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Abstract 

Photoemission electron microscopy was used to study the optical properties of wurtzite InAs 

nanowires. Linearly polarized femtosecond laser pulses illuminated the sample of nanowires and 

generated photoelectrons through multiphoton photoemission. These electrons could then be 

detected to create an image. Several different nanowires have been investigated, but only straight, 

single nanowires have been measured upon. The intention of the measurements was mainly to study 

the photoemission from the nanowires as a result of changing the state of polarization in the 

illuminating laser light. To see if there was any relation between the angle of polarization and the 

orientation angle of the wire, a diagram with the angle of the polarization that generated the most 

photoelectrons against nanowire orientation angle was made. The diagram showed a strong relation 

between the two. These results were compared to the results from earlier experiments conducted in 

2012. 
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1  Introduction 

The curious mind of mankind has led us to the advanced society we live in today. As the hunger for 

information failed to cease, the microscopic world of the very small was revealed to us through 

microscopes. But as we continued to advance towards the boundaries of the nanoscopic world, 

visible light was no longer sufficient to resolve the landscape of atoms and molecules. More 

advanced microscopes had to be developed, and today there are many different kinds of electron 

microscopes able to reveal the secrets of the nanoscopic realm.  

Not only is it possible to investigate the nanoscopic world through microscopes; creating and 

manipulating nanoscale structures can be done in modern labs. It so happens that Lund Nano Lab 

produces world class nanowires.  

The focus of this thesis was to study and map out field enhancements of surface nanostructures. This 

has been done by investigating the optical properties of Indium arsenide (InAs) nanowires, produced 

by Lund Nano Lab, using photoemission electron microscopy with a pulsed femtosecond laser at 

Lund Laser Centre. Exactly how these field enhancements in these nanostructures arise has not yet 

been fully understood. 
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2  Theory 

2.1  PEEM-Photoemission Electron Microscopy 

In a photoemission electron microscope electrons are emitted from a sample by means of photo-

ionization. The emitted electrons then travel through electrostatic lenses to form a magnified image 

and thus, information of sample can be extracted through interactions with light. If structures on the 

sample do not emit electrons, they are effectively invisible. This can be the case if the illuminating 

light is not, at moderate intensities, energetic enough to knock out any electrons. A contrast in the 

images can thus be created by choosing the frequency of the illuminating light so that some 

structures emit electrons and some do not. The PEEM operates in ultra-high vacuum (UHV) to ensure 

that the electrons reach the detector on the other side of the PEEM without colliding with air 

molecules.  

2.1.1  Light-Matter Interaction 

As Richard Feynman simply explains in his book QED - The Strange Theory of Light and Matter, there 

are only three basic actions that involve photons and electrons, where the first two are the 

movements of photons and electrons. While the third is; an electron can emit or absorb a photon. 

The emission and absorption of a photon is fundamentally the same thing and the probability for an 

electron to emit or absorb a photon is the same. These three actions alone accounts for all 

phenomena involving light and electrons. [1] 

When a photon comes in contact with matter, the photon has a certain probability to be absorbed by 

an atomic system. When the photon is absorbed all of its energy can be used to excite an electron to 

a higher energy state. The probability for this transition to happen depends on the photon energy 

relative to the energy difference between the two levels in the atom. The probability is highest when 

the photon energy coincides with the energy difference between the two energy levels, that is, when 

the detuning is zero. [2] See figure 2.1 below.  

 

Figure 2.1 The probability of being in the excited state in a two level atom illuminated by 

monochromatic light as a function of the detuning. Image taken from Christopher J Foot, Atomic 

physics. 
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2.1.2  The Photoelectric Effect 

If the photon energy is high enough it can expel the electron from the atom, i.e. ionizing it. This is 

what is called photoemission of an electron. Increasing the energy of the photon will increase the 

kinetic energy of the emitted electrons. The maximum kinetic energy of the electrons is determined 

by 

 

 
     

                                                                               

where   is the work function, the minimum energy needed to expel the electron from the atom. The 

valence electrons, which are the least tightly bound, outermost electrons, will be ejected with the 

maximum kinetic energy. [3] Inner electrons that are more tightly bound will be ejected with lower 

kinetic energy because the work function for them is larger. Note that according to equation (1) 

there should be no photoemission if the photon energy is lower than the work function.  

 

2.1.3  MPPE -Multiphoton Photoemission 

If the photon energy is lower than the work function, there is still a probability for photoemission to 

occur. This is because an electron can be momentarily excited to higher energy level by a photon, 

and then further excited by another. This process can continue any number of times until the 

electron is emitted and the atom is ionized. Even if the photon energy does not match the energy 

difference between two levels, the electron can still be excited to a so called virtual state, where 

from it can be further excited. Multiphoton photoemission requires high photon intensities as the 

lifetime of excited states are usually extremely short. If the photon intensity is too low, a second 

photon will simply not be on time to further excite the atom before it has decayed back into a lower 

state. Intensities high enough for MPPE to occur can be acquired with lasers. An atomic system can 

absorb photons even after it has been ionized. This can further increase the kinetic energy of the 

emitted electron with a multiple of the photon energy. This is called Above Threshold Ionization (ATI) 

and will not be further discussed since it is of little relevance.  

2.1.4  Energy Levels in Solids 

Light-matter interactions have so far only been considered for free atoms, and not solids. However, 

the most prominent difference between free atoms and solids is the structure of the energy levels. 

When an atom is brought close to another atom, to form a molecule for instance, the energy levels 

of the atoms are distorted, resulting in a quantum mechanical splitting of levels. If more atoms are 

brought close, the levels will split again and again etc. Eventually the energy levels will form bands 

that are considered to be quasi continuous, these bands can have gaps in between them, just as 

atoms have gaps in between their energy levels. The size of these gaps may define the type of solid. 

An insulator has the Fermi level located in between a large band gap, so that excitations over the gap 

require high energies. This is the fundamental reason for the low conductivity of insulators. The 

Fermi level is defined as the energy level for which there is a 50% probability to be occupied in 

thermodynamic equilibrium. Semi-conductors have smaller band gaps than insulators and metals 
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have no band gaps, overlapping bands or the Fermi level located in the middle of one of the bands. 

Therefore, excitations are easy, and as a result, metals are good conductors.  

2.1.5  Charging 

A sample that is constantly illuminated by ionizing light will become positively charged as electrons 

are emitted from the sample. This could cause distortion to the image and endanger damage to 

either the sample or the PEEM itself. This can be avoided by keeping the sample conducting and at 

ground potential at all times. [4] 

2.2  PEEM Vacuum 

The PEEM is operating in Ultra High Vacuum (UHV) because the distance electrons can travel in 

normal atmospheric pressure before they collide or are absorbed by molecules in the air is only in 

the order of microns and the length of the PEEM is roughly 2 meters. UHV then enables most of the 

electrons to travel through the entire length of the PEEM without interacting with air molecules.  

2.2.1  Baking the Chamber 

Water vapor and other gases condense on the inside of the chamber walls. This condensation cannot 

be removed by the pumps alone, even though the pressure in the chamber is significantly reduced. 

The chamber must be heated to roughly 100oC for at least 24 hours. This procedure, also known as 

baking, ensures that most of the vapor evaporates from the chamber walls and thereafter are 

removed by the vacuum pumps. The chamber should be covered with Al-foil in order to supply 

increased and more even heat conduction. Baking is crucial if UHV is to be achieved.   

2.2.2  Vacuum Pumps 

One vacuum pump alone can never reach UHV because different types of pumps work in different 

regimes of pressure. Thus, in order to reach and maintain UHV, a conjunction of different types of 

vacuum pumps must be used. The different types of pumps that are used for evacuating the PEEM 

chamber are presented below.  

2.2.3  Rotary Vane Pump 

The rotary vane pump is an oil-sealed pump that works in the pressure range of 1 - 105 Pa. Figure 2.2 

below shows the design of the pump.  
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Figure 2.2 Schematic design of a rotary vane pump. 1, outer casing, 2 rotor, 3 vanes, 4 spring. The 

vacuum chamber to be evacuated would be positioned above the blue arrow.  

Figure taken from http://en.wikipedia.org/wiki/File:Rotary_vane_pump.svg, verified 2013-06-17. 

Author: Rainer Bielefeld 

As figure 2.2 shows, the rotor is placed off-center with respect to the outer casing and a spring makes 

sure that the two vanes always are fully extended in order to make an air tight seal. A low vapor 

pressure fluid also helps to seal the vanes and the surfaces between the housing and the rotor, 

additionally, it works as lubricant. When the first vane passes by the inlet, air will be forced into the 

growing region because of the much higher pressure in the vacuum chamber to be evacuated. The 

air will continue to fill the compartment until the other vane passes by the inlet and seals off the 

region. When the first rotor passes by the outlet, air will be forced out through the outlet as the 

region diminishes and the air pressurizes. The outlet is oil-sealed in order not to allow any air back 

into the pump. [5] 

2.2.4  Turbomolecular Pump 

The turbomolecular pump transfers momentum to gas molecules by collisions with high-speed 

rotating blades. The maximum speed of a turbomolecular pump is roughly 80,000 rpm, which 

corresponds to velocity of 500 m/s on the tips of the blades. One single row of blades is not enough 

to reach UHV, turbomolecular pumps usually have between 8-20 discs of blades. A turbomolecular 

pump does not work in atmospheric pressure and therefore needs another vacuum pump, such as a 

rotary vane pump, to bring the pressure down to operational pressures. A pressure of 10-8 Pa is 

reachable with a turbomolecular pump and a baked vacuum chamber. The inside of a turbomolecular 

pump is shown in figure 2.3 below where all the different blades can be seen. [5] 

 

http://en.wikipedia.org/wiki/File:Rotary_vane_pump.svg
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Figure 2.3 Interior of a turbomolecular pump. All the layers of rotating blades can be seen. 

Figure taken from http://en.wikipedia.org/wiki/Turbomolecular_pump, verified 2013-06-17. Author: 

liquidat 

2.2.5  Ion Pump 

When high vacuum is reached, through the usage of different mechanical vacuum pumps, the 

pressure in the vacuum chamber can be maintained and even further decreased through the usage 

of ion pumps. An ion pump uses electric and magnetic fields to keep electrons circulating between an 

anode and a cathode for an extended period of time without reaching the anode. These electrons 

collide with, and thus, ionize air molecules in the chamber. Theses ions then feel the electric 

potential of approximately 5 kV and consequently stick to the cathode. As the ions collide with the 

cathode and other air molecules, secondary electrons are released that can enter the circular orbit to 

further ionize the gas. The electric and magnetic fields that prevent the electrons from reaching the 

anode is crucial, as it increases the distance the electrons travel before they collide, this enhances 

the probability of ionizing collisions. The steady state of about 1010 electrons/cm3 in orbit is reached 

after nanoseconds for pressures at 10-1 Pa, while roughly 500 s at 10-9 Pa. [5] 

2.3  Illumination and the Beam 

2.3.1  Polarized Light 

In order to describe light, at least three dimensions of space are needed as the wavevector k which 

points in the direction of propagation, the electric field vector E and the magnetic field vector B are 

all perpendicular to each other. The polarization of light describes how these three vectors are 

directed in space and typically there are four different types of polarization, unpolarized, linearly 

polarized, circularly polarized and elliptically polarized. The polarization can be described by 

decomposing E into two perpendicular vector components, when these vectors have the same 

amplitude and are in phase, the light will be linearly polarized, and E will oscillate in only one plane. 

However if the vector components are 90o out of phase the light will be circularly polarized, E will 

then rotate around k with the same amplitude all the time. Elliptically polarized light is obtained 

http://en.wikipedia.org/wiki/Turbomolecular_pump
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when either the amplitudes of the vector components differ from each other or if they are out of 

phase by anything but 90o. Unpolarized light implicates that the distribution of polarization is random 

amongst all photons. This means that a source of unpolarized light, such as the sun, emits photons 

with all types of polarization. However when measured, a single photon is either linearly, circularly or 

elliptically polarized, it can never be unpolarized. When the electric field of linearly polarized light 

oscillates in the plane of the sample, it is called s polarized and when it oscillates in the plane of 

incidence it is called p polarized. See figure 2.4 below.  

 

 

Figure 2.4 a) A linearly polarized electromagnetic wave. The electric and magnetic fields oscillate 

perpendicular to each other at all times. The wavelength of the wave is indicated by λ.  

b) s- and p-polarized light incident on the surface of a sample. Image a) taken from: 

http://en.wikipedia.org/wiki/File:Onde_electromagnetique.svg, verified 2013-06-17. Author 

SuperManu 

2.3.2  Birefringence and Half Wave Plate 

A birefringent crystal has a refractive index that depends on the state of polarization and direction of 

propagation of light. This anisotropy arises from the crystal structure of the material. A birefringent 

crystal has two orthagonal axes with different index of refraction, often called the slow and the fast 

axis. Linearly polarized light with E parallel to the fast axis will travel through the crystal faster than 

light with E parallel to the slow axis. If E is in between the two axes, the components of E will travel 

through the crystal at different speeds. In a half wave plate the thickness of the crystal is chosen such 

that the phase shift of the two components is half a wavelength, therefore a half wave plate only 

works for a specific, small bandwidth of wavelengths. This phase-shift results in a rotation of the 

electric field vector E by twice the angle that the crystal is rotated. If E is parallel to either the slow or 

the fast axis, the state of polarization will not be changed after the half wave plate. 

2.3.3  Brewster Angle 

When unpolarized light hits a glass plate, some light is reflected, and the amount depends on the 

thickness of the glass. [1] However, if the glass plate is inclined with respect to the incident light by 

an angle 

         (
  

  
)                                                                              

where    and    are the index of refraction of the incident medium and the glass plate respectively, 

then p-polarized light will be transmitted with little losses and some of the s-polarized light will be 

reflected.   is called the Brewster angle and a glass plate at this angle is often called a Brewster 

http://en.wikipedia.org/wiki/File:Onde_electromagnetique.svg
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window. If a Brewster window is placed inside a laser cavity, a few percent of the s-polarized light 

will be lost in each passage through the inclined glass plate, both in the forward and backward 

direction. The gain for s-polarized light will thus be reduced while more or less unaffected for p-

polarized light and effectively the output of the laser will be p-polarized. 

2.4  Laser - Light Amplification by Stimulated Emission of Radiation 

Since the first lasers in the 1950s we have come a long way of developing new, more advanced 

lasers. The research lasers of today can occupy entire rooms or even large facilities, pulsed lasers can 

reach pulses as short as a few hundreds of attoseconds and photon intensities as high as 

         W/cm2 has been reached. [6] 

The field of application for lasers has proven to be enormous and today, lasers can be found virtually 

anywhere in the modern society. A few examples are in DVD-players, laser cutting and in medical 

applications. Lasers are also widely used in research. It is popular because it can provide coherent 

and monochromatic light with high photon intensities. These properties prove to be useful in many 

fields of scientific research. Although the linewidth of a laser can be extremely small, a completely 

monochromatic laser cannot exist due to Heisenberg's uncertainty principle, as discussed in section 

2.4.5. 

 

2.4.1  Principles of a Laser 

A laser is based on the process of stimulated emission, which is a light-matter interaction that occurs 

when a photon passes an atom. An excited atom then interacts with the electromagnetic wave and 

de-excites to a lower energy level, the process creates an additional photon that is equal in every 

way to the incident photon that stimulated the process. (The additional photon has the same 

frequency, phase, polarization and direction as the incident photon.)  This process requires that the 

incoming photon has the same energy (or roughly the same) as the energy difference between the 

two levels in the atom. However, if the atom is in the lower state, there will be no stimulated 

emission and the photon will be absorbed instead. 

Since absorption leads to losses in photon intensities, the medium is pumped to ensure that the 

population of states is in the higher energy level and not in the lower, as it thermodynamically would 

want to. The pumping creates a so called population inversion. See figure 2.5 below. When the atoms 

are pumped to state 2, they will quickly relax down to state 3 where they further relax down to state 

4, preferably through stimulated emission. Upon reaching state 4, the atoms will quickly relax down 

to the ground state, where they will be quickly pumped back up to state 2 again, provided that the 

pumping is sufficient. [7] The intention is to have a large population at all times in level 3 (hence the 

longer lifetime), and a low population in the other levels, especially level 4. This is because, as the 

atoms populated in level 3 contribute to stimulated emission, and thus lasing, the atoms in state 4 

prevent lasing by absorbing photons. An atom has a probability to relax directly from state 2 to state 

1 or 4 without passing by state 3, however all these "wrong" transitions are less probable than the 

"right ones" in a well-functioning laser. There are lasers that employ 3-level diagrams as well where 

the ground state acts as the lower lasing level, however, 4-level lasers are superior to 3-level lasers. 

[7] 
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Figure 2.5 Energy level diagram of a 4-level laser. The lifetime of level 3 can be in the 

microsecond regime while the lifetime of level 4 can be as short as picosecond. 

2.4.2  Laser Pumping 

Laser pumping can be done in a variety of ways, both electrical and optical pumping are commonly 

used techniques. Flashlight pumping is an optical pumping technique where the lasing medium is 

encircled with or next to a lamp that is tuned to excite the atoms in the lasing medium from level 1 to 

2. Another pumping technique, often employed by gas lasers, uses a direct current of electrons 

between an anode and a cathode placed at each end of the lasing medium. The electrons will collide 

with gas molecules as they travel from the cathode to the anode and thus excite the atoms. A 

common technique is to pump lasers with other lasers, external laser pumping. The pumping laser 

can be a diode laser or any other type of laser. For maximum efficiency, the wavelength of the pump 

laser should be on resonance with the energy difference between level 1 and 2 in the laser that is to 

be pumped. [7] 

2.4.3  The Laser Cavity 

The lasing medium is placed inside a laser cavity that consists of two mirrors, this makes the photons 

bounce back and forth through the lasing medium which permits more stimulated emission. One of 

the mirrors is semi-transparent. This allows the beam to actually escape the cavity.  

Due to interference, standing waves of light will arise inside the laser cavity. These different modes, 

as they are often called, depend both on the cavity parameters and the gain medium (lasing 

medium). The cavity itself can support a large number of longitudinal modes since the wavelength of 

light is usually much shorter than the length of the cavity. However the gain medium does not 

support such a broad spectrum and thus the frequencies that are lasing are the ones that are 

supported by both the cavity and the lasing medium simultaneously.  

2.4.4  Mode Locking 

The different longitudinal modes normally oscillate independently in a continuous wave laser, though 

there are techniques to lock their phases together in order to obtain ultra-short laser pulses such as 

femtosecond pulses. There are active and passive ways to accomplish these so called mode locking 

techniques. In active mode locking, an optical switch that is controlled externally is placed inside the 

laser cavity. The switch is only opened at short periods of time when the pulses are supposed to pass 
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through. At all other times, the switch blocks the light. Thus, the prevailing pulses are unaffected by 

the switch and any light with a different phase will be quenched as it suffer from too great losses. 

Thus, mode locking can be said to happen by accident, when the phases of different modes happens 

to employ equal values and are allowed to pass through the optical switch they continue to be 

locked, but until this happens, no lasing can occur. Passive mode locking works under the same 

principle, however instead of having an active switch, a saturable absorber or a Kerr-lens is placed 

inside the laser cavity. The transmission coefficient of a saturable absorber increases as the light 

intensity passing through it increases. Consequently it lets high intensity pulses through but blocks 

out the weak ones. This automatically forces the system to mode lock without any controllable 

switch since lasing can only occur if the phases of the modes are locked and create high intensity 

pulses. A Kerr-lens is made out of a material that through nonlinear-optical phenomena focuses high 

intensity light to a greater extent than low intensity light. Thus, the high intensity light can be let 

through a small aperture that blocks out the, less focused, low intensity light. [7] 

2.4.5  Heisenberg's Uncertainty Principle in Pulsed Lasers 

As mode locking generates ultra-short pulses, the frequency range must be increased. This has 

nothing to do with the mode locking technique itself, but is a fundamental property of nature, a 

consequence of Heisenberg's uncertainty principle. Heisenberg's uncertainty principle limits the 

maximum precision of two simultaneously measured variables, corresponding to two non-

commuting operators. The energy-time uncertainty is given by 

     
 

 
                                                                                   

where   is Planck's constant divided by   ,    is the standard deviation in energy and    is the 

average amount of time it takes for an arbitrary operators expectation value to change by its 

standard deviation. There exists no Hermitian time operator in quantum mechanics. For photons, the 

energy is related to the frequency in the following way 

                                                                                               

                   

where   is the angular frequency of the photon. This yield 

                                                                                        
 

 
                                                                                  

where, for pulsed signals,    and    are the spectral and temporal root-mean-square widths of the 

pulse respectively. [8] Equation (5) is called the time-bandwidth product and is the fundamental limit 

to any type of pulsed signal. For a Gaussian pulse, with    and    defined as the full width half 

maximum (FWHM) of the pulse, the minimum value of the time-bandwidth product is  

                                                                                         

this can be shown using the Fourier theorem. [9] Note that the frequency   is used in equation (6) as 

opposed to the angular frequency   in equation (5).  

This explains why a laser can never be completely monochromatic. The shorter the laser pulse, the 

larger the linewidth must be. Thus, to produce femtosecond pulses the lasing medium must have a 
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linewidth in the THz regime. For example, a Titanium-doped sapphire laser has a linewidth of 100 THz 

and pulse duration of 10 fs. [7] 

2.5  Additional Microscopes 

Although the PEEM was the primarily used microscope in this thesis, two other types of microscopes 

were used as complimentary microscopes. This section will briefly discuss these two microscopes 

2.5.1  Optical Microscopy 

Optical microscopy uses visible light to illuminate a sample and optical lenses to magnify the image. 

The resolution of such a microscope is often limited by the fact that the human eye is used as the 

detector. The resolution is therefore fundamentally limited to roughly 400 - 700 nm.  

2.5.2  SEM - Scanning Electron Microscopy 

The SEM uses a focused electron beam to scan over a sample. These electrons can back-scatter on 

the surface of the sample or interact with it to produce secondary electrons that can be detected. 

The image of the sample is then created by the detected signal and the position of the electron 

beam. The resolution of any instrument or microscope is fundamentally limited by the wavelength of 

the particles that carries the information as explained in section 3.4, and since the wavelength of the 

electrons are usually much shorter than the wavelength of visible light, the lateral resolution of the 

SEM is generally much better than that of an optical microscope. The de Broglie wavelength of the 

electrons are inversely proportional the velocity of the electrons, thus the wavelength can be varied 

by tuning the acceleration voltages.  

The SEM has a different contrast than a PEEM, and contrary to PEEM the physical structure of the 

sample is resolved, and not the optical properties. Because of this and its high lateral resolution, SEM 

is a great complimentary technique to PEEM. 

Since the sample is bombarded with electrons, it is crucial to have a well conducting sample, thus to 

efficiently abduct electrons from it. Otherwise charging effects will occur and distort the image. Too 

violent charging effects can even destroy the sample completely. 
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3  Method 

This section presents the experiments that were made and all the preparations involved. 

3.1  The Samples 

3.1.1  Nanowire Growth Method 

The nanowires were grown in the Lund Nano-lab by the group of Kimberly Dick Thelander using the 

Vapor-liquid-solid (VLS) nanowire growth method realized in a Metal-Organic Vapor Phase Epitaxy 

(MOVPE) chamber. This is done by placing Au particles on an InAs(111)B substrate surface which is 

then placed in the chamber and heated. Thereafter Tri-methyl-indium (TMI) and arsine (AsH3) gas are 

let into the chamber. The TMI molecules are chemically decomposed so that a supersaturated alloy 

of Au and In is created, the In atoms then crystallizes under the Au particle and the nanowire grows 

upwards with the Au particle on top of the wire. The As atoms reach the interface between Au 

particle and nanowire through surface diffusion after they have been adsorbed on the surface of the 

wafer. The temperature is regulated to catalyze nanowire growth under the Au particle, but to avoid 

bulk growth. [10,11] 

3.1.2  Samples and substrates 

When the nanowires had grown they were transferred to the sample substrate by simply scratching 

them off with a piece of paper, and then carefully stroking them onto the sample substrate; this has 

been given the fancy name The Dry Deposition Method. Using a metallic film on a semiconductor 

substrate reduces problems with charging. 

The samples were: 

Sample 1:  Wurtzite InAs (with stacking faults), on a 55 nm thick Cr-film on Si(111) substrate  

Sample 2:  High purity wurtzite InAs , on a 55 nm thick Cr-film on Si(111) substrate  

The energy needed to knock out an electron in an InAs nanowire is only roughly known, though it is 

probably close to 4 eV. A laser of 800 nm (1.54 eV) then requires 3 or 4 photons to release one 

electron. 

3.1.3  Preparations 

The first sample was placed in a PEEM sample holder and an optical microscope was used to make 

sure it was placed flat in the sample holder and not tilted. This was done by looking for focus changes 

at the edges of the sample. It is crucial that the sample is lying flat on the sample holder as the 

sample is approximated as an infinitely large, flat, perfect conductor in the PEEM. If the sample is 

slightly tilted, the field near the sample will be slightly asymmetric. This leads to astigmatism, which 

negatively affects the resolution and distorts the image. It also makes it harder to optimize the 

setting of the microscope, and each time the sample is moved, the setting must be re-adjusted. 

When the sample was successfully placed in the sample holder, the sample was ready to be 

investigated in the PEEM.  
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3.2  The Experiment 

3.2.1  Execution 

The sample was placed in a small, separate vacuum chamber that was pumped using a rough pre-

pump and a turbo pump. When the pressure was sufficiently low, the sample was inserted in the 

PEEM through the PEEM's transfer-system. The sample was initially studied with the PEEM in UHV 

using the Hg-lamp that is presented in section 3.5.1. This was done in order to get an overview of the 

sample with the intention of finding interesting nanowires. When interesting areas were found, the 

Hg-lamp was switched off and the laser beam was directed onto the sample. The polarization of the 

beam was changed from 0o to 360o with increments of 10o, where images were taken. The 

polarization angle was altered with a broadband half wave plate that supported wavelengths from 

690 to 1200 nm. A broadband half wave plate is necessary since the laser beam is quite broadband. 

The images were recorded using two different CCD cameras that are presented in section 3.3.4 

below. 

3.2.2  A Burned Power Supply 

The intention was to additionally study high purity wurtzite InAs nanowires (sample 2), and to 

compare the results with the less pure wurtzite InAs nanowires (sample 1). After enough data had 

been collected from sample 1, sample 2 was inserted in the PEEM and investigated with the Hg-lamp. 

An extensive map of plenty of good looking wires was made, but unfortunately the laser was not 

working properly at the time. The week after that, when the laser was working, another effort to 

further investigate the wires with the laser was made. However, only moments after the PEEM was 

turned on, the electronics of the PEEM began to give out smoke. The power supply of the PEEM was 

damaged and had to be sent to the manufacturer. This prevented further investigation of sample 2 

and thus, only data from sample 1 has been analyzed. 

3.3  The PEEM 

3.3.1  Focus IS-PEEM 

The photoemission electron microscope was a FOCUS PEEM with Integral Sample Stage (IS-PEEM) 

from Omicron nanotechnology GmbH. The PEEM has an integral, piezoelectrically driven, sample 

stage. The sample can only be moved in the plane of the sample itself. The sample stage is in unit 

with the objective to attenuate any relative motion between the sample and the objective. This 

results in less vibration compared to having a separately mounted sample stage. The sample stage is 

enclosed in µ-metal shielding in order to protect against disturbing magnetic fields. [12] 

The PEEM has a transfer-arm with a separate vacuum chamber which allows for changing of samples 

without venting the main chamber. There are also windows around the sample stage so light can 

reach the sample. These windows are positioned such that the incoming light can enter at a 

maximum grazing angle of roughly 30o. [12] The laser beam comes in at a grazing angle of 25o.  

 

3.3.2  Electrostatic Lenses 

The PEEM is equipped with an extractor positioned right in front of the sample. The sample was at 

ground potential at all times, while the potential difference between the sample and the extractor 

was altered between 10-13 kV in the experiments. The sample and the extractor, as well as the focus 



 
 

14 
 

and the column electrode form the electrostatic tetrode objective lens. There is a piezoelectrically 

driven disc with five different contrast apertures in the focal plane of the objective lens, with the 

sizes of 30, 70, 150, 500 and 1500 µm. The choice of contrast aperture affects the resolution and the 

intensity as the apertures physically block out divergent electrons. The FOCUS PEEM also has an 

octupole stigmator right after the contrast apertures in the back focal plane of the objective lens. 

This is used to correct astigmatism and non-spherical aberrations. [12] 

A hexagonal iris aperture, that is continuously adjustable in size, is positioned just before the two 

einzel projective lenses. An einzel lens has three cylindrical tubes where the potential of the first and 

the last are set to equality, while the middle one has a different voltage as shown in figure 3.1 below. 

The beam diverges between the first two tubes, and then the beam is focused by the last two tubes, 

this creates a magnified image. 

 

Figure 3.1 Cross section of an einzel lens. Note that the first and the last tubes do not necessarily 

have to be at ground potential. The beam can consist of any type of charged particle, in this image it 

is ions, though in the PEEM, it is always electrons. Image taken from 

http://en.wikipedia.org/wiki/File:Einzel_lens.png, verified 2013-06-17. Author: Wikiezz 

3.3.3  Imaging Assembly 

At the end of the PEEM there is a multichannel plate (MCP) that amplifies the electric signal with a 

factor of 103 - 105. The amplified electric signal then hits a fluorescent screen that is recorded by a 

CCD camera. The MCP is an expensive and fragile piece of equipment and it should always be 

operating at the lowest possible voltage in order to increase the life span. The noise also increases as 

the MCP voltage is increased. The MCP could be damaged if exposed to too high intensities. [12] 

http://en.wikipedia.org/wiki/File:Einzel_lens.png
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Figure 3.2 Schematic image of the interior of the PEEM with beam path. The collimating pre-

retarder lens and the grids for energy filtering were never used in the experiments. Image is not to 

scale. 

All of the three electric lenses in the PEEM do not have to be turned on. If the voltages of the 

projective lenses are set to the column voltage, they are turned off. The PEEM can be operated in 

one, two or three lens mode. In one lens mode only the objective lens is active, this is the mode with 

the lowest magnification. The three lens mode, when all lenses are active, has the highest 

magnification, but is tricky to use. [12] Two lens mode was the only mode used in the experiments 

because it provided enough magnification, and is quite easy to use. Furthermore, it is the only mode 

for which the image recorded is not upside-down, which simplifies the usage of the PEEM. 

3.3.4  CCD Cameras 

Two different CCD-cameras were used in the experiments. One of the cameras was a compact CCD-

camera from PCO with a maximum quantum efficiency of 0.65 used for good light conditions when 

scanning over the sample with the Hg-lamp. [13] Real time imaging was possible with this camera, 

thus it suited well for scanning over the sample. The other CCD-camera was a larger camera Apogee, 

originally made for astronomical purposes. It had a maximum quantum efficiency of 0.86 and was 

used for low light conditions. Real time imaging was not possible with this camera, and thus, it was 

used for imaging with the laser system. The camera had a cooling system that could cool it to 

approximately 50o C below the surrounding temperature. [14] The two cameras will from now on be 

referred to as the PCO and the Apogee camera for simplicity. Quantum efficiency is a notion that 

apprizes the amount of electrons produced per photon that hits the photoreactive surface. Quantum 

efficiency is wavelength dependent. 
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3.4  Resolution 

The resolution of any type of microscope is fundamentally limited by diffraction, and so is the PEEM. 

The diffraction limit is inversely proportional to the wavelength of the particles that carries the 

information. The wavelength of the electrons in the PEEM is shorter than the wavelength of visible 

light, so the PEEM has a higher fundamental limit for the resolution compared to optical 

microscopes. This is what is unique for the PEEM, since the information carriers are electrons, optical 

properties of a surface can be investigated without being limited by diffraction of light. However, the 

diffraction limit of the PEEM has not yet been reached, instead, it is limited by other imperfections 

such as spherical and chromatic aberrations, space charge and astigmatism, effects that do not exist 

or can be greatly reduced in optical microscopes. The fundamental limit of the lateral resolution is 20 

nm according to the manufacturer. [15]  

3.4.1  Space charge 

If the density of electrons emitted from the sample and traveling through the PEEM is too high, the 

coulomb repulsion can become significantly big and give rise to what is called space charge. This 

effect distorts the image and limits the resolution of the PEEM. [16] Small but bright objects can 

appear much larger than what they are because the electron cloud emitted will grow spatially and hit 

a larger area on the detector. An example of space charge can be found in figure 4.6. Space charge 

can be reduced by reducing the intensity of the incoming light, fewer electrons will then be emitted 

and thus there will be less prominent coulomb repulsion. However, this loss in electrons directly 

decreases the amount of electrons that hit the detector and thus longer exposure times are needed. 

The intensity should be optimized such that the space charge effect is as low as possible for the 

highest possible photoemission. The space charge effect is strongest in the focal plane of the lenses 

because the density of electrons is highest there. 

3.4.2  Astigmatism and Aberrations 

Astigmatism is an effect that arises when lenses are not radially symmetric or if the lenses are not 

positioned exactly on the optical axis. This distorts the shape of images. Astigmatism in the PEEM can 

be adjusted with the stigmator, using the software provided by the manufacturer. Spherical and 

chromatic aberration are effects that distort images and reduce resolution in an optical or electro-

optical system. 

In optics, spherical aberrations originate from imperfect lenses where light is bent differently at the 

edges compared to the center in such a way that the focal point is stretched out along the optical 

axis. A perfectly parabolic lens does not suffer from spherical aberration, however they are much 

more difficult to fabricate than spherical lenses. Electrostatic lenses suffer the same problem with 

spherical aberration because they are spherical, and not parabolic. The electric field is stronger at the 

edges than in the center, thus there will not be one single point of focus and therefore point-like 

objects will not be resolved as points, but as small discs.  

In optics, chromatic aberration arises because the refraction index of materials depends on the 

wavelength of light, so different wavelengths will be focused differently. An electrostatic lens suffers 

from chromatic aberration as well since electrons with higher kinetic energy spend less time in the 

electric field of the lens. The acceleration of a particle in an electric field is proportional to the time it 
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spends in the field, and thus, slower electrons will be focused to a greater extent than the faster 

ones. 

Reducing vibrations is an effort that can be made to keep the resolution as high as possible. The 

PEEM was lying on a heavy vibration-dampening table and an ion pump without moving parts was 

used to maintain UHV.  

3.5  Light sources 

Two different light sources were used in the experiments. The first one was a standard Hg arc-lamp 

supplied by Focus GmbH. The second one was a mode locked titanium-doped sapphire (Ti3+:Al2O3) 

laser. It was provided by the group of Prof. Anne L'Huillier at the Division of Atomic Physics at Lund 

University.  

3.5.1  Hg Lamp 

The mercury arc lamp has a broad spectrum with a sharp peak at 4.9 eV, [17] which is above the 

work function of the investigated nanowires; this is crucial for the photoemission process to occur. 

The light from the lamp is directed onto the sample via a reflection filter that reflects UV-light, but 

not IR-light; this is to avoid any unnecessary heating of the sample. 

3.5.2  The Laser 

The linearly polarized light was generated by having the birefringent lasing crystal tilted at the 

Brewster angle. It was mode locked by means of a Kerr lens, capable of generating pulses as short as 

5 fs. As the pulse travels through glass into the PEEM vacuum chamber, the pulse will be stretched in 

time since the index of refraction is wavelength dependent and the pulse has quite a large 

bandwidth. This was compensated for in advance by using chirped mirrors that reflect different 

wavelengths at different depths in the material. Wedges were placed in the beam line to adjust the 

amount of glass the pulse travels through, and thus the pulse length could be adjusted. However, the 

pulse length was never optimized. The repetition rate was adjustable from 200 kHz to 2 MHz. It was 

only used at 200 kHz in the experiments. The wavelength was centered on 800 nm, which implies 

that 3 or 4 photons were needed to knock out an electron from the sample. The laser was quite 

advanced and only a few of its kind exist in the world. The laser will not be further discussed as it 

probably requires a thesis of its own to fully explain. 
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4  Results 

The results from the experiments will be presented in this chapter. It will contain PEEM images, SEM 

images and data from measurements of polarization series. 

Earlier experiments have been done at the Synchrotron radiation division to investigate the 

photoemission of InAs nanowires and the relationship between wire orientation on the sample and 

the state of polarization of the light. The results seem to vary depending on wire thickness and 

illumination source. Therefore efforts have been made to further analyze the behavior of the 

nanowires when illuminated by pulsed fs laser light with a wavelength of 800 nm. 

4.1  Imaging with Different States of Polarization 

At first, a few nanowires illuminated by the laser are presented in figure 4.1 with the Hg image for 

comparison. The laser light comes in from the left in the images, while the light from the Hg-lamp 

comes in from the bottom. 

 

Figure 4.1  PEEM images of some nanowires on the sample illuminated by a) S-polarized laser 

light, b) P-polarized laser light and c) the Hg-lamp. a and b have been rotated 90o clockwise because 

the Apogee camera was rotated 90o with respect to the PCO camera. 

One can clearly see that there is a difference in photoemission between s and p polarized light in the 

two images a) and b) in figure 4.1. For instance, the two wires are only visible in the second image, 

and seem not to respond at all to s-polarized light. Another example can be seen in figure 4.2 

 

Figure 4.2  PEEM images of some nanowires on the sample illuminated by a) S-polarized laser 

light, b) P-polarized laser light and c) the Hg-lamp. a and b have been rotated 90o clockwise because 

the Apogee camera was rotated 90o with respect to the PCO camera. 
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Once again there is a clear difference between the photoemission of the nanowires when the state 

of polarization of the laser light is changed.  

4.2  Clusters and Fragments of Nanowires 

In the images above, one can see that the photoemission of some wires is strongly polarization 

dependent, while some regions seem to emit more or less the same amount of electrons regardless 

of the state of polarization. An explicit example of this is shown in figure 4.3 below. 

 

Figure 4.3  PEEM images of some nanowires on the sample illuminated by a) S-polarized laser 

light, b) P-polarized laser light and c) the Hg-lamp. All the images have been rotated 90o clockwise 

because the Apogee camera was rotated 90o with respect to the PCO camera. 

It should be mentioned that the bright part in figure 4.3 a) does in fact drop in photoemission 

intensity for some angles of polarization, however it never drops to zero. This probably has to do 

with the fact that the bright area is not a single, nice looking wire, but a cluster of wires and 

fragments of wires that lie randomly on top of each other. This can clearly be seen in the SEM image, 

figure 4.4 below 

 

Figure 4.4  SEM image of the same are as in figure 4.3, the top wire is not a single wire but a 

cluster of wires and fragments of wires. 



 
 

20 
 

Regions like these are not included in the analysis of angular dependence because, first of all, they 

are hard to analyze, and second, it is more or less impossible to reproduce such a structure even if 

significant information could have been successfully extracted from it. 

4.3  Angular Dependence 

In order to investigate the angular dependence, all the analyzed wires had to be imaged with the 

SEM in order to verify that the wires were in fact single, nice looking nanowires and not clusters of 

wires. As earlier stated, the state of polarization was changed from 0o to 360o in steps of 10o. All the 

analyzed wires will not be presented here, only a few examples. 

The analysis was made using a Matlab script that Erik Mårsell had written earlier. The Matlab script 

measured the intensity in a selected area in the images and then the background intensity in another 

area. This was then used to create a polar plot of the relative intensity in the images in following way 

  
     

        
                                                                                         

where I is the intensity in the selected area and image, Ibg is the background intensity and Imax is the 

maximum intensity in the selected area. This yields numbers between zero and one which where 

plotted in polar plots. Figure 4.5 below contains such polar plots of two nanowires on the sample. 

 

 

Figure 4.5  PEEM image of two straight, single nanowires with corresponding polar plots. The 

image is taken with the Hg-lamp. The wire enclosed in a blue rectangle corresponds to the blue polar 

plot and the wire enclosed in a red rectangle corresponds to the red polar plot. 

From here on, the two wires in figure 4.5 will be designated the red and the blue wire, for simplicity.  

Figure 4.6 below illustrates the photoemission of the red and the blue wire at different angles of 

polarization of the illuminating laser light. Note that the nanowire in the top right corner that does 

not have a colored rectangle has not been measured upon since it has fragments of wires on it. A 

cos6 function is a good fit to the polar plots. 
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Figure 4.6  PEEM images of the same are as in figure 4.5 but illuminated with a) s-polarized laser 

light, b) p-polarized laser light, c) 30o laser light that yielded minimum photoemission, d) 110o laser 

light that yielded maximum photoemission for the blue wire and e) 130o laser light that yielded 

maximum photoemission for the red wire. 

Note the disturbing blob just below the blue wire evident in figure 4.6 b, d and e. This blob will be 

discussed later in section 5.3. It seems to increase and decrease in size throughout the images, due 

to the space charge effect.  
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5  Analysis  

5.1  Analysis of Angular Dependence 

All the clean nanowires that have been measured seemed to behave similarly to the nanowires in 

figure 4.5, where a cos6 function was a suitable fit for the polar plots. All the nanowires had a 

maximum photoemission at a certain angle of polarization. To test if this angle is related to the angle 

at which the wires were lying on the sample, the polarization angle of maximum emission was 

plotted against nanowire orientation on the sample, see figure 5.1 below. If there is a relation, the 

plot should yield a straight line, and if not, there should be data points at random positions all over 

the diagram.  

The polarization angle is defined after the maximum emission angel of each wire obtained from the 

polar plots, where 0o is s-polarized light and 90o is p-polarized light. The nanowire orientation angle is 

defined clockwise from 0o to 180o as the angle of which they lie on the sample as seen from the 

PEEM images using the Apogee camera. A vertical wire therefore has an angle defined as 0o while a 

horizontal wire is defined as 90o. It should be mentioned that the images taken with the Apogee 

camera were all initially rotated 90o counterclockwise simply because the camera was rotated with 

respect to the PCO camera. However in this report, the Apogee camera images have been rotated 

90o clockwise to match the images taken with the PCO camera. The result of the data analysis can be 

found in table 1 below. All the wires with corresponding polar plots can be found in appendix A. 

Table 1 Angular data from all the nanowires measured upon.  

Nanowire orientation angle [deg] 

The uncertainty is roughly ±2
o
 

Maximum emission angle [deg] 
The uncertainty is roughly ±10

o 
150 65 

170 80 

60 120 

70 105 

68 130 

50 115 

50 110 

90 160 

100 20 

108 30 

57 120 

130 28 

110 15 

90 165 

140 60 

90 170 

90 180 

10 90 

40 110 

 

The plot from the data in table 1 can be found below in figure 5.1 below. 
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Figure 5.1  Scatter plot of nice looking wires, maximum emission angle [deg] as a function of 

nanowire orientation angle [deg]. The nanowire orientation angle was measured quite accurately 

with an error of roughly ± 2o while the polarization angle had a somewhat larger error, roughly 

estimated to ± 10o. 

At first glance, this does not look very promising, however if one tries to plot it from -90o to 90o 

instead of from 0o to 180o, the result from figure 5.2 below is attained. The angles -90o to 90o are 

now defined as 9 o'clock to 3 o'clock respectively. 

 

 

Figure 5.2  Scatter plot of the same data as in figure 5.1 but plotted from -90o to 90o instead of 

from 0o to 180o. -90o is defined as 9 o' clock and 90o is defined as 3 o' clock. 

5.2  The Projection of the Electric Field 

The result from figure 5.2 looks more or less like a straight line, although the data points are still 

quite spaced. This has to do with the fact that the incident beam is not normal to the surface of the 

sample, but has a grazing angle of roughly 25o. Effectively the angle of the electric field on the sample 

is not the same as the angle of the electric field in the beam. The electric field vector on the sample is 

the projection of the electric field vector in the beam, and thus, the projection vector on the sample 

surface must be calculated in order to acquire a more accurate result. 
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Figure 5.3 Schematic drawing of the experimental arrangement. The sample is in the y-z plane, 

and the emitted electrons will travel in the positive x-direction. The vector P indicates the normal 

vector to the surface plane and the vector V indicates the electric field vector of the polarized light. Θ 

indicates the angle between the electric field vector and the y-axis; which varies from 0o to 360o. The 

illuminating laser beam comes in with a grazing angle of 25o, and thus V will rotate in the plane which 

is at an angle of 25o from the x-axis. U is the projection of V on the surface plane and Φ is the angle 

between U and the y-axis. 

In order to calculate the projection of the electric field vector onto the sample plane, the vectors P 

and V must first be defined. The simplest way to define the normal vector P is simply  

                                                                                        

The vector V is a bit trickier but can be defined with some geometry. 

If the length of V is assumed to be unity it is easy to see that the y-component of the vector is simply 

      , the x-component and the z-component are                 and                 

respectively so that 

                                                                                       

To find the projection vector U of V on the surface plane the following formula was used: 

                                                                                  

The projection vector U is then 

                                               

                                                    

                                                            

 (                      )                                                                                                

so, 
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   (                      )                                                                

Now that U has been calculated it is easy to see that the angle Φ is 

        (
              

      
)                                                                 

This expression can convert any angle   [deg] of the electric field vector V to the angle   [deg], which 

is the angle of the electric field on the actual surface of the sample. All the data points in figure 5.2 

have to be converted from   to   using equation (13) so the correct maximum emission angle can be 

obtained. The converted angles can be found in table 2 below. 

Table 2 The angles of the electric field vector in the beam at maximum emission converted to 

the angle of the electric field vector in the sample plane. The angles were converted using equation 

(13) above 

Maximum emission angle [deg] 
The uncertainty is roughly ±10

o 
Maximum emission projection 

angle [deg] 
The uncertainty is roughly ±10

o 
65 42 

80 67 

120 -36 

105 -58 

130 -27 

115 -42 

110 -49 

160 -9 

20 9 

30 14 

120 -36 

28 13 

15 6 

165 6 

60 36 

170 -4 

180 0 

90 -90 

110 -49 

 

The new scatter plot with the maximum emission angle in terms of   as a function of nanowire 

orientation angle is presented below in figure 5.4 
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Figure 5.4 Scatter plot of nice looking wires from -90o to 90o. The maximum emission projection 

angle [deg] as a function of nanowire orientation angle [deg]. 

5.3  Bad Data Point 

The graph in figure 5.4 looks much better than the graph in figure 5.2 but there is still one data point 

quite far off the line. In fact, this data point corresponds to the blue nanowire in figure 4.6 from 

before. The disturbing blob is so intense that the space charge effect causes emitted electrons to 

cross over the nanowire, so the measured area is contaminated with electrons from the blob. The 

polar plot says that the maximum emission angle of the measured area is around 105o in terms of  , 

though the maximum emission of the actual nanowire is at a slightly different angle and because of 

this, the data point should be removed from the graph as in figure 5.5 below. 

 

Figure 5.5 Projection scatter plot without any disturbed wires from -90o to 90o. The maximum 

emission projection angle [deg] as a function of nanowire orientation angle [deg]. A linear fit was 

added to the graph. The equation of the linear fit is shown in the image. 

The graph in figure 5.5 indicates a clear relationship between the state of polarization on the sample 

and the nanowire orientation angle on the sample. 
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5.4  Determining the Angular Dependence  

To investigate if the field enhancement is strongest when the electric field vector is parallel or 

perpendicular to the nanowire (or any other angle in between) a few things must be known. The PCO 

camera was rotated roughly 15o clockwise as viewed from the sample, the Apogee camera was then 

rotated 90o counterclockwise with respect to the PCO camera as seen from the sample. Figure 5.6 

below presents the SEM image of the red and the blue nanowires from figure 4.5 with the 

orientation of the electric field on the sample that gave maximum emission. The SEM images are not 

rotated with respect to the images taken with the PCO camera. 

 

Figure 5.6 SEM image of the blue and the red nanowires from figure 4.5. The red and the blue line 

indicate the angle of the electric field vector that gave maximum emission for the red and the blue 

wire respectively. Remember that the blue wire was the wire that was removed from the scatter plot 

because of the disturbing fragment next to it. The white arrow represents the incoming laser beam at 

an angle of roughly 15o with respect to the horizontal axis in the image, the same angle at which the 

PCO camera was rotated with respect to the sample. 

The maximum emission angle in terms of   for the red wire in figure 5.6 above was 110o which 

converts to -26.7o in terms of  . But because the 15o rotation of the CCD camera with respect to the 

sample, the resulting electric field angle in the image will be                  . The red line is 

drawn at this angle and it overlaps quite will with the red nanowire next to it. The same procedure 

has been done for the blue line, and because of the disturbing fragment, the overlap is not quite as 

good as for the red wire. 

5.5 Analysis of Data from 2012  

Earlier experiments that have been conducted with the same type of sample but with a different 

laser system have not acquired the same results as in this thesis. The sample that had previously 

been studied was not the exact same sample as studied in this thesis, but it was nanowires taken 

from the same batch and put on a piece of wafer that was cut from the same wafer. Thus, there 
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should be no reason to distinguish between the two samples. The result from an earlier experiment 

is shown below in figure 5.7. 

 

Figure 5.7 Data from 2012 of the same type of wires as in this thesis but with a different laser 

system. Plot of the polarization angle in the laser beam as a function of nanowire orientation angle. 

There seems to be no relation between the angle of polarization and the nanowire orientation angle. 

The results of measurements from 2012 shown in figure 5.6 do not at all resemble the result of the 

measurements from 2013. Because of this, the data from 2012 were double checked by carefully 

analyzing it again. To do this, all the raw data from 2012 was analyzed without looking at the 

previous analysis, thus getting rid of any bias. Only straight, single nanowires were selected and 

analyzed in the same way as had been done with the data from 2013. The result is shown in figure 

5.8 below. 

 

Figure 5.8 Data from 2012 reanalyzed without bias and with carefully chosen nanowires. Plot of 

the maximum emission projection angle as a function of nanowire orientation angle.  

Figure 5.8 shows that there are some wires with almost the same angle of which they lie on the 

sample, but with completely different angles of maximum emission.  
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6  Conclusion and Discussion 

6.1  Discussing the Data 

There is a clear difference between the data from 2012 and 2013 even though the samples were the 

same; the only difference between the measurements were the laser systems. It is reasonable to 

believe that the differences in the laser systems cause the differences in the measurements. The 

repetition rate of the laser used in 2012 was 1 kHz, while 200 kHz for the laser used in this thesis. 

Having a higher repetition rate is beneficial for the resolution since a higher average intensity can be 

acquired for the same maximum intensity, thus reducing the space charge effect. Although a higher 

resolution was convenient, especially when doing the measurements in Matlab, it should not alone 

cause the big differences. The spectra of the two lasers were not exactly the same either, and maybe 

most importantly the intensities were different. Even relatively small differences between the lasers 

could potentially imply large differences in the measurements as the lasers significantly affect the 

nanowires. Too high intensities and repetition rates could for instance melt the nanowires. 

Another noteworthy difference was that some wires from the 2012 measurements did not seem to 

respond at all to the laser. The wires were clearly visible with the Hg lamp and in the SEM, but did 

not show up at all when illuminated by the laser. Generally speaking, the data from 2012 was much 

more ambiguous, some wires did not show up at all, some wires only emitted electrons at a certain 

point and it was much harder to determine what was what in the images. An example of this is 

shown in figure 6.1 below. 

 

Figure 6.1 Images of nanowires taken 2012. The left image is taken when the sample was 

illuminated with p-polarized laser light and the right image is the SEM image of the same nanowires. 

The colored rectangles indicate the wires that are visible in the left image. The wires that are not 

visible in the left image are not visible for any of the other angles of polarization either. 

If the left image in figure 6.1 is compared with for instance figure 4.1 one can clearly see a difference 

in resolution. In figure 4.1 the wires are clear, while in figure 6.1 the visible nanowires barely 

resemble wires at all. The wires respond differently to different states of polarization. Therefore it is 

not strange that the wires do not show up in the images for some states of polarization. However, 

the wires in figure 6.1 that are not visible in the left image do not show up at all for any state of 

polarization.  



 
 

30 
 

Examining the graph in figure 5.5, the linear curve has a slope of 0.91. The curve is expected to be 

periodical around 180o since there is no reason to distinguish between a wire orientated at 0o and 

180o. Since 0.91 is fairly close to 1, which is periodic, the results are quite trustworthy. The slope of 

0.91 instead of 1 probably arises from experimental inaccuracies. If the linear curve would have had a 

slope of for instance 0.5 or 2, which is quite far from periodic, the results would not have been as 

reliable.  

It is important to mention that not only straight, single nanowires show a dipole behavior in the polar 

graphs. Almost any nanostructure, even clusters of wires tend to have a clear dipole behavior. This 

probably has to with the fact that MPPE is a non-linear process. The photoemission is, according to 

perturbation theory, proportional to the intensity to the power of 2 for double-photon 

photoemission (2PPE) and 3 for tripple-photon photoemission (3PPE) etc. This is an approximation 

from perturbation theory that does not hold for MPPE when the number of transitions becomes too 

many. This, together with the fact that the intensity is proportional to the electric field squared, has 

serious implications on the photoemission. If the field enhancement for one resonance is twice as 

strong as for another, the photoemission will be 26 = 64 times larger. This means that the weaker 

resonance will not be seen at all.  

For straight, single nanowires, the strongest resonance seems to be along the wire (according to 

2013 measurements), however this does not necessarily have to be the case for clusters of wires. In a 

single nanowire, it is reasonable to think that light can couple most efficiently to the nanowire when 

the electric field is along the wire, much like in a polarizer. However, in a cluster of wires, the 

situation is not so simple and the strongest resonance can be orientated in any direction. 

6.2  Correcting for Missing Angles 

As seen earlier, the angle of the electric field in the beam is not the same as in the plane of the 

sample. Not only were the angles different, but while the angle in the beam was changed 

equidistantly, the angle in the sample plane was not. The angle of the electric field in the sample did 

not change linearly with respect to the angle in the beam. This can be seen in table 3 and figure 6.2 

below.  
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Table 3 Angles of the electric field vector in the laser beam and in the sample plane 

Angle of electric field vector in 
the beam [deg] 

Angle of the projection of the 
electric field vector onto the 
sample plane [deg] 

0 0 

10 4,3 

20 8,7 

30 13,7 

40 19,5 

50 26,7 

60 36,2 

70 49,3 

80 67,4 

90 ±90 

100 -4,3 

110 -8,7 

120 -13,7 

130 -19,5 

140 -26,7 

150 -36,2 

160 -49,3 

170 -67,4 

180 ±90 

 

The angles of the second column in table 3 above are drawn in figure 6.2 below. 

 

Figure 6.2 The black lines in the circle represent the orientation of the electric field vector in the 

plane of the sample. The angles on the circle correspond to the angles in table 3 above. Note that 

there is a larger gap between the lines when the angle approaches 90o. 

Looking at figure 6.2, one can see that the spacing between the data points increases as the angle 

approaches 90o, decreasing the accuracy of the measurements around those angles. In future 

experiments of this kind, a few more data points should be added near 90o. 
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6.3  XUV Chamber and Future Experiments 

So far, the samples have been studied with the PEEM and the SEM only to investigate the optical 

properties of the samples, and frankly to see what the samples look like. In the future, the idea is to 

do time resolved experiments with a pump probe laser setup to study field enhancements in the 

form of plasmonics. Although an extensive theory of plasmonics will be left aside, a few words should 

be mentioned to elucidate the connection between the subject of plasmonics and the future 

experiments.  

A plasmon is a charge density wave in the electron gas. This collective motion of electrons is not a 

real particle in itself, but is said to be a quasi-particle. If a plasmon is confined to the surface of a 

conductor or a semi-conductor, it is called a surface plasmon and if the surface plasomon is 

propagating, it is called a surface plasmon polarition (SPP). These SPPs can be generated by photons 

and then guided along nanowires. [18] It is unlikely to generate so called plasmons in semi-

conductors with light at optical frequencies; plasmonic resonances require quite high charge 

densities, as can be found in metals and therefore plasmonic resonances are usually studied in 

metallic nanostructures. The subject of plasmonics is applied to many different fields of technology, 

one of which is computer technology. Compared to the electronics in circuit boards, fiber optics is 

capable of transmitting a large amount of information in a short period of time, however the bulky 

nature of the wires are a limiting factor. The idea is to merge these two together through plasmonics, 

to get the speed and performance of optics, and the miniature size of the electronics. Nanowires 

could thus be used to guide optical signals on the circuit boards in a computer. 

In future experiments, the pulsed IR-laser is proposed to be the pump laser which generates surface 

plasmons on the sample, with a high harmonic generated (HHG) extreme ultraviolet laser (XUV) pulse 

as the probe. This allows for time resolved experiments that enables the investigation of the 

behavior of the surface plasmons. As the IR pulse hits the sample, it can spawn a surface plasmon, 

the XUV pulse then comes in at a time slightly later than the IR pulse and effectively "takes an image" 

of the surface plasmon. This is done a couple of hundred thousand times per second since the 

repetition rate is in the 200 kHz-2 MHz regime. One pulse of light is not enough since it only releases 

a hand full of electrons. Sufficient intensities are reached by means of many pulses. The screen 

recorded by a CCD-camera will look like a still image with all of these hundreds of thousands of 

"images" on top of each other. An image of the screen can be taken. The XUV pulse is then delayed 

to come in ever so slightly later than before to take "images" of the plasmons at later times in their 

"lives", and a new image of the screen can be captured. Repeating this process yields many different 

images at different times in the surface plasmons lives and these images could be put together in 

order to create a video. 

Since XUV light is extremely interactive, it is heavily absorbed in glass, and therefore cannot be 

transmitted into the vacuum chamber through a glass window. The HHG of the XUV pulses must take 

place inside the vacuum chamber itself. This requires a few modifications of the vacuum chamber 

since it must be connected to the HHG vacuum chamber. The XUV pulse cannot be focused by means 

of normal optical lenses. Instead a multicoated mirror designed for XUV light is used. The advantage 

of this is that chromatic aberrations do not exist in mirrors. Even though spherical aberrations are 

still present, the mirror is designed to diminish these when it sits at a grazing angle of 12o. 
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Appendix A - SEM Images with Corresponding Polar Plots 

All the nanowires from 2013 that have been analyzed are presented in this appendix. The colored 

rectangles around the wires do not necessarily indicate the measured area around a wire, but 

indicates which wire corresponds to which polar plot. 
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