
the user, this tool is ideal for the non-experienced designer. This group of users will quite
quickly get a feel for how impeller geometries are typically chosen. Additionally, in the result
panel an option for the impeller contour plots appears after running the analysis. With the
aid of a check box, the user can toggle the mean stream line visibility on and off. The mean
stream line is of some interest, since many of the parameters in the preliminary impeller design

! Axes are areas reserved for plotting in MATLAB®. They can be thought of as representing a coordinate
system.
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Figure 8.10: Impeller hub and shroud contours found by the preliminary impeller design tool.
The hub consists of a circular arc, while the shroud contour is constructed from a three-point

cubic spline as explained in chapter 3
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Figure 8.11: The final set of results from the preliminary impeller design tool. This include the
inlet incidence distribution, the blade angle distribution at hub and shroud and the passage

area distribution of the whole impeller
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are set at this location, and it is thus interesting and important to know where this mean
position is located.

Another set of results are also presented in the shape of three different axes on the right
hand side of the window. These are showed in a collapsed format in figure 8.11. The first
axes show the inlet incidence distribution along the (non-dimensionalized) inlet width. At
the mean stream line position, the incidence equals the value set in the control panel by
the designer. Further, its variation follows the rules described in chapter 3; with the shroud
incidence set to 25% of the hub incidence. An indication of too large incidences here, might
lead to redefinition of some design parameters.

A second axes shows the blade angle distribution, along both hub (blue line) and shroud
(red line) of the impeller. These distributions correspond to the mean camberline angles,
and are plotted versus the non-dimensional impeller passage length. Note that meridional
passage lengths are different at hub and shroud, something that must be kept in mind while
evaluating the result. Usually the hub blade angle distribution appears more "extreme" than
the distribution at the shroud; however since the meridional passage length is longer at the
hub location, the changes in blade angles are somewhat relaxed.

The third axes presents the passage area distribution, again versus the non-dimensionalized
impeller passage length. Ideally the passage area changes should be smooth, and the designer
may find that the passage area changes are too extreme. This passage area is somewhat
idealized, since it assumes that the flow are perfectly guided by the blades. Nevertheless, it
gives an important indication on how the area open to the flow changes along the impeller.

One final feature of the preliminary impeller design deserves attention. Having run the
analysis also opens the possibility to keep the current impeller contours in the main axes. By
checking this check box, the contours are coloured green and remain left in the axes, even when
running a new impeller analysis. This function enable identification of changes in geometry,
while varying one or more design parameters. Again, such a feature is well suited for designers
with little or no experience exploring the influence of different settings.

8.3.3 Detailed impeller analysis

LURC takes the shape of figure 8.12 when starting the detailed impeller analysis tool. The
control panel where design data should be entered is located to the left, the result panel at
the bottom and various axes in the middle and to the right. As compared to the preliminary
impeller design tool more data must be known and given as input to the calculation. This
is expected, since more paramters are under direct control of the designer, as described in
chapter 4.

Upon filling in appropriate data and clicking on the button Pre-calculation the main part
of the impeller analysis is run. All features but the three-dimensional geometry generation
described in chapter 4 are employed, including the optimized impeller inlet for minimum
relative tip Mach number. The calculation result shows up in the result panel, together with
some additional functions as seen in figure 8.13. All results relating to the inlet and exit of
the impeller follows directly from the analysis itself; few extra calculations are necessary. The
results themselves are quite straight forward to interpret, if it is unclear what any parameter
means the tool-tips can give some guidance. One of the axes to the right also presents some
result of the analysis, the inlet incidence distribution. Such a result is shown in figure 8.14.
As was the case for the preliminary impeller design tool, the incidence distribution is shown
as a function of the dimensionless passage width, from hub to shroud. The designer should
check that all of the result parameters and the incidence levels are reasonable, before going
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Figure 8.12: The window when starting the detailed impeller design tool. It has the same
general outline as the preliminary detailed design tool.
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Figure 8.13: The result panel after running a detailed impeller pre-calculation. Not only
calculation results shows up, but also additional functions
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Figure 8.14: The inlet incidence distribution as found by the detailed impeller pre-calculation.
Of course, at hub and shroud these equal the design values entered by the user

any further. Since many parameters may influence one and the same result, for instance a
discharge static pressure, the designer can take many different paths in order to find satisfying
results.

Having run the pre-calculation another set of buttons and text boxes appears in the result
box, as was seen in figure 8.13. After filling in the impeller axial width to impeller tip radius
ratio and clicking on the button Create hub/shroud contours, hub and shroud contours appear
in the main axes located at the middle of the window. Together with these contours are
also different Bezier curve handles shown as squares, see figure 8.15. By allowing the user to
interactively shape the contours of the hub and shroud, the impeller design can be fine tuned
to each individual design case. Both the inlet and exit impeller widths are locked, and cannot
be modified by other means than a re-run of the pre-calculation with different design settings.
Also, the impeller axial width can no longer be changed.

When suitable impeller contours have been found, the blade angle distribution need
specification. These can be set by clicking on the button Create blade angle distr., and again
the main axes located in the middle of the window shows two Bezier curves with Bezier handles,
as depicted in figure 8.16. Using this graphical interactive tool, the blade mean camberline
angles can be set at both hub and shroud. The angles are plotted versus the dimensionless
passage distance, allowing both curves to be shown simultaneously.

When satisfied with the mean camberline angle distribution the button labelled Calculate!
may be pressed. By doing so, the passage area distribution with the current geometry is
determined. The three axes located to the right presents the chosen impeller contours, mean
camberline angle distribution and the passage area distribution, as shown in figure 8.17. The
axes showing the contours and camberline angles are of course identical to the plots depicted
before, but are presented again in order to have them conveniently accessible when evaluating
the result. The passage area distribution are also plotted versus the dimensionless passage
distance. Similarly to the preliminary impeller analysis, it is a somewhat idealized area
distribution, assuming the flow completely follows the blades.

One final function exist; the possibility to create a three-dimensional representation of the
impeller. After clicking on the Calculate! button the possibility to enter an inlet rake angle
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Figure 8.15: Editable Bezier hub and shroud contours, together with handles with which the
designer can modify the contour shapes
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Figure 8.16: Editable Bezier mean camberline angles. Again Bezier handles are included to let
the designer freely select any distribution. The mean camberline at hub is drawn with a blue
line, while the shroud camberline is coloured red
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Figure 8.17: The result presented in the right hand axes of the window after clicking the
Calculate! button. The axes are shown collapsed for convenience
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Figure 8.18: A three-dimensional impeller geometry generated in the detailed impeller analysis
tool. This particular impeller had an exit rake angle of 2.7° with an inlet rake angle of 10°
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Figure 8.19: The view of the quasi three-dimensional impeller analysis. Note the small amount
of input data needed in the control panel to the left

opens up. This angle are typically adjusted to fine tune the exit rake angle, which must be kept
within reasonable limits. By entering an inlet rake angle and pressing the button Determine
3D geometry, the exit rake angle are presented in a result text box while the three-dimensional
geometry are generated. The resulting geometry is displayed in the main axes located at the
middle of the window. A typical three-dimensional geometry generated are shown in figure
8.18. Many times it is found that the exit rake angle becomes, in absolute values, very large. It
is then necessary to alter either the impeller contours, mean camberline angle distributions or
the inlet rake angle. In the worst case a complete redefinition of the design may be necessary.
Regardless of what changes must be made, a somewhat iterative approach is needed to find a
design working not only aerodynamically and thermodynamically well, but also one that is
manufacturable and feasible in practice.

8.3.4 Impeller internal flow analysis

The impeller internal flow analysis, or equivalently the quasi three-dimensional analysis, have a
start-up window as shown in figure 8.19. A control panel is located on the left hand side, where
input data must be entered. At the bottom a panel reserved for presenting results appear,
while two axes aid the display of the calculation findings. These axes are located in the middle
of the window and at the bottom right.

In order to run the impeller internal flow analysis the geometry of the impeller must already
have been generated. This is done by using the impeller detailed design tool, as described in
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the previous section. Thus, by clicking on the button Import detailed impeller geometry, the
results of the detailed impeller analysis tools are imported, together with the inlet properties
chosen for this design. Of course, these inlet properties may be altered and changed arbitrary
by the designer if desired. Also, the desired mass flow and rotating speed are imported; these
may also be changed at any time. The three-dimensional geometry is plotted in the main axes
located in the middle of the window, giving the user some feedback that the geometry has
been fetched. Such a plot looks exactly like the one shown in figure 8.18 and need no further
explanation. It is important to note that no changes to the geometry itself are possible using
the quasi three-dimensional design tool. This tool is strictly used for the flow analysis itself. If
changes to the geometry are needed one must resort to the detailed impeller design analysis.
This presents no problem since easy access to both tools are available with aid of the menu
bar at the top of the window.

Having set the correct inlet conditions, the quasi three-dimensional flow analysis may be
initiated by pressing the Run Quasi-3D analysis button. If the analysis converges without any
errors a dialogue box appears as shown to the left in figure 8.20. No results are presented if

) Analysis converged =] J |Analysis abrupted =]
. o - : Velocities containing imaginary parts were encountered
& Quasi three-dimensional analysis converged & The anakves was asured
—OK -OK

Figure 8.20: Different dialogue boxes appears depending on whether the analysis converges
or not. To the left is the dialogue box shown after a converged solution and to the right the
dialogue box when the quasi three-dimensional analysis did not converge

the solution did not converge, but the dialogue box to the right of figure 8.20 is generated.
Different reasons can exist when convergence problems appear, usually one can track the
issue to supersonic velocities on some of the blade surfaces. Since the analysis depends on a
stream function solution, it will diverge if velocities higher than the sonic ditto appears. Thus,
some parameter(s) must be altered. Sometimes it is sufficient to alter some inlet conditions
which can be done directly in the quasi three-dimensional analysis tool. In some cases, a
complete redefinition of the whole impeller geometry itself is necessary, which must be carried
out with the detailed impeller analysis tool. If instead the solution does converge, results are
presented and the axes at the bottom right presents the stream surface pattern as found by the
calculation. The result panel typically takes the form of figure 8.21. The results are a direct
consequence of the analysis, and gives the designer important information of the discharge
conditions, and the final mass flow of the impeller. This mass flow may be reduced during the
solution process due to choking conditions in the hub-to-shroud solution. A typical stream
surface pattern is shown in figure 8.22.

As was seen in figure 8.21 additional options appeared at the right hand side of the result
panel. These are plot tools, allowing the designer to determine what velocity results should
be visible on the main axes located in the middle of the window. By checking different
radio buttons, one can choose between relative velocities or Mach numbers. Also, the choice
between blade-to-blade flow velocities or hub-to-shroud velocities (through-flow velocities) can
be made with simple radio buttons. A set of check boxes are also available, from which the
user can pick certain stream surfaces to be included in the plot result. More than one stream
surface can be presented at the same time by checking multiple check boxes. Typical Mach
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Figure 8.21: The result panel of a quasi three-dimensional flow analysis showing single parameter
results to the left. To the right different options for presenting velocity distributions graphically
are available
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Figure 8.22: An example of stream surface patterns, whose positions are iteratively updated in
the quasi three-dimensional analysis

number distributions in the blade-to-blade plane is shown in figure 8.23. The Mach number or
velocity distributions are plotted against the dimensionless blade surface distance, enabling
all distributions to be shown in the same axes. Blue lines represent pressure side conditions,
while red lines indicate suction side conditions. In this figure, it is seen that the Mach number
distributions meet each other at the trailing edge, as implied by using the Kutta condition as
one of the boundary conditions.

If instead choosing hub-to-shroud relative Mach numbers results similar to those of figure 8.24
can be expected. Here, Mach numbers based on the meridional through-flow velocity are
presented as a function of dimensionless meridional distance. These can show quite large
differences between hub and shroud surfaces, the difference stemming from the solution of the
momentum equation. As has already been stressed, which stream surfaces to plot is in full
control of the designer, in the above example only two of the available seven stream surfaces
were shown.
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Figure 8.23: Mach number distributions as found by the impeller internal flow analysis. These
are blade-to-blade Mach numbers, where red lines indicate the suction side and blue lines the
pressure side. The velocity distribution with higher levels of Mach numbers is located at the
shroud, while the one with lover levels represents the hub surface
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Figure 8.24: Typical meridional Mach number distributions as found by the hub-to-shroud
flow analsysis. The top curve represents meridional through-flow Mach numbers at the shroud
surface, while the lower corresponds to meridional Mach numbers on the hub surface
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8.3.5 Vaneless diffuser analysis
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Figure 8.25: The start-up view of the vaneless diffuser design tool.
layout between this and the impeller analyses

Note the similarity of the

When starting the vaneless diffuser design tool the view of figure 8.25 is found. A control
panel where input data is to be entered is located to the left, a result panel at the bottom
and three axes; one in the middle, one at the bottom and one at the right hand side. In order
to make it as easy as possible for the user, all layout features have been kept as similar as
possible to the different impeller design tools.

The analysis allows the user to manually enter diffuser inlet data. This is well suited to use,
for instance, when no impeller design is known or the exact impeller discharge conditions are at
hand. Another approach is to import impeller discharge data form a previous impeller analysis
pressing the button Import values from impeller analysis. This does, of course, mean that an
impeller must have been designed using either the preliminary or detailed impeller design tool.

When satisfied with the design parameters, the analysis is run by clicking on the Create
diffuser button. By doing so, the complete analysis is run. In the bottom panel, the key results
are presented as shown to the left in figure 8.26. Of huge interest are the velocity distribution
within the diffuser, since the main purpose of the component is to lover the velocity. This
distribution is plotted in the axes at bottom, right next to the result panel. A typical velocity
distribution, as a function of the non-dimensionalized fluid path length, is shown to the right in
figure 8.26. A small kink in the velocity distribution may be seen in the inlet portion. This is
due to the vaneless diffuser pinch, where the diffuser walls converge quite rapidly. To a certain
extent, this contraction counteract the diffusing mechanism of the fluid particle radius increase.
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Figure 8.26: To the left a result panel of the vaneless diffuser design tool after running the
analysis. Note that most of the parameters relate to the diffuser exit condition. To the right
the velocity distribution, as a function of the non-dimensionalized fluid path length, within the
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Figure 8.27: The final results of the vaneless diffuser analysis tool. To the left are an axial
view of the diffuser shown, together with a fluid particle trajectory. To the right, the diffuser
contours as found by the analysis are shown
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In order to let the designer get a feel for how long the actual fluid path is, an axial view of
the vaneless diffuser is shown in the main axes, in the middle of the window. Together with
the diffuser outer and inner radius, an imaginary fluid particle’s trajectory is also included.
An example of such a plot is shown to the left in figure 8.27.

Since fluid paths tend to be quite long in vaneless diffusers, this graphical result is of very
high importance. Also, it makes it easy to study how the fluid trajectories alters when, for
instance, changing the friction coefficient. To the right of figure 8.27 are the hub and shroud
contours as determined by the analysis. How the contours are shaped is also an important piece
of information. One example could be if the diffuser pinch turns out to be too extreme. This
is easily spotted in this axes, and corrective measures can be taken by altering the geometry
data input.

Two of the results of the vaneless diffuser analysis are the static pressure recovery coefficient
and diffuser total (stagnation) pressure loss. These can be used as input data in the detailed
impeller analysis tool, as a mean to determine the impeller exit thermodynamic condition.
Hence, these are conveniently used in that impeller analysis tool. However, if the impeller
and diffuser are intended to work together, the inlet condition to the vaneless diffuser depend
on the impeller solution. Hence, an iterative approach is needed to correctly match these
components with each other, if one of these parameters is used as impeller input data. This
has also been noticed by Japikse (1996).

8.3.6 Wedge diffuser analysis

The last analysis tool available in LURC is the wedge diffuser design tool. When initiating this
tool the window takes the form of figure 8.28. The same features as in the vaneless diffuser
design tool can be recognised; a control panel to the left, a result panel and an axes at the
bottom, a main axes in the centre and an axes at the right hand side of the window. As can
be seen in the control panel, quite a lot of data must be entered. If an impeller analysis has
been run before entering the wedge diffuser analysis tool a similar feature as for the vaneless
diffuser design tool can be found; a button labelled Import values from impeller analysis. By
clicking this button, all inlet parameters of the wedge diffuser are imported.

After entering all necessary design data, the analysis can be started by pressing the
Create diffuser button. The analysis is then run, solving equations governing both the vaneless
space and the channel diffuser flow. When the calculation is finished, the result panel is
updated, presenting all vital results. Typical results of this analysis is shown to the left in
figure 8.29. Most of the results presented are related to the vaneless space and wedge diffuser
exit. Some geometrical features are also included, such as the number of wedges and each
channel’s area ratio. The axes also presents important results. Next to the result panel, an
axes shows the velocity distributions within the vaneless space and diffuser channels, see the
right hand side of figure 8.29. Coloured in blue is the vaneless space velocity distribution while
the red curve represents the corresponding distribution within the channel diffuser itself. The
velocities are plotted versus the non-dimensionalized fluid path, enabling both distributions to
be visible in the same axes. A quick look at this axes might lead to the conclusion that the
diffusion process within the channels are much more efficient than within the vaneless space
since the velocity seem to be lowered much more rapidly here. However, one must bare in
mind that the vaneless space is generally much shorter than the channel diffuser part and can
thus not be expected to lower the velocity as much as within the whole channel diffuser part.
Hence, when interpreting this axes it is important to remember that the velocities are presented
versus the non-dimensionalized fluid path. Further, it is seen that the velocity distributions
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Figure 8.28: The general outline of the wedge diffuser design tool. The main difference from
the vaneless diffuser tool is some additional input data
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Figure 8.29: The result panel (left) and velocity distribution in both the vaneless space and
within the channels (right) shown as a consequence of the wedge diffuser analysis being run
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don’t have the exact same velocities at the vaneless space - channel diffuser interface. This is
because some diffusion (modelled as isentropic) takes place in the inlet region of the wedges,
see chapter 7.

The other two axes presents results similar to what they were showing in the vaneless
diffuser analysis tool, see figure 8.30. To the left, the vaneless space trajectory can be seen
together with the channels created by all wedges. The general layout of the wedge diffuser is
quite interesting to observe, and also how the different channel properties (length to width
ratio, divergence angle) may change the same. Also, by simply comparing geometries with
the vaneless diffuser analysis tool, any designer will quite quickly get a feel for the quite space
efficient diffusion realized with a vaned diffuser. To the right of figure 8.30, the diffuser contours
are shown. The hub contour is coloured blue and the shroud contour red. Also displayed is a
black cross showing where the wedge diffuser is located.

As was the case for the vaneless diffuser analysis tool, within the results panel both the
static pressure recovery coefficient and diffuser total (stagnation) pressure loss are presented.
If one of these parameters are used in an impeller analysis to find the inlet state to the diffuser,
an iterative approach is required, as was described in section 8.3.5.

8.3.7 About

One final menu option exists at the top menu bar of LURC. By clicking on the button About a
very brief introduction to the program and the different design tools appears, see figure 8.31.
This serves as a quick start guide to LURC, and is by no means exhaustive.
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Figure 8.30: The geometry result of the wedge diffuser analysis. To the left are the trajectory
within the vaneless space shown, along with all wedges characterizing the diffuser. To the right
are the hub and shroud contours of the diffuser shown.
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—About LURC.

The radial compressor design suit LURC, Lund University Radial Compressor, is a
preliminary design tool mainly based on one-dimensional analysis methods. One of the
main features is the speed of which reasonable designs can be achieved. Further, itis
also rather educational to just "play” with the different design tools, in order to get a feel
for which paramters influence what.

The Impeller Preliminary Design tool is well suited for the non-experienced compressor
designer. Here, an impeller design can be achieved with as little input data as

possible. Currently, the preliminary design is restricted to flow coefficients not smaller
than 0.025 or larger than 0.20 if reasonable designs are to be arrived at. The results of
the preliminary design analysis can be used as input to the vaneless andfor wedge

diffuser design toolitools. A one-dimensional type of analysis is the foundation, with LU N D u N IV E R S lTY
most properties defined at the mean streamline.

The Impeller Detailed Design tool is instead wise to choose if more control of the generated design is required. More data must be given as
compared to the Impeller Preliminary Design tool, however different resuits appear. It is important to note that the modelling itself is not more
detailed, again a one-dimensional approach is adopted. Of course, the impeller exit conditions can be imported by any of the two diffuser
analysis tools. One additional option is also available; a 3D visualisation of the impeller design. The 3D geometry can also be used ina
subsequent quasi three-dimensional flow analysis. The Impeller Detailed Design tool optimizes the impeller inlet, with an as low relative inlet
shroud Mach number as possible.

Having generated a three-dimensional geometry in the Impeller Detailed Analysis, opens up the possibility of running a quasi three-dimensional
flow analysis within the impeller. Various inlet and operating conditions can be studied, giving the velocity distributions along the pressure and
suction side of a blade. Also, through-flow velocities are found. Note that this tool can only handle subsonic velocities, being based on a stream
function flow analysis. The analysis itself is based on seven axisymmetric stream surfaces, two of which are positioned along the hub and shroud
contour. Using this tool really gives an understanding of the importance of well chosen contours and blade angle distributions

The second most important component, right after the impeller, of any radial compressor is the diffuser. The Vaneless Diffuser Design tool
generates a reasonable diffuser geometry, based on either impeller outlet data from an impeller analysis or manually entered data. Of course, the
geometric features of the diffuser itself is under the designer's control. Classic vaneless diffuser equations are numerically solved, yielding as
accurate results as possible. In order to take the effects of wall friction into account, the designer can choose different variations of friction factors

‘Wedge diffusers are not only geometrically interesting, they also contribute to an efficient pressure recovery. In the Wedge Diffuser Design tool
the compressor designer can design the whole diffuser section, including the vaneless space right after the impeller. The vaneless space is
based on a vaneless diffuser calculation, while the wedge diffuser analysis is based on channel flow theory. Again, diffuser inlet data can be
supplied by a previous impeller analysis, or from scratch. The channels are characterized by classic dimensionless parameters, and the tool find
an outer radius as close as possible to the desired

LURC is the result of the master's thesis "A Preliminary Design Tool For Radial Compressors" written by Johannes Schiff during the year 2013,
For extraordinary interested designers, all theory behind the analyses may be found in the above mentioned report. | also take the oppertunity to
thank my supervisor Magnus Genrup at the division of Thermal Power Engineering {at LTH), whom was opening the possibility to conduct the
thesis under long distance circumstances

One concluding remark: keep on designing Your radial compressor welll

Figure 8.31: The About-view in LURC. This part of the program gives quick background
information and some guidance to the different design tools
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Chapter 9

Conclusions

This final part of the report gives some concluding remarks, mainly referring to the questions
given in section 1.3. Also, potential improvement areas of the analyses are brought up.

9.1 Questions answered

The first question that was to be answered were how to model the impeller in a quick and
efficient manner. This question has been answered in chapter 3 and 4 where two different
models were outlined. Although both models are one-dimensional, they have been implemented
in two separate ways. The preliminary impeller analysis provide a very fast mean to find an
impeller geometry and performance. Since many of the important parameters, such as impeller
internal efficiency, are determined completely within the analysis the results can be assumed
rather reasonable. The detailed impeller analyses is also a very fast tool, but will require some
knowledge of the user when selecting design data. It is not impossible at all to use this tool
and find an internal impeller efficiency above 1. Thus, this tool require, to a larger extent,
critical evaluation of the results calculated. Also, since the geometry of the impeller may be
determined completely by the designer it gives a huge freedom of design choices. However, it
again requires wise choices of the designer to get results applicable in practice. Nevertheless,
both models can with no doubt be regarded as both quick and efficient giving the first question
in section 1.3 two answers.

To answer the second question, if there is a method to study the impeller in a more thorough
way, the answer is simply yes. To dig a little deeper, chapter 5 gives the full length answer,
describing a type of analysis having found broad application within the turbomachinery field.
Streamline curvature methods are widely accepted throughout the industry, see for instance
Casey and Robinson (2008). This method must also be regarded very quick and efficient,
giving the designer an idea of the velocity distribution in matter of tenths of a second. The
quasi three-dimensional flow analyses implemented is based on the detailed impeller design and
any changes found necessary in the internal flow analysis is easily changed using the detailed
impeller analysis tool.

The third question found in section 1.3 related to the vaneless diffuser; how can an analysis
method for these components be found? The answer is given in chapter 6. Here, a model taking
not only compressible effects but also the phenomena of wall friction into account has been
employed. Using this type of model is an improvement compared to the very simple constant
angular momentum theory. Although the use of a friction factor can by no means model all
phenomena encountered in a vaneless diffuser, it serves as a convenient and efficient way to
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incorporate deviations from constant angular momentum behaviour. Further, the computer
implementation allows a varying friction factor along the fluid path, giving the designer an
extra degree of freedom when analysing a vaneless diffuser.

Finally, the last question, in what way a vaned diffuser can be modelled, is answered
throughout chapter 7. In this work, the analysis was focused towards channel diffusers of
the wedge type. Since all vaned diffusers contain some amount of vaneless space, the theory
of vaneless diffusers was again applied to this part of the diffuser. Within the channels
compressible channel flow theory was applied, again making use of the friction factor concept.
Using the one-dimensional methods for modelling diffusers gives rise to fast solutions and
reasonable result of the expected performance levels. However, the flow leaving the impeller is
everything but one dimensional, something any designer must keep in mind.

Looking at the computer program in general, it is a rather straight forward design suite,
enabling the designer to quickly change what design tool to use. Also, many of the different
analyses are interconnected, enabling results from one module to be used in another. Using
computers of current standard, solving problems in any of the design tools takes no longer
than a few seconds. The program thus fulfil the main objective; being a fast and efficient
computer program, taking many different aspects of the compressor into account. Also, a lot
of effort have been put in to make LURC as easy and intuitive as possible to use. One of
the intentions has been to allow any engineer interested in radial turbomachinery to use the
program, regardless of what knowledge level he or she has.

9.2 Future work - possible improvements

Developing a modelling program such as LURC one quite quickly understand the limitations
of one semester’s work. There is simply not enough time to include and model all phenomena
as one would want. Below is a list with different areas where future work could be focused.

e The inlet section of the compressor has been neglected in this work. Some model for this
rather important section could be included, somewhat altering the flow field into the
impeller

o At outlet of the impeller, the flow has been assumed one dimensional. Japikse (1996)
presents the now well known theory for the jet and wake model yielding more accurate
results at this location. This model should be feasible to implement together with the
detailed impeller design tool

e The quasi three-dimensional flow analysis could be extended to handle supersonic ve-
locities. This makes it necessary to depart from a stream function solution of the
blade-to-blade flow. Inclusion of such a solution would make the analysis very stable,
with less tendency to diverge during early iterations

e To take the quasi three-dimensional analysis even further, including effects of "spanwise"
mixing in the quasi three-dimensional analysis, meaning fluid exchange between different
stream surfaces, would be advantageous. Also, some mean of entropy increase along
stream surfaces would be desirable to model

e The semi vaneless space of the wedge diffuser is a zone having an extremely complicated
flow field. Modelling this area as isentropic is convenient but also a rather crude
assumption. Thus, finding a model for the interface between the vaneless space and
channel diffuser part is a potential improvement area
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e No model has been incorporated for the volute, following the diffuser. This is a very
important component, usually having an impact of the whole compressor characteristic.
Breambussche (2013) provide a very thorough analysis of this component. Alternatively,
a model for return channels may be implemented

e So called splitter blades have been neglected. These are blades situated at the rear part
of the impeller, in between the full blades, spanning part of the impeller flow passage.
The geometry generation and quasi three-dimensional flow analysis of the impeller could
be extended to include these
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Appendix A

Rotated coordinate systems

When constructing different geometrical objects, for instance the impeller contours, it is
sometimes advantageous to make use of tan ao for describing the slope. This approach works
fine until large slopes in the vicinity of 90° angles are encountered. Here, the slope becomes
infinite and any calculation would fail. One way to overcome this drawback is by utilizing
rotated coordinate systems as outlined by Aungier (2000). If the coordinate system is rotated,
the 90° angle in the original coordinate system is no longer 90° in the rotated one. A typical
example is shown in figure A.1. If, for instance, the slope of the point (X3,Y3) is needed in a

Figure A.1: An example of a typical curve encountered in radial compressors, together with
the original x — y coordinate system and a rotated x — n coordinate system

calculation one would end up with an infinite slope in the non-rotated coordinate system. The
solution is therefore to rotate the coordinate system by the angle ¢.oorq- This angle is chosen
so the rotated y coordinate direction coincide with that of a straight line drawn from the start
to the end point of the contour. Hence

SIn Geoord = L 2_ h 2 (Al)
\/(XQ_Xl) + (Y2 — Y1)

COs ¢coord = X2 ; X 2 (Az)
VX — X1+ (Y2 - V)
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and the rotated coordinates are given by

X = X COs choord + ysin choord (A3)

7 = Yy cos ¢coord — xsin d)coord (A4)

In the rotated coordinate system the new end point slopes becomes
77/1 = tan (aCl - ¢coord) (A5)

77/2 = tan (aCZ - (bcoord) (AG)

The necessary calculations are carried out in the rotated coordinate system. However, the
solutions are usually needed in the non-rotated frame of reference, and the results need to be
rotated back to the original directions. This can be accomplished with the aid of

T = X COS Peoord — 1SN Peoord (A7)

Y = 1 COS Peoord + X SIN Peoord (A8)

The method is rather straight forward but one must be careful when calculating the angle of
coordinate rotation, ¢.,orq- The quadrant to which ¢ .y extends to generally depends on
which formulas of A.1 and A.2 is chosen. For instance, a negative change in the z-direction
is not recognized by equation A.l. If instead equation A.2 is used a negative change in
the y-direction is not sensed. Therefore any calculation must recognize the change in each
coordinate direction and take actions thereafter.
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Appendix B

Distribution of equally spaced
points along a line

Typically when working with quasi normals it is desired to create these between different points
along two lines. The points being connected by the quasi normal lines should pe positioned at
the same dimensionless distance along each line. However, when creating lines it is sometimes
hard, not to say impossible, to distribute the points describing the line with equal distance
between them. To address this problem the below outlined method is used in all analyses here.

The (two-dimensional) lines being used is described by two vectors. If the line is being
created in the z — r coordinate system the two vectors would contain values for a number of
points describing the curve. One vector contains the z-values and the other the corresponding
r-values of all points. An example of a curve with points distributed unevenly is seen in

figure B.1.
(Zn,Tv)

(Z45T4)

Figure B.1: A typical curve defined by unevenly distributed points. The total number of points
is N
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The first step is to determine the length L of the original line. This is a rather straight
forward calculation, given by

N—-1
L= (i1 —2)+ (rip1 — 1) (B.1)
=1

where i is an index denoting the current point and N the total amount of points. After deciding
how many points N, to be evenly distributed along the line, each line segment’s length [ is

determined by
L

Ne —1
The line segment [ represents the line length between the evenly distributed points.

When determining the location of all new points, a curvilinear, rotated, coordinate system
is employed putting the y-axis along the original curve. Actually, the n coordinate is not
needed at all.

The procedure is described with the aid of figure B.2. The first point of the line will of
course coincide with the first evenly distributed point. Hence, the curvilinear coordinate system
is first placed with it’s origin at the first point. The direction of the coordinate system is
determined by the current point and next unevenly placed point.

The next step is to determine the distance between the current point and the next unevenly
distributed point. In the case of figure B.2a, the distance is obviously longer than the desired
spacing [. Therefore, the next point is obtained simply by moving the distance [ along the x
coordinate direction. The curvilinear coordinate system is thus moved to this point, as shown
in figure B.2b. This procedure is repeated until a situation as in figure B.2c occurs. Here,
the distance [ is longer than the distance between the current point and the next unevenly
distributed point. The solution is to calculate this shorter distance I’ and then position the
coordinate system the distance [ — I’ along the next line, connecting the following unevenly
distributed points. This leads to the situation shown in figure B.2d. With these two calculation
modes, all approximately evenly spaced points can be distributed along the line.

The method is only approximate, since placing the "new" points along the same line will in
general not create the same line. This can be seen in any of the cases in figure B.2. When
turning into a new direction along the "old" line, the "new" line would cut any corner upon
connecting a line segment between the evenly spaced points. The easiest way to reduce these
errors is to use a larger amount of evenly spaced points than unevenly distributed points.

When finished, two new vectors with z and r values will have been created, enabling any
subsequent calculation being performed with equally spaced points.

l:

(B.2)

132



r
n
X
a
(Z1yr1
yA
r
b
(Z1,11)

z

r
C
(Z4,11)

VA

r
d
(z4,14)

A

Figure B.2: Four examples of various situations encountered when positioning approximately
evenly spaced points. The curvilinear coordinate system x — 1 is moved to each new point
(marked with "X") in turn
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Appendix C

Calculation of passage area and
mean streamline

The determination of flow passage areas are vital in all analyses and can conveniently be
used in both passages with blades, such as in the impeller, or in passages without any blades,
such as in a vaned diffuser. Also, the mean streamline is a vital piece of information in most
one-dimensional analyses. As was described in chapter 3, the mean stream surface (and the
mean streamline) is here considered to be the surface (or line) containing equal amounts of
mass flow above and below it self. As will be noted, this analysis heavily depends on the use
of quasi normals in the whole passage to be analysed.

The input needed are the mathematical description of the curves (hub and shroud) defining
the axisymmetric flow passage. The quasi normals are created between evenly spaced points
along the hub and shroud. Thus the first step is to use the method described in appendix B
to distribute the chosen amount of points evenly. If blades exist, the blade angles vary along
the hub and shroud. In order to use the blade angle corresponding to the point of interest,
the blade angles must be determined with the same resolution as the hub and shroud contour.
The result is that each point describing a contour not only is associated with two geometrical
coordinates, but also a blade angle. Some features of the method have similarities with the
procedure for creating the shroud contour in chapter 3.

A quasi normal is created between the current point on the hub and shroud contour. Along
this line, a rotated coordinate system is located, with the y-axis in the direction of the quasi
normal. The deviation of the quasi normal from an actual normal is taken into account with the
aid of the angle € as outlined in chapter 2. As described for the preliminary impeller analysis,
chapter 3, a mean value of the shroud and hub deviation is used. In order to determine €, the
local slope of the contour is needed. Here, a simple central differentiation scheme is employed
for determining this slope. In the rotated coordinate system, the values of the points adjacent
to the current point is used to calculate the slope. With figure C.1 in mind this would imply,
taking the shroud as an example, calculating the slope of the shroud before and after the point
of interest. The shroud slope before the point may be found from

OCs,i,1,4+An = arccos X ;XH 5 (C.1)
\/(Xz‘ — Xi—1)" + (0 — mi-1)

under conditions when the change in 7 is positive. Would the change in 1 be negative, the
slope would be given by

ACsi1,—An = 2w — ACs,i,1,+An (02)
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Figure C.1: The main procedure when calculating ¢ at both hub and shroud. Adjacent points
(141 and ¢ — 1) to the current point i is also shown. A rotated coordinate system x — 7 is
employed

in the same manner, the shroud slope after the point is instead calculated from

Xi+1 — Xi (C.S)

QCs,i2,4+An = ATCCOS - -
\/(Xi+1 —Xi)" + (Mit1 — i)

which is true when the change in 7 is positive. Would the change in 7 be negative, the slope
would be given by

QCsi,2,—An = 2T — QCs i 2 4+ An (C4)

The contour slope at point ¢ is then determined from the average of the two angles

1

acsi = 5 (s,itean + QCsi2,+An) (C.5)

Finally, the deviation angle €,; would be given by

€s,i = 377-( — QCs,i (06)
in the rotated frame of reference. The exact same procedure is undertaken for the hub and
need no extra explanation. However, special treatment is needed for the first and last point
since they don’t have points before and after themselves, respectively. The solution is to just
take the current and single adjacent point into consideration when determining the slope (this
represents a simple forward or backward differentiation scheme).

The next step is to actually determine the passage area, including effects from blade
blockage. The calculation must be divided into several discrete steps along the quasi normal,
since the blade angles vary (linearly) along the quasi normal. Since the mean streamline also

is to be determined, steps with equal amounts of passage areas is suitably used (assuming the
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Detail A !

Detail A

Figure C.2: The main features of the passage area determination. The left figure gives an
overview of the problem, showing a typical gas path to be analysed. The middle figure shows
the details of the calculation, and the last figure to the right displays the main features of a
blade segment

fluid properties are homogeneous in the whole passage). Figure C.2 supports the following
reasoning. This is actually the very same figure as shown in chapter 3, emphasising the very
similar procedures. An iterative approach is needed as shown in figure C.3. Here the calculation
is begun by guessing the size of the N equal incremental areas of the current quasi normal.

X; is the x coordinate at a blade segment’s lower end, as seen in figure C.2. The corre-
sponding blade angle at the position x; is given by

Xj — Xhyi
i = Phi + (Bs;i — Ps,i C.7
By = B (B = ) 2L ©7

where 5, ; and Bs; are the blade angles at hub and shroud of the current quasi normal i,
respectively. xp,; denotes the rotated x coordinate at hub, while x,; denotes the corresponding
value at shroud. The incremental annulus area can be approximated by

_ Zrt
Aincr,j = (Xj+1 - Xj) <27Trj - = ? ) cose (08)
cos f3;

here, x;4+1 is the coordinate ot the blade segment’s upper end. 7; is the mean radius of the
area increment in the non-rotated frame of reference and Bj is the mean blade angle of the
same element, defined by

2z _ Bit+ Bt

Bj = g
Further, as is seen in equation C.8, the term cose has been included. Incorporating this
term here will make the determination of the mean streamline coordinate somewhat more
accurate, since measures are taken for compensating for the not perfectly normal quasi normal.
Geometrically, this can be seen in figure C.2. The passage area determined is the ideal one,
assuming the fluid follows the blades without any deviation. Therefore the incremental passage
area Apgssage,incr,j can be calculated by

(C.9)

Apassage,incr,j = Amcr,j COS Bj = (Xj-i—l — Xj) (271'?7]' COS Bj — Z[tB) COS € (C.lO)
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Given parameters:
One hub and one shroud contour
Multiple quasi normals connected
between these two lines

Do for each quasi normal

Guess the value of the N equal
area increments along the <<
quasi normal

Y

Starting from the hub coordinate,
guess the "next” X value <
from the guessed area increment

Y

Y

Calculate the mean blade angle
Bjmean Of the increment

Y

Calculate a new “"next” X value
with the aid of the guesses area
increment

'

Does the

calculated "next™\_No
X equal the

guessed

X?

Repeat until the last X value is known
Change the incremental passage area accordingly

No Last
area increment?

Does the last X
value coincide with
the value at
shroud ?

No

| Passage area determined

Figure C.3: The iteration loop to determine a passage area along a quasi normal. Note one
outer iteration loop for the incremental passage areas, and one internal loop for determining
the "next" x value.
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Aannular
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Apassage

Figure C.4: The calculation from an annular area to a passage area. Only the area between
two blades are shown, when performing the calculation outlined here, the area in the whole
circumference is determined

as is seen in figure C.4. The first calculation is performed at the hub, since the first x coordinate
is known here. From equation C.10 the "next" x value, x;+1, can be determined. Hence, the
next calculation is begun at this new y value, and the procedure repeated until the last area
increment has been used. At this point the last determined x value, x i1, should correspond
to the value of the shroud along the current quasi normal. Generally this is not the case, and
the whole calculation is repeated with altered values of the area increments until convergence.

Having determined the area increments, the passage area Apgssage,; at the current quasi
normal 7 is easily obtained by a simple multiplication according to

Apassage,i = NApassage,incr,j (C 11)

Since equal area increments was chosen and the flow is assumed homogeneous in the whole
flow passage, the mean streamline coordinate reduces to the value of the middle y coordinate,
Xn~/2+1- This method also lend itself to easily determine the local passage width. By simply
taking the difference of the hub and shroud x values, and compensating for the quasi normal’s
"non-normalness" through

bi = (xn — x1) cose (C.12)

the local passage width b; is determined.

Finally, the mean streamline length Lg can approximately be determined from the now
known mean streamline coordinates, see figure C.5. The coordinates are assumed to be rotated
back in the non-rotated frame of reference. In this figure the mean streamline coordinates
determined by the passage area method above is situated in one and the same (meridional)
plane, see the below line. However, the mean streamline will change direction and not stay in
this meridional plane. Here, the flow is assumed ideal, in the sense that it follow the blades
perfectly. Hence, a simplified mean streamline (or mean camberline) is shown as the top line
in figure C.5, constructed of straight line elements. The mean blade angle of a line segment is

B = % (C.13)
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Figure C.5: A schematic representation of the method for determining a mean streamline
length. An arbitrarily three-dimensional representation of a streamline is shown above. Below,
a schematic two dimensional streamline from the above passage area calculations are shown.
This line lies in a meridional plane

and the length of the line segment [5; would be

2 2
i+l — 2i)" + (Tig1 — 1y
lsi_\/(z+1 A+ (v 1) (C.14)
’ cos (3;

The total length of the mean streamline (with N number of points) are found from

N-1
Ls= Yl (C.15)
=1

Of course, since the flow was assumed ideal, following the blades perfectly, the mean camberline
length Lp equals the mean streamline length Lg.
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Appendix D

Crossing of blade and stream
surfaces

When performing a blade-to-blade flow analysis it becomes necessary to find the coordinates
in all three dimensions of where stream surfaces connect with blade surfaces. The method
of finding these coordinates is based on blade surfaces created of the linear blade segments
presented in section 4.2.

In order to find the point of crossing the stream surface must be characterized by a set
of points, between which straight lines are drawn. The stream surface’s points are only
known in z and r coordinates. Again, a rotated coordinate system is employed, as shown in
figure D.1. Looking at point 7, the angle of the rotated coordinate system to the axial direction
is determined by

it — s
Beoord = ArCCOS ( Critl Cri ) (D.1)

\/(ZC,H—I —204)° + (rois1 — roi)’

Having this rotated coordinate system, the stream surface segment between points ¢ and 7 + 1
are fully determined by the coordinate y. Of course, the stream surface segment has a constant
1n = n¢ coordinate. In order to find the location of the surface crossing, the dimensionless
parameter ¢ is introduced denoting the dimensionless distance along a blade segment. Any
blade surface element coordinate can then be determined by

Tps = Thps + & (T bs — Thips) (D.2)
Ybs = Ynbs + & (Ys,bs — Yh,bs) (D.3)
Zhs = Zh,bs + & (Zs,ps — Zhibs) (D.4)

where subscript bs denote blade surface coordinates. Relation D.2, D.3 and D.4 are a useful
set of equations since all blade coordinates at hub and shroud are known if, again, using the
three-dimensional blade representation described in section 4.2. The radial position of a point
along the blade surface can be expressed as

Tbs = \/xis + Yp = \/(JEh,bs + & (@ops — Thps))? + Wnbs + € Wsbs — Ynbs))

= \/7“;2171,8 + 26 (s (Ts bs — Thibs) + Ynbs (Ys,bs — Ynbs)) + &2 ((ws,bs — Zhps) + (Ysbs — yh,bs)z)
(D.5)
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Blade surface

Blade segments
Stream surface

Figure D.1: The basic three-dimensional geometry of a stream surface crossing a blade surface.
The stream surface is constructed of linear line segments, while the blade is constructed of
linear blade segments. ¢ denotes the non-dimensional distance along a blade segment

Both the radial coordinate rps and axial coordinate z,s are easily expressed in the rotated frame
of reference following the procedure outlined in appendix A. The coordinates are consequently
given by

Xbs = Rps COS choord + Tbs sin ¢coord (DG)

Tlbs = T'bs COS ¢coord — Zbs sin (Z)coord (D7)

An iterative solution is required to find the actual coordinates of the surface crossing; £ is altered
until the 7y coordinate of the point on the blade surface corresponds to the nc coordinate of
the stream surface segment.

Before any iterative calculation is initiated, a first check to find out whether the stream
surface element of interest crosses the "current" blade element is necessary. If this is not
the case, the iteration will most likely fail to converge; anyhow implausible coordinates of
the crossing would appear if convergence where achieved. The check is rather simple, and
incorporates another rotated coordinate system, see figure D.2. This time a coordinate system
is placed with it’s n axis along a straight line extending from the hub to shroud, at the "current"
blade element. Note that the check is carried out entirely in a z — r plane. The exact same
procedure to find the angle of the rotated coordinate system as above is used. Also, the next
point, 7 + 1, of the stream surface must be expressed in the rotated frame of reference. If the
x value of this "next" point is larger than the x value of the blade element line, the stream
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\

(Zs,bs)rs,bs)

(Zh,bss Th,bs)

Figure D.2: The procedure for determining whether the stream surface element actually cross
the "next" blade element. A rotated coordinate system is placed with it’s 7 direction along the
blade element

Give:
Stream surface and
blade surface geometry

Do for all blade elements

Move to next
stream surface
element

Do current
stream and blade
surface
cross?

No

Alter § accordingly

All crossing coordinates
known

Figure D.3: The iterative calculation to find the coordinates of all blade and stream surface
crossings. Note that the procedure must be repeated for all blade elements
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surface must cross the blade element. If it is instead found that the line segments do not cross
one must consider the next stream surface element, and check whether this element cross the
"current" blade element.

The complete iterative method is outlined in figure D.3. After finding all & values of the
crossings, the corresponding blade surface coordinates are found through equation D.2, D.3
and D.4.
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Appendix E

Determination of meridional and
tangential equilibrium in vaneless
space

When determining the ordinary differential equations to solve the compressible flow in an
annulus vaneless space it is needed to consider the meridional and tangential force equilibrium.
These two relations are derived here, with the fundamental ideas outlined by Stanitz (1952).

All forces stem from three sources; pressures, wall shear stresses and accelerations. First,
turning the attention to the meridional equilibrium equation, figure E.1 shows the pressures
and shear stresses of interest. As is seen in this figure, two contributions of pressure forces
can be found to have an impact in the meridional direction. One of these are the pressure
forces working exactly in the meridional direction at the top and bottom of the fluid element.
The differential change of pressure forces over the element (directed in the negative meridional
direction) can be expressed as

d (pbrdd)
dr

d (pbrd®)

d E.1
dr " (E.1)

(pbrdﬁ + d?") — pbrdf =
The other pressure forces of interest is the ones working at the sides of the fluid element,
somewhat inclined to the positive meridional direction. The resultant differential change in

these pressure forces (in the positive meridional direction) would be

(p + dpdr) (brd& 4@ (b”w)dr) — pbrdd

dr dr
d (brdf d dp (brdf
= pbrdf + p (br )dr + P b ddr + —p( r )drdr — pbrd0 (E.2)
dr dr dr dr
d
~p (brdd) dr
dr

where the last relation neglects high order terms. Hence, the resulting pressure forces in the
negative meridional direction becomes

d (pcl;:dﬁ) dr — pd (brdf)

= @brdﬁdr
dr

dr
dr (E.3)

Resulting pressure forces =
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Figure E.1: Sketch of the pressures and wall shear stresses taken into account when determining
the meridional equlibrium equation

The friction forces, instead, operates on the two remaining surfaces. Here, an incremental
surface area dA is approximately given by

rd@dr

sin ao

dA =

(E.4)

and the total friction force directed in the negative meridional direction from both walls will be

dod dd
T, " :Cprzcosar, 4
sin ao sin oo

Resulting friction force = 27, cos« (E.5)
where equation 6.2 was utilized to eliminate the wall shear stress. Both the pressure and friction
forces need to counteract the forces stemming from two different accelerations directed in the
positive meridional direction. One of the acceleration forces is the centripetal acceleration from
the tangential velocity component, expressed as

C? C2sin
Centripetal acceleration = —2— = ¢ ¢ (E.6)
sin ac r

The other acceleration needed to be taken into account origins from the change in meridional
velocity. This acceleration can be written

d
Meridional acceleration = : =

(E.7)




In order to determine the forces stemming from the different accelerations, the mass of the
fluid element need to be determined. By using equation E.4 this becomes

brdf@dr

sin ao

dm = pbdA = p

(E.8)

Thus, the total differential force in the meridional direction due to different accelerations can
be written

brdfd 2 si dChp,
Resulting acceleration force = p T ! (CB shac ¢ Ch sin ac>
sin a¢ r dr
2 ac (E.9)
= pbrdfdr (‘9-— —Cm )
T dr

Equating the sum of equations E.3 and E.5 with equation E.9 yield the meridional equilibrium
equation as

2 2 . \2
1dp+c m _ % —C’dem _ (C'sin «) —CCOSQM

-—— E.1
pdr I bsin ao r dr r dr (E-10)

The tangential equilibrium equation is derived in a similar way, but contains fewer components.
Here, only the friction forces can balance the acceleration of the fluid in the tangential direction.
Again, the wall friction operates on a differential area given by equation E.4, and thus the
frictional force in this direction becomes

rdfdr

dfd
" Cpr’2 sin o —
ao sin oo

(E.11)

r
Resulting friction force = 271, sin «
s

This force is directed in the negative tangential direction. As was the case for the meridional
equilibrium, the acceleration consists of two components. The first acceleration appears due to
the change in tangential velocity, and is given by

(%) _

Tangential acceleration =1

<1dCb der)

dt r dt r2 dt
_ dCydr  Cydr (E.12)
Cdr dt r dt
= Cp, sin a¢ (dC’g — Ce)
dr r

The second source of tangential acceleration emerge from the Coriolis acceleration, and becomes

sin a¢

Coriolis acceleration = 2C,,Cy (E.13)

r
Hence, the total acceleration are the sum of the two contributors, both of which are pointed
in the positive tangential direction. Equation E.8 determines the mass of the fluid element,
therefore the force due to accelerations becomes

brdfd d
Resulting acceleration force = p r TC'm sin a¢ <C€ + Ce)
sin ao dr r (E.14)
dCy Cy )
= pbrdfdrCy, | — + —
dr r
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Upon equating equations E.11 and E.14 the tangential equilibrium is determined through

C?si dC C dC'si C'si
—Cy 'sma:Cm G—I—Cm—e:C’cosozisma—l—Ccosa Sma
bsin ao dr r dr

(E.15)

Both the meridional and tangential equilibrium equation are now known. These can be
used in the final derivation of the ordinary differential equations for determining the flow
properties at any radius r of an annulus vaneless space.
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Appendix F

Runge-Kutta numerical integration
of ordinary differential equations

The Runge-Kutta integration is a rather straight forward method of integrating ordinary
differential equations. The solutions are performed in discrete steps, and the method is
sometimes referred to a "stepping solution". When solving a problem with a Runge-Kutta
integration, from the starting point, estimations of the function’s value in the next point is
found by approximating the local derivatives. Here, the method outlined by Riley, Hobson
and Bence (2006) [22] is the foundation to derive a second order Runge-Kutta solution.
The procedure presented below can be generalized to higher orders of solution, however the
qualitative reasoning is exactly the same and suffice for the current discussion.

The parameter y is a function of x and the derivative of y with respect to x can be written

dy

— = [ (=, F.1

) (F.1)
where f (z,y) is used in order to make the following expressions somewhat easier. From here
on, subscript ¢ will denote the current (known) point, while subscript i + 1 is the "next" point,
desired to be determined with aid of the Runge-Kutta integration. The change in x between
the two points, the step itself, is denoted h. Hence

h = Ti+1 — T4 (FQ)

One advantage of using the Runge-Kutta integration is that no other than first derivatives
need to be determined. To still obtain a high accuracy, these terms are arranged is such a
manner to approximate the higher orders of derivatives. The very basis of the Runge-Kutta
method is Taylor series expansions. First, a second order expansion around point ¢ is made
according to

h? df;

Yit1 = yi + hfi + ?%Jro(hza)

=i+ hfi+ h; (‘3};" +f,g];> +0 (h3)

(F.3)

where O (h3) denotes terms of higher orders neglected in what to follow. It is assumed that
this relation can be expressed as

Yir1 = Yi + oahfi + cohf (x; + Brh, yi + Bahfi) (F.4)
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where the coefficients a and 8 are arbitrary constants, but must be chosen so as to make
expression F.4 equal equation F.3. As is obvious from the above relations is that the method
approximates derivatives away from the point ¢ by using weighted function arguments x and y.
Again using a Taylor expansion, the function f; with weighted arguments can be expressed as

ofi
ox

+w%hﬁaﬂ—%0(hﬂ (F.5)

[ (zi + Brh,yi + Bohfi) = fi + B1h 3y

where any terms of higher orders are discarded. Substituting equation F.5 into equation F.4

one obtain
: + Bafi : F.6
ox 2 ()y ) ( )

Comparing equations F.3 and F.6, it is seen that the constants o and 8 must fulfil the following
criteria

Yir1 = yi + (a1 + o) hfi + agh? (51

a9 = 1-— (6751 (F?)

and
1

2 (1 — 051)
where the constants 1 and 32 should be equal, as is obvious when inserting them in equation F.4.
At this point four unknowns («, ag, f1 and 52) exist, but only three equations. Hence, some
arbitrariness exist in specifying the absolute values of these parameters. A typical choice is
a1 = 0.5, which would yield the final equation in the form of

p1= P2 = (F.8)

1
el =¥i + 5 (a1 + a2) (F.9)
where a1 and a9 is determined by
ar = hf (v, y;) (F.10)
ag = hf (z; + h,y; + a1) (F.11)

In the same manner a fourth order Runge-Kutta solution (many times termed "RK4") can be
written

1
Yit1 = Yi + 6 (b1 + 2b2 + 2b3 + by) (F.12)

where b1, be, b3 and by is determined by

b1 = hf (i, y:) (F.13)
1 1
bo =hf (Hfz + §h,yi + 2b1> (F.14)
1 1
bs = hf <$1 + ih,yi + 2b2) (F.15)
by = hf (i + h,y; + b3) (F.16)
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Appendix G

One-dimensional channel flow

When analysing the vaned diffuser, or more specifically, the vaned channel diffuser of the
wedge type, the need for an approach capable of determining one-dimensional compressible
flow including effects of friction becomes apparent. Further, any change in passage area must
be sensed by the model, since a main feature of the diffuser is a diverging flow passage. Here,
the main ideas presented by Greitzer, Tan and Graf (2006) are employed in order to derive
the governing equations. As will be noted, some features are similar to the derivation of the
differential equations enabling the vaneless diffuser analysis presented in chapter 6. For the
sake of completeness, all relations are derived from simple fluid dynamic relations, even though
some expressions will take the exact form found in the vaneless diffuser analysis. A schematic
sketch of a typical flow channel is shown in figure G.1. This figure depicts a rectangular
section, however, the derivation is valid for any channel shape. Also shown are the notations
for the passage width w, and the passage height b. Generally these vary along the coordinate
x, hence a variable channel passage area A is implied. The analysis being one-dimensional, all
parameters of interest will only (uniformly) vary along the x direction.

A relation relating the gas properties to thermodynamic dittos is the ideal gas law, equa-
tion 2.1. Taking the derivative of this, and noting that the specific gas constant R is constant
along the channel one obtain

Ldp _1dp 14T -
pdr pdx T dx
where the derivative was divided by the ideal gas law itself. Noting that the mass flow is
constant at any cross section, a one dimensional continuity equation anywhere in the channel
takes the form of

m = pCA = const. (G.2)

Taking the derivative with respect to x, and again dividing the result with the equation itself
yields
ldp 1dC 1dA
il e et Sl G.3
pdz + C dx + A dx (G-3)
Equation 2.8 instead relates the stagnation and static temperature to the Mach number M.
By taking the derivative of this equation, the result is

ATy dT 1 —1dM?
Mo _ <1 +1= 5 M2> T S (G.4)

dr ~ dx 2 dzr
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Figure G.1: A schematic fluid channel, showing the main features used in the derivation. The
coordinate x is directed along the channel, where the width w and height b characterize the
passage area A. Also shown are an incremental passage element with length dx along the
channel

If this is divided by the governing equation 2.8, the change in stagnation temperature can be
written

1dly 14T | FM? 1 dM?

Tode  Tdr 14 G102 M2 dr

(G.5)

Another useful relationship can be found by taking the derivative of the Mach number itself,
equation 6.3. Solving for the velocity C, one find
1dC 1( 1 dM?> 1dT
—— = —— 4+ =— G.6
C dx 2<M2 dx +Td:x> (G-6)

One additional equation must be found in order to relate the difference in pressure in the
channel to the acceleration and friction forces encountered. This can be achieved by studying
the different forces acting on an incremental fluid element, such as that seen in figure G.2.
This figure shows a section of a fluid element, covering the whole passage. In order to yield a
steady equilibrium flow, the sum of the forces from upstream and downstream fluid, friction
and acceleration must equal zero. Starting with the pressure forces, these stem not only
from the pressure difference in the channel’s direction, but also from pressure exerted by the
walls against the fluid. Since the flow passage area in general changes, these forces have two
components where only one is directed into the one dimension considered, the x direction. In
total, these pressure components must act on the change in passage area along the incremental
length dz, that is on the area dA/dz - dx. It is assumed that the overall magnitude of these
wall pressures can be thought of as mean pressures along the walls. Hence, the total pressure
forces in the megative x direction become

d dA
pressure forces = (p + pda:) (A + dx) —pA
dx dx

1 A
— <p + dpdx) d—d:c R Ad—pd:ﬁ
dx dx

(G.7)
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Figure G.2: An incremental fluid element filling the whole channel area. Only a two-dimensional
section of the element is shown, hence only two of the surrounding walls. It is understood that
wall friction shear stresses act around the whole circumference of the element

where the last equality implies discarding high order terms. In order to cope with the wall
friction forces, the hydraulic diameter dzr concept is useful. A hydraulic diameter is defined by

B 4A
~ wetted perimeter

(G.8)

Here, the wetted perimeter is the total circumference of the channel. For the rectangular
section of interest the wetted perimeter would equal 2 (b + w). The friction forces exerted on
the incremental fluid element’s wall area A,, can consequently be written

friction forces = T,dAy = Ty (wetted perimeter) dz
4A 4A 1 (G.9)
= —1udr = —C;=pC?d

i TwdX 4 y5pC dz
To eliminate the wall shear stresses, the friction factor C'y was introduced through equation 6.2.
These friction forces are directed into the negative flow direction. In order to eliminate the
density the following useful trick is employed, making use of both the ideal gas law and the
definition of Mach number

pC? _ pC?
pC? = T = RT = ypM? (G.10)
Combining the above relations yields
_ 2A 9
friction forces = EC’f’pr dx (G.11)
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Finally, turning the attention to forces associated with any fluid acceleration, the acceleration

itself can be written
ac  dC dj _dC

dt  dedt dx
The mass of an incremental fluid element filling the whole passage can, for sufficiently small
incremental steps dx, be determined through

(G.12)

2

M
dm = pAdz = WQC’? Adz (G.13)

again using the density trick, equation G.10. Thus, the acceleration forces become
: dc 2
acceleration forces = Edm = yYM"pA——dx (G.14)
x

Summing all forces acting on the fluid elements yields the final equation needed to solve the
equation governing the one-dimensional flow. Hence

dp 24 9 5 ,1dC
A—dx 4+ ==CrypM>d M?*pA——"dz =0 G.15
ot g CrpMide + yMTpA o de (G.15)
or equally
1dC 1dp 2CyM?
M2 e M e (G.16)

Cdr ' pdx i
These equations must now be combined to bring about a solution enabling the flow condition
to be calculated at any location x. The first step is to eliminate the pressure gradient in

equation G.16. A suitable expression for this pressure gradient can be found by combining
equations G.1 and G.3, yielding

ldp 14T 1dC 1dA

——— = = = —— G.17
pdr Tdr Cdx Adz ( )
Inserting this expression into equation G.16 and rearranging gives
1dC 1dT 1dA 2C;yM?
M?—-1) == 4 o T 1
¢ ) om t T Ak iy (G.18)

Using the found derivative of the Mach number, equation G.6, and some minor algebraic
manipulations this expression instead takes the form of

M?2—-1\ 1 dM? 14+~yM2\ 1dT 1dA 2CyM?
<’y> d <+’y ) d dA | 20002 (@.19)

2 M? dx 2 Tdr Adx dy

The final expression is determined by inserting equation G.5 in the above equation, eliminating
the static temperature gradient. After some rearranging the following result is generated,
describing how the squared Mach number is changed along the flow passage

1 dM? 14 5im2 2 dA
_ 2t (G.20)

M2 dr | 1-M? o ()

2 1 dTy = 4ACpyM?
Adzx

Ty dx dy
Integrating this formula numerically would yield the Mach number distribution. However, it
is also of interest to determine how the thermodynamic properties varies with the passage
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length x. Here, a relation relating the stagnation pressure change along the channel is sought,
and the first step is to take the derivative of equation 2.9. This yields

_ 5 _ 5 dM2
dpo—dp<1+71M2>” Lt <1+71M2)” raM (G.21)

de  dr 2 2 2 dx

Dividing this relation with it’s governing equation, relation 2.9, gives the following expression

1d 1d M? 1 1 dM?
— e _ L7 S (G.22)
po dr  pdzx 2 1+ M2 M? dzx

Again, the static pressure gradient must be eliminated. A suitable expression for the pressure
gradient can be found by combining equation G.6 and G.17. Doing this, one end up with

ldp 11dT 1 1 dM?* 1dA
f—p:f———fj———— (G.23)
pdx 2T dr 2M? dx A dx
The static temperature gradient can in turn be dealt with by combining the above relation
with equation G.5. After a minor mathematical exercise, the static pressure gradient can be
written

ldp 11dT, 1dA <7M2+1M2>< 1 >1dM2

pde 2Ty dr  Ade 2 T2 ) \ixmop) i @

(G.24)

By substituting the above derived relationship into the stagnation pressure variation along the
channel, equation G.22, the following relation is found

po dz 2Ty dx CAdr 2

1d 11dTly 1dA 1 1— M? 1 dM?
— 0 0 ( ) (G.25)

3Ty de T2 ) MR da

Finally, the expression for the stagnation pressure’s variation along the channel can be found by
making use of the found Mach number variation. Thus, putting equation G.20 into relation G.25

yields
1d M?\ /1dl, 4C
Ldpo _ (7 (0+f) (G.26)
po dx 2 To dr  dy
A remarkably simple relation, considering the amount of algebra needed to derive it. Neverthe-
less, this equation also need numerical solving, and is most easily solved simultaneous with

equation G.20. The Runge-Kutta integration presented in appendix F can be used for this, by
performing the calculation along discrete steps of the channel.
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