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Abstract

This paper analyzes to what extent PPP holds in the long run. Firstly, standard unit root

tests are used to test for stationarity. These results are then compared to the ones provided

by a wavelet based OLS and an approximate ML estimator. Using these to determine the

integration order of an ARFIMA(p,d,q) process, the results support the PPP hypothesis and

indicate that real exchange rates are mean reverting and subject to long swings. Unit root

tests are therefore inept for analyzing real exchange rates.

Keywords: Purchasing Power Parity, Long Run Memory, ARFIMA(p,d,q), Unit root tests,

Wavelets
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�We have normality, I repeat we have normality.� She turned her microphone o� - then turned it

back on, with a slight smile and continued: �Anything you still can't cope with is therefore your own

problem.� ~ The Hitchhiker's Guide to the Galaxy

1 Introduction

In general, one distinguishes between absolute and relative purchasing power parity (PPP).

They are both strongly linked to the law of one price and imply that two identical goods,

bought in di�erent markets, will have an identical price when expressed in the same currency.

Otherwise it would be possible to buy the same good in one country at a lower price, and then

sell it in another one at a higher price (arbitrage). The concept of PPP has been put forward

in the early twentieth century by the Swedish economist Gustav Cassel who proposed that

�[a]s long as as anything like free movement of merchandise and a somewhat comprehensive

trade between the two countries takes place; the actual rate of exchange cannot deviate very

much from this purchasing power parity� (Cassel, 1918, pg. 413). More formally, �this can

be expressed as

RE =
SP

P ∗
, (1.1)

where RE denotes the real exchange rate, P and P ∗ domestic and foreign price levels respec-

tively and S the nominal exchange rate� (Berger, 2012, pg. 1) expressed in British notation.

Absolute PPP implies that RE is equal to unity and is assumed to hold continuoulsy in

monetary models of exchange rate determination, such as the �exible price model. However,

it is unrealistic to make this assumption because transaction costs, taxes, uncertainty, price

discrimination, etc. are not identical across markets. It is therefore more reasonable to

assume that RE is equal to a constant rather than unity, known as relative PPP. Hence, �if

PPP were to hold, the real exchange rate would be stationary over time� (Berger, 2012, pg.

1).

Whether or not this is the case has been subject to a very lively academic debate. In general,

prolonged departures from PPP have been observed empirically and monetary models such
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as Dornbusch's overshooting model, the Frankel real interest rate di�erential model, and the

portfolio balance model allow for these deviations. There is a broad consensus that PPP

does not hold in the short run (Artus, 1978; Dornbusch, 1980; Frenkel, 1981; Taylor, 2002)

and therefore follows a random walk process. However, the previously mentioned monetary

models heavily rely on PPP to hold and be stationary in the long run. Otherwise �almost

everything we say about monetary policy is wrong� (Alvarez, Atkeson & Kehoe, 2007, pg.

339). From a policy perspective, this is evidently very important because the government

and central bank would then not be able to actively steer, intervene, and in�uence monetary

policy.

In order to test for stationarity, one �traditionally� employs unit root tests, such as the (Aug-

mented) Dickey Fuller ((A)DF), Phillips-Perron (PP), and Kwiatkowski, Phillips, Schmidt

and Shin (KPSS). Using these, most empirical studies do not reject that RE contains a unit

root (Adler & Lehmann, 1983; Meese & Singleton, 1983; Corbae & Oularies, 1986; Barnhart

& Szakmary, 1991; Fujihara & Mougoue, 1994; Taylor, 1995; Lopez, Murray & Papell, 2004;

Belaire-Franch & Opong, 2005). However, traditional unit root tests have low power with

respect to roots close to unity (Abuaf & Jorion, 1990; Diebold & Rudebusch, 1991; Hassler

& Walters, 1994; Andersson, 2012) which may provide evidence against unit root tests rather

than PPP (Abuaf & Jorion, 1990; Engel & Hamilton, 1990).

Engel and Hamilton (1990) show that exchange rates display long swings and the same

conclusion can be drawn when looking at Figure 1 below.

Figure 1: Real Exchange Rate: EUR/USD, EUR/GBP, EUR/SEK, January 1990 - April
2011
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Figure 1 shows the monthly real EUR/USD, EUR/GBP, and EUR/SEK exchange rates1,

which all appear to be subject to long swings but mean reverting. Hence, RE may be

fractionally integrated. A fractionally integrated process (FIP) is considered to be mean

reverting and subject to long swings as long as the order of integration, 1/2 ≤ d < 1

(Granger & Joyeux, 1980).

It is the aim of this paper to contribute to the debate to what extent PPP holds in the long

run and to estimate the order of integration using wavelet analysis. Furthermore, this paper

will extent the results and analysis provided by Berger (2012). Additional autoregressive

(AR) and moving average (MA) terms will be added to the initial FIP in order to model RE

as an ARFIMA(p,d,q) process. A FIP therefore is a special case of an ARFIMA(p,d,q) model,

which is also considered to be mean reverting as long as 1/2 ≤ d < 1. It should be noted

that most studies, for computational reasons, only include AR(1) and/or MA(1) components

(Baillie, Chung & Tieslau, 1996; Jensen, 2000; Sena, Reisen & Lopes, 2006) and this paper

will therefore refrain from using higher order AR/MA terms. The parameter of interest,

d, will be estimted using a wavelet based OLS estimator put forward by Jensen (1999) and

Percival and Walden's (2000) approximate maximum likelihood estimator (AMLE). Despite a

slow mean-reversion process (swings of approximately ten years can be observed in the case

of some currency pairs, e.g. USD/SEK, EUR/GBP, USD/NOK), the results show strong

support for the PPP hypothesis in the long run, irrespective of data frequency and base

currency. This indicates that standard monetary models can be applied and while it may

take a long time for monetary policy to have an e�ect, the important aspect is that it has

an e�ect at all.

The subsequent parts of this paper are organized as follows: section two outlines the theoret-

ical foundations behind ARFIMA(p,d,q) processes, including unit root and wavelet theory,

while section three presents and discusses the data and empirical results. Finally, a conclusion

is drawn in the last part of the paper.

1The gray line indicates the average real exchange rate.

3



2 Integrated processes

This section draws on Berger (2012), where the �data generating process (DGP) of an inte-

grated process is given by

(1− L)dxt = εt, (2.1)

where εt is white noise (var(ε) = σ2
ε), d the fractional integration order� (Berger, 2012, pg.

3), and L the lag operator such that Lxt = xt−1. Substituting d = 1 into equation (2.1) yields

a random walk

xt = xt−1 + εt, (2.2)

which is considered to be non-stationary, contain a unit root, and equation (2.2) only becomes

stationary when taking the �rst di�erence. If a process needs to be di�erenced d times in

order to become stationary, it is said to be I(d). Theoretically, one can �nd processes that

need to di�erenced more than once in order to become stationary but this is rarely the case

within economics (Gujarati, 2004).

2.1 Unit Roots

In order to formally test if equation (2.1) contains a unit root, various tests can be employed.

The most common tests are the ADF, PP, and KPSS. Other tests such as the ones provided

by Elliot, Rothenberg, and Stock Point Optimal (ERS) and Ng and Perron (NG) are included

in software packages like EViews but since the �rst three tests are the most prominent ones,

they will be discussed in more detail below.

The ADF builds upon the �standard� Dickey-Fuller (DF) test. A general AR(1) process

xt = ρxt−1 + y′tδ + εt

is stationary if |ρ| < 1 and modi�ed by the DF in such a way that xt−1 is subtracted from
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both sides

∆xt = αxt−1 + y′tδ + εt. (2.3)

Given that α = ρ− 1, the following hypotheses are tested:
H0 : α = 0, (non− stationary)

H1 : α < 0. (stationary)

However, equation (2.3) only works for an AR(1) process. In order for εt to be white noise

and to consider higher order lags, AR(p), the ADF adds p lagged di�erence terms

∆xt = αxt−1 + y′tδ + β1∆xt−1 + ...+ βp∆xt−p + νt.

Practically, the �rst issue with the ADF is how to correctly specify the lag length. However,

through the use of information criteria, most software packages will automatically select the

correct one. More signi�cantly, the ADF has low power with respect to determining roots

close to the non-stationary boundary (Abuaf & Jorion, 1990; Diebold & Rudebusch, 1991;

Hassler & Walters, 1994; Andersson, 2012). Hence, it may indicate a unit root while the

original DGP is actually mean reverting. Similar restrictions apply to the PP test, which is

asymptotically equivalent to the ADF (University of Washington, 2012) and which modi�es

the t-ratio of the α coe�cient in order to control for serial correlation.

The KPSS is a Lagrange Multiplier test and di�ers from the above tests as it utilizes reverse

hypotheses. The idea is that a series can be decomposed into the sum of a random walk, a

stationary error, and a determinsitic trend

xt = αt+ rt + εt,

where

rt = rt−1 + ut.

According to Kwiatkowski, Phillips, Schmidt and Shin (1992), this implies the following
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hypotheses: 
H0 : σ2

u = 0, (stationary)

H1 : σ2
u > 0. (non− stationary)

The KPSS can therefore be seen as complementary to the ADF/PP tests (Hobijn, Franses

& Ooms, 2004).

When looking at equation (2.3), the question becomes whether or not to include a constant

and/or trend in the above tests. According to Enders (2010), one should start with both and

thereafter it is sensible to only include a constant when testing the �rst di�erence. Lastly, a

general limitation of all the above tests is that they only consider the special case of d ∈ Z,

whereas the general case d ∈ R is not addressed.

2.2 ARFIMA(p,d,q)

As mentioned in the previous section, one major shortcoming of the tests presented is that

they assume d ∈ Z. An ARFIMA(p,d,q) allows for d ∈ R and is given by

Φ(L)(1− L)d(x(t)− µ) = Θ(L)ε(t), (2.4)

where Φ(L) and Θ(L) represent the AR(p) and MA(q) terms

Φ(L) = 1 + φ1L+ φ2L
2 + · · ·+ φpL

p,

Θ(L) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q.

The spectral density function (SDF), which decomposes the DGP's variance with respect to

frequency, of equation (2.4) is given by
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Sx(f) =
σ2
ε

[4sin2(πf)]d
× Ω, (2.5)

where f represents the frequency and Ω the SDF of the ARMA(p,q) process2. However, the

long run dynamics are not a�ected by the AR/MA components (Brockwell & Davis, 1991)

and the ARFIMA(p,d,q) can therefore be reduced to an ARFIMA(0,d,0) in the long run. The

Fourier transform is the most prominent tool in order to display a series in the frequency

rather than the time domain,

F (f) =
∞∑

t=−∞

xte
−i2πft.

Hence, the function is now displayed based on oscillating sine and cosine functions. Further-

more, it is only necessary to consider frequencies over a unit interval3 and it is also possible to

transform the signal back to the time domain4. However, �the time domain has been entirely

dropped and wavelet analysis can therefore be used to provide time and frequency resolution�

(Berger, 2012, pg. 8). This is a major advantage as �[b]y decomposing a time series into

time-frequency space, one is able to determine both the dominant modes of variability and

how those modes vary in time� (Torrence & Compo, 1998, pg. 61). Wavelet analysis has

further advantages with respect to non-stationary and inhomogeneous systems (Abramovich,

Bailey & Sapatinas, 2000).

2.2.1 Discrete Wavelet Transform (DWT)

A wavelet is a small wave that has �nite energy and satis�es the admissibility condition
´
ψ(t)dt = 0. Hence, ψ is an oscillating function that rapidly decreases as t → ±∞. The

�rst and most commonly used wavelet is the Haar wavelet, named after the Hungarian

2Ω = |Θ(e−2πif )|2
|Φ(e−2πif )|2 .

3For proof, see Percival and Walden (2000).
4For proof, see Andersson (2008).
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mathematician Alfréd Haar. For di�erent scales, it is de�ned as

ψHλ,u(t) =


− 1√

2λ
u− λ < t ≤ u;

1√
2λ

u < t ≤ u+ λ;

0 otherwise.

(2.6)

Figure 2 depicts the Haar wavelet for di�erent scales, λ, and translations, u.

Figure 2: Haar wavelet, di�erent scales and translations

From the above, one can coherently see that u shifts the wavelet along the x -axis while λ

shows how averages of yt �over many di�erent scales are changing from one period of length

λ to the next� (Percival & Walden, 2000, pg. 10). It is now possible to use a frequency

interpretation as the �rst scale captures frequencies 1
4
to 1

2
, the second frequencies from 1

8
to

1
4
and so forth.

�The DWT uses dyadic scales, λ = 2j−1 and j = 1, 2, ..., J , and therefore only works for

observations that can be expressed as a power of two5� (Berger, 2012, pg. 10). For the Haar

wavelet, the DWT can be obtained through the pyramid algorithm. This algorithm was

proposed by Mallat (1989) and is the most e�cient way of calculating the DWT (Andersson,

5This is not strictly true. For a more detailed discussion on what is called the maximum overlap discrete
wavelet transform (MODWT), see Percival and Walden (2000).
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2008). Several pyramid-like steps are utilized and the �rst stage �simply consists of trans-

forming the time series X of length [T = 2J ] into the [T/2] �rst level wavelet coe�cients W1

and the [T/2] �rst level scaling coe�cients V1� (Percival and Walden, 2000, pg. 80). This

process is iterated until Wj only contains one entry. By substituting λ = 1 into equation

(2.6), the respective wavelet and scaling coe�cients are obtained. Evidently, these di�er

depending on the choice of wavelet6. The complete wavelet transform is given by

w = Φx, (2.7)

where

Φ =



Φ1

Φ2

...

ΦJ

ΓJ


=



B1

B2A1

...

BJAJ−1 × . . .A2A1

AJAJ−1 × . . .A2A1


.

BJ and AJ contain the respective wavelet and scaling coe�cients

B =



h1 h0 0 0 0 0 · · · 0 0 0 0 0 0

0 0 h1 h0 0 0 · · · 0 0 0 0 0 0

0 0 0 0 h1 h0 · · · 0 0 0 0 0 0

...

0 0 0 0 0 0 · · · h1 h0 0 0 0 0

0 0 0 0 0 0 · · · 0 0 h1 h0 0 0

0 0 0 0 0 0 · · · 0 0 0 0 h1 h0



,

6See Berger (2012) for a more thorough discussion on why the Haar wavelet is utilized.
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A =



g1 g0 0 0 0 0 · · · 0 0 0 0 0 0

0 0 g1 g0 0 0 · · · 0 0 0 0 0 0

0 0 0 0 g1 g0 · · · 0 0 0 0 0 0

...

0 0 0 0 0 0 · · · g1 g0 0 0 0 0

0 0 0 0 0 0 · · · 0 0 g1 g0 0 0

0 0 0 0 0 0 · · · 0 0 0 0 g1 g0



,

and ΓJ is the zero frequency component which captures all (linear) determinstic components.

2.2.2 Wavelet-based OLS estimation

Given that the long run dynamics are not a�ected by Ω, the SDF in equation (2.5) can be

estimated, according to Jensen (1999), using a log-linear relationship between the wavelet

variance and its corresponding scale. More speci�cally,

lnR(j) = ln σ2 − d ln22j, (2.8)

where

R̄(j) =
1

2j

2j−1∑
k=0

w2
j,k. (2.9)

The long-run order of integration, d, will thus determine the slope.

Figure 3: Wavelet OLS, di�erent slopes of d
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Figure 3 shows that a higher order of integration corresponds with a steeper slope and vice

versa. It can be seen from equations (2.8) and (2.9) that ΓJ is not included in the estimation

and one does therefore not need to be concerned about stochastic or deterministic trends.

2.2.3 Wavelet-based AMLE estimation

The AMLE is obtained using high-frequency, non-boundary coe�cients (W
′

nb : j < J), from

the wavelet transfom given by equation (2.7) and has been proposed by Percival and Walden

(2000). Excluding the boundary coe�cients evidently leads to a loss of information but 89%

of the transform coe�cients are non-boundary coe�cients for T = 256 (Andersson, 2012).

The AMLE likelohood function is given by

L(d, σ2
ε |W

′

nb) =
exp(−[W

′

nb]T
∑−1

W
′
nb

W
′

nb/2)

(2π)T/2 |
∑

W
′
nb
|1/2

,

where the order of integration a�ects the covariance matrix
∑

Wnb
, which is approximately

a diagonal matrix with diagonal elements

Cj = 2j+1

1/2jˆ

1/2j+1

σ2
ε

[4sin2(πf)]d
df. (2.10)

Assuming that the shocks in equation (2.1) are normally distributed, the estimated order of

integration provided by the AMLE is also normally distributed ∀d. Furthermore, equation

(2.10) is derived assuming that the errors have a �at spectrum throughout the entire frequency

band and are therefore not correlated (Brockwell & Davis, 1991). If this were the case, the

AMLE would be a�ected by short run dynamics (Ω) and AR/MA components would need

to be taken into account. In order to check if these can be dropped, it is sensible to split the

data into a high and low frequency component (Andersson, 2012) and see if these provide

di�erent estimates of the integration order.
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3 Empirics

Bearing in mind the theoretical part, section 3.1 will outline the used dataset before the long

run memory parameter is empirically determined in part 3.2.

3.1 Data

As in Berger (2012), the data used in this paper has been obtained using Thompson Finan-

cial Datastream 5.0, except from the Swedish/American CPI and the USD/SEK nominal

exchange rate. The latter has been accessed through www.oanda.com (2013) and the former

through Statistics Sweden (2013)/U.S. Bureau of Labor Statistics (2013).

Three seperate groups have been formed, each using a di�erent base currency (Group 1:

USD, Group 2: GBP, Group 3: EUR). Each base currency is then plotted against a basket

of currencies (SEK, JPY, NOK) and the remaining two base currencies. In accordance with

equation (1.1), the real exchange rate is calculated by multiplying the nominal exchange rate

with the ratio of domestic, P , and foreign, P ∗, price levels respectively, where the consumer

price index (CPI) is used as a price level proxy. Given that each country uses a di�erent base

year, the CPI values have been transformed using January 2005 (=100) as a base. RE is

then calucated for 256 monthly observations from January 1990 to April 2011. For the �rst

group, this looks as follows.
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Figure 4: USD vs Basket of currencies, January 1990 - April 2011

At observation 125 (approximately), corresponding to May 2000, Figure 4 shows a strong

appreciation of the USD against most other currencies. This coincides with the burst of the

dot-com bubble, causing the NASDAQ Composite to lose 78% of its value (Investopedia,

2013). Historically, the USD has been regarded as a safe haven (Engel & Hamilton, 1990),

causing it to appreciate in uncertain times. Hence, the USD also appreciates against the

SEK/NOK/GBP at observation 225 (September 2008), corresponding to the current �nancial

crisis. It is noteworthy that the latter appreciation is not seen against the EUR and JPY.

One possible explanation for this is the fact that both currencies, especially the EUR, are

widely used as reserve currencies (International Monetary Fund, 2013) and may therefore

also be regarded as a safe haven, albeit to a lesser extent.

The second group uses the GBP as a base currency, as indicated in Figure 5 below.
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Figure 5: GBP vs Basket of currencies, January 1990 - April 2011

A sharp drop of the GBP against all other currencies is seen around observation 225 (Septem-

ber 2008). Given that the �nancial sector accounts for a signi�cant share of Britain's GDP

(Bank of England, 2011), it is evidently greatly a�ected by the current �nancial crisis. A

study by the Department for Business Innovation & Skills (2010, pg. 9) concluded that

�evidence suggests that the UK lags behind its main competitors such as the United States

and Germany�, promting a rather controversial article in The Guardian (2011) which called

this fact the greatest de-industrialisation of any major nation. Despite its continuing de-

preciation, the GBP is still considered to be overvalued and thereby undermining Britain's

competitiveness (The Economist, 2013).

The EUR is the last base currency and RE is plotted agains the remaining currencies in

Figure 6 below.
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Figure 6: EUR vs Basket of currencies, January 1990 - April 2011

It can be seen that the EUR remained stable against all other currencies prior to its intro-

duction in 1999, corresponding to observation 110. This can partially be explained by the

fact that the European curriencies plotted above were part of the ECU basket of currencies7

and thus part of the ECU exchange rate. After the EUR was introduced it depreciated

against most other currencies, indicating an initial loss of con�dence among investors. Once

this initial period passed, the EUR gained in value and only started to depreciate (with the

exception of the GBP) as a result of the current �nancial crisis.

3.2 Results

Each of the three groups has two di�erent set of results. Firstly, the unit root tests are

reported and, as has been outlined in section 2.1, one needs to decide whether or not to

include a constant and/or trend when testing for unit roots. The (1) indicates a constant

and trend while (2) represents testing the �rst di�erence including a constant. Lastly, the

long run order of integration is determined using a wavelet based OLS and AMLE estimator.

7On 1 January 1999, the EUR replaced the ECU at a value of 1EUR = 1ECU.
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Hereby, the high frequencies have been excluded (3-6) in order to check if the model is free

from short run dynamics and may therefore be represented by an ARFIMA(0,d,0).

ADF (1) ADF (2) PP (1) PP (2) KPSS (1) KPSS (2) I (d)

USD/SEK -1.81 -10.60*** -1.64 -10.65*** 0.32*** 0.14 1
USD/NOK -1.76 -15.03*** -1.83 -15.06*** 0.37*** 0.12 1
USD/JPY -2.22 -15.69*** -2.41 -15.69*** 0.17** 0.08 1
USD/GBP -2.64 -14.00*** -3.04 -14.02*** 0.14* 0.04 1
USD/EUR -1.46 -14.30*** -1.57 -14.22*** 0.36*** 0.15 1

*** p<0.01, ** p<0.05, * p<0.1

Table 1: Base Currency USD: Results, Unit Root Tests

Table 1 clearly indicates that RE is a non-stationary process integrated of order one. This

conclusion holds for all currency pairs of the �rst group and one could therefore rightly say

that PPP does not hold in the long run. However, it is noteworthy that the KPSS test

seems to be a bit more sensitive with respect to accurately determining roots close to the

non-stationary boundary, as indicated by the slightly lower signi�cance levels of USD/JPY

and USD/GBP.

d (OLS) d (AMLE): 1-6 d (AMLE): 3-6

USD/SEK 0.95 0.93 0.97
USD/NOK 0.91 0.94 0.92
USD/JPY 0.93 0.90 0.89
USD/GBP 0.68 0.65 0.70
USD/EUR 0.84 0.89 0.86

Table 2: Base Currency USD: Results, Wavelet Estimation

A di�erent picture emerges when looking at Table 2. RE does not appear to be a�ected

by short run dynamics and can be considered mean reverting and subject to long swings

(1/2 ≤ d < 1), irrespective of data frequency and estimator. Hence, PPP holds in the long

run but it takes a long time for the series to come back to its mean. The order of integration

is generally lower for �large� currencies (with the exception of the USD/JPY rate) than for

smaller ones. This indicates that smaller currencies tend to shadow larger ones.
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A similar conclusion can be drawn when the GBP is used as a base currency.

ADF (1) ADF (2) PP (1) PP (2) KPSS (1) KPSS (2) I (d)

GBP/SEK -1.45 -13.76*** -1.18 -17.32*** 0.39*** 0.23 1
GBP/NOK -1.96 -16.59*** -1.81 -16.69*** 0.35*** 0.28 1
GBP/JPY -1.70 -14.32*** -2.04 -14.39*** 0.14* 0.07 1
GBP/USD -2.74 -14.09*** -3.11 -14.07*** 0.15** 0.04 1
GBP/EUR -1.84 -15.02*** -1.25 -16.54*** 0.33*** 0.19 1

*** p<0.01, ** p<0.05, * p<0.1

Table 3: Base Currency GBP: Results, Unit Root Tests

Initially, one would conclude that all series are non-stationary and therefore contain a unit

root. Again, the KPSS appears to more accurately determine roots close to the non-stationary

boundary (GBP/JPY and GBP/USD), as opposed to the ADF and PP.

d (OLS) d (AMLE): 1-6 d (AMLE): 3-6

GBP/SEK 0.92 0.88 0.91
GBP/NOK 0.92 0.90 0.95
GBP/JPY 0.78 0.79 0.81
GBP/USD 0.63 0.72 0.70
GBP/EUR 0.95 0.94 0.97

Table 4: Base Currency GBP: Results, Wavelet Estimation

Regardless of data frequency and estimator, all series can be represented by an ARFIMA(0,d,0)

and are actually mean reverting and subject to long swings, as indicated by Table 4. Hence,

one can conclude that the PPP hypothesis holds in the long run. Again, small currencies

(SEK, NOK) tend to shadow larger ones (USD, JPY) as they show a higher order of inte-

gration, with the exception of the EUR. This can possibly be explained by the fact that the

GBP used to be part of the ECU, prior to the establishment of the EUR, and therefore tracks

part of its own past realizations.

Lastly, the EUR displays very similar results.
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ADF (1) ADF (2) PP (1) PP (2) KPSS (1) KPSS (2) I (d)

EUR/SEK -1.45 -13.62*** -1.56 -10.81*** 0.23*** 0.09 1
EUR/NOK -1.87 -14.87*** -1.76 -13.56*** 0.27*** 0.19 1
EUR/JPY -2.03 -15.21*** -2.16 -15.24*** 0.28*** 0.11 1
EUR/USD -1.71 -14.31*** -1.82 -14.25*** 0.39*** 0.11 1
EUR/GBP -1.65 -15.24*** -1.64 15.24*** 0.34*** 0.18 1

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Base Currency EUR: Results, Unit Root Tests

Standard unit root tests provide no support for the PPP hypothesis and RE is said to contain

a unit root. As opposed to the two previous base currencies, the KPSS does not provide

di�erent results when the EUR is used. However, this can actually be seen as evidence

against these tests rather than PPP, as indicated by Table 6.

d (OLS) d (AMLE): 1-6 d (AMLE): 3-6

EUR/SEK 0.88 0.92 0.90
EUR/NOK 0.86 0.81 0.84
EUR/JPY 0.90 0.87 0.92
EUR/USD 0.92 0.95 0.94
EUR/GBP 0.97 0.97 0.98

Table 6: Base Currency EUR: Results, Wavelet Estimation

Clearly, all series are stationary, mean reverting and the PPP hypothesis appears to hold in

the long run. However, it is interesting to note that the di�erence in the order of integration

between the currency pairs is much less pronounced if the EUR is used as a base currency,

as opposed to the GBP and USD, indicating that the EUR is more integrated with e.g. the

SEK and NOK.
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4 Conclusion

�Da steh ich nun, ich armer Tor! Und bin so klug als wie zuvor; Heiÿe Magister, heiÿe Doktor gar,

und ziehe schon an die zehen Jahr, herauf, herab und quer und krumm, meine Schüler an der Nase

herum � und sehe, daÿ wir nichts wissen können!�8 ~ Faust

Using wavelet-based long run memory estimators, this paper has shown support for the PPP

hypothesis to hold in the long run. This has signi�cant rami�cations with respect to monetary

models, which are therefore applicable. Hence, �it may take a very long time for monetary

policy to have an e�ect but the important aspect is that it has an e�ect at all� (Berger, 2012,

pg. 20). RE appears to be slowly mean reverting and subject to long swings. As such, it

can be represented by an ARFIMA(p,d,q) process which, in the long run, can be reduced to

an ARFIMA(0,d,0) model. Such a process cannot be represented by an AR(p) model and

standard unit root tests are therefore not applicable once 1/2 ≤ d < 1. If they are applied

regardless, they tend to falsely suggest a unit root. It should be noted that the KPSS appears

to be a little more sensitive with respect to accurately determining roots close to unity and it

is therefore very viable to use it as a complentary test in addition to the ADF/PP. However,

the general conclusion remains unchanged and more advanced techniques are required. Real

exchange rates tend to be mean reverting and through arbitrage it should then, theoretically,

be possible to exploit this mean reverting behaviour in order to make pro�t. However, given

that this process takes a very long time, this may practically not be applicable.

8

And here, poor fool! with all my lore
I stand, no wiser than before:
I'm Magister - yea, Doctor - hight,
And straight or cross-wise, wrong or right,
These ten years long, with many woes,
I've led my scholars by the nose,-
And see, that nothing can be known!
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