
Modeling Swedish
government yields with the
Dynamic Nelson Siegel and
the Dynamic Nelson Siegel

Svensson Model

Malick Senghore

Masters Thesis,Lund University, Sweden.



CONTENTS

ABSTRACT 1

1 INTRODUCTION 2

2 INTEREST RATES THEORY 4

2.1 The Stochastic discount factor and the Spot interest rates 4

2.2 Zero Coupon bonds 4

2.2.1 Zero-Bond Curve 5

2.3 The Day-Count Convention and The Compounding Types 6

2.3.1 Day-Count Convention (year fraction) 6

2.3.2 Compounding Types 6

2.3.3 Continuously compounded interest rates 6

2.3.4 Simply compounded rate/The LIBOR 7

2.4 Yield Curve/The Zero-coupon Curve 8

2.5 Coupon Bonds 8

2.5.1 Fixed Coupon Bonds 9

2.5.2 Floating rate Bonds 9

2.6 Forward rates 10

2.7 Arbitrage Theory 11

2.7.1 Risk Neutral Valuation Formula 16

2.7.2 Numeraires 17

2.7.3 Change of Numeraire 17

3 DYNAMIC MODELS 19

3.1 Vector Autoregressive Process (VAR) 19

3.2 State Space Modeling 19

3.2.1 The Kalman Filter 20

i



ii

4 SHORT RATES 22

4.1 Term Structure 22

4.1.1 Affine Term Structure (ATS) 23

4.2 Short interest rate models 24

4.2.1 Term Structure Equation (TSE) 25

4.2.2 The Merton model 27

4.2.3 The Vasicek model 28

4.2.4 The Cox, Ingersoll and Ross (CIR) model 29

4.2.5 The Dothan model 30

5 THE NELSON-SIEGEL MODELS 32

5.1 Nelson-Siegel Model (NS) 32

5.1.1 Dynamic Nelson-Siegel Model (DNS) 35

5.1.2 Arbitrage Free Nelson-Siegel model (AFNS) 36

5.1.3 Dynamic Nelson-Siegel Svensson model (DNSS) 41

6 APPLICATION OF THE NELSON SIEGEL MODELS 43

6.1 Data 43

6.2 Estimation Procedure Overview 46

6.2.1 Estimation Procedure DNS 48

6.2.2 Estimation Procedure DNSS 51

6.2.3 Estimation Procedure AFNS 52

6.2.4 Forecasting Procedure 53

6.3 Estimation Results and Analysis 55

6.3.1 DNS Estimation Results 55

6.3.2 AFNS Estimation Results 61

6.3.3 DNSS Estimation Results 66

6.4 Forecasting 72

6.5 Conclusion 74

6.6 Extension 74

BIBLIOGRAPHY 75



ABSTRACT

The purpose of this thesis is to model and forecast Swedish government yields by
using three classes of the Nelson Siegel Model Family. The three models considered
are the Dynamic Nelson Siegel Model, Arbitrage-Free Nelson Siegel Model and Dy-
namic Nelson Siegel Svensson Model. A brief introduction to interest rate theory is
given with emphasis on coupon bonds and yield curves. To introduce the concepts
needed for the arbitrage-free model, arbitrage theory is introduced. The modeling
framework used in this thesis implements the Kalman Filter, thereby necessitating
introduction of State Space modeling and the derivation of the Kalman Filter.

The Nelson Siegel model classes under study are introduced and an estimation
procedure for each model is detailed. In general, all model parameters are estimated
by both cross-sectional and time-series optimization. The method of estimation
employed ensures that we have stable and meaningful estimates. Our modeling
procedure, shows that indeed the independent three factor Dynamic Nelson Siegel
model do represent well Swedish government bonds both in-sample fit and out-of-
sample forecast.
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Chapter 1

INTRODUCTION

In my bachelors thesis, I gave a detailed account of the history of the bond mar-
ket in Sweden and the theory behind fixed income securities in general. Swedish
government bonds were then fitted with the Diebold and Li (2006) interpretation
of the Original Nelson Siegel, by applying the two-step-approach described in their
paper.

In this thesis, I intend to extend on the results of my bachelors thesis and
investigate, amongst the various Nelson Siegel model families, the one that best
estimates and forecast the Swedish government yields. I will consider two main
classes of the Nelson Siegel family, i.e. the Dynamic Nelson Siegel (DNS) and the
Dynamic Nelson Siegel Svensson (DNSS); with both independent- and correlated
factor models will be studied. For the empirically based DNS models, I will also
study its arbitrage-free theoritically based models, namely the Arbitrage Free Nelson
Siegel (AFNS), by following the work of CDR (2008) and model the dynamics of
the its factors under the Q-measure as well as add a yield-adjustment term to the
yields measurement equation.

Various authors have taken this road before and there are ample literatures
on the models I intend to work with. However, the estimation approach that I
will implement in this thesis makes my contribution unique. I will employ both
cross-section and time-series optimization to obtain estimates of the parameters of
interest, in such a way that the factor estimates will be stable, statistically and
economically meaningful.

Basically, I represent the estimation problem in state-space form, which enable
me to use the Kalman Filter to obtain optimal parameter estimates by using the
prediction error decomposition of the the likelihood of the parameters given the
data, and estimate all the model parameters simultaneously. This is in line with
the one-step approach proposed by Diebold and Li (2006).

Instead of using the parameter estimates from the Kalman Filter Maximum
Likelihood, as described above, and build the model factor dynamics, I used only
the estimate(s) of the decay parameter(s) and fixed the information matrix in our
models and thereafter compute the model factors by using Ordinary least Squares
(OLS) method. This approach ensures that the factor estimates are stable and
ready to use for forecasting.
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3

I will exhaustively search for optimal initial parameters. This step is necessitated
by the fact that the modeling framework that I adopted in this thesis is very sensitive
to initial values. For each model, based on its structure, I described and applied
the best procedure to obtain these initial parameters.

The thesis proceeds as follows. In the Chapter 2, I gave a not so short introduc-
tion to interest rates theory with emphasis on coupon bonds and arbitrage theory.
In Chapter 3, I introduced the Kalman Filter and work through its derivation. In
Chapter 4, Affine Processes and some well known short rates models are introduced.
In Chapter 5, I introduced the Nelson Siegel family that will be relevant for this
thesis. In the last part of the thesis, I applied the Nelson Siegel models on Swedish
government yields and analyzed their in-sample- and out-of-sample-fit.



Chapter 2

INTEREST RATES THEORY

As mentioned in my introduction, the theory of interest rates was detailed in my
bachelors thesis. For completeness, I will briefly discuss the interest rate theory
needed to understand the methods and terminologies related to this thesis. I there-
fore start by introducing the stochastic discount factor and the spot rates.

Our goal in interest rate theory is to study and understand the variability of the
underlying assets, i.e the interest rates. It is therefore very important to allow the
interest rates to be stochastic and not assumed fixed, as is usually the case in other
markets. For example, when studying stock options, the interest rates are assumed
to be fixed and the stocks, which are the underlying assets, are allowed to vary.

2.1 The Stochastic discount factor and the Spot interest rates

The Stochastic discount factor D(t,T) is basically used to relate amounts of money
at two different time points. The stochastic discount factor D(t,T) between two
time instant t and T is the amount at time t that is equivalent to one unit of
currency payable at time T, and is given by

D(t, T ) =
B(t)

B(T )
= exp

(∫ T

t

rsds

)
The stochastic discount factor leads us to the simplest forms of loans in the money
market, namely the zero-coupon bonds.

2.2 Zero Coupon bonds

Zero-coupon bonds are the simplest form of loan in the money market. They have
only one payment stream under their whole lifetime, that is, the face value of the
bond payable to the bond holder at maturity. Zero coupon bonds are in practice
not directly observable in the market. Long maturities ZCB are not traded at all,
they can however be obtained by bootstrapping coupon bonds.

The zero coupon bonds are also sometimes referred to as fixed income securities
as they provide the owner with a deterministic amount, that is known when the
bond is issued.

4



Section 2.2. Zero Coupon bonds 5

Formally, a zero coupon bond that matures at time T is defined as:

Definition 2.1. A T-maturity zero coupon bond is a contract that guarantees its
holder the payment of one unit of currency at time T, with no intermediate pay-
ments. The contract value, i.e the price of a zero coupon bond at time t < T is
denoted by P(t,T) and P(T,T) = 1 for all maturity times T and is equal to the
present value of the nominal amount which can be written as:

P (t, T ) =
P (T, T )

1 + r × d
360

where r is a deterministic interest rate and d refers to number of days remaining
for the zero coupon bond to mature.

In this thesis, r is allowed to be stochastic which implies that the zero coupon
bond price is also stochastic and its graph is referred to as the zero coupon curve.

2.2.1 Zero-Bond Curve

The bond price is a stochastic process with two random variables, t and T. If t is
fixed, then P (t, T ) is a smooth function of T. This function provides the prices, at
the fixed time t, for the bonds of all possible maturities.

The graph of this function is called ”the bond price curve at t” or the term
structure at t of the discount factor. Formally we can define the zero-bond curve
as:

Definition 2.2. The zero-bond curve at time t, also known as the term structure
of the discount factors, is the graph of the function

T 7→ P (t, T ), T > t

which because of the positivity of interest rates, is a T-decreasing function starting
from P (t, t) = 1.

If on the other hand, T is fixed, the price P (t, T ) will be a scalar stochastic
process. It gives the prices at different times of a bond with fixed maturity T and
its trajectory is very irregular.

As mentioned earlier, T-bond are not directly observable in the market, we
therefore need two fundamental features of the interest rates to be able to relate zero
coupon bond prices to interest rates. These features are the Day-Count convention
to be applied in the rate definition and the Compounding-Type.

It is important to note that some assumptions must be made to guarantee the
existence of a market that is sufficiently rich and regular where these bonds are
traded. That is, we have to assumed that there exists a frictionless market for
zero-coupon bonds for every maturity time T and that the price of a zero-coupon
bond at time t equals one, i.e P (t, t) = 1 for all t.



6 Interest rates theory Chapter 2

The assumption that P (t, t) = 1 is necessary to ensure that we avoid arbitrage
pricing. We also have to assumed that for each fixed time t < T , the price of a
zero-coupon bond that matures at time T is differentiable with respect to the time
of maturity T.

2.3 The Day-Count Convention and The Compounding Types

The compounding types and the day-count convention are the two fundamental
properties of interest rates that are needed to enable us to used zero-coupon bonds
to price interest rates. These two properties are described below.

2.3.1 Day-Count Convention (year fraction)

We denote by τ(t, T ) the chosen time measure between t and T, which is usually
referred to as year fraction between the dates t and T. When t and T are less than
one-day distant, τ(t, T ) is to be interpreted as the time difference T-t (in years).
The day-count convention helps us to compute the interest payable at the end of
an interest- or loan period.

The numerator represents the number of day in the interest- or loan period and
the denominator represents the number of days in the reference period, which in
Sweden is 360 days. Observed that this is one of many definitions for the day-count
and will suffice for our purpose.

2.3.2 Compounding Types

The compounding type refers to how the interest rate is computed based on both
the initial principal amount invested and the accumulated interest generated in the
earlier periods.

Basically, the compounding types can be classified into four main categories, i.e.
continuously-compounded rates, simply-compounded rates, k-times-per-year compounded
rates and annually-compounded rates. Of these four compounding types, which can
be expressed both as forward rates or spot rates, the simply-compounding type,
also called the LIBOR rates, is the most commonly used both in theory and
in practice. In this thesis however, continuously compounded interest rates will
be used. Below we described the continuously compounded interest rates and the
simply compounded rates.

2.3.3 Continuously compounded interest rates

Basically, continuously compounding type is the constant rate prevailing on an
investment on a zero-coupon bond at time t for maturity at a future time interval
[S, T ] that yields a unit of currency at time of maturity.

If the contracting date coincides with the start of the interval, then we have a
continuously-compounded spot rate, otherwise we have a continuously-compounded
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forward rate. The continuously compounded spot rates and the continuously com-
pounded forward rates are describe below:

The continuously compounded forward rate contracted at time t for the pe-
riod [S, T ] is defined as

R(t;S, T ) = − logP (t, T )− logP (t, S)

τ(T, S)

The continuously compounded spot rate contracted at time S for the period
[S, T ] is defined as:

R(S;S, T ) = − logP (S, T )

τ(T, S)

The continuously compounded spot rate is a constant rate, from which we can
derive the price of a zero coupon bond as

R(S;S, T )τ(S, T ) = − logP (S, T ) (2.3.1)

⇒ P (S, T ) = exp(R(S, T )τ(S, T )) (2.3.2)

2.3.4 Simply compounded rate/The LIBOR

When accruing occurs proportionally to the time of the investment then we have a
simply compounded spot rate L(t, T ). The simply compounded rate is also referred
to as the LIBOR rates. LIBOR stands for London Inter-Bank Offer Rates and it is
the rate used most commonly in the market. By definition:

Definition 2.3. The LIBOR interest rates
The LIBOR rate prevailing at time t for the maturity T is the constant rate at
which an investment has to be made to produce an amount of one unit of currency
at maturity, starting from P(t,T) units of currency at time t, when accruing occurs
proportional to the investment time.

The LIBOR rates are forward rates that can either be quoted as continuously
compounded rates or simple rates. The simple rates notation is the one most
commonly used in the markets, whereas the continuously compounded notation
is used for theoretical purposes. The simple LIBOR rate can be quoted as forward
rates or spot rates as follows:

The simple forward rate contracted at time t for the period [S, T ] is called the
LIBOR forward rate and is defined as

L(t;S, T ) = −P (t, T )− P (t, S)

τ(T, S)P (t, T )

The simple spot rate contracted at time S for the period [S, T ] is called the
LIBOR spot rate and it is defined as:

L(S;S, T ) = −P (S, T )− P (S, S)

τ(T, S)P (S, T )
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Note that the LIBOR rates are simply compounded spot rates. Since L(S;S, T )
is also a constant, this implies that it is also consistent with the price of zero coupon
bonds, i.e.

L(S;S, T ) =
1− P (S, T )

τ(S, T )P (S, T )
(2.3.3)

⇒ 1 + P (S, T ) = L(S, T )[τ(S, T )P (S, T )] (2.3.4)

⇒ P (S, T ) =
1

1 + L(S, T )τ(S, T )
(2.3.5)

2.4 Yield Curve/The Zero-coupon Curve

A fundamental curve that can be obtained from the market data of interest rates
is the zero-coupon curve at a given date t, also referred to as the Yield curve.

The yield curve describes the relationship between the returns on bonds (i.e
the yield) with the same credit-risk but with different maturities. Formally we can
define the yield curve at time t as:

Definition 2.4. The yield curve at time t, is the graph of the function:

T 7→ P (t, T ), where T > t (2.4.1)

which decreases with maturity T.

In the Swedish bond market, bonds with maturities less than a year are quoted
as simple rates while those with maturities more than a year are quoted as effective
rates.
To construct a yield curve for the whole tenor structure, we therefore need to
convert the simple rates to effective rates in order to ensure that our yield curve is
representing bonds with the same credit-risk. Theoretically, only effective rates for
zero-coupon bonds guarantee a risk-free return if the bond is exercise at maturity.

Note that the term yield curve is also used to denote other curves that are
deduced from quotes from the interest rate market. Thus there exist other repre-
sentations of the yield curve different from the one given in Def: 2.4. In this thesis,
we will use the above definition to represent our yields curves.

The slope of the yield curve varies over time and assumes different shapes and
forms, which is a reflexion of the values on the short- and long yields. The yield-
curve slope is sometimes used as a future GDP and inflation development indicator.
Depending on its slope, we can classify the yield-curve as normal, inverted or flat.
A more detailed discussion on the yield curve can be found in my bachelors thesis.

2.5 Coupon Bonds

As mentioned earlier, the zero coupon bond are not very well traded in the markets
and markets that do trade in them, trade in zero coupon bonds with very short
maturity. What is traded in the markets are the coupon bonds.
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Given fixed points in time T0, T1, . . . , Tn, (known as a tenor structure), where T0

is the issuing date of the bond and T1, . . . , Tn are the coupon dates, coupon bonds
can be classify into two main groups namely, fixed coupon bonds and floating rate
bonds.

2.5.1 Fixed Coupon Bonds

This is the simplest coupon bond. It is a bond which for some intermediate points
in time will provide the holder with predetermined payments called coupons.

Formally, fixed coupon bonds can be defined as:

Definition 2.5. For fixed points in time T0, T1, . . . , Tn, where T0 is the issuing date
of the bond, the owner of the fixed coupon bond receives the deterministic coupon
Ci, for i = 1, 2, . . . , n− 1. At time Tn the owner receives the face value A.

The coupon bonds can be replicated by holding a portfolio of zero coupon bonds
with maturities Ti, for i = 1, 2, . . . , n. That is we pay Ci zero coupon bonds of
maturities Ti for i = 1, 2, . . . , n− 1 and A+Cn bonds with maturity Tn. With this
portfolio, for a time t < T1, we can price the coupon bonds as:

p(t) = A · P (t, Tn) +

n∑
i=1

Ci · P (t, Ti)

The coupon bonds are quoted mostly in term of returns on the face value A over
a given period [Ti−1, Ti] and not in monetary terms. For example, given that the
ith coupon has a return equal to ri, this implies

ci = ri · (Ti − Ti−1) ·A

If the interval lengths are equal (i.e. Ti = T0 + iδ) and the coupon rates for each
interval is equal to a common rate r, then we have a standardize coupon bond.
The price p(t), for t < T1, of a standardized coupon bond is given by:

p(t) = A ·
(
P (t, Tn) + rδ

n∑
i=1

P (t, Ti)

)

2.5.2 Floating rate Bonds

These are various coupon bonds for which the value of the coupon is not fixed at
the time the bond is issued, but rather reset for every coupon period. Mostly, but
not always, the resetting is determined by some financial benchmark. One of the
simplest floating rate bonds is where the rate ri is set to the spot LIBOR rate
L[Ti, Ti−1].

The floating rate bonds can be replicated by using a self-financial bond strategy,
with an initial cost P (t, Ti−1) at time t and reinvesting the amount receive at time
Ti−1 in bonds that matures at time Ti. Thus the price p(t) for the floating rate
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bonds, given that the coupon dates are equally spaced (i.e. Ti = T0 + iδ) and
assuming that the face value equals to one, for time t < T1 is given by:

p(t) = P (t, Tn) +

n∑
i=1

[P (t, Ti−1)− P (t, Ti)] = P (t, T0).

In particular, if t = T0, then p(T0) = 1.

2.6 Forward rates

The basic construction for interest rates is the forward rate and it is used to adjust
for interest rate risk. Forward rates are interest rates that can be locked in today
for an investment in a future time period, and are set consistently with the current
yield of discount factors.

Generally speaking, the holder of a forward contract has the obligation to buy
or sell a certain product at a future date for a given price. It is a bilateral contract
that is traded over the counter and can be constructed in any way to suit the parties
involved.

The forward contract is characterized by three time instants, namely t < S < T ,
where t is the contract date, S the date the contract is effective and T the exercise
date.

A forward rate can be defined as

Definition 2.6. Given three fixed time points t < S < T , a contract at time t which
allows an investment of a unit amount of currency at time S, and gives a risk less
deterministic rate of interest over the future interval [S, T ] is called The forward
rate.

Observe that the spot rates are forward rates where the time of contracting
coincides with the start of the interval over which the interest rate is effective (i.e.
t = S).

Another way to define the forward rates is through a Forward Rate Agreement
(FRA). By demanding that the FRA be priced fairly, we obtain the forward rates.
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2.7 Arbitrage Theory

Basically, arbitrage in a given market implies the possibility to invest no amount of
money at time t and receive a non negative amount at time T > t with a positive
probability. In other words, the law of one price for the same or identical com-
modities must hold if no arbitrage opportunity should exist in the market. This
argument can be formalized by using probability theory reasoning to help us un-
derstand the economic interpretations of absence of arbitrage in a financial market.
This connection will then lead us to the martingale approach of pricing finan-
cial derivatives and to the first- and second fundamental theories of mathematical
finance which, for completeness will summarized at the end of this section.
First we need to define some basic economic concepts that will aid in defining math-
ematically the concept of arbitrage in a financial market.

To properly define the needed basic economic concepts, we need to specify a
market in which the assets we are interested in pricing are traded. At the very ba-
sic level, we assume a probability space (Ω,Ft,F ,P), where Ft is all the information
gain from the past and just before time t (also called the filtration at time t), P is
the historic probability measure (i.e. the probability taken on the observed data)
and F is the total information set of the whole process.

Given a market on the above probability space, time T > 0, and n+ 1 dividend
paying assets, denoted by S(t) = [S0(t), S1(t), . . . , Sn(t)], that are traded continu-
ously from time zero to time T and that S(t) are modeled as stochastic processes

dSt = rtStdt

adapted to the filtration Ft, where S0(t) = 1 and rt is the instantaneous short-rate
described earlier.
The adaptiveness of this filtration means that the information generated by the
underlying assets are contained in the total information set of the process (i.e. Ft
∈ F). It is assumed that S0(t) > 0 for all time t > 0.
Two important observations are to be noted here. Firstly, the dividend paying
assets are assumed to be semi-martingales which is essential but not necessary
to ensure that the normalized contingent claim is integrable for a fixed martingale
measure and secondly, the underlying asset index by zero i.e. S0(t) is the risk free
account which implies that the discounting factor D(t, T ) is given by 1

S0(t) .

With this market, we can now define a portfolio, also called a trading strategy,
in continuous time as

Definition 2.7. A portfolio is a collection of underlying assets in the market. This
is denoted by h(t) = [h0(t), . . . , hn(t)], whose components hi(t) for i = 0, . . . , n
are locally bounded and predictable. The components of the trading strategy hi(t)
represents the number of the underlying asset we hold at time t of asset i.

Note that it is quite acceptable for the portfolio weights, i.e.h′is, to attain pos-
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itive, zero or negative values. If the portfolio weights are positive, then we have a
long position on the underlying asset, whereas if the portfolio weights are nega-
tive, we say that we have a short position on the underlying. Also, the portfolio
weights are not fixed constants but time varying and may change value over time.
Hence the value of a portfolio at any given time instance t, is given by the value
process of the trading strategy.

Definition 2.8. The value process Vt≥0 associated with the portfolio h(t) is defined
as

V h(t) =

n∑
i=0

hi(t)Si(t) = hi(t) · Si(t) for 0 < t < T

Definition 2.9. The gain process Gt associated with the portfolio h(t) is given by

Gh(t) =

∫ t

0

hi(u)dSi(u) =

n∑
i=0

∫ t

0

hi(u)dSi(u)

If no additional cash flow is allowed after the trading strategy has been created
at time t and all the changes in the dynamics of the portfolio comes about through
changes in the assets already hold in the portfolio, then the trading strategy is said
to be self-financing. A self-financing portfolio can be defined in three different
ways as below:

Definition 2.10. A portfolio is called a self-financing portfolio if its value changes
only due to changes in the asset prices. This can be express as

dV h(t) =

n∑
i=0

hi(t)dSi(t) = hi(t) · dSi(t) for 0 < t < T

A self-financing portfolio can also be expressed using the gain process associated
with the portfolio as

Definition 2.11. A portfolio h(t) is self-financing if the value process V (t) ≥ 0 are
such that

V h(t) = V h(0) +Gh(t) for 0 < t < T

A relation similar to the self-financing portfolio expressed in terms of the gain
process also holds when asset prices are all expressed in terms of the bank account
value. Thus

Definition 2.12. Let h(t) be a portfolio, then h(t) is self-financing if and only if

D(0, t)V h(t) = V h(0) +

∫ t

0

hud(D(0, u)Su)
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The relation between the self-financing portfolio expressed in terms of the risk-
free asset was proved by Harrison and Pliska (1981).

Since the trading strategy h(t) is given in terms of the absolute weights of each
of the underlying assets in the portfolio, relative weights are sometimes necessary
to ease computations. The relative value ui(t) of the assets Si(t), for i = 0, . . . , n, is
the portfolio w.r.t the total value of the absolute portfolio V (t). The value process
of a self financing portfolio can be used to obtained the relative portfolio. The
relative portfolio weights are defined as

Definition 2.13. For a given trading strategy, the relative portfolio weights ui,
which in general can be both ui ≤ 0 and ui ≥ 0, is given by the fraction of the total
value from asset i. This can be expressed as

ui(t) =
hi(t) · Si(t)
V h(t)

, where i = 0, . . ., n and

n∑
i=0

ui(t) = 1 (2.7.1)

Using the relative portfolio, the dynamics of the self-financing portfolio can be
re-written as

dV h(t) =

n∑
i=0

hi(t)dSi(t)

= V h(t)

n∑
i=0

hi(t)Si(t)

V h(t)
· dSi(t)
Si(t)

Thus

dV h(t) = V h(t)

n∑
i=0

ui(t) ·
dSi(t)

Si(t)

As mentioned earlier, an arbitrage possibility on a financial market refers to the
possibility of making a positive amount of money without taking any investment
risk. Formally, an arbitrage opportunity can be defined as:

Definition 2.14. An arbitrage possibility on a financial market, for every t > 0,
is a self-financing portfolio h(t) such that:

V h(0) = 0

P (V h(t) ≥ 0) = 1

P (V h(t) ≥ 0) > 0.

A market where arbitrage possibility occurs is called an inefficient market which
goes against our main assumption of a financial market, that is efficient. In other
to ascertain efficiency in a financial market, it is required that the value process of
the dynamics of a portfolio to be locally risk-free and have a return equal to the
return on the bank account with probability one. In other wards in an arbitrage
free market there can exist only one short rate of interest.
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locally risk-free implies that at any given time there exist not stochasticity in
the value process.

The above argument can be expressed as follows

Definition 2.15. For every (locally) risk-free self-financed trading strategy h(t) of
the form

dV h(t) = k(t)V h(t)dt where k(t) is any Ft-adapted process (2.7.2)

it must hold that the probability of the adapted process k(t) is equals to the risk-free
interest rate r(t) is equals to one for almost all times t to avoid arbitrage opportunity.
That is

P (k(t) = r(t) for almost all times t ) = 1 to attain market efficiency. (2.7.3)

Market efficiency can also be stated by using the connection between the eco-
nomic concept of absence of arbitrage and the mathematical property of existence of
a probability measure (i.e. µ : µ(Ω) = 1) called the equivalent martingale measure
(EMM). The existence of an EMM in a market tells us that the market is arbitrage
free. This is referred to as the first fundamental theory in mathematical
finance. An equivalent martingale measure is defined below:

Definition 2.16. An equivalent martingale measure denoted by Q is a probability
measure on the space (Ω,F) such that:

1. The measures P and Q are equivalent if and only if P(A) = 0 is equivalent to
Q(A) = 0, for every A ∈ F .

2. The discounted price processes Si

S0
are Q-martingales, for all i ∈ (0, . . . , n).

That is
EQ[(D(0, t)Si(t)|Fu] = D(0, u)Si(u)

for all i = 1, . . . , n and all 0 ≤ u ≤ t ≤ T , where EQ denote the expectation
under Q.

3. The Randon-Nikodym derivative dQ
dP is square integrable with respect to P

If the martingale measure defined above is unique then we say that the market
is complete. This statement is often referred to as the second fundamental theory
of mathematical probability. Note that the Randon-Nikodym derivative is also
referred to as the likelihood ratio (L) between the equivalent measure and the
historic measure and it is generally used to enable movement to and from these
two measures. That the Randon-Nikodym derivative L = dQ

dP is square integrable
implies that ∫ ∞

−∞
LdP is finite

Now that we have formalized the concept of absence of arbitrage and have define
a market that is efficient, we now need to consider the assets that are traded in this
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market. These traded assets are referred to as financial derivative or contingent
claims. Our objective is to determine the prices of these derivatives. Contingent
claims are like insurance contracts on which it is stated that the holder of the con-
tract will receive a deterministic amount of money, called the payoff, at a specified
date in the future called the exercise date. Note that the payoff can be both pos-
itive, negative or zero. Contingent claims are completely defined in terms of the
underlying assets, which in our case are the interest rates but they can also be
written on other underlying such as stocks, bond, or other financial assets.

Definition 2.17. Given the financial market defined above with vector price process
S = [S0, . . . , Sn]T . A contingent claim with exercise date T is any stochastic variable
X such that X ∈ FST . In this context, X ∈ FST means that it is possible to derive the
price of the contingent claim at time T. Below is a formal definition of a contingent
claim.

A contingent claim, also referred to as a T-claim , is called a simple claim if
it is of the form

X = Φ(S(T )). The function Φ is called the contract function

A contingent claim X is said to be attainable if there is exists a self-financing
portfolio h such that the value of the portfolio at the time of maturity T is equals
to that of the contingent claim. In other words, a claim is attainable if

V h(t) = X .

Note that attainable claims are also referred to as hedgable claims. If a contingent
claim is attainable and there exists a self-financing portfolio h, then it implies that
the claim can be traded in the financial markets.

If all contingent claims X on a financial market are attainable, then the market
is called complete. Recall that completeness was defined above as equivalent to
the existence of a unique equivalent measure.

Thus if we assumed that the market is efficient, the price of the contingent claim
at time t, denoted by Π(t,X ) can be determine in two different ways.
Firstly we could demand consistency of the price of the underlying with the price of
the contingent claim. In other words, to avoid arbitrage opportunities, the extended
market given by (Π(;X ), S0, . . . , Sn) must be arbitrage free.
Secondly, if given an attainable claim with a self-financing portfolio then the value
process at time t generated by h for 0 < t < T must be equal to the price of the
contingent claim at time t, if arbitrage opportunity is to be avoided, i.e. to attain
an efficient financial market, then

Π(t,X ) = V h(t) for 0 < t < T

Determining the price of a contingent claim by demanding price consistency of
the claim with that of the underlying implies the existence of a martingale measure
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Q for the extended market (Π(;X ), S0, . . . , Sn). This leads us to the martingale
approach for pricing derivative, which is a very powerful and effective pricing mech-
anism. Thus applying the definition of a martingale measure under Q we obtain
the general pricing formula for Q. The general pricing formula is define below

Definition 2.18. The arbitrage free price process for the T-claim X is given by

Π(t,X ) = S0(t)EQ
[
X

S0(T )
|Ft
]

(2.7.4)

where Q is the martingale measure for the market S0, . . . , Sn, with S0 as the nu-
meraire. Note that the martingale measure is not unique and different choices of Q
will give raise to different price processes.

If it is assumed that S0(t) in the general pricing formula is the risk-less bank
account, then S0(t) can be re-written as

S0(t) = S0(0) · exp
∫ t
0
r(s)ds where r is the short rate (2.7.5)

This leads us to the well celebrated formula in financial mathematics called the risk
neutral valuation formula RNVF. Note that if we even go about determining the
price of a contingent claim by the second method mentioned above, we will come
to the same conclusion i.e. the RNVF.

2.7.1 Risk Neutral Valuation Formula

The RNVF is a martingale approach to derivative pricing, where the price of a
claim is determine by taking the expectation, under the Q-martingale measure, of
the discounted T-claim with the money account as a numeraire given an adapted
filtration, i.e.

Π(t,X ) = EQ
[
XB(t)

B(T )
|Ft
]

= EQ
[

exp
∫ T
t
r(s)ds ·X |Ft

]
The above result implies that the discounted price process is a Q-martingale mea-
sure and the existence of a Q-martingale measure implies absence of arbitrage in
our market. This again shows that the martingale property can be interpreted in
economic terms as been the same as the existence of a self-financing portfolio.
Note that in the above risk neutral valuation formula, the bank account was used
to normalized the underlying assets and thereby relating the price of a contingent
claim for different time points. We thus say that the bank account is a numeraire.
Though the elegance of the RNVF is undoubted, the expectation under the Q-
martingale measure is not always easily solved. This is indeed the case when the
underlying assets of interest are stochastic, for example interest rates.

Therefore, given a stochastic underlying, the bank account is no longer suitable
as a discounting factor because the joint distribution (B(T ),Φ(S)), which is needed
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to solve the expectation under the Q-measure of the RNVF is laborious to compute
since it will involve the computation of a double integral. To solved this problem,
we need to change the numeraire. Firstly, we properly define a numeraire and its
characteristics.

2.7.2 Numeraires

A numeraire can be seen as a price-unit over time, because it relates prices at
different time points. Choosing a numeraire implies that the relative prices are
considered instead of the securities themselves. Thus it must be strictly positive,
which allows it to give some value to each time point. This implies that any other
non positive non-dividend-paying asset (that is not necessarily the bank account)
can also be used as a numeraire. Formally it is defined as follows:

Definition 2.19. A Numeraire Nt for the market S = (S0, . . . , Sn) is any positive
process that is adapted to the filtration generated by the assets in the market (i.e.
FtS), which is of the form

Nt = N0 +

∫ t

0

αudS(u) = αTt S(t) (2.7.6)

where αTt is a self-financing strategy that is predictable given the filtration Ft.

2.7.3 Change of Numeraire

As mentioned earlier, the equivalent martingale measure Q gives us all the necessary
information we need about our market in terms of arbitrage and completeness. The
conditional expectation of a claim under the Q-equivalent measure also determines
all its arbitrage free prices. Therefore what is needed to price contingent claims
is the Q-martingale measure. A fundamental question is how do we change to the
Q-measure so as to attained an arbitrage free price of a general claim? The answer
to this fundamental question is the likelihood ratios.

The likelihood ratio

The likelihood ratio, also referred to as the Randon-Nikodym derivative gives us
a relation between the P-measure and the Q-measure and it is formally defined as
follows:

Definition 2.20. Consider a probability space (Ω,F ,P) and an absolutely contin-
uous probability measure Q. Then there is a stochastic variable L with

L ≥ 0 (almost surely) and EP[L] = 1 such that (2.7.7)

Q(A) = EP[IAL] for all A ∈ F (2.7.8)

EQ[X] = EP[XL] for all F-measurable X. (2.7.9)
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L is called a Likelihood Ratio (LR) for the change of measure. Furthermore, if
P and Q are equivalent, then the LR L above fulfills

L ≥ 0 (almost surely) and (2.7.10)

P(A) = EQ[IAL
−1] for all A ∈ F . (2.7.11)

The following proposition by Geman et al. (1995) provides a fundamental tool
for pricing contingent claims for models with stochastic rates, and a generalization
of the risk neutral valuation formula to any numeraire.

proposition 2.1. Assume there exists a numeraire N and a probability measure
QN , equivalent to the initial measure Q0, such that the price of any traded asset X
(without intermediate payments) relative to N is a martingale under QN , i.e.

Xt

Nt
= EN

[
XT

NT
|Ft
]

0 ≤ t ≤ T . (2.7.12)

Let U be an arbitrary numeraire. Then there exists a probability measure QU , equiv-
alent to the initial Q0, such that the price of any attainable claim Y normalized by
U is a martingale under QU , i.e.

Yt
Ut

= EU
[
YT
UT
|Ft
]

0 ≤ t ≤ T . (2.7.13)

Moreover, the Radon-Nikodym derivative defining the measure QU is given by

∂QU

∂QN
=
UTN0

U0NT
. (2.7.14)



Chapter 3

DYNAMIC MODELS

3.1 Vector Autoregressive Process (VAR)

We begin this chapter by discussing an extension of the univariate AR-process called
the Vector Autoregressive process (VAR) that is used for modeling univariate
time-series data, The V AR model is one of the most popular and easy to used
model for describing dynamic behaviors, as well as, providing meaningful forecast
of economic and financial time series. Formally, a VAR-process is defined as

Definition 3.1. Let Xt = (x1t, x2t, . . . , xnt)
′ be a set of (n×1) observations. Then

the process
Xt + Φ1Xt−1 + Φ2Xt−2 . . .+ ΦpXt−p = εt (3.1.1)

where Φi are (n × n) coefficient matrices and εt is an (n × 1) zero mean white
noise vector process with constant covariance matrix Σε, is called an stationary
Vector Autoregressive Process of order p, i.e. VAR(p).

It is important to observed that the V AR(p) process can sometimes be too
restrictive to properly represent the main characteristics of the data. Therefore,
additional deterministic terms (such as linear trends) might be needed to represent
the data. Moreover, external variables may also be added to the V AR(·) process
for the data representation to be proper. Then equation 3.1.1 is generalized as

Xt = Φ1Xt−1 + Φ2Xt−2 + . . .+ ΦpXt−p + ΠDt +GYt + εt (3.1.2)

where Dt is an (l × 1) deterministic matrix, Yt represents the (m × 1) matrix of
external variables and Π and G are parameter matrices.

3.2 State Space Modeling

As in most modeling procedure, the main aim is to find an appropriate way to
model the relationship between input and output signals of a system. These types
of models focuses only on the external description of the system. To gain some
insight on the internal state of the system under study, we resort to state space
modeling. This is obtained by defining a state vector such that the dynamics of the
system can be described by a Markov process.

19
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A state space model is formulated in discrete time by using a (multivariate)
difference equation or a (multivariate) differential equation in continuous time, de-
scribing the dynamics of the state vector Xt, and a static relation between the
state vector and the (multivariate) observation Yt. Thus a linear state space model
consist of two sets of equations, the system equation

Xt = AtXt−1 +Btut−1 + e1,t (3.2.1)

and the observation equation
Yt = CXt + e2,t (3.2.2)

where Xt is the N-dimensional random state vector that is not directly observable.
ut is a deterministic input vector and Yt is a vector of observable stochastic output,
and At, Bt, and Ct are deterministic matrices in which the parameters are embed-
ded. Finally the processes e1,t and e2,t are uncorrelated white noise processes. Thus
the system equation equation describes the evolution of the system states whereas
the observation equation describes what can be directly measured.

For linear time systems, in which the system noise e1,t and the measurement
noise e2,t are taken to be Gaussian with zero mean, the Kalman filter is used to
estimate the hidden state vector and also for providing predictions. The Kalman
filter is described below.

3.2.1 The Kalman Filter

For linear dynamic systems, the Kalman filter provides the optimal prediction and
reconstruction of the latent state vector. The foundation of the Kalman filter is
based of the linear projection theorem that is stated below:

Theorem 3.1. Let Y = (Y1, . . . , Ym)T and X = (X1, . . . , Xm)T be random vectors,
and let the (m+ n)-dimensional vector (Y,X)T have the mean(

µY
µX

)
and covariance

(
ΣY Y ΣY X
ΣXY ΣXX

)
Define the linear projection of Y on X

E[Y|X] = a + BX (3.2.3)

Then the projection and the variance of the projection error is given by

E(Y|X) = µY + ΣY XΣ−1
XX(X − µX) (3.2.4)

V ar(E(Y|X)) = ΣY Y − ΣY XΣ−1
XXΣTY X (3.2.5)

Finally, the projection error, Y− E(Y|X), and X are uncorrelated, i.e.

C(Y− E(Y|X),X) = 0 (3.2.6)
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From the above proposition, the Kalman filter equations for reconstructing,
updating and predicting the latent states are generated. Since e1,t and e2,t in
the state space model are assumed to be normally distributed, then Xt|Yt is also
normally distributed and are thus completely characterized by its mean

X̂t|t =E(Xt|Yt) (3.2.7)

and variance
Σxxt|t = V ar(Xt|Yt) (3.2.8)

The optimal linear reconstruction of the states, which in linear time invariant
systems is given by the Kalman filter is obtained from

X̂t|t = X̂t|t−1 +Kt(Yt − CX̂t|t−1) (3.2.9)

and the variance of the reconstruction is given by

Σxxt|t =Σxxt|t−1 −KtΣ
yy
t|t−1K

T
t (3.2.10)

=Σxxt|t−1 −KtCΣxxt|t−1 (3.2.11)

where the Kalman gain at time t Kt, is given by

Kt = Σxxt|t−1C
T
t [CtΣ

xx
t|t−1C

T
t + Σ2,t]

−1 (3.2.12)

Now the one-step predictions is given by:

Xt+1|t = AtX̂t|t +Btut (3.2.13)

Σxxt+1|t = AtΣ
xx
t|tA

T
t + Σ1,t (3.2.14)

Yt+1|t = CtX̂t+1|t (3.2.15)

As can be observed, the Kalman filter is a recursive filter and thus initial conditions

X̂1|0 = E(X) = µ0 (3.2.16)

Σxx1|0 = V ar(Xt) = Σ0 (3.2.17)

are needed. Finally, the innovation (i.e. the measurement error) is given by

Ŷt+1|t = Yt+1 − Ŷt+1|t (3.2.18)

and its variance Rt+1 is computed as

Rt+1 =V ar(Ŷt+1|t) (3.2.19)

=Σyyt+1|t (3.2.20)

=CtΣ
xx
t+1|tC

T
t + Σ2,t (3.2.21)

If the assumptions of normality and linearity are no longer valid, then the
Kalman filter will no longer be valid for parameter estimations and state prediction.
We therefore have to resort to non-linear state space modeling, which in a sense
are approximative filters. The Extended Kalman Filter EKF and Particle filter are
some of these non-linear filters that can be used for parameter estimations.
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SHORT RATES

4.1 Term Structure

The term structure of interest rates describes the relationship between interest rates
and time to maturity. The standard way of measuring the term structure of interest
rates is by means of the spot rate curve, or the yield curve, on zero coupon bonds.
Note that the yield to maturity and the spot rate on a zero coupon bond are the
same. The zero coupon bonds are used here to eliminate the ’coupon- effect’, which
refers to the situation were two identical bonds bear different coupon-rates and have
different yield to maturity.

On the other hand, using the zero-coupon yield limits us to bonds with matu-
rities of at most twelve months. Bonds with maturities less than twelve months
are referred to as treasury bills). Thus longer maturity zero-coupon bonds need to
be derived from coupon-bearing bonds. In practice, the entire term structure of
interest rates is not directly observed and therefore need to be estimated.

Generally speaking, the term structure estimation methods are designed for the
purpose of approximating one of three equivalent representations of the yield curve
i.e the forward rate curve, the discount curve and the spot rate curve. If one of these
representations are obtained, the others can be derived from it.

An aspect of yields is that they are not normally distributed. As mentioned
earlier, bonds with different maturities are traded at the same time. Bonds with
long maturities are risky when held over short period and the holder (a risk-averse
investor) will demands compensation for bearing such risk. Thus the markets in
which these bonds are traded will not be free from arbitrage unless long yields are
risk-adjusted expectation of average future short rates.

One way to take into account the risk on long term maturity bonds is to model
the continuously compounded spot rate R(t, T ) as an affine function in the short
rate r(t) as

R(t, T ) = a(t, T ) + b(t, T )r(t) (4.1.1)

where a and b are deterministic functions of time. A model satisfying the relation-
ship above is called an affine term structure model

22
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4.1.1 Affine Term Structure (ATS)

Affine term structure captures the risk for long maturity bonds in an arbitrage free
financial market. Affine term structure models are arbitrage free models in which
bond prices are affine in mature, i.e. they can be expressed as a constant plus a
linear term. ATS is define as

Definition 4.1. If the term structure

{P (t, T ) : T ≥ 0}

is given by a function P (t, T ) = FT (t, r(t)) where

FT (t, r(t)) = e(A(t,T )−B(t,T )r(t))

and A and B are deterministic functions, (independent of r(t)), the term structure
{P (t, T ) : T ≥ 0} is said to be affine.

Observe that the ZCB price P (t, T ) is expressed as

P (t, T ) = eA(t,T )−B(t,T )r(t) (4.1.2)

if the relationship that models the continuously compounded spot rate R(t, T ) as
an affine function in the short rate r(t) (i.e equation 4.1.1) holds. Therefore, we
have that

a(t, T ) =
−(lnA(t, T ))

(T − t)
(4.1.3)

b(t, T ) =
B(t, T )

(T − t)
(4.1.4)

The above definition is true for all models of the short rate r(t) with dynamics
given by:

dr(t) = [α(t)r(t) + β(t)]dt+
√
γ(t)r(t) + δtdW (t)

From which we identify the deterministic functions in the affine term structure
for the ZCB-price as:

• At(t, T ) = β(t)B(t, T )− γ(t)
2 B2(t, T );A(T, T ) = 0

• Bt(t, T ) = −α(t)B(t, T ) + γ(t)
2 B2(t, T )− 1;B(T, T ) = 0

Observed that if γ = 0, it is then possible to explicitly solve the equations,
thereby giving us

B(t, T ) =

∫ T

t

e
∫ S
t
α(u)dudS (4.1.5)

A(t, T ) =

∫ T

t

δ(S)B2(S, T )

2
−
∫ T

t

β(S)B(S, T )dS (4.1.6)

The affine term representation will be very crucial when price short-rates.
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4.2 Short interest rate models

Interest rates model theory originally assumes a specific one dimensional dynamics
for the instantaneous spot rate process r(t). These types of dynamics are also re-
ferred to as one factor short rate model. The one dimensional dynamics ensures that
all the interest rate derivatives traded can easily be priced by using the arbitrage
theory reasoning discussed earlier. That is to say, given a risk-neutral measure,
the arbitrage free price of a simple claim with payoff XT at time t is given by the
RNV F , as the expectation of a function of the process r(t). As mentioned earlier,
if a risk neutral measure exist, then the arbitrage-free price at time t of a simple
claim with payoff XT is given by

Xt = Et
[
e(−

∫ T
t
r(u)du)XT

]
(4.2.1)

Again, the zero coupon-bond price at time t for the maturity T (i.e. P(t,T)) is
characterized by a unit amount of currency available at time T obtained, under the
risk neutral measure, by

P (t, T ) = Et
[
e(−

∫ T
t
r(u)du)

]
(4.2.2)

Indeed, if the distribution of
{
e−

∫ T
t
r(s)ds

}
conditional on the filtration Ft, is attain-

able in terms of a chosen dynamics for short-rate, then bond prices can be computed.
Since bond prices, especially ZCB, are the basic building blocks in almost all traded
assets with interest rates as underlying, knowing how to attain their prices implies
that we also know the rates for all the other underlying assets. Thus, the whole
zero-coupon curve is characterized in terms of the distributional properties of r(t).

In the early attempts to model interest rates (e.g. Vasicek (1977) which will be
describe later), it was very natural to model the short rate by assuming a stochastic
process on the short rate r(t), instead of the fixed rate r. This was done to mimic
the construction of a locally risk-free portfolio, as in the Black-Scholes formula
for pricing European options. In its general from, the short-rate is model as

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW P(t) (4.2.3)

where µ and σ are deterministic functions of t and r(t) and W P is a Brownian
motion on the objective measure P. Using the short rates dynamics in its general
form as underlying assets of a contingent claim, even though the short rate in not
directly observed in the market, it is possible to apply the same procedure as when
pricing simple claims in the Black-Scholes market, to obtain formulas for pricing the
short-rate. Using the Black-Scholes approach leads us to the Partial Differential
Equation PDF formula and the Risk Neutral Valuation Formula RNVF for the short
rates, which are defined below.

Firstly, the market price of risk, which is a fundamental equation in the
pricing of short-rates, will be stated as a proposition
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proposition 4.1. If the zero-coupon bond (ZCB) market is free of arbitrage then
there exist a stochastic process λ(t) such that if

dP (t, T ) = µT (t, r(t))dt+ σT (t, r(t))dW P(t),

then the relation
µT (t, r(t))− r(t)P (t, T )

σT (t, r(t))
= λ(t)

holds for any finite maturity T . λ is called the market price of risk

It is important to observed that the market price of risk does not refer to price
as used in everyday language, but tells us how much we gain by investing in the
risky assets instead of investing only in the risk-free account. Thus λ is sometimes
referred to as the excess return with respect to a risk-free investment per unit of
risk.

Another important observation is that the market price of risk, which does not
depend on the maturity date T , is the quantity that connects the objective measure
P and the risk-neutral measure Q. This connection is obtained by applying the fact
that there exist a measure Q ∼ P and is defined by the Randon-Nikodym Derivative

∂Q

∂P

∣∣
Ft

= exp
(
− 1

2

∫ t

0

λ2(u)du−
∫ t

0

λ(u)dW P(u)
)

where Fs is the information generated by r up to time t. Thus applying this change
of measure to the short rate dynamics given in the objective measures P(as in
equation[4.2.3]), generates the short-rate dynamics, in the risk-neutral measure Q,
as

dr(t) = [µ(t, r(t))− λ(t)σ(t, r(t))]dt+ σ(t, r(t))dW (t) (4.2.4)

where W (t) = W P(t) +
∫ t

0
λ(u)du is a Brownian motion in the risk neutral measure

Q.
Note that our main objective is to attain pricing formulas for interest rates

and we are not directly interested in knowing the dynamics of the short rate in
the objective measures P. Therefore we can directly model short rate dynamics in
the risk-neutral measures Q, given the market price of risk is specified. It is the
parameter values of the short rate models, in the risk neutral measure, that are
desired to determine derivative prices. Hence all the short rate models that are
considered from now on will be priced under the risk neutral measure Q.

Two very common short rate models that are widely used are the Vasicek
model, the Cox, Ingersoll and Ross (CIR) model. These models are also
referred to endogenous term structure models because of the fact that the rates are
outputs rather than an inputs to the model.

4.2.1 Term Structure Equation (TSE)

If FT (t, r(t)) is the price of a ZCB, with dynamics

dFT [t, r(t)] = µT [t, r(t)]FT [t, r(t)]dt+ σT [t, r(t)]FT [t, r(t)]dWt
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where the processes µT and σT (which are the same processes used to compute
the market price of risk) are functions of the ZCB-price and are also the same
parameters defining the short rate model. Solving the equation for the market price
of risk leads us to the term structure equation which is describe below.

Theorem 4.1. In an arbitrage free market, the price of the simple claim is given
by P (t, T ) = FT (t, r(t)), where the function FT (t, r(t)) is twice differentiable and
satisfies the partial differential equation PDE{

FTt + (µ− λσ)FTr + σ2/2FTrr − rFT = 0

FTt (T, r) = 1.
(4.2.5)

For a general short rate derivative with payoff function X(r(T )), the partial
differential equation that gives the price of a simple claim is given by the theorem
below:

Theorem 4.2. In an arbitrage free ZCB market a derivative given by the payoff
function X(r(T )) has a pricing formula F(t,r) that satisfies the PDE{

Ft + (µ− λσ)Fr + σ2/2Frr − rF = 0

FTt (T, r) = X(r).
(4.2.6)

and the RNV F for the short rate, under the Q−measure, is given as stated in
the theorem below:

Theorem 4.3. The derivative given by the payoff function X(r(T )) has the follow-
ing pricing formula for the general short rate model:

F (t, r) = EQ
[
e
∫ T
t
r(s)dsX(r(T ))

∣∣∣∣Ft] (4.2.7)

where r(s) is defined by the stochastic differential equation (SDE) below{
dr(s) = (µ(s, r(s))− σ(s, r(s)λ(s))ds+ σ(s, r(s))dW (s)

r(t) = r.
(4.2.8)

Before we describe some of the most common short-rate models that are in
used and state some of their advantages and disadvantages, there are fundamental
questions that need to be asked and answered in other to choose the short rate
model that will suit your modeling purpose. According to Damiano Brigo and Fabio
Mercurio(2006), the questions that are necessary for understanding the theoretical
and practical implications of any interest rate model are the following:

• Does the dynamics imply positive rates, i.e., r(t) > 0 almost surely for each
time t?

• What distribution does the dynamics imply for the short rate r?
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• Are the bond prices P (t, T ) = Et

{
e−

∫ T
t
r(u)du

}
(and therefore spot rates,

forward rates and swap rates) explicitly computable from the dynamics?

• Is the model mean reverting, in the sense that the expected value of the short
rate tends to a constant value as time grows towards infinity, while its variance
does not explode?

• How do the volatility structures implied by the model look like?

• Does the model allow for explicit short-rate dynamics under the forward mea-
sures?

• How suited is the model for Monte Carlo simulation?

• How suited is the model for building recombining lattices?

• Does the chosen dynamics allow for historical estimation techniques to be used
for parameter estimation purposes?

4.2.2 The Merton model

The Merton model for the short-rate is a very simple model that assumes that the
short-rate dynamics is a Brownian Motion with drift, i.e.

dr(t) = µdt+ σdW (t) (4.2.9)

The short-rates in the Merton Model are normally distributed with mean and vari-
ance,

E[r(t)] =µt (4.2.10)

V ar[r(t)] =σ2t (4.2.11)

Observed that the Merton Model is not mean reverting and its variance grows
linearly with time. The Morton Model is not a realistic model because it is possible
to obtain negative short-rates. However its simplicity gives the model its charm and
makes it very easy to compute with.

The price of a zero-coupon bond in the Merton model, can be obtain through
the distribution of ∫ T

t

r(s)ds =

∫ T

t

(rt + µ(s− t) + σWs−t)ds

The above integral of the short-rate r(t) is normally distribution with expectation

r(t)(T − t) +
µ(T − t)2

2
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and variance
σ(T − t)3

3

thereby giving the price of a zero-coupon bond, by using the risk neutral valuation
formula under the risk neutral measure, as log-normally distributed, as

P (t, T ) =Et

{
e−

∫ T
t
r(u)du

}
= (4.2.12)

= exp

{
−µ(T − t)2

2
+
σ2(T − t)3

6
− r(t)(T − t)

}
(4.2.13)

4.2.3 The Vasicek model

Vasicek (1977) assumed that the dynamics of the instantaneous spot rate under the
objective measure P is an Ornstein-Uhlenbeck process with constant coefficients.
Thus, for a suitable value for the market price of risk λ, the above assumption
implies that the Vasicek model is equivalent to the statement that the short-rate
r follows an Ornstein-Uhlenbeck process with constant coefficients under the risk-
neutral measure Q, i.e.

dr(t) = κ[θ − r(t)]dt+ σdW (t), r(0) = r0 (4.2.14)

where r0, κ, θ and σ are positive constants. Hence, the short-rate r(t) is obtain by
integrating both sides of equation 4.2.14 which gives, for s ≤ t

r(t) = r(s)e−κ(t−s) + θ(1− e−κ(t−s)) + σ

∫ t

s

e−κ(t−u)dW (u) (4.2.15)

The conditional expectation of the short-rate, in the Vasicek model, given the
filtration Fs is normally distributed with mean

E {r(t)|Fs} = r(s)e−κ(t−s) + θ(1− e−κ(t−s))

and as t goes to infinity, we have

E {r(t)|Fs} → θ

The conditional variance is given by

V ar {r(t)|Fs} =
σ2

2κ

[
1− e−2κ(t−s)]

and as t goes to infinity, the variance converges to a constant, i.e.

V ar {r(t)|Fs} →
σ2

2κ

The Vasicek model is a simple but realistic model. A major disadvantage of this
model is that there is a possibility for the short-rates to take on negative values and
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they cannot exactly fit observed zero-coupon bond prices. However, the distribution
of the short-rate in the Vasicek model is Gaussian and its analytical tractability is
hard to match when compared to other short rate models.

The price of a zero-coupon bond can be obtain by computing the expectation of

P (t, T ) = Et

{
e−

∫ T
t
r(u)du

}
which leads to the affine term structure representation, i.e.

P (t, T ) = e(A(t,T )−B(t,T )r(t))

where

A(t, T ) = exp

{(
θ − σ2

2κ2

)
[B(t, T )− T + t]− σ2

4κ2
B(t, T )2

}
(4.2.16)

B(t, T ) =
1

κ
[1− e−κ(T−t)] (4.2.17)

4.2.4 The Cox, Ingersoll and Ross (CIR) model

The CIR model (1985), which is an equilibrium approach, is an extension of the
Vasicek Model. This extension introduces a ”square root” term in the diffusion
coefficient of the instantaneous short-rate dynamics of the Vasicek model. Thus,
the CIR model of the short-rate under the risk-neutral measure is also based on the
Ornstein-Uhlenbeck process and is given by

dr(t) = dr(t) = κ[θ − r(t)]dt+ σ
√
r(t)dW (t), r(0) = r0 (4.2.18)

where r0, κ, θ and σ are positive constants. The CIR model is analytically tractable
and unlike the Vasicek model, it ensures that the short-rates are always positive by
imposing the condition that 2κθ > σ2.

The mean and variance of the short rate r(t) condition on the filtration Fs are
given by

E {r(t)|Fs} =r(s)e−κ(t−s) + θ(1− e−κ(t−s)) (4.2.19)

V ar {r(t)|Fs} =r(s)
σ2

κ
(e−κ(t−s) − e−2κ(t−s)) + θ

σ2

2κ
(1− e−κ(t−s)) (4.2.20)

Note that the CIR model, like the Vasicek model, is mean reverting. As time t
approaches infinity (t→∞ ) its conditional mean and variance converges respective
to

E {r(t)|Fs} →θ (4.2.21)

V ar {r(t)|Fs} →θ
σ2

2κ
(4.2.22)
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It is not straight forward to compute the price of a zero-coupon bond in the CIR
model, as was in the Vasicek model, because the distribution of the short-rates are
now non-central χ2. However, the model admits an affine term structure and
generates the following ordinary differential equation{

∂tB(t, T ) = −κB(t, T ) + σ2

2 B
2(t, T )− 1

B(T, T ) = 0
(4.2.23)

{
∂tA(t, T ) = −κθB(t, T )

A(T, T ) = 0
(4.2.24)

The solution to the Riccati equation ( i.e equ. 4.2.23) is given by

B(t, T ) =
2(e−h(T−t) − 1)

(h+ κ)(e−h(T−t) − 1) + 2h
(4.2.25)

h =
√
κ2 + 2σ2 (4.2.26)

and the expression for A(t, T ) is given by

A(t, T ) =
2κθ

σ2
ln

[
2he(κ+h)(T−t)/2

(h+ κ)(eh(T−t) − 1) + 2h

]
(4.2.27)

Hence the price of a zero-coupon bond using the CIR model is

P (t, T ) = eA(t,T )−B(t,T )r(t)

4.2.5 The Dothan model

The Dothan model (1978) is also an extension of the Vasicek model. It is the
only known model that models the short-rates as a log-normal distribution and
have an analytical formula for zero coupon bonds. The log-normal distribution for
the short-rates implies that the short-rate are always positive, thus eliminating the
main disadvantage of the Vasicek model. However, the variance grows exponen-
tially and the risk-less account diverges. The Dothan model was introduced in two
stages. First, under the objective probability measure P, the short-rate dynamics
was assumed to be a geometric Brownian motion with no drift part, i.e.

dr(t) = σr(t)dW P(t), r(0) = r0 ,

where σ and r0 are positive constants. Later on, a risk neutral measure dynam-
ics was assumed by introducing a constant market price of risk. Thus giving the
dynamics

dr(t) = ar(t)dt+ σr(t)dWQ(t), r(0) = r0 , (4.2.28)

where a is a real constant.
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For times s ≤ t, the dynamics in equation(4.2.28) integrates to

r(t) = r(s) exp

{(
a− 1

2
σ2

)
(t− s) + σ(W (t)−W (s))

}
(4.2.29)

Thereby giving us that the short-rate condition on the filtration Fs is log-normally
distributed with mean value

E[r(t)|Fs] = r(s)ea(t−s), (4.2.30)

and variance
V ar[r(t)|Fs] = r2(s)e2a(t−s)(eσ2(t−s) − 1

)
As mentioned earlier, the process is not mean reverting. Mean reversion can only
be obtained if the real constant a is negative and the mean-reversion level that is
necessary is equals to zero (as can be observed in equation(4.2.30).

From the Dothan model, the zero-coupon bond price is given by

P (t, T ) =
r̄p

π2

∫ ∞
0

sin(2
√
r̄ sinh y)

∫ ∞
0

f(z) sin(yz)dzdy +
2

Γ(2p)
r̄pK2p(2

√
r̄)

(4.2.31)
where

f(z) = exp

[
−σ2(4p2 + z2)(T − t)

8

]
z

∣∣∣∣Γ(− p+ i
z

2

)∣∣∣∣2 cosh
πz

2

r̂ =
2r(t)

σ2

p =
1

2
− a,

and Kq denotes the modified Bessel function of the second kind of order q.



Chapter 5

THE NELSON-SIEGEL
MODELS

The need to accurately estimate, model and forecast the yield curve has lead to
a variety of both parametric and nonparametric models. In the money market,
estimates of the yield curve are used daily by speculators to take position on the
market, arbitragers to make risk-less profits and hedgers to minimize portfolio risk.

In estimating the yield-curve, various quotes on the interest rate market are used
depending on the type of model been applied. These quotes include the spot rate,
the zero-coupon rates or the forward rates.
In this thesis, I will consider a specific parametric family, the Nelson Siegel class,
and use some of its members to fit, estimate and forecast Swedish government yields.
Before embarking on this task, an introduction of the various types of the Nelson
Siegel models that will be of interest in this thesis are given.

5.1 Nelson-Siegel Model (NS)

The Nelson Siegel model, first introduced by Nelson and Siegel (1987), is one of the
most popular parametric models used in fitting the yield curve. It is both simple
and flexible and provides statistically accurate and economically meaningful results.

Nelson and Siegel observed that functions that generates the varying shapes
and forms the yield curve can assumed, are related to solutions to difference or dif-
ferential equations. If the difference/differential equations represents instantaneous
rates, then its solution will be the forward rates. They therefore suggested to fit
the forward rate curve, at a given point in time, with approximating functions that
consist of the product between a polynomial and an exponentially decaying term as

f(τ) = β1 + β2e
−τλ − β3(τλ)e−τλ (5.1.1)

where β1, β2 and β3 are model parameters that are determine by initial conditions
and λ, the decay parameter, is a constant.

By averaging over these forward rates, the model for the continuously com-
pounded instantaneous rates y(τ) is obtained. Thus, the Nelson Siegel spot rate

32
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Figure 5.1. The factor loadings on
the original Nelson Siegel yield curve
representation.

Figure 5.2. The factor loadings
on the Dynamic Nelson Siegel yield
curve representation by Diebold and
Li (2006)

.

yt(τ) is given by:

yt(τ) = β1 + (β2 + β3)
1− e−τλ

τλ
− β3e

−τλ. (5.1.2)

In the above representation, the parameter λ governs the exponential rate of
decay of the other model parameters. Thus, large values of λ induces a faster decay
and can therefore better fit short-rates whereas small values induces slow decay
thereby fitting the yield-curve at long maturities better. In particular, the decay
parameter determines the maturity at which the loading on β3 reaches its maximum.

The β’s in the Nelson Siegel spot rate representation above, can be given a viable
economic interpretation by examining its limiting properties. Observe that as the
time to maturity τ approaches infinity, the spot rate y(τ) approaches β1 and as τ
approaches zero, the spot rate approaches (β2 + β3). Thus we have the following
limiting properties for the Nelson Siegel spot rate:

lim
τ→∞

y(τ) = β1 (5.1.3)

lim
τ→0

y(τ) = β2 + β3. (5.1.4)

Hence β1 corresponds to the long-term component of the yield curve and it governs
the level of the yield curve. From equation 5.1.4, β2 can be interpreted as the short-
term component as it governs the slope of the yield curve and β3, the medium-term
component of the yield curve since it governs its curvature.

In the Nelson-Siegel model, the yield for a particular maturity can be seen as
a sum of several different components, namely the long-run yield that is indepen-
dent of the time to maturity (level), the effect on the short-end of the yield curve
(slope) and a component that adds a hump to the yield curve (curvature). These
components are denoted in the models in equation 5.1.2 as β1, β2, and β3 and their
factor loadings are shown in Figure 5.1.
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Figure 5.3. The varying shapes and forms the Nelson Siegel model can represent.
The graph was constructed by fixing (β2 + β3) = 0 and β1 = 1 in the original NS.
The decay parameter λ = 1

.
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In general, the Nelson Siegel model family, under the P-measures, can be rep-
resented by the following state space set-up:

Xt = (I −A)µ+AXt−1 + ηt, ηt ∈ N(0,Σs) (5.1.5)

Yt = ZλXt + εt, εt ∈ N(0,Σm) (5.1.6)

where the state equation Xt is a vector of factors, I an identity matrix, µ a vector
of factor means and A is the transition matrix.
The measurement equation Yt specify the vector of Swedish government yields with
eight different maturities for any given time t and Zλ is the constant matrix of
factor loadings for a given decay parameter(s), λ.
This representation will by apply to the DNS and the DNSS models for both the
dependence and independence factor models.

The simplicity of the Nelson Siegel spot rate representation and the economic
interpretation attached to the model parameters, makes it very attractive to actors
in the financial markets. The Nelson Siegel model, with only three model parame-
ters, has the ability to capture the various shapes and forms the term structure of
interest rates can exhibit as shown in Figure 5.3.
However, the Nelson Siegel model is a static model that does not take into account
the dynamic behavior of its factors. This restriction leads to various extensions
on the Original Nelson Siegel (1987) model, of which this thesis will consider the
re-factorization by Diebold and Li (2006) and the dynamic version of its extension
by Svensson (1995), which are valuable tools in forecasting the term structure of
interest rates. The arbitrage-ree version of the DNS models will also be studied and
contrasted with the DNS and the DNSS models.

5.1.1 Dynamic Nelson-Siegel Model (DNS)

Diebold and Li (2006) developed a dynamic model for the yield curve by re-factorizing
the Nelson Siegel spot rate representation as

yt(τ) = Lt + St
(1− e−τλ

τλ

)
+ Ct

(1− e−τλ

τλ
− e−τλ

)
(5.1.7)

where the latent factors, Lt, St and Ct, have a standard interpretation as level,
slope and curvature, given their associated Nelson Siegel factor loadings. This re-
factorization provides a model that performs as good as the Original Nelson Siegel
model but have the extra advantage of allowing us to give a different interpretation
for the model factors, as described above.

Diebold and Li (2006) show that their representation also corresponds exactly
to a modern factor model, with yields that are affine in three latent factors. Thus,
one can model the dynamics of the three factors with time series models, noticeably
as univariate independent stationary autoregressive processes or as a vector autore-
gressive process using the State Space Representation in equation 5.1.5 and 5.1.6.
Factor independence or dependence will be highlighted in our model framework by
the form the transition matrix A and the state error matrix, Q attains.
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For the independent factor models, the transition matrix and the state error
structures are taken to be diagonal, i.e.

A =

a1,1 0 0
0 a2,2 0
0 0 a3,3

 Q =

q2
1,1 0 0
0 q2

2,2 0
0 0 q2

3,3

 (5.1.8)

thus modeling the DNS factors as independent stationary AR(1) processes.
In the dependent case, correlation is induced in both the mean and the covariance

matrix. Thus, the transition matrix A is a full matrix and the state error matrix Q
is represented as a lower-, or upper triangular matrix as below:

A =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 Q =

q2
1,1 0 0
q2
2,1 q2

2,2 0
q2
3,1 q2

3,2 q2
3,3

 (5.1.9)

which gives a VAR(1) model for the DNS factors.
Empirically, the DNS provides good in-sample fit, but it does not impose the

fundamental assumption of absence of arbitrage. This problem was solved in Chris-
tenson, Diebold, and Rudebusch (CDR), where they derived the affine arbitrage-free
class of dynamic Nelson-Siegel term structure models, referred to as the Arbitrage
Free Nelson-Siegel (AFNS) model.

The results obtained by CDR that are essential for this thesis are reproduced
below.

5.1.2 Arbitrage Free Nelson-Siegel model (AFNS)

CDR proposed modeling the yield curve by in-cooperating the empirical success of
the Dynamic Nelson Siegel model and the theoretical absence of arbitrage assump-
tions underlying Affine Processes. They mimic a multi-factor affine term structure
model and start their derivation from the standard continuous time affine arbitrage-
free term structure.
Considering a three factor model with a constant volatility matrix Σ, CDR prove
the following proposition

proposition 5.1. Assume that the instantaneous risk-free rate is defined by

rt = X1
t +X2

t

In addition, assume that the state variables Xt = (X1
t , X

2
t , X

3
t ) are described by the

following system of stochastic differential equations (SDEs) under the risk-neutral
Q-measuredX

1
t

dX2
t

dX3
t

 =

0 0 0

0 λ −λ
0 0 λ

[
θ

Q
1

θQ2

θQ3

+

X
1
t

X2
t

X3
t

]dt+ Σ

dW
1,Q
t

dW 2,Q
t

dW 3,Q
t

 , λ > 0 (5.1.10)
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Then, zero-coupon bond prices are given by

P (t, T ) =EQ
t

[
exp(−

∫ T

t

rudu)
]

(5.1.11)

= exp(B1(t, T )X1
t +B2(t, T )X2

t +B3(t, T )X3
t + C(t, T )) (5.1.12)

where B1(t, T ), B2(t, T ), B3(t, T ), C(t, T ) are the unique solutions to the following
system of ordinary differential equations (ODEs)

dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt

 =

1

1

0

+

0 0 0

0 λ 0

0 −λ λ


B

1(t, T )

B2(t, T )

B3(t, T )

 (5.1.13)

and

dC(t, T )

dt
= −B(t, T )′KQθQ − 1

2

3∑
j=1

(Σ′B(t, T )B(t, T )′Σ)j,j′ (5.1.14)

with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = C(T, T ) = 0. The
unique solution for the system of ODEs is:

B1(t, T ) =− (T − t),

B2(t, T ) =− 1− eλ(t−t)

λ

B3(t, T ) =(T − t)e−λ(T−t) − 1− eλ(t−t)

λ

and

C(t, T ) =(KQθQ)2

∫ T

t

B2(s, T )ds+ (KQθQ)3

∫ T

t

B3(s, T )ds (5.1.15)

+
1

2

3∑
j=1

∫ T

t

(Σ′B(s, T )B(s, T )′Σ)j,jds (5.1.16)

Finally, zero-coupon bond yields are given by

y(t, T ) = X1
t +

1− e−λ(T−t)

λ(T − t)
X2
t +

[
1− e−λ(T−t)

λ(T − t)
− eλ(T−t)

]
X3
t −

C(t, T )

(T − t)
(5.1.17)

where B1(t, T ), B2(t, T ), B3(t, T ) presents the factor loadings, KQ is the mean-
reversion matrix, Σ is the state-error matrix and θQ represents the means of the
latent factors.
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Observe that the factor loadings, in the yield function, in equation 5.1.17 exactly
matches the factor loadings in the DNS as represented in equation 5.1.7. Hence,
the significant difference between the DNS and the AFNS is the yield-adjustment

term −C(t,T )
(T−t) .

From Proposition 5.1, we can also deduced that the short rate is a function of
level and the slope of the yield curve only. Also observe that the yield-adjustment
term is a function of the volatility matrix Σ, the decay parameter λ and the time
to maturity τ = (T − t).

By fixing the mean parameters of the state variable under the Q-measure at
zero, i.e. θQ = 0, CDR represented the yield-adjustment term in their AFNS as:

−C(T − t)
T − t

= −1

2

1

T − t

3∑
j=1

∫ T

t

(Σ′B(s, T )B(s, T )′Σ)j,jds (5.1.18)

Given a general volatility matrix

Σ =

σ1,1 σ1,2 σ1,3

σ2,1 σ2,2 σ2,3

σ3,1 σ3,2 σ3,3


the yield-adjustment term can be derived in analytical form as

C(t, T )

T − t
=

1

2

1

T − t

∫ T

t

3∑
j=1

(Σ′B(s, T )B(s, T )′Σ)j,jds

=Ā
(T − t)2

6

+B̄

[
1

2λ2
− 1

λ3

1− e−λ(T−t)

T − t
+

1

4λ3

1− e−2λ(T−t)

T − t

]
+C̄

[
1

2λ2
+

1

λ2
e−λ(T−t) − 1

4λ
(T − t)e−2λ(T−t)

− 3

4λ2
e−2λ(T−t) − 2

λ3

1− e−λ(T−t)

T − t
+

5

8λ3

1− e−2λ(T−t)

T − t
]

+D̄

[
1

2λ
(T − t) +

1

λ2
e−λ(T−t) − 1

λ3

1− e−λ(T−t)

T − t

]
+Ē

[
3

λ3
e−λ(T−t) +

1

2λ
(T − t) +

1

λ
(T − t)e−λ(T−t) − 3

λ3

1− e−λ(T−t)

T − t

]
+F̄

[
1

λ2
+

1

λ2
e−λ(T−t) − 1

2λ2
e−2λ(T−t) − 3

λ3

1− e−λ(T−t)

T − t
+

3

4λ3

1− e−2λ(T−t)

T − t

]
where

• Ā = σ2
1,1 + σ2

1,2 + σ2
1,3
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• B̄ = σ2
2,1 + σ2

2,2 + σ2
2,3

• C̄ = σ2
3,1 + σ2

3,2 + σ2
3,3

• D̄ = σ1,1σ2,1 + σ1,2σ2,2 + σ1,3σ2,3

• Ē = σ1,1σ3,1 + σ1,2σ3,2 + σ1,3σ3,3

• F̄ = σ2,1σ3,1 + σ2,2σ3,2 + σ2,3σ3,3

The above derivation implies two important results. Firstly, the fact that yields
in the AFNS class of models are given by an analytical formula greatly facilitates
empirical implementation of these models. Secondly, the maximally flexible un-
derlying volatility parameters in the AFNS specification that can be identified is
triangular:

Σ =

σ1,1 0 0
σ2,1 σ2,2 0
σ3,1 σ3,2 σ3,3

 (5.1.19)

Note: The choice of lower or upper triangular form is of no significance here.

Observe that the factor dynamics in the AFNS cannot be fitted with time series
models because they are model in continuous time. A change of measure from the
real world dynamics (the P-measure) to the risk neutral dynamics (the Q-measure)
is therefore needed. The relationship that provides this change of measure is:

dWQ
t = dW P

t + Γtdt (5.1.20)

where Γt represents the risk premium specification. As in Duffee (2002) affine
dynamics under the P-measure is retained by setting up an affine risk premium
specifications as.
Thus, Γt, takes the formγ1

γ2

γ3

 =

γ1,1 γ1,2 γ1,3

γ2,1 γ2,2 γ2,3

γ3,1 γ3,2 γ3,3

+

X
1
t

X2
t

X3
t

 (5.1.21)

This allows us to be able to used any mean vector θ and mean-reversion matrix K,
under the P-measure and still preserve the affine structure under the Q-measure.

With the above specification, the dynamics of the model factors under the Q-
measure, as in Equation 5.1.10, can be express under the P-measure as:dX

1
t

dX2
t

dX3
t

 = K

[θ1

θ2

θ3

+

X
1
t

X2
t

X3
t

]dt+ Σ

dW
1
t

dW 2
t

dW 3
t

 (5.1.22)
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From the above dynamic representation, independent and dependent factors
are induced by the form imposed on the mean reversion matrix K and the state
volatility matrix Σ.

Thus, for Independent Arbitrage Free Nelson Siegel (IAFNS) model, the mean
reversion and state error matrix are expressed as:

K =

κ1,1 0 0
0 κ2,2 0
0 0 κ3,3

 , Σ =

σ1,1 0 0
0 σ2,2 0
0 0 σ3,3

 (5.1.23)

respectively, and in the Dependent Arbitrage Free Nelson Siegel (DAFNS) these
matrices take the following form:

K =

κ1,1 κ1,2 κ1,3

κ2,1 κ2,2 κ2,3

κ3,1 κ3,2 κ3,3

 , Σ =

σ1,1 0 0
σ2,1 σ2,2 0
σ3,1 σ3,2 σ3,3

 (5.1.24)

The main in-sample problem with the fitted NS yield is that, for reasonable choices
of the decay paramter, the factor loadings on the slope and the curvature decays
rapidly to zero as maturity increases. This makes it difficult to fit long rates as only
the factor loading on the level factor is left to fit these rates. As decribed in CDR,
this limitation is highlighted by lack of fit in empirical estimation.

A solution to the NS lack-of-fit to the cross-section of yields, by adding a second
curvature factor with a factor loading component that has a different decay param-
eter, was proposed by Svensson (1995). This extension to the static Nelson Siegel
model is generally referred to as the Nelson Siegel Svensson (NSS) model.
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5.1.3 Dynamic Nelson-Siegel Svensson model (DNSS)

The NSS model is an extension of the original NS model. This model adds a second
curvature term, which allows for more flexibility and a better in-sample fit at long
maturities. The NSS model is one of the most popular models used by Central
Banks all around the world to model, estimate and forecast the term structure of
interest rates (BIS (2005)).

Accordingly, a dynamic version of NSS model corresponds to a modern four-
factor term structure model. Let y(τ) be the zero rate for maturity τ , then

yt(τ) = Lt+St

(
1− e(−λ1τ)

λ1τ

)
+C1

t

(
1− e(−λ1τ)

λ1τ
−e(−λ1τ)

)
+C2

t

(
1− e(−λ2τ)

λ2τ
−e(−λ2τ)

)
where y(τ) is the spot-rate curve with τ time to maturity. Lt, St, C

1
t C

2
t are the

model factors and λ1
t governs the rate of exponential decay of St and C1

t whiles λ2
t

governs the exponential growth and decay rate of C2
t .

Observe that the added curvature mainly affects medium-term maturities, which
in turn makes it possible and easy to fit yields with more than one local min-
ima/maxima along various maturities.

The fact that the DNSS model has two decay parameters, λ1,t and λ2,t, makes
the model highly nonlinear. This nonlinearity is highlighted by a high degree of
multicollinearity between factors, especially when λ1

t assumes similar value as λ2
t ,

thereby making it impossible to identify the curvature factors , C1
t and C2

t , sepa-
rately. Hence the difficulty in the estimation of model parameters.

In general, multicollinearity arises when two or more parameters cannot be
identify separately because there exist a high level of dependence between them.

There is therefore the need to define a restriction criteria that will allow us to
identify the two curvature factors separately. In this thesis , I followed Michiel De
Pooter (June 5, 2007) and restrict the factor loading on the second curvature factor,
in the DNSS, to reach its maximum for a maturity which is at least 1-year shorter
than the corresponding maturity for the first curvature’s factor loading. Michiel
De Pooter (June 5, 2007) argues that the above restriction can be expressed as a
minimum distance restriction as follows:

λ1,t ≥ λ2,t + 6.69, for monthly data.

Observe that, in the DNSS models, the two decay parameters and the two curvature
factors and hence their role in the minimum distance restriction, are interchange-
able.

As in the DNS model, the factor dynamics in the DNSS model can be repre-
sented by the State Space representation in equation 5.1.6 and model independently
as stationary AR(1) or as correlated factors with a VAR(1) process, in exactly the
same way. The only difference been the size of the transition matrix A and the state
error matrix Σ, which in the DNSS model are 4× 4 matrices.
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Thus for factor Independent Dynamic Nelson Siegel Svensson (IDNSS) model,
the transition- and state-error matrices are respectively given by:

A =


a1,1 0 0 0

0 a2,2 0 0
0 0 a3,3 0
0 0 0 a4,4

 , Σ =


σ1,1 0 0 0

0 σ2,2 0 0
0 0 σ3,3 0
0 0 0 σ4,4

 (5.1.25)

and in the factor Dependent Dynamic Nelson Siegel Svensson (DDNSS) as:

A =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 , Σ =


σ1,1 0 0 0
σ2,1 σ2,2 0 0
σ3,1 σ3,2 σ3,3 0
σ4,1 σ4,2 σ4,3 σ4,4

 (5.1.26)



Chapter 6

APPLICATION OF THE
NELSON SIEGEL MODELS

6.1 Data

The data used in this thesis was obtained from the Swedish Central Bank homepage
(www.riksbanken.se). The data consist of observed monthly averages of Swedish
government bonds in the period January 1997 to December 2011. For each month,
eight different maturities namely, 1-month, 3-months, 6-months, 1-year, 2-years,
5-years, 7-years and 10-years, were observed. Thus implying that we have both a
time series and a cross-sectional dataset.

Figure 6.1. The time series of
the observed monthly Swedish gov-
ernment yields from the period Jan-
uary 1997 to December 2011.

Figure 6.2. A 3D plot of Swedish
government yields with maturities
ranging from 1-month to 10-years for
the period January 1997 to December
2011.

Given that our dataset is both a time series and cross-sectional data, implies for
any given month t, we have a yield curve with a set of unknown parameters that fits
the curve at that very specific month. Therefore all the model parameters are time
varying, which motivates the use of dynamic modelling to represnt our dataset.

43
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A first inspection of our dataset reveals that there are some missing observations
for the 1-year bonds. These missing observations were approximated by using the
matlab function missdata and iddata. I then replaced the column of 1-year bonds
with missing observations with the results obtained from the matlab interpolation
function missdata.

Given that Swedish government bills are quoted as simple rates and bonds as
effective rates, I converted the simple rates to effective rates in order to ensure that
we have a yield curve for bonds of the same type and hence the same credit risk.

I choose this representation of the yield curve instead of bootstrapping the gov-
ernment bonds to obtain/extract its zero-coupon bonds. Not bootstrapping the
government rates, which is the preferred option, is due mainly to lack of historic
Swedish government bond prices for the period under study.

Table 6.1. Descriptive Statistics for Swedish Government Yields

Maturity Mean Std. dev. minimum maximum ρ̂(1) ρ̂(12) ρ̂(30)
1 2.802 1.278 0.152 4.524 0.9840 0.509 -0.035
3 2.809 1.316 0.152 4.522 0.9850 0.505 -0.012
6 2.870 1.337 0.166 4.725 0.9840 0.510 0.022
12 3.022 1.358 0.257 5.085 0.9843 0.536 0.062
24 3.335 1.304 0.611 5.364 0.9726 0.532 0.208
60 3.884 1.198 1.069 6.300 0.9622 0.487 0.340
84 4.079 1.185 1.279 6.543 0.9620 0.510 0.389
120(Level) 4.291 1.178 1.677 7.268 0.9605 0.494 0.384
Slope 1.482 0.867 -0.586 3.286 0.9563 -0.083 -0.290
Curvature -0.431 0.648 -2.230 0.926 0.8959 0.087 -0.225

The Descriptive statistics for observed monthly Swedish government yields and the empirical
level,slope and curvature, for the period January 1997 to December 2011 in percent. The data
based level-, slope- and curvature factors are defined as in section 6.3. The sample autocorrelation
functions at displacements of 1,12 and 30 months are also included.

It is important to note that I did not consider bond liquidity and tax effects that
might vary the government rates due to the effect they might have on bond prices,
upon which these quoted rates are based. I assumed that the data have already
been cleanup by the Swedish Central Bank.

After converting all government rates into effective rates, the effective rates are
then continuously compounded and expressed in decimals and ready to use for
modelling.

Using the whole tenor structure, the data is presented both as a time-series
and a three-dimensional plot as shown in Figure 6.1 and Figure 6.2 respectively.
From Figure 6.2, variation in the level, slope and curvature of the yield curve can
be observed. The large decline in investments in long-rates bonds at the beginning
of the global financial crisis is highly visible in Figure 6.1. Also, observed that the
interest rates with longer maturities (i.e the long-rates), varies less than the interest
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rates with short maturities (i.e. the short-rates). In Figure 6.6, the median yield
curve of the data with a 25% and 75% inter-percentile range are shown. From
Figure 6.6, we observed that the interval is much wider for short-rates than for
long-rates, indicating that the long-rates are more stable.

Table 7.1 shows the descriptive statistics of the continuously compounded Swedish
government rates, including the empirically defined level, slope and curvature fac-
tors that are shown in Figure 6.3, Figure 6.4 and Figure 6.5 respectively

These factors are defined and interpreted as level, slope and curvature as in
Diebold and Li (2006). Table 7.1 also includes the sample auto-correlation functions
with displacements of 1-, 12- and 30-months.

Figure 6.3. The empirical level de-
fined as the yield with the longest ma-
turity, which in our case is the 10-
years yield.

Figure 6.4. The empirical slope de-
fined from data as the difference be-
tween the 10-years and the 3-months
yields.

Figure 6.5. The empirical curvature
defined from data as twice the 2-years
yield minus the sum of the 10-years
and 3-months yields.

Figure 6.6. The median yield curve
for Swedish government bonds with
25% and 75% inter-percentile range.

Diebold and Li (2006) defined the level factor as the yield with the longest
maturity, (which in our case is the 10-years yield), They then load the level factor
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with a constant, one. Hence an increase in the level factor increases all yield equally,
as the loading is identical for all maturities. The level factor governs the long term
component of the yield curve.

The slope of the yield curve is governs by the short-term components of the
term structure. The slope-factor was empirically defined as the difference between
the 10-years yield and the 3-months yield. The slope factor is loaded by an expo-
nentially decaying component that starts at one and decays rapidly towards zero.
This introduces the decay parameter, λ, that governs the speed at which the slope
factor decays.

The medium term component of the yield curve is govern by the curvature factor.
The curvature factor is empirically defined as twice the 2-years yield minus the sum
of the 3-months and 10-years yields. The curvature factor is loaded by a component
that starts at zero, grows to a maximum and then decreases towards zero at a rate
determined by the decay parameter, λ.

Statistically, the significance of the empirically defined factors should not be ex-
aggerated. However, two reasons as to why these factors are defined in the following
way can be given. Firstly, in the economic world, the factors are defined such that
they reflex the time it takes for economic impulses to take effect. Secondly, the
factors are defined such that there exist as little correlation as possible between
them.
In principle, minimal correlation between factor is desired in order to avoid factor
identifiability problems, and thereby causing collinearity issues. The empirical fac-
tors should be seen as references to the Nelson Siegel model class factor dynamics
that we are interested in estimating.

Let (βl;βs;βc) represent the empirically defined factors, then their pairwise cor-
relations are ρ(βl;βs) = 0.15362, ρ(βs;βc) = −0.30586 and ρ(βl;βc) = 0.16434,
which are very weak indeed.

6.2 Estimation Procedure Overview

Six different dynamic representations of the Nelson Siegel model, that were discussed
in Chapter 5, will be investigated. I will estimate independent and dependent factors
for the dynamic Nelson Siegel DNS model and the dynamic Nelson Siegel Svensson
DNSS model. For the DNS models, I will lift the arbitrage free restriction they
implied and estimate their arbitrage free models, namely the Arbitrage Free Nelson
Siegel AFNS models.

For the Nelson Siegel model family, the main challenge is in estimating the decay
parameter(s). Fixing or freeing the decay parameter determines whether we have a
linear or a non-linear optimization problem.

The size of the decay parameter also determines the exponential rate at which the
slope- and curvature factors decays towards zero. In particular, the decay parameter
determines the maturity at which the curvature factor achieve its maximum.

As mentioned in Chapter 5, the Nelson Siegel model family, under the P-
measures, can be represented by the following state space representation:
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Xt = (I −A)µ+AXt−1 + ηt, ηt ∈ N(0,Σs) (6.2.1)

Yt = ZXt + εt, εt ∈ N(0,Σm) (6.2.2)

where the state equation Xt is a vector of factors, I an identity matrix, µ a vector
of factor means and A is the transition matrix.
The measurement equation Yt specify the vector of yields with eight different ma-
turities for any given time t and Z is the constant matrix of factor loadings for a
given decay parameter(s), λ.
This representation will by apply to the DNS and the DNSS models for both de-
pendence and independence factors. The factors under the P-measure will then be
model as univariate independent AR(1) and also as multivariate dependent VAR(1)
processes.

The continuous-time counterpart of the DNS models are the AFNS is models,
which are under the Q-measure. In order to conform to the same modeling frame-
work in continuous-time and facilitate model comparison, we need to change the
probability measure from the Q-measures to the P-measures and discretized the
continuous dynamics under the P-measure in order to obtain state equation for the
continuous-time models, as was detailed in Proposition 5.1.

Using our state-space representation in equation 6.2.1, the conditional mean and
conditional covariance, for our continuous-time models respectively are given by:

EP[XT |Ft] = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt (6.2.3)

V P[XT |Ft] =

∫ ∆t

0

e(−KP)uΣΣ>e(−KP)>udu (6.2.4)

where ∆t = T − t is the time difference between observations, KP is the mean-
reversion matrix, θP is the vector of factor means, Xt the vector of model factors
and Σs is the state-error matrix.

The continuous dynamics under the P-measure is discretized to obtain the state
equation

Xi = (I − exp(−KP∆ti))θ
P + exp(−KP∆ti)Xi−1 + νt, (6.2.5)

where ∆ti = ti − ti−1 is the time difference between observations, KP is the mean-
reversion matrix and θP is the vector of factor means.

By considering the one-month conditional transition matrix, the relation be-
tween the transition matrices under the P-measures and the Q-measures can be
expressed as

A = e−K∆t,

The measurement equation in continuous-time is given by

Yt = C + ZXt + εt (6.2.6)
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where C is the yield adjustment term, Z is a matrix of factor loadings and Xt is a
vector of factors. The conditional covariance matrix for the state errors is given by

Σs =

∫ ∆ti

0

e(−KP )uΣΣ>e−(KP )>udu (6.2.7)

Observe that the yield adjustment term C, in the measurement equation of
the continuous-time model, is the significant difference between the Nelson Siegel
models under the risk neutral dynamics (i.e. the AFNS models) and the Nelson
Siegel models under the real world dynamics (i.e. the DNS models).

To obtain our parameter estimates, a Kalman Filter is used with all the un-
known parameters as input. To enforce stationarity in our modeling framework,
the Kalman Filter is initialized at the unconditional mean and the unconditional
covariance of the latent factors that are given in Equation 6.2.3 and Equation
6.2.4 respectively. Kalman Filter Maximum Log- Likelihood Estimates are achieved
by optimizing the state parameters and the decay parameter λ to maximize the
loglikelihood.

l =
∑
t

(−1

2
[ log(|St|) + v′tS

−1
t vt]

)
(6.2.8)

where the predicted error matrix St and the predicted error vt are computed using
the Kalman Filter described in Section 3.2.1.

Due to the sensitivity of the estimates of the Nelson Siegel parameters to initial
values, extra work is put in identifying optimal initial values for our algorithm. This
will go a long way in providing accurate parameter estimates. Below I described
the procedure used to initialize and estimate our models.

6.2.1 Estimation Procedure DNS

As mentioned above, initial values provided to the Kalman Filter are indeed decisive
in obtaining accurate parameter estimates especially the initial value(s) assign to
decay parameter(s). I therefore took extra steps to obtain good initial estimate of
the decay parameter in the DNS model. The estimates from DNS play a are very
important role in all other models, as will be shown later.

For any given time in our data, I estimated the decay parameter, in the DNS,
by minimizing the sum of squares error over a grid of decay parameters. We are
interested in

minλ,β(Y − ZλX)>(Y − ZλX), (6.2.9)

where Y is a vector of yields, Z is the matrix of factor loadings and X is the vector
of factors. Thus for a given λ, the factors X can be obtained by

Xλ = (Z>λ Z
−1
λ )Z>λ Y

By substitution, Equation 6.2.9 can be re-written to optimize over only the decay
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parameter lambda as:

minλ(Y − Zλ(Z>λ Zλ)−1Z>λ Y )>(Y − Zλ(Z>λ Zλ)−1Z>λ Y )

= minλ(I − Zλ(Z>λ Zλ)−1Z>λ )>(I − Zλ(Z>λ Zλ)−1Z>λ )Y

Observe that
(I − Zλ(Z>λ Zλ)−1Z>λ )

is an orthogonal projector, hence we only need to optimize

minλ(Y >Y − Y >Zλ(Z>λ Zλ)−1Z>λ Y ) (6.2.10)

since if P is an orthogonal projector, then P = P>P .
The decay parameter that will be used to initialize the Kalman Filter, in the

DNS, is chosen as the median of the time series of decay parameters obtained
by optimizing Equation 6.2.10. Three different matlab optimization routines, i.e.
fminsearch, fmincon and fminunc were used and the results obtained are , 17.4494,
17.5184 and 16.4945 respectively.

Figure 6.7 shows the trajectory of the decay parameter estimated by the three
different optimization procedures. Note that the decay parameter in the conditional
optimization routine was restricted such that the medium-term component reaches
its maximum at a maturity that is between 1- and 3-years.

The median of the time series produced by fminunc, i.e. λ = 16.4945, is taken
as the initial optimal decay parameter estimate, as it produces the most stable
results and there were no restrictions imposed on the parameters.

Observed that I did not fix the decay parameter to the value recommended by
Diebold and Li (2006), i.e. 16.471 for monthly data or 0.0604 for yearly data. The
reason been that Diebold and Li (2006) used US government zero coupon bonds
with a different tenor structure which is different from the data and tenor structure
used in this thesis.

The decay parameter obtained from the above procedure was then used in the
initialization of our Kalman Filter. I then followed the proposal of Diebold,Rudebusch
and Aruoba(2006 b) and estimate all the model parameters simultaneously, by op-
timizing them to maximize the log-likelihood of the state-space system, i.e.

l =
∑
t

(
− 1

2
[ log(|St|) + v′tS

−1
t vt]

)
(6.2.11)

through a Kalman Filter.
The Kalman Filter is used in this thesis because it gives the best linear unbiased

estimator for the conditional mean and conditional covariance of a linear dynamic
system with latent factors, where the state and measurement errors are assumed
to be Gaussian. Also, the Kalman Filter used on a linear state-space model has
the advantage of treating the latent factors as unknown, which is much better than
setting the short-rates as proxy for the unobserved factors.
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Figure 6.7. The time series of the decay parameters estimated using three different
matlab optimization procedure.
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After obtaining the Maximum Likelihood Estimates(MLE) of the model param-
eters, I then used the MLE estimate of the decay parameter to fixed the factor
loading matrix Z. The DNS model factors were then estimated by Ordinary Least
Squares (OLS). The model factors thus obtained are then model as independent
factors, i.e.AR(1) processes or as correlated factors, i.e. VAR(1) process.

The procedure described above offers three main advantages.

• Firstly, it allows us to perform joint optimization in both cross-section and
time series dimension.

• Secondly, by fixing the decay parameter, we establish a stable state space
framework that provides statistically meaningful factor estimates, which are
essential for predicting the dynamics of the yield curve.

• Finally, it converts the estimation problem from the non-linearity in our state-
space system to a linear problem, by allowing us to work with a constant factor
loading matrix Z.

6.2.2 Estimation Procedure DNSS

The DNSS model have two curvature factors that are govern by two different decay
parameters, that allows these factors to decay exponentially towards zero at different
rates. This makes estimating model parameters much more challenging compared
to the DNS models.

The DNSS model can exhibit high factor collinearity if the decay parameters are
approximately equal, because these parameters are the only difference between the
two curvature factors. To avoid factor unidentifiable issues, I imposed the minimum
distance restriction proposed by Michiel De Pooter (June 2007), as discussed in
Section 5.1.3.

The addition of a minimum distance restriction on the decay parameters, to
an already difficult nonlinear optimization problem, makes finding optimal starting
values for the DNSS models even more challenging. There are various initialization
procedures outlined in the literatures, of which the initialization proposed by Michiel
De Pooter (June 2007) is the preferred method.

To initialize the decay parameters, Michiel De Pooter (June 2007) proposed
setting the first decay parameter (i.e. λ1

t ) to the optimal decay parameter esti-
mates from the DNS. To enforce the minimum distance restriction on the decay
parameters, for monthly data, the second decay parameter is set as follows:

• If λ̂1
t is larger than twice the minimum allowed value of 6.69 then λ2

t is ini-

tialized to 0.5λ̂1
t .

• If λ̂1
t is smaller than 13.38 then λ1

t and λ2
t are initialized at 13.38 and 6.69

respectively.
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To initialize the level -, slope- and first curvature factors, Michiel De Pooter (2007)
proposed using the optimal factor estimates computed in the DNS model and then
set the second curvature factor to zero.

The above procedure was implemented in matlab to optimize

min
λ1,λ2

∑
(ydata − ymodel)2

for every given time t. The median of the time series obtained are then taken as
our initial optimal decay parameters. Given our dataset, the following result were
obtained, λ1 = 16.9440 and λ2 = 7.4436.

As in the DNS, after obtaining our optimal decay parameters, we used them to
initialize the Kalman Filter and optimized all the model parameters simultaneously
by maximizing the log-likelihood in Equation 6.2.11. The information matrix Z
is constructed, using the MLE decay parameters estimates produced through our
Kalman Filter and the DNSS factors, i.e. Lt, St C1,t and C2,t, are computed by
OLS in exactly the same way as in the DNS models.

The discussion on independence and dependence factors, and the form of the
transition- as well as state covariance matrix in the DNS case, also applies to the
DNSS models. The only difference here is the size of these matrices, as was detailed
in Section 5.1.3.

6.2.3 Estimation Procedure AFNS

The arbitrage-free models are formulated under the Q-measure. Therefore in order
to enhance comparison of the estimated parameters for all six models under study,
we need a change of measure that relates the real-world dynamics under the P-
measure to the risk-neutral dynamics under the Q-measure. This relationship was
described in detailed in Section 5.1.2 and will not be repeated here. However, to
enhance a smooth flow in the structure of this thesis, the state- and measurement
equation for the AFNS model are given below.

In continuous time, the state equation under the P-measure is given by

Xt = (I − e−K
P∆t)θP + e−K

P∆tXt + νt (6.2.12)

Σs =

∫ ∆t

0

e(−KP)uΣΣ>e(−KP)>udu (6.2.13)

and the measurement equation under the P-measure is given by

yt = Ct + ZtXt + εt (6.2.14)

MLE estimates of the parameters in the AFNS modesl are obtained by optimiz-
ing these parameters to maximize the loglikelihood in equation 6.2.11. Observed
that in continuous time, a time-series model cannot be set on the model factors,
which implies that the dynamics are obtained as output of our Kalman Filter.
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Stationary of the system under the P-measures is imposed by restricting the real
component of each eigenvalue of the mean-reversion matrix KP to be positive. The
Kalman Filter for the arbitrage free models are started at their unconditional mean
and unconditional covariance.

X̂0 = θP and Σ̂0 =

∫ ∞
0

e(−KP)uΣΣ>e(−KP)>du. (6.2.15)

6.2.4 Forecasting Procedure

To accurately forecast yields is of vital importance to financial actors. It helps in
making long term decisions possible. It is of utmost important, for any good yield
curve model to be able to perform well both in-sample and out-of-sample. Good
fixed income model that also forecast well leads to accurate asset pricing, better
portfolio returns and risk management. Certain models performed extremely well
in-sample but provides unacceptable out-of sample results, which may be due to
over-parameterization.

To perform out-of-sample forecast for models in the Nelson Siegel family, it is
sufficient to only forecast the dynamics of the model factors. In this thesis, I intend
to follow CDR (2009) approach in constructing out-of-sample forecast for Swedish
government yields by applying a recursive procedure as described below.

For the DNS models, the h period ahead forecast of the yield with maturity τ
at time t Ŷt+h(τ), is given by the conditional expectation

EP
t [Yt+h(τ)] = EP

t [Lt+h] + EP
t [St+h]

(
1− e−τλ

τλ

)
+ EP

t [Ct+h]

(
1− eτλ

τλ
− e−τλ

)
Thus, given parameter estimates for the transition matrix A and the factor means
µ, and assuming independent and identically distributed innovations, recursive it-
eration implies that the conditional expectation of the factors Xt = (Lt, St, Ct) in
period t+ h are given by:

EP
t [Xt+h] = (

h−1∑
i=0

A)(I −A)µ+AhXt. (6.2.16)

Note that for the DNSS models, a second curvature factor and an additional decay
parameter are introduced.

For the AFNS models, the forecast in time t+h based on information available
at time t is simply the conditional expectation

EP
t [Yt+h(τ)] = EP

t [X1
t+h]+EP

t [X2
t+h]

(
1− e−τ/λ

τ/λ

)
+EP

t [X3
t+h]

(
1− eτ/λ

τ/λ
−e−τ/λ

)
−C(τ)

τ
.

In this case,the conditional expectations are given by

EP
0 [Xt] = (I − exp−K

Pt)θP + exp−K
PtX0, (6.2.17)
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where Xt = (X1
t , X

2
t , X

3
t ).

Thus with estimates for the mean-reversion matrix KP, the mean vector θP, the
decay parameter λ and the state error matrix Σs along with the optimally filtered
factors, we can compute the future expected yields.

The forecast performances of our models are compared by using the root mean
squared error (RMSE) for the forecast errors that are given by

εt(τ, h) = Ŷt+h(τ)− Yt+h(τ) (6.2.18)
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6.3 Estimation Results and Analysis

In this section, I will present the results obtained from the above described pro-
cedures for our six Nelson Siegel models. The models will be assessed in terms of
goodness of fit and their ability to forecast the Swedish government yields. Based on
the in-sample and out-of-sample results, a model will be chosen as the best model
to fit Swedish government yields. The matlab-function, fminsearch will be used, for
parameter estimation in all our models, and the Nelder-Mead simplex direct search,
which is the default algorithm for fminsearch, will be used and iterated 1000 times.

6.3.1 DNS Estimation Results

Here I present and contrast the results of the estimated parameters for the DNS
models. In Table 6.2 and Table 6.3, estimates of the transition matrix A , the
mean vector µ , the estimates for the transition errors q, the decay parameter λ
and the maximum log likelihood, for the independent and dependent DNS models
respectively, are displayed.

Table 6.2. Estimated Independent Factor Dynamics (DNS)

A Lt−1 St−1 Ct−1 µ q λ loglike
Lt 0.9112 0 0 3.21 0.0027 19.4370 -6696.4
St 0 0.8583 0 -2.56 0.0020
Ct 0 0 0.9416 -1.06 0.0021

The table shows the estimated transition matrix, A, the mean vector (µ) and the estimated
transition error parameters q, in the independent DNS model on Swedish government bonds for
the period January 1997 to December 2011. The maximum negative log-likelihood value is -6696.4,
The estimated value for the decay parameter is 19.4370 on monthly maturities.

Table 6.3. Estimated dependent Factor Dynamics (DNS)

A Lt−1 St−1 Ct−1 µ qL qS qC λ loglike
Lt 0.7015 0.0108 0.0137 3.3604 0.0020 0 0 18.4859 -6928.0
St 0.0101 0.9819 0.0096 -2.0005 0.0017 0.0022 0
Ct 0.0112 0.0089 0.8740 -1.1879 0.0021 0.0023 0.0020

The table shows the estimated transition matrix, A, the mean vector (µ) and the estimated
transition error parameters q, in the dependent DNS model on Swedish government bonds for the
period January 1997 to December 2011. The maximum negative log-likelihood value is -6928.0,
The estimated value for the decay parameter is 18.4859 on monthly maturities.

From Table 6.2 and Table 6.3, we observed, from their respective transition
matrices, that the curvature factor is the most persistent for the independent DNS
model, whereas the slope factor is the most persistent in the dependent DNS model.
We also observed that the independent slope factor has the fastest mean-reversion
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rate whereas in the correlated model, the level factor reverts to its mean faster
than the other two factors. The persistence in the independent curvature factor is
greatly reduced in the correlated model while the persistence of the independent
slope factor increases with almost the same amount as the reduction in persistent
in the curvature.

The reduction in persistent for the dependent level can be attributed to the
introduction of factor interaction that was induced by the full transition matrix.
Observed that all the off-diagonal elements in the dependent DNS are almost of the
same size. The interesting off-diagonal element that plays an important role in the
derivation of the the AFNS model is that of (St,Ct−1), which is estimated to 0.0096.
The low estimated value for (St,Ct−1) might be indicating that our dataset does not
support the arbitrage-free models as proposed by CDR (2008), and its contribution
to the in-sample-fit will be minimal if not negligible. This will be investigated later
on in this thesis.

The decay parameter λ, for the independent model was estimated to 19.4370.
The estimated value of the decay parameter implies that the curvature factor for
the independent DNS model, given our dataset, reaches its maximum near the
three-years maturity, i.e. at approximately 2-years and 9-months. In the dependent
model, the decay parameter was estimated to 18.4859, which is slightly lower than
in the independent model. It maximizes the dependent curvature factor near the
2-years 8-months maturity. This indicates that the correlated DNS model fit long
maturity bonds better than the independent DNS model.

Given that I used a different dataset and tenor structure to that used by Diebold
and Li (2006), the decay parameters obtained here still maximizes the curvature
factor for the DNS models at a maturity between 1- and 3-years, as Diebold and Li
recommended.

Observed that the deviation of the factor-mean vector in the DNS models is
quite significant. This may be indicating the difficulty our models are experiencing
in locating these means.

The correlation between the estimated-slope and the estimated-level, for the
DNS, should be weak in order to avoid collinearity. This correlation for the inde-
pendent factor model was shown to be −0.6484, whereas in the dependent model
the correlation was shown to be −0.60991 . The slightly higher correlation in the
independent factor DNS model may be cause by the slightly higher value of its
decay parameter compared to that obtained in the dependent case.
Our reference factors, i.e the empirically defined level, slope and curvature (βl, βs, βc)

, were plotted against the estimated independent DNS factors
i.e. β̂indepl , β̂indeps , β̂indepc as shown in Figure 6.8, 6.9 and 6.10.
Observe that there are three time series in Figures 6.8, 6.9 and 6.10. The trajec-
tories for the estimated independent level, slope and curvature, labeled β1

t , β2
t and

β3
t respectively, were obtained by fixing λ at its MLE estimate of 19.4370 and the

model factors computed by OLS. The trajectories labeled as X1
t , X2

t and X3
t were

obtained by using the MLE factor dynamics estimates directly.
The significance for including both trajectories is to show the effect on the
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factor estimates that my approach have produced. It could be observed that the
factor estimates obtained by fixing the decay parameter to its MLE estimate is
much more smooth compared to the factor estimates generated by directly using
the state parameter estimates. In the remainder of the thesis, all model factors will
be estimated as in β1

t , β2
t and β3

t .
In Figures 6.14, 6.15 and 6.16 the dependent- against the independent factor

estimates for the DNS model are shown. There is not much difference between the
two models as shown by the fit they exhibit. Observed that even though we modeled
the factors as latent by using a state-space representation, the factors indeed can
be interpreted as level, slope and curvature as they display the same form as the
empirically defined factors.
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Figure 6.8. The empirical- and esti-
mated level for the independent DNS
model.

Figure 6.9. The empirical- and esti-
mated slope for the independent DNS
model.

Figure 6.10. The empirical- and
estimated curvature for the indepen-
dent DNS model.

Figure 6.11. The estimated inde-
pendent and dependent level factor
for the DNS model.

Figure 6.12. The estimated inde-
pendent and dependent slopefactor
for the DNS model.

Figure 6.13. The estimated inde-
pendent and dependent curvature fac-
tor for the DNS model.
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Figure 6.14. The empirical- and
estimated level for the independent
DNS model.

Figure 6.15. The empirical- and
estimated slope for the independent
DNS model.

Figure 6.16. The empirical- and
estimated curvature for the indepen-
dent DNS model.



60 Application of the Nelson Siegel Models Chapter 6

To compare the transition errors, in the two models, across various maturities,
I followed CDR (2008) and constructed the 1-month conditional covariance matrix
Q by using the state error estimates in Table 6.2 and 6.3.
Thus, for the DNS models, the estimated conditional covariance matrix, given by
Q = qq′ were estimated as

QDNSindep =

0.4056× 10−5 0 0
0 0.7085× 10−5 0
0 0 0.4488× 10−5

 (6.3.1)

QDNSdep =

0.405× 10−5 0.339× 10−5 0.417× 10−5

0.339× 10−5 0.764× 10−5 0.851× 10−5

0.417× 10−5 0.851× 10−5 0.1337× 10−5

 (6.3.2)

From the conditional covariance matrices above, the first observation that can
be made is that the volatility of the level and slope factor, in both models, are very
similar and the slope factors varies less. On the other hand, the variance of the
curvature factor increases in the dependent DNS model.

Note that little can be said about the differences between the two models, if any,
based on their transition- and one-month conditional covariance matrices, discussed
above. However, if the negative log-likelihood for the two models are considered,
we observed that the negative log- likelihood for the independent DNS model is
slightly less than that of the dependent DNS model, which might be indicating
that the independent model better fits dataset. Less is better in this case because
we optimizing the negative-log-likelihood by using the matlab fminsearch function.
Based on the structures of the two DNS models, we observed that the two models
are nested, which facilitates the use of log-likelihood ratio test to help choose a model
that best fits our dataset, in-sample. The log-likelihood ratio (llr), is given by

llr = 2[logL(θdep)− logL(θindep)] ≈ χ2(p) (6.3.3)

where the number of restricted parameters p equals 9. Using matlabs likelihood-
ratio test function lratiotest gives a critical value of 16.9190 and indicates that at
the 5% level, the test rejects the restricted model, i.e the independent DNS model.
Thus, the restrictions in the independent factor DNS model are not supported
by our dataset and indicates that there is some interaction between factors. The
increased parameterization in the dependent DNS model and their estimates thus
obtained, will represent well our dataset and improved the in-sample fit.

In Table 6.4, the summary statistics for the error generated by the DNS and
the AFNS model are presented.

The deductions made from our log-likelihood ratio test indicates that the de-
pendent DNS model represents the Swedish government bonds better than the
independent DNS model. From Table 6.4, we observed that the difference in the
fitted errors for our DNS models are quite small and both models preformed equally
well across maturities.
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Table 6.4. Summary Statistics of In-Sample Fit For DNS and AFNS

Maturity indep-DNS dep-DNS indep-AFNS dep-AFNS
in months

Mean RMSE Mean RMSE Mean RMSE Mean RMSE
1 0.0336 0.0584 0.0312 0.0568 0.0320 0.0574 0.0209 0.0518
3 -0.0082 0.0437 -0.0087 0.0436 -0.0085 0.0436 -0.0100 0.0429
6 -0.0236 0.0533 -0.0222 0.0531 -0.0227 0.0531 -0.0151 0.0526
12 -0.0299 0.1102 -0.0271 0.1091 -0.0280 0.1094 -0.0155 0.1050
24 0.0273 0.0796 0.0284 0.0800 0.0281 0.0799 0.0292 0.0828
60 0.0161 0.0778 0.0126 0.0762 0.0138 0.0767 -0.0034 0.0712
84 -0.0116 0.0572 -0.0132 0.0573 -0.0127 0.0573 -0.0188 0.0582
120 0.0038 0.0523 -0.0009 0.0523 0.0019 0.0523 0.0127 0.0543

.

6.3.2 AFNS Estimation Results

Now we present the model parameter estimates for the arbitrage-free counterpart
of the DNS models, i.e. the dependent and independent AFNS models. First we
display the mean-reversion matrix K and the factor-means θ, which are shown in
Table 6.5 for the independent AFNS model and in Table 6.6 for the dependent
AFNS model.

Given that the AFNS models are estimated in continuous time, only the factor
means from Table 6.5 and Table 6.6 can be compared to the DNS models discussed
above. Overall, the factor means in the AFNS models are slightly higher compared
to the DNS models factor mean estimates. The difference between the factor mean
estimates in the DNS models and the AFNS models might be indicating that our
models are having difficulties in estimating these means. This difficulty might be
attributed to the high persistence of our model factors.

Table 6.5. Estimated Independent Factor Dynamics (AFNS)

K matrix Mean (θ)
Kl Ks Kc

Kl 0.9307 0 0 3.7541
Ks 0 0.8047 0 -2.0265
Kc 0 0 0.6810 -1.22287

The table shows the mean-reversion matrix K and the factor means for the independent AFNS
model

In Tables 6.7 and 6.8, we present the estimates for the state error matrix, the
decay parameter and the negative log-likelihood estimate for the independent and
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Table 6.6. Estimated dependent Factor Dynamics (AFNS)

K matrix Mean (θ)
Kl Ks Kc

Kl 0.6298 0.0095 0.0097 3.2172
Ks 0.0148 0.7854 0.0106 -1.9829
Kc 0.0104 0.0115 0.7047 -0.8125

The table shows the mean-reversion matrix K and the factor means for the dependent AFNS
model

dependent AFNS models respectively.
In the independent AFNS, the decay parameter was estimated to 18.7911. This

implies that the curvature factor in the independent AFNS model reaches its max-
imum at around the same maturity as our DNS models , i.e. at 2-years 8-months.
This is not surprising since the estimated decay parameters are very similar indeed.
The slope and curvature factors in the independent AFNS decays at the same rate
towards zero as in the the DNS models.

This observation might be highlighting that, compared to the DNS models,
perhaps there will be no significant gain in in-sample-fit for our dataset by using
the independent AFNS model.

The decay parameter in the dependent AFNS model was estimated to 15.3915.
This value of λ, which is slightly less compared to the other models considered so far,
indicates that there is a slow exponential decay rate for the slope factor and as well
as a slow growth and exponential decay for the curvature factor in the dependent
AFNS model. This slow rate of decay allows the model to fit long maturity bonds
well since the curvature factor reaches its maximum at a maturity of 2-years and
3-months.

Using the above decay parameter estimates to fixed the factor loading matrices
in the AFNS models, the model factors were then estimated by OLS and their
trajectories are plotted in Figures 6.17, 6.18 and 6.19 against our reference factors
and the factor estimates from our DNS models. From Figures 6.17, 6.18 and 6.19,
we observed that all four models coincided, thereby making it impossible to identify
the model that best fits our dataset in-sample.

If model superiority is base on the value of the negative log-likelihood, then we
will prefer the dependent AFNS model to the independent AFNS model, as it has
a much lower negative log-likelihood value, as shown in Table 6.7 and 6.8.

However, a log-likelihood ratio test can be performed on the AFNS models since
the dependent AGNS nests the independent AFNS model. Using Equation 6.3.3
with 9 degrees of freedom, our likelihood ratio test indicates that we can reject
the independent factor AFNS model at the 5% level, indicating that the correlated
AFNS model best represents our dataset.

The dependent AFNS helps give a greater flexibility but this is not reflected by
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Table 6.7. Estimated state errors for the Independent (AFNS)

Σ matrix λ loglike
σl σs σc

σl 0.0018 0 0 18.7911 - 4657.7
σs 0 0.0019 0
σc 0 0 0.0025

.

The table shows the estimated transition error matrix, the decay parameter estimated to
18.7911 and the negative log-likelihood of the parameter estimates is -4657.7 for the independent
AFNS model

Table 6.8. Estimated state errors for the dependent (AFNS)

Σ matrix λ loglike
σl σs σc

σl 0.0023 0 0 15.3915 -6530.8
σs 0.0022 0.0024 0
σc 0.0020 0.0020 0.0017

.

The table shows the estimated transition error matrix, the decay parameter estimated to
15.3915 and the log-likelihood of the parameter estimates is -6530.8 the dependent AFNS model

the results of the fitted error-means or the RMSE as shown in Table 6.4. Again
there is no superiority, in in-sample fit, between the independent and dependent
AFNS models. Observe that the fitted-mean error and the RMSE are slightly
smaller than those of the DNS models.

The correlation between the independent AFNS slope and curvature factors
was estimated as −0.62274 and the correlation, between the same factors, for the
dependent AFNS model as −0.45141. The low correlation in both models implies
that we can identify the slope- and curvature factors in the AFNS models separately
and thereby avoiding collinearity problems associated with the Nelson Siegel model
family.

To compare the transition matrix for the DNS models and the AFNS, we need
to convert the continuous state mean-reversion matrix K, in the AFNS, to the
transition matrix A under the P-measure. Since we are modeling monthly data,
we therefore need to convert K and the state error matrix Σs into their respective
one-month conditional matrices.

The mean-reversion matrix K is converted into a one-month transition matrix
A by

A = e−K∆t,

where ∆t = 1
12 and K is the transition matrix under the Q-measure.

The transition matrices for the independent and dependent AFNS models un-
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Figure 6.17. The empirical level de-
fined as the yield with the longest
maturity against the independent and
dependent level estimates for the
DNS and the AFNS models

Figure 6.18. The empirical slope
defined as the yield with the longest
maturity against the independent and
dependent slope estimates for the
DNS and the AFNS models

Figure 6.19. The empirical cur-
vature defined as the yield with the
longest maturity against the indepen-
dent and dependent curvature esti-
mates for the DNS and the AFNS
models

der the P-measure, as well as their one-month conditional state error matrices are
presented in Table 6.9 and Table 6.10 respectively.

The one-month conditional covariance matrix, for the AFNS models are ob-
tained by: ∫ 1

12

0

e−K
PuΣΣ>e−(KP )>udu (6.3.4)

The state error matrices, that are used to compute the covariance matrices, are
presented as lower triangular matrices because empirically only these parameters
can be identified, according to CDR (2008). The choice between lower- and upper
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triangular matrix for the conditional covariance is irrelevant in this framework.

Table 6.9. Estimated A and Q matrices for independent (AFNS)

A matrix Q matrix
Lt−1 St−1 Ct−1 ql qs qc

Lt 0.9254 0 0 0.2765×10−6 0 0
St 0 0.9351 0 0 0.3115 ×10−6 0
Ct 0 0 0.9448 0 0 0.5399×10−6

The table shows the estimated mean-reversion matrix A, and the one-month conditional co-
variance matrix for the independent AFNS model.

Table 6.10. Estimated dependent (AFNS) model parameters

A matrix Q matrix
Lt−1 St−1 Ct−1 ql qs qc

Lt 0.9489 -0.0007 -0.0008 0.4556 ×10−6 0.4480 ×10−6 0.3990 ×10−6

St -0.0011 0.9366 -0.0008 0.4480 ×10−6 0.9483×10−6 0.8246 ×10−6

Ct -0.0008 -0.0009 0.9430 0.3990 ×10−6 0.8246×10−6 0.9681×10−6

The table shows the estimated mean-reversion matrix A, and the one-month conditional co-
variance matrix for the dependent AFNS

Considering the transition matrices in Table 6.9 and Table 6.10, we observed
that there is not much difference between them. However, compared across models,
the transition matrices in the DNS and the AFNS models are quite different. All
factors show more persistence in the AFNS models. This was quite a surprising
results since we are making the same assumption about the P-dynamics and the
only difference between the two models is the yield-adjustment term in the AFNS
models. An observation that can be made here is that, our tenor structure does not
include maturities more than 10-years which are necessary to observe the effects of
the AFNS models. We could also observed that there is minimal factor interaction
as indicated by the very low off-diagonal values of the dependent AFNS model as
Table 6.10 indicates.

From Table 6.9 and Table 6.10, we observed that the volatility of the factors
have been greatly reduced compared to the DNS models. In both the independent
and dependent AFNS models, their curvature factors has the smallest variance and
therefore are less volatile whereas their level factors displays the highest volatility.
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6.3.3 DNSS Estimation Results

So far, we have presented and interpreted the estimated results obtained for the
DNS and AFNS models, both of which have three latent factors. The flexibility of
the DNS models was increased by adding a second curvature factor, as detailed in
Section 5.1.3.
In Table 6.11 and Table 6.12, we present the estimated transition matrix A, the es-
timated vector of means µ, the estimated parameters for the conditional covariance
matrix Q as well as the estimated decay parameters and the negative log-likelihood
for the independent DNSS model.

Table 6.11. Estimated independent Factor Dynamics (DNSS)

A matrix Mean (θ)
Lt−1 St−1 C1

t−1 C2
t−1

Lt 0.8421 0 0 0 3.60151
St 0 0.7588 0 0 -2.2478
C1
t 0 0 0.9894 0 -0.8611

C2
t 0 0 0 0.9331 -0.9558

The table shows the estimated transition matrix A, and the factor means for the independent
DNSS model using monthly Swedish government yields from the period January 1997 to December
2011.

Table 6.12. Estimated state errors for the independent (DNSS)

Σ matrix λ1 λ2 loglike
σl σs σc1t σc2t

σl 0.0021 0 0 0 19.0106 8.5619 -6465.2
σs 0 0.0022 0 0
σc1t 0 0 0.0020 0

σc2t 0 0 0 0.0021

.

The table shows the estimated transition error matrix, the decay parameters estimated and
the negative log-likelihood of the parameter estimates for the independent DNSS model using
monthly Swedish government yields from the period January 1997 to December 2011

In Table 6.13 and Table 6.14 the corresponding model parameter estimates for
the dependent DNSS model are presented.

From the transition matrix in Table 6.11, we observed that the first curvature
factor is the most persistent and the slope factor is the least persistent, whereas in
the correlated DNSS model the slope factor is most persistent as shown in Table
6.13

Compared to the transition matrices for the independent DNS and the AFNS
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Table 6.13. Estimated dependent Factor Dynamics (DNSS)

A matrix Mean (θ)
Lt−1 St−1 C1

t−1 C2
t−1

Lt 0.8343 0.0102 0.0098 0.0100 4.0667
St 0.0105 0.9912 0.0106 0.0081 -1.7233
C1
t 0.0120 0.0108 0.8868 0.0106 -1.0802

C2
t 0.0108 0.0109 0.0097 0.8024 -0.1059

The table shows the estimated transition matrix A, and the factor means for the dependent
DNSS model

Table 6.14. Estimated state errors for the dependent (DNSS)

Σ matrix λ1 λ2 loglike
σl σs σc1t σc2t

σl 0.0037 0 0 0 16.8379 7.9193 7900.6
σs 0.0040 0.0040 0 0
σc1t 0.0038 0.0041 0.0040 0

σc2t 0.0041 0.0042 0.0046 0.0042

.

The table shows the estimated transition error matrix, the decay parameters estimated to and
the log-likelihood of the parameter estimates is -7900.6 for the dependent DNSS model

models discussed earlier, two observations can be made on the estimated parame-
ters of the independent DNSS model. Firstly, the persistent in the level factor, in
the uncorrelated DNS model, is greatly reduced by the introduction of a second
curvature term. Secondly, we notice that the levels mean is much higher in the in-
dependent DNSS model. These two observations shows that without the additional
curvature term, only the level factor was used to fit long maturity bonds, whereas
with its inclusion, the level factor is release to fit other components of the yield
curve. This argument can also be used to justify the reduction in persistence for
both the level and first curvature factor in the dependent DNSS model, as Table
6.13 indicates.

The factor means in the dependent DNSS model are much higher than those in
the independent model and across all the models discussed so far. This is another
indication that the factor means are indeed very difficult to locate in our models.

For the independent DNSS model, the estimated decay parameter that affects
the loading on the slope and first curvature factor is 19.0106, which implies that the
first curvature factor reaches its maximum at around the 2-years 9-months maturity.
The decay parameter that affects the loading on the second curvature factor was
estimated to 8.5619, implying that the second curvature factor is maximized at
around the 15-months maturity.
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In the dependent factors DNSS model, the estimated decay parameters are slightly
lower as Table 6.12 Table 6.14 shows. These values for the decay parameters makes
the factor loadings for the slope and the two curvature factors to decay at a slower
rate than in the uncorrelated DNSS model and thereby fitting long-rates well.

The decay parameter that affects the slope and first curvature factors, in the
correlated DNSS model was estimated to 16.8379 which maximizes the first cur-
vature at around the 2-years and 5-months maturity. The second curvature factor
is maximized at around the 1-year and 2-months maturity since we estimated the
decay parameter that affects its factor loading to 7.9193.

Note that the interval in which the curvature factors reaches their maximum are
still within the desired bound of 1- to 3-years and they satisfy the minimum distance
restriction imposed on the decay parameters. Also, the slope and curvature factors
in the DNSS models are maximized at around the same maturities.

In Figure 6.20 we plotted the factor loadings on the independent DNSS model
with the decay parameters fixed at their MLE estimates to illustrate the effect of
these parameters on the factor loadings.

Given their respective decay parameter estimates, the factor loading matrix Z
for our DNSS models were fixed and their respective model factors estimated by
OLS. In Figures 6.21, 6.22 and 6.23, estimated factors for the independent DNSS
model are plotted against the independent factors- DNS and AFNS models for
comparison.

In Figures 6.21, 6.22 and 6.23, we observed that there is no significant changes
in the level and slope factors. The only noticeable change is seen in the curvature
factor. This was indeed expected as there are now two curvatures to fit the humps in
the yield curve. The second curvature factor helps in fitting yields with maturities
more than 10-years.

Similarly, Figures 6.24, 6.25 and 6.26 shows the time-series for the corresponding
dependent factor estimates.

As mentioned earlier, the second curvature factor was included to achieved in-
creased flexibility and thereby help fit yields with maturities more that 10-years.
However, our tenor structure does not support such maturities and we therefore
cannot study the relation between the second curvature and yields more than 10-
years.

The negative log-likelihood for the dependent DNSS was estimated to −7900.6
whcih is less than the value obtained for the independent DNSS model, i.e −6465.2.
These values does not say much to us but since the independent DNSS model
is nested in the dependent DNSS, a likelihood ratio test can be performed using
Equation 6.3.3 with 18 degrees of freedom. The likelihood ratio test indicates that
the uncorrelated model does not fit our dataset well.

The residual mean and RMSE for the DNSS models are shown in Table 6.15.
Again the results in Table 6.15 shows no overall superiority between the DNSS
models. However, across models, residual mean and RMSE for the DNSS models
are much smaller than all the other models. Thus indicating that the DNSS mod-
els, with our estimated parameters provides a better in-sample fit to the Swedish
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Figure 6.20. The independent
DNSS factor loading.

Figure 6.21. The level factor in the
DNSS model plotted against the level
factor for the the DNS and the AFNS
models.

Figure 6.22. The slope factor in the
DNSS model plotted against the slope
factor for the the DNS and the AFNS
models.

Figure 6.23. The first curvature
factor in the DNSS model plotted
against the curvature factor for the
the DNS and the AFNS models.

government rates. The results of the mean-error and the RMSE should not be over-
interpreted because they might be indicating that the model is over-parameterized
and therefore over-fitting our data.
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Figure 6.24. The level factor for
the dependent DNSS model plotted
against the dependent level factors for
the the DNS and the AFNS models

Figure 6.25. The slope factor for
the dependent DNSS model plotted
against the dependent slopel factors
for the the DNS and the AFNS mod-
els

Figure 6.26. The first curvature fac-
tor estimate for the dependent DNSS
model plotted against the dependent
curvature factors for the the DNS and
the AFNS models
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The conditional covariance matrices, for the DNSS models, given by Q = qq′,
are shown below:

QDNSSindep =


0.2034× 10−4 0 0 0

0 0.2007× 10−4 0 0
0 0 0.1879× 10−4 0
0 0 0 0.1908× 10−4



QDNSSdep =


0.1372× 10−4 0.1469× 10−4 0.1396× 10−4 0.1511
0.1469× 10−4 0.3194× 10−4 0.3165× 10−4 0.3292
0.1396× 10−4 0.3165× 10−4 0.4756× 10−4 0.5113
0.1511× 10−4 0.3292× 10−4 0.5113× 10−4 0.7292


From QDNSSindep , we observed that for the uncorrelated DNSS model, the level

factor is the most volatile and the curvature factors displays less volatility. However,
in the correlated DNSS model, the variance on the level and slope factors stays
almost the same as those of the uncorrelated model whiles the volatility on the two
curvature factors increases.

Table 6.15. Summary Statistics of In-Sample Fit For DNSS

Maturity indep-DNSS dep-DNSS
in months

Mean RMSE Mean RMSE
1 0.0098 0.0401 0.0085 0.0391
3 -0.0083 0.0435 -0.0082 0.0447
6 -0.0050 0.0496 -0.0039 0.0488
12 -0.0074 0.0754 -0.0061 0.0752
24 0.0209 0.0739 0.0209 0.0662
60 -0.0083 0.0589 -0.0118 0.0616
84 -0.0173 0.0580 -0.0189 0.0582
120 0.0157 0.0383 0.0195 0.0421

The table shows the residual means and the RMSE for the DNSS models in basis points.
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6.4 Forecasting

From the discussions and in-sample fit analysis in the previous section, we can
conclude that the dependent models can better represent our dataset in-sample.
The residual means and RMSE shows that the dependent DNSS model provides
the best in-sample fit for Swedish government yields.

Now we investigate if the in-sample-fit superiority of the dependent models,
especially the dependent DNSS, translates to better out-of-sample fit or if it was
due to over-fitting. We also study the contribution of the yield-adjustment term,
that were introduced in the AFNS models, to out-of-sample forecast.

The estimation procedure introduced in this thesis mimic the two-step-approach
proposed by Diebold and Li (2006). Thus the estimation of the model factors
almost totally ignores the dynamics of the factors which are crucial in obtaining a
good forecast. To forecast the yield curve in the Nelson Siegel model class, for a
given decay parameter(s), it is enough to forecast the factor dynamics. Therefore, to
perform out-of-sample forecast for our dataset, we implement the recursive procedure
proposed by CDR (2009), as described in Section 6.2.4.

For all six models discussed, 3-, 6- and 12- months forecast horizons will be
computed and the model with the least RMSE forecast error chosen as the best
model.

Table 6.16 present the RMSE for the 3-months, 1-year, 2-years, 5-years,7-years
and 10-years yields. In Table 6.16, for each forecast horizon, the model with the
least RMSE forecast error is mark with an asterisk.

The results in Table 6.17 shows that, for all maturities and all forecast horizons,
the independent dynamic Nelson Siegel model, which is the simplest of all the six
models considered in this thesis, is the most accurate model. This contradicts the
results obtained from the in-sample-fit, which shows the dependent Dynamic Nelson
Siegel Svensson model as the most accurate. Out-of-sample, the correlated factor
models are the worst performing models for all forecast horizon.

This indicates that the more complex models do over-fit our data and the yield
adjustment terms contribution to the out-of sample forecast is not very significant
as the AFNS models are outperformed by the independent DNS model.

Thus, given our dataset and tenor structure, the in-sample-fit superiority of the
DNSS models can be attributed to over-fitting and the lack of significant contribu-
tion of the complex AFNS models, both in-sample and out-of-sample fit, may be
due to lack of bonds with maturities more than 10-years. This highlight that fact
that the extensions of the DNS model helps in fitting long-term yields, which are
not present in our dataset and hence the effect of these models cannot be observed.
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Table 6.16. Out-of-sample Forecast RMSE for Six Models

Forecast horizon
Model Three-month Six-months Twelve-months

3-months yields

DNSindep 0.5405* 0.8308* 1.0886*
DNSdep 0.8496 0.8496 1.3602
AFNSindep 0.5433 1.1915 1.2553
AFNSdep 0.9821 1.0949 1.2533
DNSSindep 0.6535 0.9471 1.1489
DNSSdep 0.6728 1.0440 1.3695

1-year yields

DNSindep 0.5491* 0.8283* 1.0658*
DNSdep 0.8662 0.8662 1.3084
AFNSindep 0.5755 1.2329 1.2596
AFNSdep 1.2406 1.1343 1.2576
DNSSindep 0.6289 0.9341 1.1358
DNSSdep 0.6949 1.0536 1.3098

2-years yields

DNSindep 0.5289* 0.7813* 1.0017*
DNSdep 0.8734 0.8734 1.2097
AFNSindep 0.6592 1.1910 1.2017
AFNSdep 1.3021 1.0736 1.1993
DNSSindep 0.6301 0.9294 1.1290
DNSSdep 0.6960 1.0090 1.2003

5-years yields

DNSindep 0.4820* 0.6914* 0.8485*
DNSdep 0.8210 0.8210 0.9943
AFNSindep 0.5788 1.0552 1.0366
AFNSdep 1.2096 0.9074 1.0338
DNSSindep 0.5969 0.8624 1.0098
DNSSdep 0.6266 0.8678 0.9681

7-years yields

DNSindep 0.4585* 0.6684* 0.8318*
DNSdep 0.7919 0.7919 0.9720
AFNSindep 0.5452 1.0340 1.0176
AFNSdep 1.1776 0.8763 1.0146
DNSSindep 0.5697 0.8280 0.9817
DNSSdep 0.5918 0.8277 0.9378

10-years yields

DNSindep 0.4273* 0.6195* 0.7742*
DNSdep 0.7650 0.7650 0.9150
AFNSindep 0.4833 0.9887 0.9556
AFNSdep 1.1335 0.8180 0.9523
DNSSindep 0.5332 0.7673 0.9072
DNSSdep 0.5550 0.7701 0.8719
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6.5 Conclusion

In this thesis, three different classes of the Nelson Siegel model family namely the
Dynamics Nelson Siegel model, the Dynamics Nelson Siegel Svensson model and the
Dynamics Arbitrage-Free Nelson Siegel model, were examined. For each model, I
studied both the effect correlated- and independent factors have on the in-sample-fit
and out-of-sample forecast for Swedish government bonds under the period January
1997 to December 2011.

The results of the in-sample-fit shows the correlated Dynamic Nelson Siegel
Svensson model, were factor interaction and dependence are introduced, as the
most accurate model to represent our dataset and the given tenor structure, as it
improves considerably the fit on the Dynamic Nelson Siegel models.

However, the out-of-sample forecast for the six models reveals that the superior-
ity of the DNSS in-sample-fit was due to over-fitting as they were outperformed by
the simple independent factor DNS model. The effect of over-fitting was also visible
by the fact that the dependent models and the complex AFNS models performed
worst out-of-sample.

This shows that the contribution of the yield-adjustment term, in the measure-
ment equation of the AFNS models, is not very significant in forecasting the yield
curve. To my surprise, the model that incorporate the arbitrage-free tradition
of Affine Processes and Nelson Siegel model class tradition of providing good in-
sample fit, was out-performed by the independent three factor DNS model given
our dataset.

6.6 Extension

In this thesis, I do not consider the effects macroeconomic factors, such as inflation,
unemployment and productivity have on Swedish government yields. The modeling
framework used in this thesis can easily be extended to include these factors in the
state representation and their interaction, if any, studied. In this vain, it could also
be interesting to study the relation between Swedish fixed income securities and the
European Union bond market.

There is also the possibility to investigate an arbitrage-free counterpart for the
DNSS models. This was proposed by CDR (2008), where they introduced a five
factors Dynamic Nelson Siegel model, namely the Generalized Arbitrage-Free Nelson
Siegel (AFGNS) models that is a very clever extension of the three factors Arbitrage-
Free Nelson Siegel model.
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