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Abstract

Background: Breast cancer is the most common kind of cancer among women in Sweden. While the short- to
mid-term survival chances are good, the long-term survival chances are poor, and a large number of women are
also likely being overtreated and thus suffer from unnecessary side effects. The South Sweden Cancerome Analysis
Network - Breast (SCAN-B) Initiative aims at improving breast cancer outcome by developing new diagnostics and
predictive tests based on RNA sequencing (RNA-seq) technology. With RNA-seq being a complicated technology
with many error sources, quality control is needed to gain confidence in the obtained data.

Results: During this project an RNA-seq quality control pipeline was built and integrated into the existing SCAN-
B RNA-seq analysis pipeline. The quality control pipeline was used to evaluate the quality of 2547 RNA-seq
libraries. The evaluation showed good overall quality of the data. While the quality of the first sequenced libraries
is not optimal, quality has increased steadily and settled in on a high level.

Conclusions: Quality control is essential for the RNA-seq analysis process. The metrics used in this project provide
good insight into the quality of the evaluated datasets. However, cancer cells feature a distinct genomic landscape
which can make the interpretation of metrics difficult. Thus, care has to be taken when drawing conclusions about
the quality of RNA-seq data from cancer-derived samples.

Background genome draft sequence as well as sequencing tech-

) o nologies which are rapidly getting faster yet cheaper
Since the publication of the first draft sequence of  provide an unprecedented opportunity to implement
a human genome by the Human Genome Project  this idea.

[1] and Celera Corporation [2] in 2001, the idea of

personalized medicine has received increased inter- One of the diseases whose treatment could ben-
est from many medical practitioners and scientists. efit from personalized medicine is cancer. Cancer
Personalized medicine refers to medical treatment  is characterized by uncontrolled cell growth and
which is customized to each patient. The human  proliferation. These characteristics are due to an



accumulation of aberrations at the genome level. In
a normal cell, genes involved in stimulating and in-
hibiting cell growth and proliferation are in balance.
When these genes get modified due to mutations,
structural rearrangements or modifications in their
regulation, this balance is destroyed. Several other
processes (i.e., angiogenesis and apoptosis evasion)
are involved in stimulating tumor growth and cancer
progression, summarized by Hanahan and Weinberg
in their “hallmarks of cancer” [3].

Breast Cancer

Breast cancer is a type of cancer which arises in cells
of the mammary gland. The vast majority of cases
affect women, with only 1% of cases affecting men.
While most breast cancer incidence is usually spo-
radic, a hereditary risk exists in 5%-10% of cases,
of which about half are caused by BRCA1/BRCA2
germline mutations [4,5].

Classically, breast cancers have been classified in
two ways: (1) by histopathology such as morpho-
logical subtype (growth pattern of the tumor when
viewed under the light microscope), grade (appear-
ance of cancer cells compared to normal cells) and re-
ceptor status (expression of receptors on the surface
of the tumor cells), and (2) stage (tumor size and ex-
tend of spread within the body). Cancer cells may
have different receptors. The ones most commonly
used for classification are estrogen receptor (ER),
progesterone receptor (PR) and the human epider-
mal growth factor 2 (HER2) receptor, because of
their associations to outcome and response to ther-
apy [6]. Patients whose tumors are positive for both
ER and PR have a better prognosis than any of the
other ER/PR combinations [7].

In recent years a new way of classifying breast
cancer tumors based on molecular profiles has been
introduced [8,9]. These subtypes have been deter-
mined by gene expression profiling, where the genes
whose expression varies most between tumors have
been identified. The major subtypes found this way
are luminal, HER2 and basal. Luminal tumors show
high gene expression of hormone receptors and as-
sociated genes, while HER2 tumors have high ex-
pression of HER2 and other genes in the FRBB2
amplicon (17q11.2-12). Basal tumors are character-
ized by high expression of basal cytokeratins such as
CK5/14, as well as low expression of ER, PR and

HER2. These tumors are also called triple-negative
tumors [10].

Primary treatment for breast cancer is surgi-
cal removal of the tumor, which may be followed
by systemic therapy with anti-hormonal agents and
chemotherapy, as well as radiation treatment. Com-
mon therapeutic agents include tamoxifen (ER an-
tagonist), trastuzumab (monoclonal antibody in-
terfering with HER2) and different aromatase in-
hibitors (block estrogen synthesis), i.e. anastro-
zole, letrozole and exemestane. Chemotherapeu-
tic agents include cisplatin (induces apoptosis by
DNA-crosslinking), doxorubicin (DNA intercalating
agent) and paclitaxel (interferes with cell division)
[11].

Of 27,688 new cancer cases in women reported in
Sweden in 2011, 8382 were identified as breast can-
cer. This equals 30.1% of new cases, making breast
cancer the most common kind of cancer among
women in Sweden [12]. With rates of 98% 1-year
survival and 88.5% 5-year survival [13], the short- to
mid-term survival chances are good. However, the
long-term survival chances are much worse. Bren-
ner and Hakulinen show these to be about 60% at
15-year followup and about 50% at 20-year followup
[14]. Furthermore, a significant fraction of women
are likely cured by surgery alone, or may only need
milder systemic therapy, but are being overtreated
today and thus suffer from unnecessary side effects.
In addition to its health and psychosocial effects,
overtreatment also poses a significant economic bur-
den on healthcare systems [15].

The South Sweden Cancerome Analysis Network
- Breast (SCAN-B) Initiative

The South Sweden Cancerome Analysis Network -
Breast (SCAN-B) project was started in 2010 by
Professor Ake Borg; my thesis mentor Lao Saal is
a founding member of the steering group and over-
sees the research aspects. The project is a joined
effort of “surgeons, pathologists, oncologists, radi-
ologists, nurses, and biologists who strive to im-
prove survival and quality of life for breast cancer
patients” [16]. SCAN-B currently has seven par-
ticipating hospitals in Malmo, Lund, Helsingborg,
Vixjo, Halmstad, Kristianstad and Karlskrona, all
located in the South Sweden healthcare region. The
project’s goals are threefold [16]:

e Introduce gene expression and genomic tumor



profiling into the clinical routine for breast
cancer

e Improve tumor classification, diagnosis, prog-
nostication and prediction of treatment effects

e Eventual health care implementation, clinical
trials, cooperation with drug and biotech in-
dustry, and an accelerated pipeline towards
personalized care

Within SCAN-B, a tumor sample is taken from
each consenting patient. In addition, blood samples
are taken before the surgery and at defined follow-
up intervals. The samples are sent to Oncology De-
partment of Lund University for further analysis.
Currently the analysis process consists of performing
RNA sequencing (RNA-seq) of the tumor samples.
The resulting RNA-seq data is the basis for the work
presented in this thesis.

As of May 2013, 3513 patients have consented
to be part of SCAN-B. From these patients, 3399
blood samples and 2780 tumor samples have been
collected.

Additional retrospective cases have been incor-
porated in SCAN-B: approximately 450 tumor sam-
ples from the All Breast Cancer in Malmé (ABIM)
project collected between 2007 and 2010, as well as
approximately 85 samples from Lund and 60 hered-
itary BRCA1/BRCA2 cases.

RNA Sequencing (RNA-seq)

RNA sequencing (RNA-seq) [17] is a tool for tran-
scriptome analysis. It employs high-throughput
analysis to determine the RNA sequences and their
abundance in a sample. In most cases the RNA
is reverse-transcribed into complementary DNA
(cDNA) first, which is then sequenced. Direct RNA
sequencing is possible, however the techniques are
currently immature and therefore less commonly
used [18,19].

For a sample to be sequenced, it has to be trans-
formed into a sequencing library. This involves se-
ries of steps termed a library preparation proto-
col. Different protocols with varying properties ex-
ist. One of the most important properties is strand-
edness, which determines whether the protocol re-
tains the information of which DNA strand tran-
scripts were transcribed from. This is particularly

important when a transcript has arisen from a sec-
tion of DNA which has overlapping genes on the op-
posing strands.

Levin et al. [20] compared different stranded pro-
tocols regarding several metrics. The dUTP pro-
tocol [21] emerged as the clear winner from this
comparison, performing best in most metrics. An-
other comparison was performed within the Depart-
ment of Oncology, comparing dUTP with the II-
lumina TruSeq and the Epicentre ScriptSeq proto-
cols. Based on these two comparisons, the dUTP
protocol was chosen to be used for RNA-seq library
preparations within the SCAN-B initiative. The cur-
rently employed protocol is a customized and opti-
mized version of the protocol by Parkhomchuk et
al. [21]. The sequencing itself is performed with an
MNlumina [22] HiSeq 2000 sequencer.

SCAN-B dUTP-based Library Preparation Protocol

Figure 1: Simplified dUTP process flow.

The steps involved in the customized dUTP library
preparation protocol are illustrated in Figure 1. As
source material, 1ug of total RNA is used. First, the
mRNA is purified using poly-dT Dynabeads. Then,
it is fragmented into approximately 240 base-pair



fragments catalyzed by zinc cations and the frag-
ments isolated using a Zymo spin column. Synthe-
sis of the first cDNA strand is induced by adding
random hexamers which act as primers, as well as
reverse transcriptase and nucleotides. After removal
of excess reagents, the second strand is synthesized
with an admixture containing dUTP in place of
dTTP, as well as polymerase and nucleotides. The
resulting double-stranded cDNA is again isolated us-
ing a Zymo spin column. In the next step, different
Illumina TruSeq adapters are ligated to the 5" and
3’ ends of the cDNA. The adapters are needed for
the actual sequencing process to work later on, but
also include barcode sequences to enable matching
of the sequenced reads to source samples. The mix-
ture is size-selected to remove excess free adapters.
So that the resultant adapter-ligated cDNA main-
tains strandedness, the second strand which includes
dUTP is then specifically digested using uracil-DNA
glycosylase. The resulting cDNA fragments are am-
plified by polymerase chain reaction (PCR) and iso-
lated using size selection. Subsequent quantification
is performed to estimate the amount of ¢cDNA for
basic quality control.

The result of the library preparation is double-
stranded ¢cDNA, where one half of the duplex has
suitable adapter sequences on its 5 and 3’ ends
which is ready for sequencing.

lllumina Sequencing by Synthesis Method
Tllumina HiSeq 2000 sequencing machines utilize the
sequencing by synthesis method [23]. The machine
performs the actual sequencing process in a “flow
cell”. A flow cell is a compartment containing lanes,
in which reagents flow in from one side and leave
on the other side. The Illumina HiSeq 2000 can
operate two flow cells at the same time, with flow
cells currently having eight lanes. In the SCAN-B
RNA-seq used herein, 16 sequencing libraries result-
ing from the library preparation are mixed into one
pool. Each pool is applied to two lanes on two flow
cells, respectively. Consequently, 4 pools containing
64 libraries are sequenced in parallel. Through the
pooling, every library is sequenced on 2 lanes per
flow cell to provide redundancy against lane failure.
Using the sequencing adapters ligated during the
library preparation, the DNA fragments are ran-
domly immobilized onto baits, which are attached
to the surface of the lanes. Baits are short oligionu-
cleotide sequences which are complementary to the

free end of the adapters. Hundreds of millions of
“clusters” of identical DNA molecules, initiated by
a single clonal DNA sequence, are formed in situ in
the flow cell using bridge amplification. Bridge am-
plification works by attached DNA fragments bend-
ing and hybridizing to a nearby bait with its free
adapter, forming an arch. The bait acts as primer
for PCR with the DNA fragment being the tem-
plate. The resulting double-stranded DNA is then
denatured, leading to two single-stranded surface-
attached templates. This process, also known as
solid-phase amplification, creates clusters containing
up to 1000 identical copies out of each DNA frag-
ment in the prepared library [23,24].

During the actual sequencing process, modified
nucleotides which are labeled with different dyes and
include a terminating group are used. First, primers,
modified nucleotides and DNA polymerase are added
to the flow cell. Once a primer attaches to a DNA
template, the DNA polymerase starts second strand
synthesis by incorporating the first nucleotide. To
read which nucleotide has been incorporated, the
sequencer excites the clusters with a laser, inducing
fluorescence. The fluorescent spots are detected with
a charge-coupled device (CCD) sensor. Since a flow
cell lane usually contains many millions of clusters,
the resolution of the sensor has to be high and the
sequencer’s image recognition software has to keep
track of millions of spots at the same time. From
the detected spots, the actual bases of the DNA se-
quences are then called. Due to each cluster having
the same nucleotide incorporated at the same time,
the signal is strong enough for the sequencer to de-
tect reliably. After the detection, the terminating
group in the nucleotides is cleaved, so a new incor-
poration and detection cycle can start.

Using the sequencing by synthesis method, only
relatively short sequence stretches can be sequenced
with acceptable accuracy [25]. The Illumina HiSeq
2000 is currently restricted to a maximum read
length of 100 bases [26], which can lead to prob-
lems in post-processing steps such as mapping. This
disadvantage is alleviated by the high throughput of
sequencing as well as paired-end sequencing. After
the clusters have been sequenced, they are regen-
erated in such a way that the DNA fragments at-
tach to the flow cell surface with the other sequenc-
ing adapter. Following this, sequencing starts again
leading to DNA which has been sequenced from both
ends. Reads generated this way are called paired-
end reads. The two individual reads in a paired-end



read are called “mates” or “ends”. Paired-end li-
braries are designated by their read length, i.e. 2x50
or 2x100.

Quality Control
An RNA-seq experiment consists of many steps,
spanning from sample extraction over library prepa-
ration to the actual sequencing. FEach step has
the possibility of influencing the experimental data
in undesirable ways and introducing errors and bi-
ases. Quality control of the output data is a crucial
step needed to quantify these problems. While ba-
sic quality control measures are part of the library
preparation process, comprehensive quality control
can only be performed after the sequencing process.
To evaluate different strand-specific library
preparation protocols, Levin et al. [20] identified five
key metrics:

o Library complexity
Library complexity refers to the number of
unique start and end positions of read pairs
in the library. This value should be high as it
reflects the random shearing of DNA.

e Strand specificity
Strand specificity describes the percentage of
reads which in sense direction. This value
should ideally be 100%.

e Fvenness of coverage
Evenness of coverage is the the coefficient of
variation (CV) for the distribution of reads
along a transcript. A low CV is preferred, as
it indicates an even distribution.

e Continuity of coverage
Continuity of coverage refers to whether or not
gaps exists in the coverage of an annotated
transcript. Ideally, coverage should be com-
pletely continuous. This metric is defined as
the percentage of gaps per transcript.

e Coverage at 3’ and 5’ ends
Annotated transcript coverage at the 3’ and
5’ ends is an indicator for how well transcrip-
tion boundaries are covered. High coverage is
preferred.

However, these metrics only describe the proper-
ties of the prepared library. Additional metrics are

needed to assess the quality of the sequencing pro-
cess, as well as the alignment of the library reads to a
reference genome. The most common metric for se-
quencing quality is the base quality as estimated by
the sequencing machine. This metric is commonly
expressed as a Phred score [27,28]. The Phred score
Q@ is defined as @ = —10 * log19P, where P is the
probability of calling a wrong base. A Phred score of
30 therefore equals base calling accuracy of 99.9%.

For the alignment to a reference genome, it is
possible to calculate the mapping rate (number of
aligned reads divided by all reads), the number of
reads that align uniquely and the number of reads
that align in multiple places in the genome.

The goal of this project was twofold: To integrate
quality control into the RNA-seq pipeline used for
the SCAN-B initiative, and to perform systematic
evaluation of the quality of RNA-seq datasets which
have already been sequenced as part of SCAN-B.

Methods

SCAN-B RNA-seq Pipeline

RNA-seq experiments produce massive amounts of
data. The SCAN-B data consists of paired-end reads
which need to be further processed before they are
useful for analysis. The current SCAN-B process-
ing pipeline starts with the sequencing using an Illu-
mina HiSeq 2000 sequencer. Since each sequencing
library is typically spread out over multiple lanes on
both flow cells, the data needs to be demultiplexed
and merged into a single data file in the FASTQ
format. The sequencing is performed using a read
length of 2x100 bases. In case a read length of 2x50
is desired, the 2x100 data is truncated. Downsam-
pling is performed, if requested. Next, the read file
is filtered for ribosomal RNA (rRNA), human DNA
repeat regions, and phiX virus DNA. The filtered
reads are then aligned to a reference genome using
the TopHat2 splice junction mapper [29,30], with an
option turned on to enable finding of de-novo tran-
scripts.

The wutilized reference genome is a custom
genome. It mainly consists of chromosomes 1-22,
X and mitochondrial DNA from the hgl9 human
genome assembly [1], as well as the Y chromosome
from the b37 assembly [31]. Added to this are ex-

tra human genome sequences which have not been



added to the official assembly yet, as well as decoy
sequences [32]. Like the extra sequences, the decoy
sequences have not been added to the official human
genome assembly yet. They mostly contain satellite,
simple and interspersed repeat regions. The purpose
of these decoy sequences is to improve discovery of
single nucleotide polymorphisms (SNP).

The last step of the pipeline is the use of the Cuf-
flinks software [33] for transcript expression estima-
tion. This uses a transcript model which includes in-
formation about known transcripts. The model used
is the UCSC hgl9 refGene model from 2013-01-29 in
GTF format [34], containing 44,202 transcripts.

Quality Control Package Selection

Several different RNA-seq quality control packages
exist. Some packages provide rudimentary metrics,
while others are more comprehensive. Wang et al.
[35] produced a table which compares the function-
ality of common software which provides some form
of RNA-seq quality control metrics.

The three most comprehensive packages are
RNA-SeQC [36], RSeQC [35] and Qualimap [37].
Garcia-Alcalde et al. [37] provide a comparison table
which shows the three packages are very similar in
terms of functionality.

After an evaluation process, RNA-SeQC was se-
lected as the quality control package to use for
SCAN-B. Although the packages are functionally
similar, there are differences. RNA-SeQC’s biggest
advantage over RSeQC are it’s pipeline-ready sum-
mary metrics file. While Qualimap is pipeline-ready,
it does not provide library complexity metrics, a true
multi-sample mode and expression correlation. Even
though the latter two are currently unused in the
SCAN-B pipeline, they are likely to prove useful in
the future.

A downside of RNA-SeQC is its lack of flexibility
regarding which metrics to run. While it is possible
to disable certain metrics, it is not possible to run
only a specific subset of metrics to decrease execu-
tion time.

In summary, any of the three comprehensive
quality control packages would have been a suitable
choice for the SCAN-B pipeline. RNA-SeQC was
chosen due to minor advantages over the other two
packages.

Quality Control Pipeline

The quality control pipeline consists of two steps:
data preprocessing and execution of the RNA-SeQC
quality control package.

Data Preprocessing

TopHat, Picard [38] and the Genome Analysis
Toolkit (GATK) [39] all operate with files follow-
ing the Sequence Alignment/Map (SAM) file for-
mat [40] as well as its binary version, the Binary
Alignment/Map (BAM) format. However, while the
file format is standardized, there are differences in
the expectations and interpretations of certain fields
in a SAM record.

TopHat writes separate files for reads which
map to the reference genome (accepted_hits.bam)
and reads which do not map (unmapped.bam). For
most analyses, it is sufficient to only work with the
mapped reads. However, for quality control it is de-
sirable to use all reads to obtain a view of the entire
sequencing library. Experimentation revealed that
various steps were necessary to merge the mapped
and unmapped files, and to make the merged file
compatible with RNA-SeQC. Most incompatibilities
are rooted in the unmapped file. The following
changes to reads in this file are needed for down-
stream preprocessing steps to succeed:

e Remove /1 and /2 suffixes from read names
(only needed for TopHat up to version 2.0.6)

e Set the “next segment in the template un-
mapped” bit (0x8) in the FLAGS field if both
mates are unmapped

e Set mapping quality (MAPQ field) to zero
e For unmapped reads with a mapped mate:

— Set the RNAME and RNEXT fields to
the value of the respective mapped mate

— Set the POS field to the value of the
mate’s POS field

— Set the PNEXT field to zero

The requirement to set the “next segment in the
template unmapped” bit in the FLAGS field manu-
ally stems from a bug in the TopHat software which
has been identified and reported during the course
of this work, but is still present as of TopHat ver-
sion 2.0.8. TopHat sets this bit correctly when one



mate is mapped and the other one is unmapped.
However, it fails to set the bit when both mates are
unmapped, leading to wrong assumptions in down-
stream processing software like Picard.

A script has been developed using the Python
programming language [41] and the PySAM library
[42], which applies the changes outlined above and
which has been utilized as part of this QC prepro-
cessing pipeline. The script has been published on-
line [43] and has been successfully used by other peo-
ple facing similar challenges [44].

After correcting the unmapped file it has
to be sorted (Picard ReorderSam.jar) in the
order of the reference genome, before it can
be merged (samtools merge) with the mapped
file. The merged file needs a read group
(RG) SAM header, which is added using Picard
AddOrReplaceReadGroups. jar. All reads are as-
signed to a single read group. As the last step,
an index has to be created for the BAM file
(samtools index).

The result of this pipeline is a BAM file which
contains both mapped and unmapped reads and
therefore represents all reads which served as in-
put for the TopHat alignment stage in the SCAN-B
RNA-seq pipeline. The file is compatible with the
RNA-SeQC quality control software package.

RNA-SeQC Metrics
The result of the quality control pipeline is a di-
rectory structure containing the quality metrics for
one RNA-seq dataset. The metrics are present
in two forms; as an HTML-report (report.html)
which can be used for manual inspection via a web
browser, and as a tab-delimited file (metrics.tsv)
for pipeline use. The HTML report contains not
only global metrics about the dataset, but also links
to coverage plots and detailed per-transcript statis-
tics.

RNA-SeQC includes the following metrics in its
metrics.tsv file:

e Total Purity Filtered Reads Sequenced
The total number of reads, excluding Failed
Vendor QC Check and Alternative Alignments.
All metrics referring to “total reads” refer to
this value.

o Alternative Alignments
Duplicate read entries providing alternative

coordinates (bit 0x100 set in SAM format
FLAGS field).

Failed Vendor QC Check (Failed Reads)
The number of reads with bad quality (bit
0x200 set in SAM format FLAGS field).

Read Length
The maximum length found for all reads.

Estimated Library Size

The number of expected fragments in the se-
quenced library based upon Total Purity Fil-
tered Reads Sequenced and duplication rate as-
suming a Poisson distribution. This is an ap-
proximation of the library complexity.

Mapped
The total number of mapped reads (unique
and duplicate).

Mapping Rate
All mapping reads (unique and duplicate) di-
vided by the total number of reads.

Mapped Unique
Number of reads which are aligned as well as
non-duplicate.

Mapped Unique Rate of Total
Mapped Unique divided by Total Purity Fil-
tered Reads Sequenced.

Unique Rate of Mapped
Mapped unique reads divided by all mapped
reads.

Duplication Rate of Mapped
Mapped duplicate reads divided by all mapped
reads.

Base Mismatch Rate

The number of aligned bases not matching
the reference divided by the total number of
aligned bases.

rRNA
Non-duplicate and duplicate reads aligning to
rRNA regions as defined in the transcript
model.

rRNA rate
The number of rRNA reads divided by the to-
tal number of reads.



Mapped Pairs
The total number of paired-end reads for which
both ends map.

End 1 Mapping Rate
The number of mapped end 1 mates of paired-
end reads divided by the total number of reads.

End 2 Mapping Rate
The number of mapped end 2 mates of paired-
end reads divided by the total number of reads.

End 1 Mismatch Rate

The number of bases from end 1 mates of
paired-end reads not matching the reference
divided by the total number of mapped bases.

End 2 Mismatch Rate

The number of bases from end 2 mates of
paired-end reads not matching the reference
divided by the total number of mapped bases.

Fragment Length Mean

The mean length of all library fragments,
as determined by the mapping positions of
paired-end reads.

Fragment Length StdDev

The standard deviation of all library frag-
ments, as determined by the mapping positions
of paired-end reads.

Chimeric Pairs
The number of paired-end reads where both
mates map to different genes.

Intragenic Rate
The fractions of reads mapping in within genes
(within introns or exons).

FEzxonic Rate
The fraction of reads mapping within exons.

Intronic Rate
The fraction of reads mapping within introns.

Intergenic Rate
The fraction of reads mapping in the genomic
space between genes.

Expression Profiling Efficiency
The ratio of exonic reads to total reads.

Transcripts Detected
The number of transcripts with at least 5
reads.

Genes Detected
The number of genes with at least 5 reads.

End 1 Sense
The number of end 1 mates of paired-end reads
that were sequenced in the sense direction.

End 1 Antisense
The number of end 1 mates of paired-end reads
that were sequenced in the antisense direction.

End 2 Sense
The number of end 2 mates of paired-end reads
that were sequenced in the sense direction.

End 2 Antisense
The number of end 2 mates of paired-end reads
that were sequenced in the antisense direction.

End 1 % Sense

The number of end 1 mates of paired-end reads
that were sequenced in the sense direction di-
vided by the number of all end 1 reads.

End 2 % Sense

The number of end 2 mates of paired-end reads
that were sequenced in the sense direction di-
vided by the number of all end 2 reads.

Mean Per Base Cov.
Mean per base coverage for the 1000 middle
expressed transcripts.

Mean C'V
Mean coefficient of variation across the 1000
(default setting) middle expressed transcripts.

No. Covered 5’
Number of 5 ends whit at least one mapped
read.

5’ Norm
Mean per base coverage of 5’ read ends of mid-
dle expressed transcripts.

3’ Norm
Mean per base coverage of 3’ read ends of mid-
dle expressed transcripts.

Num. Gaps
Number of stretches with at least 5 bases hav-
ing zero coverage.

Cumulative Gap Length
Sum of gap length of all middle expressed tran-
scripts.



o Gap %
The total cumulative gap length divided by the
total cumulative transcript lengths of middle
expressed transcripts.

In addition to the coverage statistics for mid-
dle expressed reads, the HT'ML report also includes
these statistics for the top (default 1000) and bottom
(default 1000) expressed transcripts. The report also
includes graphs for coverage and GC bias.

From the metrics included in the metrics.tsv
file, one more metrics can be calculated:

e Strand Specificity
The mean of the percentage of End 1
reads mapping in antisense direction (100 —
End 1 % Sense) and End 2 % Sense.

e Total Reads
The sum of Total Purity Filtered Reads Se-

quenced, Alternative Alignments and Failed
Vendor QC Check.

SCAN-B Data

The RNA-seq data available within the SCAN-B
project is divided into three subsets, based on the
RNA source and the purpose of the data:

e SCAN-B dataset (scanb)
e Validation dataset (validation)

e Quality Control SCAN-B dataset (qcscanb)

The libraries in all three subsets have been se-
quenced using a read length of 2x100 base pairs.
In addition to this, every library is in silico trun-
cated to a read length of 2x50 base pairs. Se-
quencing runs were organized by multititer “plates”
containing up to 64 libraries from the scanb and
validation datasets. Plates have been sequenced
in chronological order, starting with plate 1. If a
sequencing run failed for a plate, the plate was ex-
cluded. Thus, some plate numbers are skipped in
the final dataset.

The number of reads per library in the datasets
range from 55,684 to 504 million, with a median of
85.8 million and a mean of 86.67 million.

The scanb dataset consists of sequencing li-
braries from samples which are part of the SCAN-B
patient set and preserved using the RN Alater preser-
vative. The set consists of 99 sequenced libraries

from 85 patients. In most cases, each library has
been sequenced once. From 9 of these patient’s sam-
ples, two libraries were prepared and sequenced. For
one patient, two samples were available and subse-
quently sequenced. In addition, three technical repli-
cates are part of this dataset. In addition, for each of
these libraries, a downsampled library with 30 mil-
lion reads was produced.

The samples sequenced for the validation
dataset originate from the retrospective ABIM and
Lund collections of snap-frozen tumor biopsies. The
dataset consists of 570 sequenced libraries from 511
patients. Most of these libraries have been sequenced
once, however 37 libraries were sequenced twice and
22 technical replicates were produced. The dataset
is targeted at potential inclusion in the “valida-
tion project”, which aims to develop RNA-seq-based
gene expression classifiers for the five conventional
biomarkers used in clinical practice today, ER, PR,
HER2, grade, and Ki67.

Both scanb and the validation tumor samples
were processed for RNA identically using the Qiagen
AllPrep method.

The qcscanb dataset consists of 44 samples for
which downsampled libraries with different amounts
of reads have been created. The full libraries which
serve as base for the downsamples have been se-
lected from the scanb and validation datasets.
The downsamples consists of 16 steps ranging from
1 million reads to 80 million reads in 0.5 million and
1 million increments. Overall, the dataset consists
of 1126 2x100 base pair libraries and 1249 2x50 base
pair libraries. The purpose of this dataset is to as-
certain the differences in gene expression quantifi-
cation and quality control metrics between the full
2x100 read data and the truncated 2x50 read data,
as well as the differences between using all available
reads and datasets downsampled to smaller numbers
of reads in silico.

Quality Control Processing

Table 1: Number of processed libraries per dataset
and read length.

Number of Sequencing Libraries

Dataset ‘ 2x50 ‘ 2x100
scanb 99 99
validation | 570 569

gcscanb 526 684




The quality control pipeline was applied to all
subsets of the SCAN-B datasets. Two multi-core
compute nodes with 100 gigabyte of main memory
were used for the processing of the libraries. Due
to the massive amounts of data per library, as well
as the need for costly preprocessing steps, the run-
times for the analysis of one a typical SCAN-B li-
brary was approximately 80 minutes for a 2x50 li-
brary and 110 minutes for a 2x100 library. Table 1
shows the number libraries quality control runs were
performed for per dataset and library type. The size
of one RNA-SeQC output directory lies between 200
and 400 megabytes.

Aggregation and Plotting of Metrics Data
RNA-SeQC produces metrics in two forms, one of
which is a tab-delimited file (metrics.tsv). This
file is intended to be used in pipelines. A Python
script was developed to traverse through all given
RNA-SeQC output directories and gather the con-
tent of the metrics.tsv in one tab-delimited file. In
addition, the data in the file is used to calculate the
metrics strand specificity and total reads.

Using the aggregated quality control metrics
in tab-delimited form as input, all plotting has
been performed by Python scripts using the mat-
plotlib [45] 2D plotting library.

Results and Discussion

The work performed during this project can be di-
vided into four parts: (1) development of a quality
control pipeline, (2) quality evaluation for the com-
bined scanb and validation dataset, (3) quality
evaluation for the gcscanb dataset as well as (4)
comparison of SCAN-B RNA-seq quality evaluation
to the Levin et al. Saccharomyces cerevisiae data
using the same bioinformatics methods. The results
of the four parts will be presented and discussed sep-
arate from each other in this section.

Development of an RNA-seq Quality Control
Pipeline

The first and fundamental step for the subsequent
parts of this project was the development of a
pipeline for the quality control of RNA-seq datasets.
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This required evaluating and selecting a quality con-
trol software package, and making it work with the
existing SCAN-B RNA-seq pipeline and sequencing
data. The RNA-SeQC package was subsequently se-
lected as quality control package. However, making
the existing pipeline and sequencing data compatible
with RNA-SeQC required a lot of experimentation
with the BAM file format. Details about this process
can be found in the Methods section.

The result of this part of the project are several
scripts written in the Python and Bourne Shell pro-
gramming languages, which make the existing RNA-
seq pipeline as well as sequencing files compatible
with RNA-SeQC. As part of this work, a bug in the
popular splice junction mapper TopHat was identi-
fied, reported and worked around [43,44].

SCAN-B and Validation Dataset Quality

In this section, plots for the metrics identified as im-
portant in the Quality Control section are going to
be shown and discussed in detail. Since the data
and plots for the 2x100 and 2x50 read length data
are comparable for these metrics, only 2x50 plots are
included here.

All plots shown in this section consist of boxplots
of one metric, respectively. Each plot includes sev-
eral boxplots which for libraries per-plate, as well as
one boxplot for all validation libraries as well as
one boxplot for all scanb libraries. The lower x-axis
reflects the plate number as well as the respective
dataset. The upper x-axis shows the number of val-
ues included in the respective boxplot. Table 2 shows
the minimum, maximum, median and mean values
of the analyzed metrics.

Number of Reads

Figure 2a shows the number of reads in the
validation and scanb libraries, filtered for failed
reads and alternative alignments. Table 2 shows the
characteristical values for this data. The median is
80.53 million reads, with two outlier libraries above
450 million reads on plate 2.

Failed Reads

Figure 2b shows the percentage of reads which were
marked as bad by the sequencing machine. The
minimum, maximum and median values are 0.013%,
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Figure 2: a) Total filtered reads, b) failed reads in percent,

mapped reads in percent.

3.6% and 0.094%, respectively. The plot shows dras-
tic numbers of failed reads in libraries on plate 1.
Generally, the percentage of failed reads is stable and
well below 0.25% in most cases. Plate 12 also shows
an elevated level of bad reads, although on a much
lower scale than on plate 1. The means and quar-
tiles of the whole validation and scanb datasets
well below 0.25%, with the vast majority of outliers
coming from plates 1 and 12.
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c) total mapped reads in percent, d) unique

Mapping Rate

Figure 2c shows the total mapped reads in percent.
The minimum, maximum and median values are
0.63%, 98.5% and 92.5% respectively. The median
mapping rate is high across all samples, being above
90%. There are outliers, most notably a library with
0.6% on plate 5. Since the input reads to the qual-
ity analysis have already been filtered for rRNA as
part of the analysis pipeline, the mapping rate of the
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Figure 3: a) Mapped read duplication, b) strand specificity in percent, ¢) mean coefficient of variation, d)

transcript gaps in percent.

whole dataset would be higher.

Library Complexity

Figure 2d shows the library complexity of the
validation and scanb libraries. It is measured
as the unique mapped reads percent of total fil-
tered reads. The unique mapped reads vary between
0.55% and 75.3%. The median across all libraries
is 48.5%. Plates 1, 3, 5 and 7 have median values
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well below the overall median, and libraries ranging
into low percentage regions of unique mapped reads.
From plate 9 on, the percentage is continuously on
a high level, with the exception of plate 14.

Factors which can influence this measure is the
quality of the RNA which enters the library prepa-
ration process,
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Table 2: Combined scanb and validation dataset metrics properties.
Metric ‘ Minimum ‘ Maximum Median Mean
Total filtered reads 51,815 481.7 million | 80.5 million | 81.4 million
Failed reads (%) 0.013 3.6 0.094 0.19
Total mapped reads (%) 0.6 98.5 92.5 90.6
Unique mapped reads (%) 0.6 75.3 48.5 46.3
Mapped read duplication (%) 8.9 90.5 47.4 48.8
Strand specificity (%) 68.9 99.5 94.6 91.9
Mean CV 0.57 5.27 0.69 0.73
Transcript Gaps (%) 1.3 96.4 5 6.3
5 Coverage (%) 0 43 23.7 24
3" Coverage (%) 3.4 99.3 37.3 38.7

Mapped Read Duplication

Figure 3a shows the duplicated mapped reads in per-
cent. The minimum, maximum and median values
are 8.9%, 90.5% and 47.4% respectively. Plates 1,
3, 5 and 7 have a higher percentage of duplicated
mapped read than the global median, indicating
worse library quality. Compared to these plates, the
plates from 9 on show a lower duplication percent-
age.

Strand Specificity
Figure 3b shows strand specificity. The minimum,
maximum and median values across all libraries are

68.9%, 99.5%, and 94.6% respectively. On plate 1,

13

strand specificity is generally low for a stranded li-
brary preparation protocol. However, with increas-
ing plate number the strand specificity increases,
peaking with plate 7 and continuing on a high level
for plates 8-11 with values consistently over 95%.
Plate 12 includes some less stranded libraries with
values dropping below 85%. From plate 12 on,
the values are steady on a high level with medi-
ans around 92%. The boxplot for the validation
dataset shows a much higher median value than
scanb. The reason for this is that the included scanb
libraries were predominantly sequenced on plates 1
and 2 which show the worst strand specificity.



Evenness of Coverage

Figure 3c shows the mean coefficient of variation,
which measures the evenness of coverage across tran-
scripts. The minimum, maximum and median val-
ues across all samples are 0.57, 5.27 and 0.69, re-
spectively. Across all plates, the median values are
stable well below a CV of 1 with the quartiles being
close to the respective medians. There are some out-
liers, however most of them also lie below a CV of 1.
Two notable exceptions are libraries on plates 2 and
5, which show a CV of 5 and higher, thus having a
very unevenly distributed reads.

Continuity of Coverage

Figure 3d shows the percentage of the transcripts
which are uncovered by reads. The minimum, maxi-
mum and median values are 1.3%, 96.4% and 5%, re-
spectively. The median values are stable around 5%
across all transcripts, with the quartiles being close
to the respective medians. There are many outliers,
particularly on plate 1. Two outliers on plates 2 and
5 show a percentage of uncovered regions of above
95%, indicating massive problems in these libraries.

Coverage at 5’ and 3’ ends

Figures 4a and 4b show the coverage of 5’ and 3’
ends, respectively. Across all plates, the minimum,
maximum and median values are 0%, 43% and 23.7%
for the 5’ case, as well as 3.4%, 99.3% and 37.3% for
the 3’ case. Generally, the coverage at both 5 and
3’ ends is homogenous across plates. There are few
outliers in the negative direction, the two worst ones
again being on plates 2 and 5.

Discussion
Overall, the evaluated metrics show good results
across the two datasets. Metrics like the library com-
plexity, strand specificity and mapping rate show
quality problems of the first five sequenced plates.
However the sequencing quality increases steadily
with plates 7 to 11 showing the most favorable qual-
ity across all metrics. The quality of the libraries
consistently improving also shows the learning pro-
cess of the laboratory staff in library preparation and
the sequencing process.

The quality metrics can be correlated to obser-
vations made about problems during the sequencing
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process by the laboratory staff. During sequencing of
plate 1, one flow cell gradually malfunctioned; even-
tually leading to many second reads of paired-end
reads being sequenced with 38 bases instead of 100.
This may also have impacted sequencing error rate,
leading to the large number of failed reads in the
impacted libraries. During the sequencing of plates
3 and 5, one lane and the chiller module malfunc-
tioned, respectively. On the other hand, no events
have been recorded during sequencing of plates 7 to
11, being reflected in these libraries performing well
regarding the quality metrics.

The two worst outliers on plates 2 and 5 in
the plots for mean CV and 5°/3’ coverage are the
same libraries in all cases (2008264.1.1.r.1ib and
2009092.1.1.r.1ib). This shows these metrics are
indicators for an underlying factor, namely general
problems with these libraries. Generally, libraries
performing badly in these metrics are easy to iden-
tify, leading to the possibility to re-sequence them.

Dependent on the metric, bad quality can have
different sources. Low numbers of reads or high
numbers of failed reads most likely stem from errors
during the sequencing process. This is illustrated by
the high numbers of failed reads on plate 1, com-
bined with the observations the the laboratory staff.
The mapping rate depends on the quality of the base
calling and the reference genome. Mapping software
like TopHat provide a vast amount of options which
can also have an influence. For the other discussed
metrics, problems during the library preparation are
the most likely explanation.

Library complexity could be influenced by the
quality of the RNA entering preparation process. If
the RNA is degraded, i.e. due to conservation pro-
cedures, it has already lost part of its potential for
generating unique reads.

Duplication is caused by the PCR step in li-
brary preparation. While PCR is needed to provide
enough cDNA for the sequencing process, letting the
amplification process run for too long can lead to
excessive duplicate reads. However, the amount of
source RNA which enters into the PCR is likely an-
other important factor, which is also connected to
the library complexity. If the rate of unique frag-
ments in the input material is low, the number of
duplications per unique fragment is high. Thus, all
processed which lead to loss of input material (i.e.,
mRNA purification and size selection) may play a
role.



In the dUTP protocol, strand specificity depends
on the incorporation of dUTP into the second cDNA
strand. Any process that leads to less dUTP being
incorporated into the second strand (i.e., due to no
or not enough dUTP, as well as bad quality dUTP)
could be responsible for low strand specificity. The
second step in reaching strand specificity is the diges-
tion of the second cDNA strand. If there is no, little
or bad dUTP incorporated into the cDNA strand,
digestion may be ineffective, leading to unstranded
fragments. Another reason for this to happen would
be bad uracil-DNA glycosylase.

One obvious reason for low coverage low sequenc-
ing depth. The reason for this could be low PCR
amplification levels, malfunctions of flow cell lanes,
or misconfiguration of the sequencer.

The causes for bias in 5’ or 3’ coverage likely lies
in the library preparation process. Random hexamer
priming has been shown to introduce such bias [46].
If the input RNA is degraded, bias could also be
introduced due to the mRNA purification process.
The process selects for mRNA based on their poly-A
tails. If the mRNA is degraded, this leads to more
3’ ends being pulled down and subsequently being
sequenced.

Quality of qcscanb Dataset

As for the validation and scanb datasets, plots
were generated for all metrics described in the RNA-
Se@C Metrics section. Plots for the gcscanb metrics
identified as important in the Quality Control sec-
tion are going to be shown and discussed in detail.
Each plots shows one metric for all downsamples of
the included samples, with the downsamples on the
x-axis from least reads to most reads. Each sam-
ple has a unique combination of marker and color.
Since the data and plots for the 2x100 and 2x50 read
length data are comparable for these metrics, only
2x50 plots are included here.

The plots show 16 different downsampling steps
for 44 libraries. The lowest number of reads is 1
million, the highest number is 80 million. Not all
downsampling steps have been performed on all li-
braries.

Metrics of Downsample Data

Figures 5a, 5d, 6a, 6¢c and 6d show the total filtered
reads, unique mapped reads, mapped read dupli-
cations, mean coefficient of variation and percent-
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age of transcript coverage gaps, respectively. All of
these plots show smooth, monotonic curves. The
total filtered reads and mapped read duplication in-
crease with increasing number of reads per down-
sample, while the mean CV and the percentage of
transcript gaps decrease. Figures 5b, 5c¢ and 6b
show percentage of failed reads, percentage of to-
tal mapped reads and strand specificity, respectively.
All three plots show constant values with increas-
ing number of reads per downsample. All of these
metrics show consistent and expected behavior when
following them over several random sampling steps.

Figures 7a and 7b show the coverage of transcript
5" and 3’ ends, respectively. While the plots gener-
ally show the expected behavior of increasing cover-
age with increased number of reads per downsample,
they are very uneven. Especially the 3’ ends show
noisy curves for the downsamples of several libraries.

All in all, the metrics show the downsampling
process works and the metrics follow the expected
behavior. Considering this, the 3’ mapping reads
and to a lesser extend the 5’ mapping reads do not
seem to be distributed completely randomly in the
sequence library files. The plots suggest a small bias
during the sampling process.

Quality Control Metrics in the Cancer Context
The RNA-SeQC quality control package contains
many metrics useful for assessing a dataset’s char-
acteristics. However, cancer cells have some unique
characteristics which decrease the usefulness of some
metrics. Due to cancer being a genomic disease, can-
cer cells can have a vastly different genomic land-
scape compared to normal cells. The main processes
which shape this landscape are structural rearrange-
ments, copy number changes and point mutations.

Structural rearrangements are caused by chromo-
some breakage which leads to the rearrangement of
chromosome parts in a modified order. This causes
problems for metrics which make use of a transcript
model, since reads may no longer map in the ge-
nomic coordinates that are expected from the tran-
script model. Examples for this are read coverage,
coverage gaps and consequently the mean covariance
across transcripts.

Copy number changes are caused by the deletion
or amplification of chromosomal parts or even whole
chromosomes. A genomic sequence where reads usu-
ally map to uniquely may be amplified, leading to an
increased number of alternative alignments for these
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Figure 5: a) Total filtered reads, b) failed reads in percent, c) total mapped reads in percent, d) unique

mapped reads in percent.

reads. Conversely, a region may have been deleted,
leading to reads not being mapped at all.

Point mutations are changes of single bases
within the genome. Their effect on quality met-
rics is likely less severe than that of structural re-
arrangements and copy number changes. However,
they could still cause reads to fail to align correctly
to the reference genome. The effects of SNPs are
similar to those of point mutations. However, SNPs
are present to approximately equal amounts in any
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cell, making their effect on metrics unbiased.

Other mutations, i.e. insertions and deletions
(“indels”), can have drastic effects on the alignment
of reads to the reference genome, particularly as they
get larger.

The described effects on metrics are neither
caused by problems during library preparation, nor
by sequencing errors or mapping errors. They are
merely an artifact of the unique genomic landscape
in cancer cells. Therefore, metrics from cancer cell
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Figure 6: a) Mapped read duplication, b) strand specificity in percent, ¢) mean coefficient of variation, d)

transcript gaps in percent.

data always has to be interpreted with its context in
mind.

Alignment and Quality Control of Levin et al. Sac-
charomyces cerevisiae Data

The raw data Levin et al. [20] used for their sequenc-
ing library comparison consists of Saccharomyces
cerevisiae RNA-seq reads which available in short
read archive (SRA) format under accession num-
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ber SRR059176. To enable comparisons between the
quality metrics gathered during this work, it was de-
sirable to run the RNA-SeQC software on this data.
The SRA archive does not include reference genome
mapping information, nor could this information be
obtained from the original authors.

Therefore, the reads were aligned to the UCSC
sacCer2 genome [34] using TopHat 2.0.8. During
this process, a 86.5% of reads could be aligned. The
number reported by Levin et al. was 86.61%, making
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Figure 7: a) Coverage at 5’ and b) coverage at 3’ transcript ends.

the alignment comparable. The same preprocessing
as for the SCAN-B was used to make the data file
compatible with RNA-SeQC.

Unfortunately, RNA-SeQC currently crashes
when running it with the resulting BAM file as
input, thus no comparisons could be performed as
of this writing.

Conclusions

Quality control is an essential step in the RNA-
seq analysis process. Considering the complexity
of the library preparation, sequencing and reference
genome mapping, there are numerous possibilities of
introducing errors or biases.

The quality evaluation showed the overall quality
of the already sequenced SCAN-B data to be good.
While the quality is not optimal in the first few se-
quenced plates, it has continuously increased and
settled in on a high level. Some quality deficiencies
correlate well with the presence of recorded problems
which occurred during sequencing, i.e. malfunction-
ing flow cells or lanes.

The quality metrics for the downsampled data
showed that the random sampling during the down-
sampling process works as expected. Metrics cor-
relate well with the number of reads. The plots of
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5" and especially 3’ coverage showed noisier curves
than expected, suggesting bias in the distribution of
5" and 3’ mapping reads in the data. This should be
investigated further.

Quality metrics have to be interpreted with the
datasets in mind from which they were generated
from. Cancer cells feature a genomic landscape
which is vastly different from that of normal cells.
Structural rearrangements, copy number changes
and point mutations can lead to seemingly bad qual-
ity metrics, even though the RNA-seq analysis pro-
cess is not at fault.

With this in mind, the metrics used in this
project appear to provide good insight into the
quality of RNA-seq datasets from tumor samples.
The metrics described by Levin et al. [20] cover the
quality of the prepared library, while the percent-
age of failed reads and the mapping rate provide
insight into the sequencing process and the map-
ping of reads onto the reference genome. Overall,
the results correlate well with observations by the
laboratory staff during the sequencing process and
the increasing level of training and experience of the
staff.
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