A simulation environment for coupled systems
of discontinuous ODE:s

Teo Nilsson

Centre for Mathematical Sciences
Numerical Analysis
Lund University, Box 118
SE-221 00 Lund, Sweden

Bachelor’s thesis
ISSN: 1654-6229

September 6, 2013

ULNEEI;l 1]3 /LIDdEfﬂn_

Abstract

This thesis covers the implementation and usage of PyFMI 2.0, an enhance-
ment of the already existing PyFMI, a Python based simulation environ-
ment for importing and solving discontinuous systems of ordinary differential
equations with in- and outputs, so-called simulations of Functional Mock-up
Units. In particular, PyFMI 2.0 uses the Functional Mock-up Interface,
FMI, 2.0 for interacting with Functional Mock-up Units, FMU:s, for Model
Exchange and Co-Simulation. A mathematical and intuitive approach to
the interface is treated together with a comparison to the previous inter-
face of version 1.0. By experiments, the thesis aims to evaluate the possible
efficiency gain in the simulation-run due to directional derivatives used as
Jacobians provided by the FMU version 2.0 compared to version 1.0, where
Jacobians are computed by the numerical integrator. Finally, it is concluded
that PyFMI 2.0 needs a more efficient algorithm to retrieve the Jacobians,
otherwise the time-loss in the elapsed simulation time becomes significantly
large.

Acknowledgements

I sincerely thank my supervisors, Christian Andersson for his continuous
support combined with endless patience and professor Claus Fiihrer for his
wise suggestions and constructive criticism giving broader perspective to my
thesis, both whom without this thesis would not be possible. My deep-
est appreciation extends to Johan Akesson with colleagues and students at
Modelon AB for sharing their expertise and helpfully endured my questions.
I express my special gratitude to Anna-Maria Persson for invaluable inspi-
ration and persistent encouragement during my studies in the mathematical
subjects. Finally, to all wonderful and supporting people in my everyday life,
you know who you are; Thank you!

Contents

Introduction

1

Ordinary differential equations

1.1 Different kinds of ODE:s
1.2 System of differential equations
1.3 System of ODE:s with in- and outputs
Functional Mock-up Interface
21 FMI . ..o
2.2 Functional Mock-up Unit
2.3 Common representation
2.4 FMI for Model Exchange
2.5 FMI for Co-Simulation
FMI 2.0 compared to 1.0
3.1 Differences
3.2 New features
PyFMI 2.0
4.1 Usage e
4.1.1 Loadinga FMU
4.1.2 Simulation o
4.1.3 Setting options
414 Newmethods,
4.2 Example, a bouncing ball
4.3 Numerical improvements
431 Setup
4.3.2 Experiment oL
4.3.3 Conclusion.
Discussion

10
12
15
18

20
20
22

23
23
24
24
25
26
28
31
31
34
36

37

Bibliography

i

39

Introduction

In mathematics, an equation with a variable ¢, an unknown function y(t) and
at least one derivative of this function is known as a differential equation. In
contrast to an algebraic equation where the solution is a vector or scalar
which satisfies the equation, a solution to a differential equation is a function
y(t) that satisfies the equation for all ¢ € D,. From a theoretical point
of view, two questions raise immediately, namely existence and uniqueness
of the solutions. Given the existence of a solution one might consider the
numerical point of view whether there exists a solution, or possible solutions,
on closed form or one has to approximate a solution by numerical integration.

Differential equations often appear in models that try to describe time
dependent processes in science. If the differential equations describe a rela-
tionship between physical objects one is tempted to believe that there exists
at least one solution, but this argument is totally dependent of whether the
equations are a correct description of reality or just an approximation |1,
p.31].

Let us for example study a pendulum (Figure 1), that is a point mass
m fastened in a point P with a mass-free line of length [. The angle from
the equilibrium point is a continuous function of time, y(¢). It is possible to
simplify by assuming that the sum of the potential energy and the kinetic
energy stays fixed, that is ignoring all friction, making this an approximation
of the real world as mentioned above.

At a fixed time-point ¢, the angle of deflection is y(t) so the speed of the
pendulum is [- ¢/(t) and the acceleration is [- y”(t). The force F' making the
pendulum swing is orthogonal to the line and given by sin(y(t)) = ;L—Z. By
Newton’s second law, force = mass - acceleration and letting a = ¢, a > 0,
the differential equation can be rewritten as:

y'(t) + asin(y(t)) = 0 (1)

New variables are introduced and the differential equation rewritten as an

Figure 1: Pendulum

equivalent system of differential equations:

Y1 (t) = (1)
(1) = —asin(y (1)) @)

It is possible to guarantee a unique solution by adding a restriction math-
ematically known as initial conditions, which is interpreted as the initial
position and speed of the pendulum [1, p.5].

The theory of differential equations together with the pendulum is treated
more in Chapter 1 but before considering computing a solution to the prob-
lem, one would like to have a way to collect and represent all information
about this, or a more general system of differential equations. In the system
above, for example, it is preferable to distinguish between the function y; (¢)
that is the result or output, which another system might depend on, and the
function y(¢) which is for internal use only. Among the constants, changing
the parameter a is equal to changing the length of the line an hence the
whole equation-system. While changing the initial conditions gives another
set of solutions to an otherwise fixed system of differential equations. The
Functional Mock-up Interface (FMI) defines a standard for representation of
such systems of equations.

This thesis intends to describe and give an intuitive approach to the FMI
standard, in particular it contains a comparison between FMI 1.0 and the new
FMI 2.0 together with a mathematical description of the Functional Mock-up
Unit (FMU), that is the package with differential equations. Furthermore,
the thesis covers the implementation of PyFMI 2.0, a Python based software
able to import and call the FMU:s allowing the user to connect multiple sys-
tems together to form a larger system of differential equations, connect the

system to a numerical integrator for computations and finally visualization
of the solution. In the end, numerical experiments with PyFMI 2.0 are per-
formed to evaluate possible improvements in the new FMI standard, primary
due to the optionally provided Jacobians.

Reading guidance

Readers familiar with differential equations, in particular systems of ordinary
differential equations are suggested to begin their reading at Chapter 2. If
the reader understands the concept of FMI and posses knowledge of the
differences and similarities of FMU:s for Model Exchange and Co-Simulation,
then Chapter 2 is not necessary for the understanding of Chapter 3 and 4.
Chapter 3 is recommended to look at for a more extensive understanding
of the ideas behind the implementation of PyFMI 2.0, which is covered in
Chapter 4.

Author’s word

My intention behind the thesis was to apply knowledge of mathematics and
numerical analysis to solve a problem raising from an industrial perspective
but still maintaining a theoretical view of the task. With this in mind, the
thesis has been carried out as a collaboration between Lund University and
Modelon AB. The final product, PyFMI 2.0, is based on Python, an easy to
read script language suitable for scientific programming and a favourite of
my own. Curiousness about mathematical modelling as a mixture of math-
ematics and numerical analysis introduced me to the world of simulation,
an inspiring application of theoretical mathematics. My efforts have been to
give an intuitive yet mathematical approach to the topic, regardless of the
reader’s previous knowledge of the subject.

1 Ordinary differential equa-

L]
tions
More general, an equation including variables zy, ..., x,,, an unknown func-
tion y(z1,...,x,) of those variables and one or several derivatives of this

function is known as a differential equation. The equation is an ordinary
differential equation (ODE) if the unknown function y is a real or imaginary-
valued function of one variable, that is: y(¢): R+ R or y(¢): R — C. In this
case, the functions y*)(¢), k € {1,...,n} are all derivatives of y with respect
to the same variable ¢t and the highest order derivative defines the order of
the differential equation. For example the equation

y'(t) + asin(y(t)) =0 (1.1)

defines an ordinary differential equation of order two. A solution to a or-
dinary differential equation is a function y(t) that satisfies the equation on
its domain. In this example, a solution does not exist on closed form but is
represented by a curve in the plane. The equation has infinitely many solu-
tions but by introducing initial conditions y(0) = 0,%'(0) = 1 only a unique
solution exists [1, p.5-7|[2, p.443-447].

After this first example, a general ODE of order two with initial conditions
is defined:

F(t,y(t),y'(t),y"(t) = 0, (y(to), ¥ (to)) € R? (1.2)

and also a general ODE of order n € Z with initial conditions

F(t,y(t),...,y™(t) = 0, y(to) = to (1.3)

where y(t) = (y(t),...,y™V(t)) and t, € R™ [1, p.1-2].

1.1 Different kinds of ODE:s

An ordinary differential equation of order n is said to be linear if it can be
written as a linear combination

n—1
v+ D ey) = o() (14)
k=0
where ¢(t) and fy(t) are continuous functions for £ € {0,...,n — 1} and

said to be non-linear otherwise. In particular, an ordinary linear differential
equation does not include expressions of the form (y(t))? or sin(y(¢)). For
an ordinary linear differential equation, any linear combination of solutions
is a solution as well. For example is our differential equation modelling
the pendulum non-linear since equation (1.1) contains the term sin(y(t)).
If one instead considers a pendulum where y(t) is close to zero, making the
approximation sin(y(t)) & y(t) since sin(y(t)) = y(t)+O(y?(t)) which instead
gives
y"(t) +ay(t) =0 (1.5)

which is a linear ODE [3, p.18].

Depending on the relation between y™(¢) and the other n — 1 derivatives
of y(t) another categorisation of ordinary differential equations can be made.
If the equation can be expressed as

F(t,yt),y'), y"(t),....y" () = y™(t) (1.6)

for a function F, the equation is an explicit ordinary differential equation,
while the more general relation

F(ty(),y/'(6),y"(t), ., y™ () = 0 (1.7)
for a function F' defines an implicit ordinary differential equation. Note that
an implicit ODE can locally be written as an explicit ODE if the implicit
function theorem is applicable [1, p.2].

The last property discussed before proceeding is discontinuity of ordinary
differential equations. First note that the solution to an ODE is a continuous
function y(t). However, an ODE can be represented by different equations
on different intervals, for example consider the ODE defined by

[Fico(t,y(®),...,y™ (), t <0
r= { tho(t,z(t), e ,zgjm)(t)), t>0 (1.8)

with solution y<o(t) and y>0(t) where lim y-0(€) # y>0(0) but still con-
= e—0- -

tinuous on their domains. An ODE of this type, where F' is not continuous

b}

in each component over the interval where the equation is defined, but has
to be represented by different ODE:s on different time-intervals, is called a
discontinuous ordinary differential equation [4, p.196-198].

1.2 System of differential equations

A system of ordinary differential equations is a set of two or more coupled
ordinary differential equations. The order of the system corresponds to the
highest present derivative and sometimes an ODE or system of ODE:s of
higher order can, for example by introduction of new variables, be reduced
to a system of order one. The second order differential equation describing
the pendulum

y"(t) + asin(y(t)) =0 (1.9)

can by introducing yi(t) = y(t), y2(t) = yi(t) be reduced to an equivalent
non-linear system of order one.

vi(t) = ualt)
(1) = —asin(y (1)) (1.10)

With equivalent, it is referred to the identical set of solutions to the single
equation and the system of equations. Similar to single equations, a system
of differential equations is said to be linear if each one of the single equations
is linear. For example, the approximation sin(y) ~ y given earlier, makes the
system linear [2, p.409-415]:

Y1 (t) = (1)
vi(t) = —ay (1) (L11)

A linear system can be written in matrix-vector form and in particular a
system of order one can written as

y = A(t)y + b(¢) (1.12)
where y' = (¢}, ..., 4.), Y = (Y1, - -, Yn), B(t) = (b1 (t),...,b,(t)) and

an(t) a12(t) aln(t)
ap=| @0

an®) o am(d)

is an n x n matrix. Note that the elements in A do not have to be functions of
the independent variable ¢ but they may be constants [4, p.64]. This occurs
in the linear version of the pendulum, namely:

(4OY (0 () (D) um

The theory of existence and uniqueness of solutions to a linear system of
differential equations of first order is rather evolved.! On the other hand,
for non-linear systems the solutions might not be written on closed form
but rather approximated as a curve in the phase-plane. To compute the
approximation, one might consider the linear system that in some sense is
closest to the non-linear one. A method known as linearisation gives an
approximation in an open set close to a given point. For clearness, let our
system only contain two equations and let the given point be (yi,y5). Then
our approximation is given by:

< Y1) _ (fi(y1,92)) ~

Ya f2(y1,92) , -

(i) 8Ly, y3) (n — wi) + B2 (01 5) (v — 13)) (1149
+

Fa(yi u3) (Wi vs) (= i) + G2 (uh) (v2 — 43)

<

SIS
S

D

where the Jacobian of the system evaluated in the fixed point appears in the
last term as a matrix-vector multiplication [4, p.69].

Now recall the linearised system describing the pendulum and recognize
the matrix as the Jacobian evaluated in (0, y5) namely:

< _Oa (1)) = J(0, 1) (1.15)

Even if this technique is not chosen to be used in the numerical computa-
tions, the Jacobian is sometimes needed in the numerical algorithms to find a
solution. The evaluation of Jacobians is an essential part of this thesis since
it is the main subject of the experiments in Chapter 4.

1.3 System of ODE:s with in- and outputs

The last section of this chapter considers a, in some sense, special case of a
system of differential equations. Even if the form looks general, it is special
in the sense that it is an explicit system of first order differential equations

1[4, p.35-40, p.51-54]

with the function u(t) as a component on the right hand side of the equa-
tions, requires initial conditions and introduces output functions. Later in
this thesis, when considering a standardized system of differential equations,
this is the structure to bear in mind. Vector notation is used, where the
underlying dimension is n € Ns, stating the system as [5]:

y =fly,ut)
v =g(y,u,t) (1.16)
y(to) =¥

Here the function u(t), the input function, is known for every ¢ € R and
can be the solution to another system or more generally, a function of the
solution to another system. That is, u(t) = v(¢) where v(¢) is a output
function of another system which can be calculated as soon as that system
is solved for any t € R.

initial values

input output

Figure 1.1: System with in- and outputs

This means that the solution to this system is dependent on the solution
of another system, just like a third system’s input function is our system’s
output function. In this way, it is possible to connect multiple systems of
differential equations together where the different solutions require knowledge
of each other. In applications, u(t) is sometimes known as an input signal
and in our pendulum-example this could correspond to an external force
interfering with the motion of the pendulum, and this force might very well
depend on the behaviour of other physical objects or something controlled
by humans[5].

This thesis covers the implementation of the simulation environment
PyFMI 2.0 which enables the user to import packages of those systems. It is
then of importance that the structure of this system is well-defined so that
no misunderstandings occurs in the communication between PyFMI and the
systems. For this purpose, the newly released FMI 2.0 standard from MOD-
ELISAR is used.

2 Functional Mock-up Interface

The following chapter gives an introduction to the Functional Mock-up In-
terface (FMI) and emphasizes the main arguments and guidelines behind
the foundation of the standard. It includes the structure of the Functional
Mock-up Unit (FMU) and a presentation of the two types of FMU:s, namely
Model Exchange and Co-Simulation. Especially, models for Model Exchange
are explained from a mathematical view, and the main concept of simulation
of the both types is treated in the end.

2.1 FMI

The behaviour of a physical object may sometimes be described by equa-
tions, as the pendulum in previous chapters or a bouncing ball, which makes
it possible to create a model of the object. In particular, the motions of the
objects above are, using the laws of Newton, suitably described by a second-
order ODE which can be reduced to a system of two first order ODE:s. A
modelling environment can export the equations, that describe the object,
as callable code. Then the, for the modeller possibly unknown, end-user can
evaluate the equations and perform a simulation over time of the object.
This raises difficulties for the end user who can not use third-party software
for the simulation since all modelling environments do not export the exe-
cutable code in a mutual standardized way, making each model unnecessary
dependent on the modelling environment. FMI defines, among other things,
a standardized structure of the final callable code that could be exported,
making the simulation environment independent of the source. FMI also de-
fines a set of C-functions and data-types used for communication with the
model and its variables. The callable code is exported as a FMU, that is a
zip-file containing all necessary information about the model.

The FMI-standard and hence the exported FMU:s have been developed to
support a wide range of platforms and simulation environments by avoiding
unnecessary restrictions. The following list includes some of the guidelines

behind the development used to keep FMI robust[6, p.7-10].

e As mentioned above, the process of creating and exporting an FMU is
independent of the simulation environment.

e Support for common modelling languages, that is Modelica, Simulink
and SIMPACK models can be converted to FMU:s.

e The communication between a simulation environment and the im-
ported FMU will not be slowed down by the FMI-functions.

e An FMU will be small to avoid unnecessary restriction of the simulation
environments due to low memory. A part of this is the xml-file that
helps storing static information so only information needed to perform
a simulation needs to be kept in the memory.

e The interface will support numerical solvers used by the simulation en-
vironment, that is via FMI calls provide vectors with states, derivatives
and other information needed by the solver.

2.2 Functional Mock-up Unit

The zip-file called FMU contains several files used by a simulation environ-
ment to create one or more instances of the model. The core is the stan-
dardized library (.dll, .so or equivalent) containing the code generated from
the model-equations which can be accessed by the functions defined in FMI.
Note that the whole structure of the FMU is a part of the FMI-standard. The
xml-file can be read by any xml-parser but the library needs a defined inter-
face for communication. A FMU is within the frames of the FMI-standard,
either a FMU for Model Exchange (ME) or a FMU for Co-simulation (CS).
The former is characterized by the need of a numerical integrator since it is
a system of ODE:s while the latter type, the CS, is pre-packed with its own
solver so the underlying differential equations may be hidden for the simu-
lation environment. Both cases are treated more rigorously in the following
sections of this chapter. Moreover, all or a subset of the model-variables and
their properties are stored in a standardized way in the xml-file as a part
of the FMU and accessed by any xml-parser and interpreted by the simu-
lation environment. This makes the simulation more memory efficient since
all variable attributes and static information are not stored in the memory
but retrieved only if needed. Other model information and capabilities of
the FMU are also specified in the xml-file. The FMI standard requires at

10

least one library in the FMU for creating an instance of the model on dif-
ferent types of platforms. The FMU also allows storage of tables and other
libraries used by the model, documentation and a bitmap as model-icon|6,

p.3].

Simulation

Library fmi-functions .
environment

FMU

Figure 2.1: Interacting with FMU:s

By importing and unpacking FMU:s a simulation environment can cre-
ate one or more instances of a model and simulate it over an arbitrary time
interval. Note that performing a simulation of a model is equivalent to, in
the case of ME, solving the system of ODE:s and for CS calling the built-in
solver. The FMI-standard allows a way of connecting models together, mak-
ing it possible to simulate large scale time-dependent systems using small
independent components/systems of ODE:s with inputs and outputs that
can be simulated/solved individually. This feature is a key-stone of the in-
terface since it does not only allow the parts to simulated individually but
it also allows models to be created independent of each other and then put
together for simulation. An extended example would be to fasten another
pendulum to the first pendulum (Figure 2.2) and optionally let the second
pendulum has an input signal that affects the motion of that pendulum. An-
other component could instead be chosen to couple to the pendulum to make
it more convenient that the different components can be created by different
independent vendors. The systems of equations could be coupled together
as in Figure 2.3.

11

Figure 2.2: Double pendulum

input | Pendulum | iBPUt/output | pendulum angle
2 1

Figure 2.3: Connections between the pendulums

2.3 Common representation

The simulation of a ME-model differs a lot from a CS-model since the for-
mer needs an external numerical integrator for simulation, but from the
point where the FMU is imported by a simulation environment, for example
PyFMI, to the point where the simulation begins, the two kinds of models
have large parts in common. Again recall the pendulum from the introduc-
tion, where the constant a = [/g is the quotient between the length of the
string and the gravity. If the user has a need to simulate the pendulum with
certain values on [and ¢, those must be specified at some point, otherwise
the system will use a set of default values and if other variables depend on
a, this value has to be calculated before it is possible to calculate the value
of those variables. Also, the user might want to change the length of the
string or the gravity during the simulation and the FMU needs defined rules
of whenever this is allowed.

In a FMU, each model-variable is a data-struct called fmiScalarVariable
defined by the FMI 2.0. In the pendulum, the model-variables could for
example be t,y1, 1,1, g. FmiScalarVariables mainly contain attributes with
information and definitions of the variable and a type-definition. In FMI 2.0,
the struct fmiSimpleType has five type-definitions, real, integer, Boolean,

12

string and enumeration and each model-variable has to be defined as one of
these[6, p.35-37]. Other attributes are, among others:

e Name: a name of the model-variable.
e Value reference: an integer used as a handle to refer to the variable.
e (Causality: defines the relation to other variables.
— Parameter: the value is independent of other variables and con-

stant during simulation.

— Input: the value can be provided (for example as an output) from
another model.

— Output: the variable value can be used by another model.

— Local: calculated from other variables, not used by another model.
e Variability: defines when the variable is allowed to change its value.

— Constant: the value never changes.
— Fixed: fixed after the model has been initialized.

— Tunable: can only change its value at events, in particular tunable
parameters are allowed.

— Discrete: can only change its value at events.
— Continuous: can change its value at any time.
e Initial: Defines how the initial value is calculated before the simulation
starts.
— Exact: initialized with a predefined start value.

— Approx: initial value is the result of an iteration starting with the
predefined start value.

— Calculated: calculated from other variables.

Note that the attributes causality, variability and initial are not independent
of each other. For example a variable can not have variability constant and
causality input, for an exact table of allowed combinations, see the FMI docu-
mentation. Also the five type-definitions have their own attributes which the
model-variables inherits, for example their values [6, p.39-43]. The gravity
variable g in the pendulum model could for example be defined as following;:

e Data-type: real

13

— Start: -9.81
— Min: -10
— Max: 0

Name: ”Gravity”

Value reference: 2

Causality: parameter

Variability: fixed

Initial: exact

Each FMU also needs a defined model-structure, basically consisting of
a set of inputs, outputs and derivatives. The variables listed under input-
s/outputs are simply those whose causality is equal to input/output. The
derivatives of the continuous states are an ordered set, in the case of the pen-
dulum this is simply (¥, v5). Note that the ordered set is of importance so the
simulation environment, PyFMI, knows the relation between the right and
left hand side of the system. Also note that derivatives and model-variables
do not have to be exposed to the user, only accessible via FMI-functions, to
solve the system. This can be used by model-manufacturers who can export
a FMU without revealing knowledge of the model-equations [6, p.47-50].

In summary, before beginning the simulation, a simulation environment
like PyFMI has to perform three main steps. The first is unpacking the
imported FMU, which is a zip-file, read the xml, other included resources
and connect to the library (.dll on Windows). Then the environment creates
a unique instance of the model. This is necessary since some FMU have
the capability to be instantiated several times allowing the environment to
simulate multiple objects connected together using the same FMU. When
instantiated, model-variables with initial conditions equal to ”exact” or ”ap-
prox” can be set. Finally, the model is initialized and the initial values of
the model-variables are calculated, this is the beginning of the simulation.

tmport set values simulate

Instantiated Initialized

Figure 2.4: Simulator stages

14

2.4 FMI for Model Exchange

Simulating an ME-model is equivalent to solving a system of differential
equations on state space form with events. Recall the definition from Chapter
1 and consider the equations again, in a slightly different way to highlight
the different types of model-variables.

x/ = f(x,u,m, ?)
v = g(x,u,m,1t)

2.1
X(to) = X ()
Z = z(x,u,m,t)

x(t) is a vector of the continuous state and is simply the vector y(¢) from
Chapter 1 and m(¢) is a vector of time-discrete variables which are constant
between events. Events are time-points ¢, %1, ...,%,,, such that ¢t,,; > t;,
where discontinuities in the solutions occur, making this system piecewise
continuous. On each interval t; < ¢ < ;41 the vector x(t) is continuous in
t and continuous from the right in the endpoint, x(¢;) = lim._,o+x(t; + €)
and m(¢;) = m(¢). m(¢) is constant between events and x(t) is continuous
between events. The vector v is the output of the model that can be used in
another model. The vector z(t) is a vector of so called event indicators, func-
tions of time and the model-variables, that are continuous between events.
If one of the event indicators z;(t) changes value from z;(t) > 0 to 0 > z;(t)
or the other way around, a state event is triggered. The numerical integrator
needs to check this vector after each integration step, and if needed, step
back in time to find the exact time of the event. Note that with exact it is
referred to within a given tolerance. In a FMU there are three different kind
of events [6, p.56-58]:

e Time-event: events that occur at fixed time instants defined before the
simulation begins. For example this could be an instant increase in
the speed of the pendulum at a given time during the simulation. No
indicator is needed for those since the environment knows when they
occur, at for example t = 3.0.

e State-event: events that occur at time instants that are unknown when
the simulation begins. The vector z(t) indicates when a state-event
occurs. For example, consider the pendulum that bumps against a
block fixed at an angle of 45 degrees from the equilibrium position
(Figure 2.5). An event indicator could be z(t) = 45 + y;(t) that
indicates that if the integrator computes that the angle y,(t) < —45,
a bounce have occurred and a state event is triggered. Note that the

15

variable describing the speed y»(t) is discontinuous at this point since
it changes to —y»(t) at the bounce.

Figure 2.5: Pendulum with bounce

e Step-event: a numerical integrator has to inform the FMU about each
completed integrator step. If the continuous states are not numerically
suitable, the FMU triggers a step-event to stop the integration and
change the states.

In summary, the events are internally handled by the FMU but the in-
tegrator has to be observant on indications from the FMU that an event
has occurred. A simulation environment like PyFMI has to retrieve this in-
formation from the FMU by calling the FMI-functions and pass it to the
integrator whenever demanded by the integrator. To perform a simulation
from start-time tgq,¢ to stop-time ty,,, the following scheme (Figure 2.6) is
followed [6, p.61-66]:

e Instantiated: a model instance is created.

e Continuous Evaluation: the FMU enters this state as soon as initial-
ized and the solution at time ¢ = tg,,+ is calculated. This is also the
state of the FMU when the integrator is performing an integrator step.
Here the integrator can set and get continuous states, retrieve deriva-
tives, directional derivatives, event indicators and other information
needed to perform an integrator step. If no event was detected, the
simulation environment calls the function fmiCompletedIntegratorStep
which marks the end of the current integrator step. Then values can

16

be stored and another integrator step can be taken. Except the state,
only real continuous variables with causality input can be set in this
state. Recall that discrete variables are constant between events and
in particular, Continuous Evaluation is the state between events. If a
state event was detected during the integrator step, an iteration over
time is performed in this state until the time for the event has been
determined, up to a given tolerance. Note that if an event occurred, the
FMU changes state to Set Inputs before proceeding to Event Pending,
otherwise it stays in the current state.

Set Inputs: when an event occurs, the FMU changes state from Contin-
uous Evaluation to set inputs. At this state, values of discrete variables
with causality input and values of tunable variables are retrieved and
set before proceeding to the next state, Event Pending. Those values
have not been renewed since the FMU was in this state at the last event
and are therefore not accurate any more. Recall that the variable val-
ues at discontinuities are continuous from the right but not generally
from the left, so they need to be updated before proceeding. Those
newly set values will be stored as soon Event Pending has finished, in
other words, the integration step is complete and the FMU is back at
Continuous Evaluation.

Event Pending: The events are internally handled by the FMU at this
stage. The simulation environment keeps calling the function fmiEven-
tUpdate until the system is updated. Then the function fmiComplet-
edEventIteration is called and the state changes back to Continuous
Evaluation and the integrator step is complete, which means that values
will be stored and the simulation can continue in the state Continuous
Evaluation.

Terminated: The simulation has either been aborted or reached the
final time ¢ = %4, for which the solution is retrieved before the model
instance is disposed of. Note that a time event occurs at ¢ = tg,,
which means that the stop time is detected and handled as an event as
above.

17

i Event
Initialized Continuos Set Inputs)
Pending

Evaluation Terminated

Figure 2.6: States

2.5 FMI for Co-Simulation

To simulate a FMU for Co-simulation, no external numerical integrator is
needed, but instead the FMU uses its individual built-in integrator so the
interface suits well for coupling two or more FMU:s together for simulation of
larger dynamic systems. For this purpose, a master algorithm is needed which
handles the communication between the involved models, in other words
retrieving outputs and setting inputs at certain time instants. Since FMI do
not define this algorithm, no such algorithm is implemented in PyFMI, and
therefore not given much focus in this thesis. Instead focus will be given to
the structure of a CS-model and the simulation process of a single model |6,
p.75-76].

Since each Co-Simulation FMU uses its individual solver that is hidden
from the user in the library in the FMU, those models do not need such a
strict predefined structure of the involved equations. As long as the FMU
returns correctly on the calls from the FMI-functions, the manufacturer can
hide knowledge of the solver inside the library in the FMU. Before starting the
simulation of a model, as with a ME-model, the simulation environment needs
to unpack the zip-file, read the xml-file and further data and also connect
to the library. Then an instance of the model is created and variables with
initial equal to ”exact” or ”approx” can be set. Finally the slave (the built-in
solver) is instantiated and initial values are computed, which marks the start
of the simulation. To perform a simulation, the solver computes the solution
on subintervals [t;, ;1] of non-zero length of the whole simulation interval
[Estarts tstop], Where tg = tare and ty = tg0p. The step size is then by definition
h; =t;x1 —t; where ¢ = 0,..., N — 1. If the solver can handle variable step
size, this is announced by the capability flags in the FMU. Similar to a ME-
model, a simulation environment follows this scheme (Figure 2.7) to perform
a simulation of a CS-model [6, p.77-83]:

1. Instantiate Slave: a model instance (including the solver) is created.

2. Initialize: the model is initialized and the solution at time ¢ = ¢4+ can
be retrieved. When initializing, #,, is optionally defined. Defining the

18

simulation interval when initializing can be used to check if the model
is valid on that interval. Also output is retrieved to be used by other
models if any.

. Do step: the built-in solver performs integration over the interval
[ti,tit1]. At time ¢ = t;;; the input/output variable values of the
models are set/get and the solution at this time instant is retrieved. If
no error occurs, this process is iterated until ¢;,1 = ts0p-

. Terminate Slave: the simulation has reached its end. The solution at
this point is retrieved and the model is disposed of with this call.

output tiy1 =1t + i
Instantiate e Terminate
Initialize Do Step
Slave Slave
input

Figure 2.7: FMI-function calls

19

3 FMI 2.0 compared to 1.0

The beta FMI 2.0 version was released in august 2012 and includes both
differences and new features compared to the existing version, FMI 1.0. The
CS-interface and ME-interface have been merged, which implies that a FMU
can contain both a CS-model and a ME-model and due to this, the fmi-
functions for FMI 2.0 are not backward compatible with FMI 1.0. Many
of the new features are optional and each FMU is equipped with capability
flags, providing the simulation environment with the limits of the model.

3.1 Differences

The following are the main improvements in FMI 2.0 compared to FMI 1.0
[6, p.96-100] [7][8].

e The variability "tunable” is added for parameters. A parameter with
variability tunable can, in opposite to a parameter with variability
fixed, change its value during a simulation. A tunable input variable
is a tunable parameter from another model. A tunable parameter can
change its value only at events. If a tunable parameter or tunable in-
put changes its value at an event, tunable output and tunable local
variables must be recomputed. This is treated as a start of a new sim-
ulation where the initial values are the current values, including the
newly computed parameters.

e For better event handling, FMI 2.0 for ME has been equipped with
a new function fmiEventIterationConverged, that has to be called af-
ter the FMU has completed the update after a triggered event. This
function-call marks the transition from the state Event Update to Con-
tinuous Evaluation.

e A variable can optionally have a defined unit, in which the variable
value is set and retrieved in with the fmi-functions. In FMI 2.0 seven SI
units, "kg”, "m”, 7s”, 7A”, "K”, "mol” and "cd” are included together

20

with the unit "rad” and the unit of a variable value has to be a function
of those. For example the gravity in the pendulum would be m/s%.
The standardized unit definition makes it easier to convert an output
variable value to an input variable value between different models if
the units mismatch. Those predefined attributes differs from FMI 1.0
where the unit was displayed as a string, but had a loss of naming

convention, making it difficult for a simulation environment to connect
FMU:s together.

In FMI 2.0 the input, output and state variables are ordered sets. This
information can be used by the simulation environment for linearizing
(recall Chapter 1). Optionally the derivatives dependency on the states
can be defined which can be used to efficiently provide the Jacobian as
a sparse matrix.

The set of capability flags has been extended to provide information
about the new features. The new flags for ME are:

— completedIntegratorStepNotNeeded

— canBelnstantiatedOnlyOncePerProcess
— canNotUseMemoryManagementFunctions
— canGetAndSetFMUstate

— canSerializeFMUstate

— providesDirectionalDerivatives

— completedEventIterationIsProvided
The new flags for CS are:

— needsExecutionTool
— canGetAndSetFMUstate
— canSerializeFM Ustate

while
— canRejectSteps
has been removed.

In FMI 1.0, variables of the same type with equal value reference and
equal or negated value was defined as aliases and anti-aliases. In FMI
2.0, variables are not explicitly defined to be aliases, but if they are

21

of the same type and have identical value references, they must have
equal values. Note that they might still have different attributes.

e In FMI 1.0, the interface was equipped with logging that logged the
function calls from the simulation environment to the FMU. In FMI 2.0
this logging utility has defined logging categories, giving the simulation
environment the possibility to log all or only a subset of the logging
categories. The creator of the FMU can define own categories but the
standardized are:

— logEvents
— logSingularLinearSystems
— logNonlinearSystems

— logDynamicStateSelection

3.2 New features

The following are the main new features in FMI 2.0 compared to FMI 1.0.
FMU:s use capability flags to signal the ability to handle the new features
[6, p.96-100].

e Jacobians: The ability to provide directional derivatives implies the
ability to provide Jacobians by using proper seed vectors to retrieve the
partial derivatives from the directional derivative. The Jacobian can
be used by the numerical integrator or when coupling FMU:s together.
FMI 2.0 provides the option to define the outputs and derivatives de-
pendencies on the states together with respectively type of dependency,
where the dependencies "non-linear”, ”parameter” and ”discrete” are
available. This information can be used by the FMU for faster com-
putation of the Jacobian. In the same way, variables can define their
dependency on the input variables.

e FMU-states: FMU:s can optionally save the complete state includ-
ing all information needed to restarting the simulation at the current
state later on. This could for example be done after each completed
integrator step over all simulated FMU:s in case of failures in the next
step. If indicated by the capability flags, the FMU can serialize and
deserialize the FMU-state for storage on file.

22

4 PyFMI 2.0

One of the main subjects of this thesis is the implementation of PyFMI 2.0
which is an extension to the already existing PyFMI software. PyFMI is a
Python based simulation environment, with support for both ME FMU:s and
CS FMU:s, where the user can load FMU:s for evaluation and integration,
in other words simulation. Through a Python-shell, PyFMI aims to provide
a user-friendly approach to the FMI-functionality via PyFMI provided func-
tions. The subject of PyFMI 2.0 is to extend this functionality to include
support for ME and CS FMU:s of version 2.0 according to the new FMI
2.0. PyFMI is a free to use open-source software which can be downloaded
together with all requirements [9] or as a part of JModelica.org [10]. PyFMI
is using the following packages to connect and communicate with the FMU
and for numerical integration:

e FMI Library, FMIL: is a C-language application from Modelon AB
that provides a complete interface to the FMI-standard making the
interaction with FMU:s via fmi-function-calls easier. It also handles
unzipping of FMU:s, access to the model-equations by connecting the
DLL-file and parsing of the xml-file to retrieve model information.

e Assimulo: the numerical integrator used by PyFMI to compute the
solution to FMU:s for ME. Assimulo is a package for solving explicit
and implicit ODE:s. PyFMI contains an adapted problem class for the
simulation of a FMU for ME [11].

4.1 Usage

The following section covers the basic usage of PyFMI 2.0, from loading a
FMU to simulation and settings of available options. It is supposed that
PyFMI 2.0 has been imported to the current Python session before the com-
mands are run. Note that this is not a documentation nor a complete descrip-
tion of the functionality of PyFMI but rather an overview of the intended

23

way to make use of PyFMI. Default arguments in function-calls might not
be displayed and explained unless required for the understanding of what is
returned.

4.1.1 Loading a FMU

The following line of code can be used to load a FMU in PyFMI 2.0. The
load-function finds out the kind and version of the FMU and creates an
instance accordingly, in this case, model.

>> model = load_fmu(fmu = ’MyModel.fmu’, path = ’c:/
FMUdirectory’)

The load-function takes a total of five input arguments where only the first
lacks a default value:

e fmu: File name of the FMU to be loaded.
e path: Full path to the directory of the FMU.
e cnable_logging: Boolean that enables/disables logging of errors.

e kind: Since a FMU of version 2.0 can contain both a ME and CS model,
one has to be chosen in those cases.

e log_file_name: Defines a customized file-name for the log-file.

Note that after this function-call, the model has been instantiated but
not yet initialized.

4.1.2 Simulation

Once a model has been created, a simulation can be performed. In the most
simple case, only the following command is needed to perform a default
simulation between 44+ = 0.0 and ¢4,, = 1.0, where object "res” becomes
an instance of the result.

>> res = model.simulate ()

This mutual command that works for both CS and ME performs a simu-
lation with default values. In total, the simulate-function takes five input
arguments.

e start_time: start time of the simulation.

e final time: stop time of the simulation.

24

e input: input signal for the simulation.

e algorithm: your own simulate/solver-algorithm compatible with PyFMI
and Assimulo can be used instead.

e options: options for the solver (see next subsection).

While using PyFMI 2.0, adding a question mark after the method provides
a full list of available input arguments and default values. That is:

>> model.simulate?

Furthermore, the result is retrieved as a vector including each simulation-step
for the variable called ”variable name” by this command:

>> result_variable = res[’variable_name’]

The whole list of model-variables is retrieved by:

>> res.keys ()

while the solution at start time and end time is retrieved by:

>> res.initial(’variable_name’)
>> res.final(’variable_name’)

Moreover, the plot GUI can visualize the solution to selected variables by
reading this data from the result file.

4.1.3 Setting options

This chapter presents how options for the model and simulation can be set,
in other words overwrite the default values, before the actual simulation is
carried out. Note that simulation over an arbitrary interval is possible by
only two commands as shown above. Also note that previous subsections
made no difference between ME and CS models but when interacting with
models, the options available is dependent on the FMU-kind. Differences in
this subsection will be evident from the context.

For both ME and CS models, the first of the following commands returns
all model-variables in a dictionary using variable names as keys and the values
are objects containing all necessary variable attributes. For example, the
middle and the last command returns the value reference and the variability
of variable called ’variable_name’.
>> all_variables = model.get_model_variables ()
>> value_reference = all_variables[’variable_name’].

value_reference
>> variability = all_variables[’variable_name’].variability

25

Before initialization, the variables with causality equal 'parameter’ can be
set. In the following commands, the current value is evaluated and then the
value reference used to set a new value for the variable.

>> model.get_real (value_reference)
>> model.set_real(value_reference, new_value)

Usually, initialization is done by the simulation function but this can be done
manually to be able to set and get variables after the initialization and before
simulation. The initialization of a ME-model is done by:

>> model.initialize(tolControlled = True, relativeTolerance =
None)

Where the former argument enables the use of relative tolerances which is
specified by the latter, in this case the default relative tolerance. The initial-
ization of a CS-model is done by:

>> model.initialize(tStart = 0.0, tStop = 2.0,
StopTimeDefined = True, relTol = None)

Since the CS-model provides a built-in integrator, the simulation interval
must be defined. Use:

>> opts = model.simulate_options ()
to retrieve an object with options for the simulator. The options available

obviously differs between the two FMU-kinds due to different solvers but
among others, the following options are mutual, and can be set:

>> opts[’initialize’] = False
>> opts[’ncp’] = 200
>> opts[’result_file_name’] = ’a_desired_file_name.txt’

Where 'ncp’ defines the number of communication points between start and
stop time. Since initialization was done manually, the options are used to
prevent the simulator from reinitialization and simulates as previous with.

>> res = model.simulate(options = opts)

4.1.4 New methods

This section presents the main set of new methods that do not have an
analogue in PyFMI 1.0 but is available in PyFMI 2.0 for interacting with
FMU:s of version 2.0. The following method returns the number of available
logging categories together with a list of the categories.

>> n_categories, categories_list = model.get_categories ()

26

The next four commands all return ordered dictionaries, using variable names
as keys and an object with corresponding variable information as values. The
first returns the derivatives, the left hand side of the system, as variables.
The second returns the continuous states and the third and fourth return all
variables with causality equal to input and output respectively.

>> derivatives_list = model.get_derivatives_list ()

>> states_list = model.get_states_list ()

>> input_list = model.get_input_list ()
>> output_list = model.get_output_list ()

The two latter are intended to ease the coupling of FMU:s while the two
former are needed when evaluating the directional derivatives as following:

>> dir_der = model.get_directional_derivatives(var_ref =
states_ref, func_ref = derivatives_ref, v = 1lin)

Where states_ref is a list with value references available in states_list above
and analogue for derivatives_ref. Argument lin is a list specifying the linear
combination of partial derivatives which sum up to the directional derivative.

The following methods are not currently working, see the Chapter 5 for
a discussion, but are intended to be used as following when implemented.
To log selected categories, use:

>> n_categories, categories_list = model.get_categories ()

>> log_cat = categories_list[0:2] + categories_list[3]

>> model.set_debug_logging(logging_on = True, categories =
log_cat)

Finally, it will be possible to save the complete state of a FMU, in other
words the variable values and additional data needed to restart the simulation
later from the current state. The state can also be serialized for storage as
following;:

>> current_state = model.get_fmu_state ()

>> serialized_state = model.serialize_fmu_state(current_state
)

>> model.free_fmu_state(current_state)

and later:

>> current_state = model.deserialize_fmu_state(

serialized_state)
>> model.set_fmu_state(current_state)
>> model.free_fmu_state(current_state)

27

4.2 Example, a bouncing ball

This section covers an actual simulation of a bouncing ball by primary using
the commands explained in previous subsections. The example aims to give
an enlarged understanding of the usage and the possibilities together with a
concrete visualized result. To clarify, finding the solution to the system of
equations gives the position and speed of the bouncing ball as a function of
time. The model contains five real continuous variables listed below:

e HEIGHT
e HEIGHT_SPEED
HEIGHT_ACC

GRAVITY

BOUNCE_COF

Loading of the bouncing ball of type ME:

>> fmu = ’bouncingBall2_me’
>> path = ’C:/myFMUs”’
>> model = load_fmu(fmu, path)

Perform a simulation during two seconds:

>> opts = model.simulate_options ()
>> opts[’ncp’] = 200
>> result = model.simulate(final_time = 2.0, options=opts)

Before performing another simulation resetting is required.

>> model.reset ()

The model is now ready for initialization and another simulation-run. One
can check the variables "HEIGHT’ and "HEIGHT _SPEED’ and replace the
values with new ones. This can be done since the values are exact and not
calculated from other variables. The comments are the outputs returned by
the functions. In the end, an instance of the options class is retrieved and
set to prevent re-initialization.

>> model.initialize ()

>> variables = model.get_model_variables ()

>> variables [’HEIGHT’] .value_reference #0
>> variables [’HEIGHT_SPEED’] .value_reference #1
>> model.get_real (0) #1.0
>> model.get_real (1) #4.0

28

>> model.set_real (0, 3.0)

>> model.set_real(l, -1.0)

>> opts = model.simulation_options ()
>> opts[’initialize’] = False

Note that this implies that the ball begins at a height of two meters and is
thrown downwards to the ground. The simulation is performed, the connec-
tion terminated and the result visualized analogue to the previous simulation.

>> model.simulate(final_time = 2.0, options = opts)
>> model.terminate ()

The following results (Figure 4.1) are retrieved from the plot-GUI, show-
ing the solutions to the variables '"HEIGHT” and "HEIGHT _SPEED’ in the

previous simulations:

29

2.0

15

1.0

0.5

— HEIGHT

05 10 s 20
Time [s]

— HEIGHT_SPEED| |

0.5 1.0 15 2.0
Time [s]

— HEIGHT ||

0.5 1.0 15
Time [s]

N
o

— HEIGHT_SPEED]

05 10 s 20
Time [s]

Figure 4.1: Bouncing balls

30

4.3 Numerical improvements

The following section evaluates possible improvements in the simulation-run
due to the new FMI 2.0 standard. PyFMI 2.0 is used to import equivalent
models of version 1.0 and 2.0 and running separate simulations. A rigorous
description is given in the next subsection, thereafter the script used for the
experiment is presented together with the result and a conclusion.

4.3.1 Set up

The aim of the experiment is to evaluate the difference in simulation time and
function-calls done by Assimulo. Especially the ability to provide Jacobian
matrices might result in fewer function-calls since Assimulo does not need
to numerically approximate the partial derivatives in the Jacobian. In all
simulations ME-models are used and those of version 2.0 have the ability
to provide directional derivatives and hence Jacobians. Furthermore, the
experiment consists of two pairs of FMU:s, where each pair consists of two
FMU:s containing the same model, but differ in the version since one is of
version 1.0 and the other of version 2.0. All FMU:s are generated by Dymola
2014.

The first model will be denoted as Coupled Clutches and describes ac-
cording to the picture (Figure 4.2), three coupled clutches with masses in
between. In the end-point, a torque rotates the first inertia (mass), J1, with
a torque according to an input signal. The torque is transferred to the next
inertia, J2, via the first clutch whose disks rotate according to the friction
between them. The second and third clutch is not invoked until time-events
for this purpose are triggered at time 0.4 sec and 0.9 sec respectively. Each
clutch can either be forward sliding, backward sliding or locked (both disks
rotate as a single one).

e Simulation time: 1.5 sec
e Number of continuous states: 8

e Number of event indicators: 54

31

zHbay=zHbal
Zus
ZL=awi| pejs
<ﬁ
|dajs
gl=swi pey
zdals

sint

torque a1 J2 J3 J
L L L L
>—>/\‘o—c mO——amms mO——ans mO——@m p—— e mO——amms mO——ans -0
w P
]

freqHz=5

fixced

Figure 4.2: Coupled Clutches

The second model will be denoted as Robot and is a bigger model in the
sense of more continuous states, thus a greater number of equations in the
system. The robot uses motors, gears and breaks to move from the user
defined start position to a given end position as fast as possible.

e Simulation time: 1.5 sec
e Number of continuous states: 36

e Number of event indicators: 98

32

controlBus

pathPlanning

SN

mechanics

G axes
axizh
axizCartralBuss F

axizs
axizControlBuss
wigControlBusd
axizControlBus3
axizControlBus2
axizControlBust

Figure 4.3: Robot

33

4.3.2 Experiment

The following Python scripts are used to import the FMU:s in PyFMI 2.0 and
perform the simulation as described above. Note that CoupledClutchesl and
Robot1 are both instances of models of version 1.0 while CoupledCluches2
and Robot2 are instances of models of version 2.0.

Script for evaluating the difference between a FMU of version
1.0 and 2.0.

nmnn

from pyfmi.fmi import load_fmu

path_to_me_1 ’C:/myFMUs/ME1.0°

path_to_me_2 = ’C:/myFMUs/ME2.0°

fmul="
Modelica_Mechanics_Rotational_Examples_CoupledClutches_ME1
.fmu’

fmu2="
Modelica_Mechanics_Rotational_Examples_CoupledClutches_ME2
.fmu’

CoupledClutchesl = load_fmu(fmul, path_to_me_1)

CoupledClutches2

load_fmu(fmu2, path_to_me_2)

CoupledClutchesl.simulate(final_time=1.5)
CoupledClutches2.simulate(final_time=1.5)

nnn

Script for evaluating the difference between a FMU of version
1.0 and 2.0.

mnnn

from pyfmi.fmi import load_fmu

path_to_me_1 = ’C:/myFMUs/ME1.0°
path_to_me_2 ’C:/myFMUs/ME2.0°

fmul=’Modelica_Mechanics_MultiBody_Examples_Systems_’+’
RobotR3_fullRobot_ME1l.fmu’

fmu2=’Modelica_Mechanics_MultiBody_Examples_Systems_’+"’
RobotR3_fullRobot_ME2.fmu’

Robotl = load_fmu(fmul, path_to_me_1)
Robot?2 load_fmu(fmu2, path_to_me_2)

Robotl.simulate(final_time=1.5)
Robot2.simulate(final_time=1.5)

34

The following are the simulation results given as outputs from Assimulo.
Note that the Jacobians are provided by the ME FMU of version 2.0 which
reduces the number of function-evaluations within the Jacobian-evaluation
to zero.

Model Coupled Clutches | Coupled Clutches
Version 1.0 2.0
Simulation interval 0.0 - 1.5 sec 0.0 - 1.5 sec
E. simulation time (sec) | 0.19824363493 0.258893650795
Number of:

Steps 278 276

Function Evaluations 436 436

Jacobian Evaluations 12 12

F-Eval During J-Eval 96 0

Root Evaluations 365 363

Error Test Failures 21 22

Newton Iterations 388 388

Newton Conv. Failures 0 0
State-Events 9 9

Solver options:

Solver CVode CVode
Linear Multistep method | BDF BDF
Nonlinear Solver Newton Newton
Maxord 5)

Tolerances (absolute) 0.000001 (all) 0.000001 (all)
Tolerances (relative) 0.0001 0.0001

Figure 4.4: Result from Coupled Clutches

35

Model Robot Robot
Version 1.0 2.0
Simulation interval 0.0 - 1.5 sec 0.0 - 1.5 sec
E. simulation time (sec) | 4.11637415297 | 5.8523514988
Number of:

Steps 1876 1558
Function Evaluations 2284 1981
Jacobian Evaluations 58 54

F-Eval During J-Eval 2088 0

Root Evaluations 2178 1886

Error Test Failures 24 30

Newton Iterations 2136 1833
Newton Conv. Failures 0 0
State-Events 33 33

Solver options:

Solver CVode CVode
Linear Multistep method | BDF BDF
Nonlinear Solver Newton Newton
Maxord 5 5)
Tolerances (absolute) 0.000001 (all) | 0.000001 (all)
Tolerances (relative) 0.0001 0.0001

Figure 4.5: Result from Robot

4.3.3 Conclusion

The both models of version 2.0 have a tendency to fewer function evalua-
tions, root evaluations and Newton iterations which most likely is due to
the fewer steps taken. Obviously they have no function evaluations during
Jacobian evaluations since the Jacobian is provided by the FMU. Neverthe-
less, the models of version 2.0 have significantly longer elapsed simulation
time, approximately 30 percent longer for Coupled Clutches and approxi-
mately 42 percent longer for the Robot. In PyFMI 2.0, the Jacobian is
currently retrieved from the FMU as a loop over the colons in the Jacobian
with calculated directional derivatives as elements, which require significantly
more time than the algorithm used in Assimulo. The final conclusion is that
PyFMI 2.0 needs, if possible, a more efficient way to evaluate the Jacobians,
otherwise the time-loss becomes indefensible large.

36

5 Discussion

In summary, the concept of simulation has been studied using the standard-
ized FMI 2.0 interface. In particular a comparison between FMI 2.0 and FMI
1.0 was done and the new features kept in mind when implemented PyFMI
2.0. Especially the thesis puts focus on the difference in simulation efficiency
using the provided directional derivatives as a Jacobian instead of letting the
numerical integrator itself carry out the computations. Less focus was put on
the difference in elapsed simulation time between FMU:s for CS of version
1.0 versus 2.0. The main reason is the inability to change the settings of
the built-in integrator, in particular the user is not able to enable or disable
the use of directional derivatives. Despite the lack of obvious possible im-
provements in the interface it would never the less be interesting to compare
simulation time of those two. No comparison is made between a ME-model
of version 1.0 and a ME-model of version 2.0 without provided Jacobians
since, as in the case of CS, no other improvements are assumed to reduce
the simulation time significantly enough to be noticed. Bearing in mind the
significantly slower simulation run for the new version it is recommended to
make a further study of the iteration where the Jacobian is retrieved colon
by colon as vectors with partial derivatives as well as the need of a complete
Jacobian. The last argument is motivated by the few function evaluations
made during the Jacobian evaluations in Assimulo. Another suggestion is
to use the dependency information to create sparse matrices to get an ad-
vantage compared to the current calculations, which is not satisfactory fast.
Until the simulation speed has been reduced, it is desirable to let the use of
provided Jacobians be optionally.

More enhancements could be done by solving the problem with the cur-
rently yet not implemented methods explained in the subsection ” New meth-
ods” in Chapter 4. Those methods, together with the methods for setting
and getting the value of string-variables are not implemented correctly due
to the same problem, namely the passing of pointers as input arguments to
functions in Cython, in which PyFMI is written. This is required by the
FMI-wrapping FMIL-functions for returning and passing strings. In par-

37

ticular there is a problem with passing lists of pointers, as in the case of
setting categories to log. Solving this problem brings light to a set of wanted
methods.

This last section presents a brief review of my own propositions on future
enhancements of PyFMI 2.0. They are not dependent on a certain version
of FMI but only features that could possible increase the number of users by
being more user-friendly.

e Base units: FMI 2.0 defines base units for simplified coupling of
FMU:s which is a huge founding-stone of the definition of the inter-
face. Currently PyFMI 2.0 do not provide an easy to use functionality
to retrieve and convert base units, which also requires factors and off-
sets.

e Master Algorithm: As mentioned above, coupling FMU:s is an es-
sential part of the FMI concept and currently an user of PyFMI has to
do this coupling by their own scripts. In other words, PyFMI 2.0 do
not include a master algorithm for coupling FMU:s together.

e Graphical User Interface, GUI: A GUI would make the interaction
with FMU:s more convenient. If a master algorithm was implemented,
the GUI could also visualize the coupling between FMU:s, in other
words make the handling of input and output signals visible for the
user.

38

Bibliography

1]

K. G. Andersson and L.-C. Béiers, Ordinara differentialekvationer. Stu-
dentlitteratur, 1992.

G. F. Simmons and S. G. Krantz, Differentialekvationer med historik.
Liber, 2011.

M. M. Tiller, Modelica. Kluwer Academic Publishers, 2001.

E. Hairer, S. P. Ngrsett, and G. Wanner, Solving Ordinary Differential
Equations I. Springer, 2000.

MIT-OpenCourseWare, “Terminology: Systems and signals,” Fall 2011.

“Functional mock-up interface for model exchange and co-simulation,”
August 2012.

“Functional mock-up interface for model exchange,” January 2010.
“Functional mock-up interface for co-simulation,” October 2010.
“https://pypi.python.org/pypi/pyfmi.”
“http://www.jmodelica.org/page/12.”

“http://www.jmodelica.org/assimulo.”

39

	Introduction
	Ordinary differential equations
	Different kinds of ODE:s
	System of differential equations
	System of ODE:s with in- and outputs

	Functional Mock-up Interface
	FMI
	Functional Mock-up Unit
	Common representation
	FMI for Model Exchange
	FMI for Co-Simulation

	FMI 2.0 compared to 1.0
	Differences
	New features

	PyFMI 2.0
	Usage
	Loading a FMU
	Simulation
	Setting options
	New methods

	Example, a bouncing ball
	Numerical improvements
	Set up
	Experiment
	Conclusion

	Discussion
	Bibliography

