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Abstract 

This thesis examines the relationship between expanding coverage of fiber optic broadband 

and employment in Swedish municipalities during 2007-2011 using a fixed effects panel and 

an instrumental variables model. Increased fiber coverage among households is estimated to 

have a negative effect on municipal employment whereas increased coverage among 

workplaces is weakly positively related to employment.  

The estimation strategy relies on the differences in broadband deployment both within and 

between municipalities. Data on fiber coverage is taken from the yearly surveys conducted by 

the Swedish telecommunications agency, PTS. To mitigate issues of endogenity, 

topographical variation is used as an instrument for fiber coverage. The instrument is 

obtained by drawing a custom sample of public data on elevation and calculation sample 

standard deviation and variance. Common tests suggest that it is too weak to provide robust 

results, a shortcoming which may be related to low correlation with the endogenous variable 

as well as a small sample.  
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1 Introduction 

High speed internet access is becoming as ubiquitous a utility as heating or running 

water in many developed countries. But so far there have been few studies examining the 

effects of this information highway connecting every apartment and office to a global 

community. The economic effects, though often cited as immensely positive by policy makers 

(Näringsdepartementet1 2009, 2011), can in many cases not be substantiated. While there is 

consensus regarding the positive impact of IT in general on growth and productivity 

(Jorgensen, Ho & Stiroh, 2008) there are few studies on individual aspects of IT development, 

such as widely available broadband (Crandall, Lehr & Litan, 2007). As internet infrastructure 

is still very much under development, there is a need for frequent updates in research 

methodology and data gathering to identify economic effects. This thesis will use a panel data 

regression analysis complemented by an instrumental variable model to determine the effects 

on local employment rates associated with developing fiber coverage. The main question that 

we will attempt to answer is: How are municipal employment rates affected by increased 

availability of internet access via optic fiber? Our findings suggest that there are multiple 

effects at work, increased fiber coverage among workplaces might have a positive effect 

whereas increased coverage among households appears to be negatively associated with 

employment. Such a negative effect has not been found in previous research, but its existence 

is not unlikely. We argue that the consumer applications facilitated by fiber are geared towards 

entertainment, giving rise an increased demand for leisure over labor. 

Regarding IT, in 1987 renowned growth economist Robert Solow famously stated that 

“you can see the computer age everywhere but in the productivity statistics”. In the late 90’s, 

this dismal Solow paradox was replaced with an almost euphoric optimism surrounding 

information technology. Some said we had entered a new economy characterized by very high 

productivity growth. Growth accounting models told of a significant increase in American 

labor productivity, a large part of which was attributed to investments in IT (Jorgenson & 

Stiroh, 2000). However, as IT saturated even the less information intensive sectors, information 

technology diminished as a driving factor behind productivity increases (Jorgenson et al, 2008). 

There is a small but growing body of research concerning the effects of internet 

diffusion. As with any new infrastructure, there are many aspects which call for attention. 

                                                 

1
 Swedish Ministry of Enterprise, Energy and Communications 
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Greenstein & McDevitt (2011) estimate the additional consumer surplus generated by 

broadband compared to a benchmark case of continued use of dial-up modems. They find a 

significant amount of added surplus for American consumers. Noh & Yoo (2007) examines 

how internet relates to growth and equality using a panel of 60 countries. Their findings suggest 

that among countries with a high income inequality, the digital divide between rich and poor 

seem to hinder the potentially positive effects of internet adoption. The digital divide is also 

highlighted by Forman, Goldfarb and Greenstein (2009) who examines how the diffusion of 

internet access during 1995-2000 affected regional wage distribution in the U.S. While they 

found that internet investment is related to increased wages, this benefit is mostly limited to 

highly skilled workers in urban areas.  

 The study conducted by Crandall et al (2007) forms a prototype to our regression 

analysis. Their cross-sectional study of broadband, output and employment in 48 American 

states conclude that there is a positive relationship between employment and broadband 

deployment in several sectors of the labor market. However, they do not make any attempt to 

disentangle issues of endogeneity. The comprehensive approach by Kolko (2012) provides the 

methodological foundation for this thesis. Armed with a substantial American panel (sourced 

from the Federal Communications Commission, FCC) on the number of broadband providers 

in an area, Kolko (2012) estimates a fixed effects model as well as an IV model with the slope 

of the local terrain as an instrument for changes in the number of providers. In line with 

Crandall et al (2007), his findings point to a positive causal link between broadband and 

employment.  

Kim and Orazem (2012) acknowledges Kolko’s (2012) approach, but claim that his 

results are highly sensitive to changes in specification as well as unobservable variables. Their 

own approach is based on the positive effects of broadband on firm productivity, making areas 

with broadband more desirable when a new firm decides on where to locate. Controlling for 

other location specific characteristics, they find that broadband has a positive effect on the 

number of new establishments. They do not find evidence that the broadband effect differs 

across industries. 

Sweden is at the forefront when it comes to the optical fiber-based infrastructure 

required for the latest generation of broadband technology (OECD, 2012). Since 2007, The 

Swedish telecommunications authority (Post- och telestyrelsen, PTS) have conducted yearly 

municipality-level surveys of the availability of various forms of internet access. These surveys 

form the core of our data set. Many studies, such as the aforementioned by Kolko (2012) use 
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so called “Form 77”-data supplied by the FCC. In comparison, the Swedish PTS surveys 

provide an incredible amount of detail. The most interesting feature of our dataset is that 

coverage among workplaces is separated from coverage among households, allowing us to 

jointly estimate two separate – and potentially very different – effects of increased fiber 

coverage on employment.  

Today, a number of access technologies are available in the Swedish marketplace. 

Rather than looking at archaic copper-based technology, we have chosen to focus on the kind 

of high-speed broadband made possible only by fiber optic cable. The relative novelty of this 

technology means that there is a healthy amount of heterogeneity exhibited in the annual 

surveys, with significant coverage growth in most municipalities across our narrow time frame 

(2007-2011). By exploiting the differences in broadband availability within municipalities over 

time, we can identify the change in employment rate associated with increased broadband 

availability. As a robustness check, we identify two subsamples based on municipal population 

and re-estimate our fixed effects panel data model. 

To further qualify our results, we build on Kolko’s (2012) methodology, using 

topographical variation as an instrument to examine any causal link running from increased 

broadband availability to changes in employment rates. Topographical variation is an 

intuitively appealing instrument as the increased costs associated with extending coverage in 

areas with mountainous terrain is likely to result in lower levels of coverage in these areas. The 

municipal terrain is obviously unaffected by short term changes in the employment rate, but to 

qualify as an ideal instrument, terrain should not have a direct influence on employment. While 

we can’t argue that this is the case, specifying a model in differences and introducing the right 

set of controls can mitigate these issues to some extent. We measure topographical variation as 

the standard deviation and variance of a sample elevation profile constructed for each 

municipality using open source data. A detailed description is given in section 3. 

The paper is laid out as follows. Section 2 provides a brief introduction to broadband 

technology with a focus on the Swedish market for internet access. Section 3 describes the data 

used in the study. Section 4 provides brief explanations of the fixed effects panel data model, 

the instrumental variables model and the two-stage least squares (TSLS) estimator as well as 

the empirical considerations pertaining to our study.  Section 5 details the modelling approach 

and presents results. Sections 6 and 7 provides a brief discussion and our concluding remarks, 

respectively. 
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2 Background 

2.1 Benefits of a broader band 

The word broadband has, in a way, become redundant. As Moore’s law2 keeps 

fulfilling its promise of steep technological progress, internet applications demand more 

bandwidth and lower latency times by the month. What is today considered a bare minimum 

speed was viewed as viewed as blazingly fast only a few years ago. As more of essential 

services, entertainment and education move to an online platform, not having a speedy and 

reliant internet connection is slowly becoming equivalent to being excluded from aspects of 

society.  

After the era of dial-up modems came the first generation of publicly available 

broadband technology. Access often relied on existing telephone lines to make the connection 

between a service provider’s node and the customer. A signal travelling by copper is subject to 

severe degradation even short distances from origin, so available bandwidth was limited by the 

distance to the closest node. The signal is also sensitive to interference between data and 

telephone traffic and less reliable than modern technology based on fiber optic cable (PTS, 

2007). Today, in most developed countries, the commonly available way to obtain a high 

speed3 connection is by optic fiber. Transferring data as pulses of light through optically pure 

glass enable bandwidths between five to 200 times greater than those of copper-based 

technology. This modern access technology, for here on referred to simply as ‘fiber’, is the 

focus of this study.  

With increasing bandwidth comes a new set of internet applications aimed at 

consumers, corporations and the public sector. High-traffic server applications, high-definition 

video streaming, video conferencing, telemedicine and real-time backups are some examples 

of applications made viable by optic fiber. In addition, the increased reliability of fiber is in 

itself essential many businesses. Organizations or large households where multiple persons 

simultaneously use the same connection are likely to experience an across-the-board quality 

increase using most common internet applications. 

                                                 

2
 In 1965, Gordon E. Moore proclaimed that the number of components fitted unto an integrated circuit would double each year 

for the foreseeable future. This law of rapid advancement has been successful in predicting advances in many areas of IT, such as internet 
access. 

3
 Popularly defined as a downlink bandwidth of at least 100 megabits per second. 
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Does the increased number of internet applications have an effect on economic 

fundamentals? That is what this study aims to find out. The fast-paced IT development over 

the last couple of decades is often described as a series of sudden leaps ahead. However, while 

a switch from copper to fiber has an over-night effect on bandwidth, the applications and user 

experience changes only gradually. Therefore, changes in broadband availability can be viewed 

as a proxy to an increased supply of and demand for internet applications. These application 

may be new innovations (e.g. services such as YouTube and LinkedIn) or close substitutes for 

existing services (e-mail instead of regular mail, Skype instead of phone calls). No matter the 

nature of the applications, it is their utilization that we expect to have an aggregate effect on 

economic fundamentals, not the mere existence of fiber-based internet access. Since we cannot 

credibly observe the use of all available applications, the supply and demand of internet access 

will have to suffice.  

2.2 The Swedish setting 

In Sweden, staying competitive in field of the IT realm is on the agenda of policy 

makers (Näringsdepartementet, 2009). From an infrastructure point-of-view, achieving high 

broadband coverage using fiber comes at a higher cost than working with existing copper-

wiring or radio technology. During 2001-2007, the government spent roughly five billion SEK 

in subsidies for municipal broadband development, most of which was spent on putting fiber 

in the ground (PTS, 2007). As of today, rural broadband development is still publicly funded, 

but to a lesser extent (PTS, 2012).  

Municipalities played a major role in the distribution of these grants, and were 

ultimately in charge of how the funds were spent. Therefore, during 2001-2007, it was common 

for municipal governments to start broadband enterprises of their own, putting optic cable in 

existing utility tunnels and selling “dark fiber” (optical fiber cable without any active telecom 

equipment attached) to operators who in turn supplied broadband services to end-users.  As of 

2008, local government-owned enterprises and Skanova, a subsidiary of the former 

telecommunications monopolist TeliaSonera, together supplied over 90 percent of all “dark 

fiber” (PTS, 2008). The high market share enjoyed by TeliaSonera is likely a result of its history 

as a government sanctioned monopolist, controlling an overwhelming majority of the copper-

based infrastructure came with the advantage of being able to use existing tunnels to replace 

copper cable with optic fiber at a low cost. In recent years, PTS (2010) has enforced price 

regulations to facilitate a fair marketplace for consumer broadband services. In spite of 
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regulation, the market for fiber from an end-users perspective does not seem to have changed 

significantly during our timeframe (2007-2011). 

With centralized government funding, a difference-in-differences approach to 

estimating the effects of increased fiber coverage might seem suitable. If we could identify a 

subsample of municipalities differing only in the amount of exogenous support they received, 

we could be able to identify causality. Unfortunately, this does not seem feasible. The 

government subsidies were designed so that they would not interfere with market forces. 

Before extending financing, the government required municipalities to credibly identify local 

areas where the market would likely fail to provide coverage. In practice, this meant that only 

townships and villages with less than 3000 inhabitants were eligible for subsidized broadband 

development. In addition, sub-municipality level data on how the grants were spent seems to 

be unavailable. This mean that even if we could identify subsamples of rural areas, we would 

still be missing essential data on broadband development in these areas. 

 

3 Data 

Most studies of low-level effects of broadband are restricted by data availability. In 

the American setting, Kolko (2012) as well as Crandall et al (2007) argue that there are no 

American alternatives to the FCC’s so called “Form 77”-data, providing annual data on the 

number of broadband suppliers within any given U.S. zip code. While rich in observations, the 

number of suppliers is only a rough proxy to actual availability. Furthermore, there is no way 

to separate availability among households from availability among workplaces. There is also 

no data on the quality of the services provided or any indication of actual coverage within a 

given zip code. 

The Swedish telecommunications authority (PTS) provides excellent data on 

municipal broadband availability. However, detailed surveys only date back to 2007. This 

provides a bit of a caveat for our purposes. By 2007, practically all municipalities could offer 

coverage rates of 95 to 100 percent for copper-based connections. Consequently, there is little 

variation to exploit for this technology. Our choice to study fiber-based access is thus partly 

due to the data situation.  

Using the annual PTS surveys from 2007 to 2011, we construct a panel dataset 

consisting of municipal data on broadband availability across this period. The broadband 
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availability variable measures the share of municipal households/workplaces that are located 

within 347 meters from an operational fiber-optic cable in a given year. The surveys are 

originally performed on a standardized nation-wide grid where each square is 250 by 250 

meters. 347 meters represent the diagonal of such a square, i.e. the longest possible distance 

between a household/workplace and a fiber optic cable located in the same square. A household 

300 meters away from a fiber-optic cable will likely incur a significant cost should they want 

to set up a connection. This means that our measure overestimates the share of households 

where a high-speed connection is accessible at a low cost. However, since this overestimation 

is likely to affect all municipalities equally, it will not interfere with our objectives. Later 

surveys do include a more precise measure, but limiting ourselves to these would come at the 

cost of a significant loss of observations. 
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Table 1: Data descriptions 

 

Variable Description Mean 

Standard 

deviation Source 

Fiber coverage, 

households  

Share of municipal 

households with access. 
0.3261 0.2482 PTS 

Fiber coverage, 

workplaces 

 

Share of municipal 

workplaces with access. 
0.2675 0.2185 PTS 

Employment 

 

Share of adults ages 25 to 64 

employed. 
0.7989 0.0387 

Statistics 

Sweden 

Income (SEK) 

 

Municipal average net 

income including transfers, 

adults ages 20 and above. 
202786 31597 

Statistics 

Sweden 

Population  

 

Number of residents in a 

municipality. 
32064 63141 

Statistics 

Sweden 

Population density 

(2006) 

Number of residents per 

square kilometer. 
136 468 

Statistics 

Sweden 

Topographical 

variation 

Standard deviation and 

variance of municipal 

elevation profile. 
45.3616 37.0861 

Google 

Maps, Open 

Street Map 

Road density 

(2005) 

Total length of roads (km) 

per square kilometer. 
2.5539 1.4934 

National 

Database on 

Roads 

Education 

Share of adults aged 25-64 

with at least three years of 

tertiary education. 
0.1870 0.0791 

Statistics 

Sweden 

All variables are observed during 2007-2011 unless otherwise stated. 

 

Data on municipality-level employment are supplied by Statistics Sweden (SCB). The 

data is taken from a population-wide survey, based on registration for income tax purposes. 

Our models also include a number of controls. Population, population density and share of 

adults with at least three years of tertiary education are all provided by Statistics Sweden.  

Our instrument is the topographical variation within the geographical borders of each 

municipality. We measure this variation as the standard deviation and the variance of terrain 

elevation above sea level. Elevation data is obtained by sampling the terrain along a path 

through each municipality. Coordinates for the end points of each path was extracted from open 
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source data supplied by Open Street Map using a tailored Python script to access their public 

API (Application Programming Interface). Having obtained the coordinates for the end points 

of a path, our script accessed a Google Maps API for elevation data. Using the coordinates as 

inputs, a 200-point elevation sample was extracted along the path defined by our two sets of 

coordinates (figure 1). The process was automatically repeated for each of Sweden’s 290 

municipalities. After the initial run, coastal municipalities had their paths manually adjusted 

and resampled to reduce bias caused by excessive sampling of lake and sea beds. The data was 

exported to an Excel-compatible format and the sample standard deviation and variance was 

calculated for each municipality.  

 

 

One of the caveats with our instrument is that topographical variation may have direct 

as well as indirect effects unrelated to fiber coverage on employment. Again, we follow 

Kolko’s (2012) methodology to control for transportation costs, perhaps the most apparent 

channel though which terrain can affect employment. As a proxy for transportation costs, we 

use data on total road length per square kilometer. High transportation costs and a low road 

density are assumed to be positively correlated, and rough terrain is likely to have a negative 

impact on both. Data on road length is obtained from a database maintained by the Swedish 

Figure 1: Illustration of municipal elevation profiles. The diagonal dotted line is the sampled path, the sample size is 200. 
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transportation authority (Trafikverket). The set dates back to 2005, but can be assumed to 

remain static over the short run. A benefit of using data from an earlier period is that it can be 

assumed to be exogenous in relation to recent economic outcomes. 

 

4 Empirical specification 

By exploiting the differences in absolute levels of fiber coverage as well as coverage 

growth during 2007-2011, we can identify the relationship between employment and fiber 

coverage. An interesting feature of our dataset is the possibility to jointly estimate the effects 

of fiber coverage among households as well as the effect of coverage among workplaces. Here, 

we hypothesize that the two coverage variables are uniquely relevant, i.e. the effect of coverage 

among households is different from the effect of coverage among workplaces.  

As for our choice of dependent variable, by choosing employment rate we follow 

Kolko’s (2012) approach. This will provide a comparative aspect to our analysis. It is also 

intuitively appealing to use an outcome of the same type as fiber coverage, a relative share. 

However, the interpretation of a change in employment is not straight-forward. In addition to 

a net transfer from the pool of unemployed to the employed, a change could simply be the 

result of migration, i.e. citizens relocating to another municipality. With this in mind, if we 

were to focus on variables more closely relating to growth, we would be forced to use average 

disposable income as a municipal-level proxy. An increase in average disposable income could 

be the result of any of a number of changes to the local income distribution. We must also keep 

in mind that basic economic theory dictates a close relationship between employment and 

growth, at least when firms are considered. Higher productivity implies higher marginal 

productivity which in turn justifies hiring additional labor. 

To find the true effect of fiber coverage on employment rates, we use a two-pronged 

approach. A fixed effects panel data model will be augmented by an instrumental variable 

approach. At the least, our IV model will constitute a robustness check to our panel data results. 

Depending on the quality of our instrument, we may be able to make inferences regarding any 

causal link between fiber coverage and employment.  
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4.1 Fixed effects specification 

Our baseline model will be a fixed effects panel specified according to: 

Employmentit =  αi + γt + β1Fiber HHit + β2Fiber WPit + β3xit + εit (1) 

Employment is the share of persons ages 25-64 who are employed, Fiber HH is the 

share of households with access to fiber, Fiber WP is the share of workplaces with access to 

fiber and 𝑥𝑖𝑡 is a K ∗ 1 vector of controls. We also include municipality fixed effects, α, and 

time fixed effects, 𝛾. This will control for all time-invariant heterogeneity across 

municipalities, as well as capture any general trend in employment across our sample period 

(2007-2011). We are interested in estimating the effects on employment associated with 

changes in fiber coverage among households as well as among workplaces, represented by β1 

and β2 in (1).  

As the sample covers just five years, specifying a model in first differences would 

come at the cost of losing 20 percent of our observations. We also lack any preconceived notion 

of whether effects are contemporaneous or whether there are lags to consider. Rather than 

mining for a credible model in first differences, we are content with estimating the effects of a 

general change in the level of broadband coverage.  

A fixed effects specification controls for all unobserved time-invariant heterogeneity 

across municipalities. However, we still need to control for time varying factors correlated with 

broadband coverage and employment or our estimates will be inconsistent. Income, education 

and population are likely to be correlated with both demand for fiber access and employment. 

Consequently, we include these as controls in our model. 

Industry mix, geography, demographics and all other factors assumed to be invariant 

within our short time frame are some of the characteristics unique to each municipality. While 

we treat them as static, we cannot treat our observations as independent. Observations on any 

given municipality are likely to exhibit autocorrelation which will jeopardize our inferences. 

As described in Verbeek (2012:389), the Newey-West method of estimating the parameter 

variance-covariance matrix is robust against autocorrelation within municipalities, as well as 

general forms of heteroscedasticity.  

The possibility of weighting observations is briefly explored. On an individual level, 

fiber access, employment and tertiary education are all binary variables, e.g. a household or 

workplace either has or does not have access to fiber. Consequently, each observation, i.e. the 
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share of people with access to broadband in a given municipality, can be viewed as an average. 

By adjusting our observations for the municipal population implicitly represented by these 

averages, we take into account the fact that effects on a large municipal population provides a 

greater contribution to the nation-wide effect associated with increased fiber coverage. 

However, analytical weighting is only a complement to our primary, non-weighted, model as 

it helps us answer a different question. We are not primarily interested in exploring the 

aggregate effect of broadband, we are interested in the conditionally expected effect for any 

given municipality. In contrast to Kolko (2012) who uses data on zip-code level and weight 

each observation in proportion to the number of employed residents, municipalities are a non-

arbitrary sampling unit with respect to employment and fiber coverage. A municipality is a 

self-governed political entity and, as detailed in Section 2, Swedish municipalities exert a high 

degree of control with regards to local investments in broadband infrastructure. 

While the baseline model allows us to explore the effects associated with increased 

coverage, it says nothing about the causal relationship between the two. The issues of 

endogeneity (i.e. violations of the OLS assumption that our independent variables are 

orthogonal to the error term) must be considered, as any violation of this assumption renders 

our estimates inconsistent. However, while it is often said that correlation does not imply 

causality, this simple rule of thumb is no reason not to be hardheaded about what can be 

concluded from our estimation. Economic literature commonly addresses three ways that 

problems of endogeneity can arise in a regression model. These are measurement error, omitted 

variables and reverse causality. We have no reason to suspect systematic measurement error in 

our variables, and even if we did, we have little recourse to take. Omitted variables can be an 

issue, here we have to rely on economic intuition to include all relevant controls, but the 

possibility of an unobservable variable correlated with fiber coverage as well as employment 

is hard dismiss. Our major obstacle is reverse causality. Employment can be assumed to have 

a causal effect not only on fiber coverage, but also on average income levels and education. 

This is the primary reason behind augmenting our fixed effects model with an instrumental 

variable model.  

In a simplified setting, we can make an educated guess of what the bias due to reverse 

causality could look like. Following an example by Verbeek (2012:146), let us assume that 

fiber coverage and employment are jointly decided in a system of two equations (individual 

indices omitted for simplicity): 
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Emp =  β0 +  β1Fiber + ∑ βnxn
N
n=2 +  ε (2) 

Fiber =  α1Emp + ∑ αnxn
N
n=2 + u (3) 

Where 𝑥𝑛 is an exogenous control, 𝜀 and 𝑢 are both i.i.d. 𝛽1 is estimated in our baseline 

model (1) and 𝛼1 is assumed to be positive but less than one, i.e. employment is assumed to 

have a positive effect on fiber coverage, but the partial derivative of fiber coverage w.r.t. 

employment is assumed to be less than unity. Inserting one equation into the other and solving 

for employment and fiber coverage yields two new equations: 

Fiber =  
α1β0

1−β1α1
+

1

1−β1α1
∑ (αn + α1βn)xn

N
n=2 +

∑ αn
N
n=2

1−β1α1
ε +

1

1−β1α1
u (4) 

Emp =  
β0

1−β1α1
+

1

1−β1α1
∑ (βn + αnβ1)xn

N
n=2 +

1

1−β1α1
ε +

β1

1−β1α1
u (5) 

Given our simple setup, it can be shown that the probability limit (see Verbeek, 

2012:147) of the OLS estimate β̂1 is: 

plim β̂1 = β1 +
cov(Fiber,ε)

σfiber
2  (6) 

A simple expression for the probability limit of the effect associated with fiber 

coverage can be derived if we assume that our controls are independent:  

Cov(xn, ε) = Cov(xn, u) = 0 for n = 1,2,3 … 

E(xmxn) = 0 for n ≠ m 

Given these assumptions, Cov(Fiber, ε) and σfiber
2  are reduced to: 

Cov(Fiber, ε) =
∑ αn

𝐍
𝐧=𝟐

1−β1α1
σε

2 (7) 

σfiber
2 = (

1

1−β1α1
)

2
∑ (αn + α1βn)2𝐍

𝐧=𝟐 Var(xn) + (
∑ αn

𝐍
𝐧=𝟐

1−β1α1
)

2

σε
2 + (

1

1−β1α1
)

2

σu
2     (8) 

And consequently, the probability limit of β1 reduces to: 

plim β̂1 = β1 +
∑ αn

𝐍
𝐧=𝟐 σε

2

1

1−β1α1
[∑ (αn+α1βn)2𝐍

𝐧=𝟐 Var(xn)+∑ αn
2𝐍

𝐧=𝟐 σε
2+σu

2 ]
       (9) 

While cumbersome, this expression will prove useful for making an educated guess 

regarding whether or not we are likely to over- or underestimate the true fiber effect. However, 

we must keep in mind that while assuming that our controls (variables such as education and 

income) are exogenous is necessary for a feasible analysis, it is a highly unrealistic assumption. 



 

17 

 

Another issue with this approach is that we cannot exclude the possibility that there is 

an unobservable or omitted time-varying variable correlated with both fiber coverage and 

employment, rendering a causal interpretation impossible. To summarize: While the fixed 

effects model is relevant, the problems of endogeneity point to the need for a second estimation 

strategy. 

4.2 Instrumental variable approach 

A common approach to achieving consistent estimates in the presence of reverse 

causality is using instrumental variables. An instrument is a variable which is correlated with 

the endogenous regressor while being independent with respect to the dependent variable, i.e. 

the instrument is exogenous and does not explain the dependent variable through other channels 

than the endogenous regressor. Obviously, upon any variable which happens to fulfill these 

criteria is not enough, the case for using a particular instrument must be made using 

economically sound arguments. Verbeek (2012) provides a primer on the instrumental 

variables estimator. Consider a simple linear model: 

yi = xi′β +  εi  (10) 

xi = zi′π +  ui  (11) 

Where x and y are vectors of dimension K ∗ 1. The OLS estimator, β̂OLS, is solved 

using K moment conditions, derived from the first order condition for minimizing the sum of 

squared differences: 

E[(yi − xi′β)xi] = 0 (12) 

While we cannot observe the error term, these moment conditions requires us to 

impose: 

E[εi′xi] = 0 

If this condition is violated due to endogenity of one or more xi (as in the model 

represented by (2) and (3) above), we are no longer consistently estimating β. However, we 

can find R ≥ K instruments, z, for which the exogenity assumption hold: 

E[εi′zi] = 0 

In this case, the estimates will be consistent, and a causal interpretation can be 

possible, i.e. given that we can credibly impose the exogenity assumption, our estimates 
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represent our expectation conditional on all factors, observable as well as unobservable, 

remaining constant (Verbeek, 2012). 

For R=K, the IV estimator can be solved from the sample moment conditions 

(compare with (12) above): 

1

N
∑ (yi − xi′βIV̂)zi

N
i=1 = 0 (13) 

βIV̂ = (∑ zixi′
N
i=1 )

−1
∑ ziyi

N
i=1  (14) 

We will not consider the case where R>K here4. Note that the instruments can overlap 

with the covariates in the original specification, i.e. exogenous variables are their own 

instruments. In addition to the exogeneity assumption, for a set of instruments to be relevant it 

is required that not all elements of 𝜋 are zero, i.e. there has to exist a non-zero correlation 

between the instruments and the endogenous regressor. An extension of these conditions is that 

non-overlapping instruments should not be significant when added to (10), i.e. they should not 

themselves explain y, only through our endogenous regressor. This is sometimes called “the 

exclusion restriction”. For here on, I will refer to variables included in both 𝑧𝑖 and 𝑥𝑖 as 

exogenous covariates and denote our non-overlapping variables simply as ‘instruments’.  

A computationally easy way to obtain the IV estimates is by modifying the OLS 

estimator, performing a so called two-stage least squares regression. Consider (11). Using 

matrix notation, we can write an expression for the OLS predictions of our endogenous 

regressor (Verbeek, 2012). 

π̂ = (Z′Z)−1Z′X  (15) 

X̂ = Z(Z′Z)−1Z′X  (16) 

Using these fitted values to regress X on Y yields the following expression for the 

OLS (IV) estimator: 

βIV̂ = (X̂′X̂)−1X̂′y (17) 

Inserting (16) in (17) yields: 

βIV̂ = [X′Z(Z′Z)−1Z′X)]−1X′Z(Z′Z)−1Z′y 

                                                 

4
 Estimating this scenario involves using a weighting matrix to render the ZX’ matrix invertible. See Verbeek (2012) for a detailed explanation 
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For the case where R=K, we assume that the X′Z matrix is invertible, which reduces 

the expression to:  

βIV̂ = (Z′X)−1Z′y (18) 

As is evident, (18) is nothing more than the IV estimator (14) written in matrix 

notation.  

Finding a good instrument is easier said than done. This thesis follows Kolko’s (2012) 

approach by utilizing topographical variation as an instrument. Kolko (2012) uses data on 

average slope, we use the standard deviation and variance of a sample elevation profile 

constructed for each municipality. Our measure arguably does a better job at capturing relevant 

topographical features. Average slope says little about whether or not an observer would 

characterize the terrain as smooth or mountainous, which is what must be assumed to be the 

deciding factor behind the return to fiber investments in terms of coverage. 

Our key assumption regarding topographical variation as an instrument is that more 

mountainous municipalities are at a disadvantage with respect to fiber coverage. Thus, we 

expect more mountainous regions to enjoy less fiber coverage progress during 2007-2011, 

ceteris paribus. There are two circumstances which adds to the validity of this hypothesis. 

Firstly, the initial round of government grants and subsidies ended in 2007. In the following 

years, government spending on broadband has been less abundant, and grants have primarily 

been implemented via a rural development program, placing an even greater focus on rural 

areas (PTS, 2012). While local political initiative is still an influencing factor, it has decreased 

in relative importance. Extending coverage in sparsely populated areas is arguably more 

vulnerable to rough terrain compared to dense urban neighborhoods. When considering which 

projects to support, the cost-benefit analysis is presumed to be skewed towards favoring flat 

areas, as the cost of extending the grid in these areas is likely to be lower.  

Secondly, since the most “profitable” areas (flat and heavily urbanized) are likely to 

have been prioritized by both private as well as public service providers, by 2007 these areas 

likely already enjoyed coverage. Combined with the general economic downturn around this 

time, it is reasonable to expect that even public investors are looking for “bang for the buck” 

rather than simply investing to reach the coverage rate mandated by public policy, increasing 

the relevance of topographical variation as an instrument. 

Since our instrument does not vary over time we cannot use a fixed effects panel 

specification, as the instrument would be perfectly collinear with the municipality-specific 
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intercept. A random effects model is not appropriate due to probable correlation between the 

municipality specific error component and our regressors. Therefore, we move to a purely 

cross-sectional baseline model in first differences for our TSLS estimation, the second stage of 

which is specified as:  

Empi,2011 − Empi,2007 = β1 + β2(Fiberi,2011 − Fiberi,2007
̂ ) + β3

′ xi +  εi           (19) 

Where xit is a vector of exogenous covariates (controls). The fitted values for the 

difference in fiber coverage is obtained in an auxiliary regression (the “first stage”) where fiber 

coverage is explained by our exogenous controls as well as our instruments zi:  

Fiberi,2011 − Fiberi,2007 =  π1 + π2
′ zi + π3

′ xi +  ui (20) 

Fiberi,2011 − Fiberi,2007
̂ =  π1̂ + π2

′̂ zi + π3
′̂ xi (21) 

The intuition behind this procedure is that the fitted values of fiber coverage will be 

“cleansed” from endogenous variation (in our case assumed to be caused by changes in the 

employment rate) and should only explain the causal link between fiber coverage and 

employment. 

4.3 Inference under weak instruments 

An issue which has come under scrutiny in recent years is inference under weak 

instruments. Stock, Wright & Yogo (2002) provide an excellent explanation of the implications 

of weak instruments and well as a review of advances regarding robust inference in the 

presence of weak instruments. A weak instrument is formally defined as low values of a statistic 

calculated by dividing the so called concentration parameter5 by K, the number of instruments. 

A low value implies that inferences based on asymptotic normality will not be correct. 

In the case with a single endogenous regressor under i.i.d. disturbances, a partial F-

test on the instruments in the first stage regression is a valid sample equivalent to the 

concentration parameter, H0: π2 = 0. This statistic is often referred to as the “first stage F-

statistic”. In the case of multiple endogenous regressors, the concentration parameter becomes 

a matrix. Cragg & Donald proposed using the eigenvalue for the sample equivalent of this 

                                                 

5
 Formally defined as 𝜇2 = Π′𝑍′𝑍Π 𝜎𝑢

2⁄  following the notation in (15) and (16). 
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matrix as an analogue to the first stage F-statistic in the case of multiple endogenous regressors 

(Stock et al, 2002). 

With an endogenous variable in our model, it can be shown (Verbeek, 2012:147) that 

the OLS inconsistency depends on the correlation with the error term, 𝜀, according to: 

plim β̂ = β +
cov(x, ε)

σx
2

 

As shown by Stock et al (2002), the expectation of the TSLS estimator using a 

completely irrelevant set of instruments, i.e. all elements of π2 = 0 in (20), is the probability 

limit of the OLS estimator. With stronger instruments, the bias of the TSLS estimator 

decreases. The first stage F-statistic or Cragg-Donald statistic can be compared to a set of 

critical values for various tests of instrument weakness. In the presence of weak instruments, 

the TSLS estimator can be shown to have a distinctly non-normal distribution (Staiger & Stock, 

1997, Stock et al, 2002). As common Wald tests are based upon point estimates, a sample 

standard error and an assumption of (asymptotic) normality, this may lead to incorrect 

inferences. This unfortunate property of weak instruments is not limited to small samples as 

Staiger & Stock (1997) notes. 

As we are interested in hypothesis testing, we will use a method finalized by Stock & 

Yogo (2002) to gauge the strength of our instrument. The authors tabulate critical values for 

the Cragg-Donald statistic that are used to test if a standard Wald-test with a nominal 

significance level of five percent has an actual size (i.e. the probability of rejecting a true null) 

no greater than an arbitrary threshold. For example, if we are willing to accept a size of 15 

percent for a standard t-test, H0: βTSLS = 0, and use a single instrument for a single endogenous 

regressor, the critical value for the first stage F-statistic is 8.96. If our obtained statistic is larger, 

we reject the null, i.e. we reject the hypothesis that the size of the t-test is actually 15 percent 

or greater. A way of achieving the correct actual size for our Wald-test would be to increase 

our nominal significance level (e.g. one percent instead of five). But this practice would be 

detrimental to the power of our test, i.e. a low probability of rejecting a false null. Andrews, 

Moreira and Stock (2007) examine the poor power properties of a standard Wald test in the 

presence of weak instruments. They note that due to the asymmetric distribution of TSLS-

estimates with weak instruments, rejection rates are particularly low for negative values of β. 

Moreira (2003) proposes a method for providing confidence intervals around 

estimates which are asymptotically robust against weak instruments. Andrews, Moreira & 
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Stock (2007:117) explains his method as “the idea of implementing tests in IV regression not 

using a single fixed critical value, but instead using a critical value that is itself a function of 

a statistic chosen so that the resulting test has the correct size even if the instruments are 

weak”. 

 As we shall see in the following section, weak instruments are indeed a present in our 

study, which makes Moreira’s method intuitively appealing as a way of further gauging the 

strength of our instruments. Andrews, Moreira & Stock (2007) show that the underlying 

statistic has excellent power properties compared to other tests. But the asymptotic probability 

of rejecting a false null nonetheless decreases with low values of the first stage F-statistic as 

well as, of course, true values of β close to the null. 

4.4 Instrument validity 

Another issue is validity of our instrument. In this context, validity refers to the 

exclusion restriction: our instrument should not in and of itself cause changes in the dependent 

variable. This is problematic, since we would likely be wrong in assuming that our dependent 

variable, employment, is independent with respect to our instrument, topographical variation. 

Two trivial examples would be agriculture and manufacturing, both of which likely benefit 

from smooth terrain, as it enables large cohesive areas to be cultivated and reduces 

transportation costs. Using a differenced model alleviates some of our concerns, as we need 

only to be concerned about the channels (other than fiber coverage) through which topography 

can affect the change in employment while controlling for other factors correlated with 

employment and fiber coverage. Since terrain is static over time, its effect on short term 

changes in employment rates is likely rather small.  

We follow Kolko’s (2012) methodology and introduce municipal road density as a 

proxy for transportation costs in order to control for this in our IV model. However, we would 

like to argue that its implementation is more problematic than Kolko’s straight-forward one. 

Road density is confounded by its close relationship with population density. Controlling for 

high transportation costs without taking population density into account is a bit of a backwards 

approach. We want to control for the fact that rough terrain can, by affecting transportation 

costs, have adverse effects on the growth in employment. However, high transportation costs 

will likely have very little effect on employment in areas where hardly any people live or work. 

Thus, we interact road density with a lag of population density to make sure it’s relative 
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importance diminishes in sparsely populated municipalities while retaining exogeneity in 

relation to the employment rate during 2007-2011. 

 

5 Results 

5.1 Panel data estimations 

As there is little in the way of consensus around best-practices estimating the effects 

of high-speed internet, I set out to use a general-to-specific modelling approach. A range of 

interaction terms as well as quadratic terms was included in initial estimations, unfortunately 

with mostly nonsensical results, e.g. low values for a standard F-test of all non-zero 

coefficients. These preliminary results are not reported in this paper. An economically 

justifiable addition to our baseline model is fiber coverage in workplaces interacted with 

income. This interaction term captures whether or not high-income municipalities experience 

additional effects of having a high-speed internet connection at work. This potential 

relationship is related to the findings of Forman et al (2009) regarding the asymmetric 

distribution of wage increases following internet investment as well as the more general 

concept of skill-biased technological change, i.e. the idea that productivity increases primarily 

benefit skilled labor6. While we are not primarily examining such interactions, including this 

term seems both relevant and interesting. 

The results from our panel data estimations are reported in table 2. Looking at the first 

column, the most interesting result is the significant negative effect associated with increased 

fiber coverage among households. The partial derivative has a straightforward interpretation: 

δE(Employmentit|xit)

δFiber HHit
=  −0.0124 

A one unit increase in fiber coverage (equivalent to a leap from no coverage to full 

coverage) is associated with an expected 1.2 percentage unit decrease in municipal employment 

rate, ceteris paribus. Increased fiber coverage among workplaces is however associated with a 

positive effect on employment, although insignificant at any conventional level. Jointly, our 

two effects do not support the idea that optic fiber has a positive effect on employment. We 

                                                 

6
 See for example Violante (2006) for a detailed explanation of skill-biased technological change. 
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also do not find evidence that municipal income is a deciding factor behind the effects of 

increased workplace coverage on employment, as the interaction term is insignificant. 

It should be noted that our two fiber coverage variables are both insignificant when 

included separately in the baseline model. Given our assumption that they both have a unique 

impact on employment, we would be introducing a source of bias by not including them jointly. 

The bias can be expected to be quite severe due to the high sample correlation between fiber 

coverage among households and workplaces7. 

5.2 Robustness checks 

To examine the sensitivity of our results in the first column of table 2, two subsamples 

are estimated in addition to our main model. In the second column of table 2, we exclude a 

number of municipalities based on categories created and maintained by SKL (Sveriges 

kommuner och landsting, 2011). We exclude all major cities (with a population of 50,000 and 

above) and their surrounding commuter towns (where more than 50 percent of the population 

commute to another municipality). Since the labor market in a commuter town is likely affected 

by changes in fiber coverage in a neighboring city, towns like these may serve to weaken the 

link between municipal coverage and employment rate. Using this subsample, we see that both 

coverage effects are negative, but the magnitude of the workplace effect is far greater than the 

household effect. None of the two are significant. In general, we should expect to lose 

significance after dropping about a third of our total observations, but the reason for the reversal 

of the workplace effect is not clear.  

In the third column, we weight our observations according to municipal population. 

This is a useful exercise, but not essential for this thesis as it serves to answer questions of a 

nationwide fiber effect. With weighting, both types of fiber coverage are insignificant, but the 

point estimates have reversed. Weighting by population places great importance on major 

cities, so what we could be seeing is simply that the market in large urban areas is more adapted 

to utilize increased fiber coverage among households. As for workplaces, by 2007 the firms 

enjoying the greatest productivity increases from fiber were probably already covered. 

However, as our modelling approach might not be optimal for examining nation-wide effects 

I can not draw further conclusions from these results. The fact that our two subsample 

                                                 

7
 The sample correlation coefficient is 0.97. 
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estimations lead us to very different results points to the possibility of heterogeneous effects of 

fiber coverage among municipalities. 

Could it be that the negative effect associated with increased coverage among 

households in our main model is the result of omitting an unobservable variable correlated with 

both employment and fiber coverage? While we cannot dismiss this possibility, there are few 

candidates with opposing effects on our two variables interest, e.g. a variable with a negative 

effect on employment and a positive effect on fiber coverage among households. An obvious 

shortcoming is that we do not have data on the amount of government grants received by each 

municipality. Given that they are geared towards rural areas, the grants may represent an 

omitted variable. However, as detailed in section 2, government grants make up far from all 

fiber financing. In fact, we observe a positive correlation between the increase in household 

coverage 2007-2011 and average municipal population during the period8. On top of this, there 

is no clear relationship between average municipal population and the change in employment 

during the period9. Thus, we do not have any evidence indicating that our results are simply 

due to the fact that areas with low employment rates received more fiber coverage due the 

design of the government grants. 

  

                                                 

8
 The sample correlation coefficient is 0.1889. 

9
 The sample correlation coefficient is 0.0217. 



 

26 

 

Table 2: Panel data estimations (2007-2011) 

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒: 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 

Fiber HH 
-0.0124  
(0.0069)* 

-0.0077 
(0.0087) 

0.0136  
(0.0120) 

Fiber WP 
0.1641  
(0.1269) 

-0.6065 
(0.5073) 

-0.1454  
(0.1852) 

Population 
-0.0292 
(0.0229) 

-0.1072 
(0.0363)*** 

-0.0371  
(0.0262) 

Education 
0.41079 

(0.0779)*** 
0.3919 

(0.1208)*** 
0.3766  

(0.0942)*** 

Income 
0.0990 

(0.0186)*** 
0.0945 

(0.0229)*** 
0.0939  

(0.0233)*** 

Income ∗ Fiber WP 
-0.0121 
(0.0101) 

0.0506 
(0.0414) 

0.0104  
(0.0145) 

No of observations 1450 980 1450 

Weighted by population No No Yes 

Excluded municipalities None 

Major cities and 

surrounding 

commuter towns 

None 

***: significant at the  

1 percent level 

**: significant at the  

5 percent level 

*: significant at the  

10 percent level 

Robust standard clustered around municipality in parentheses. All models 

include municipality specific as well as period specific fixed effects. 

Population and income refer to the natural logarithms of these variables.  

The second column excludes groups 1-4 in the SKL classification (SKL, 

2011).  

The third column places analytical weights on each observation according to 

average municipal population during 2007-2011. 

 

Returning to our analysis of bias due to reverse causality in section 4. Our simplified 

setup and the resulting expression for the probability limit of the effect of fiber, repeated below 

for convenience, allows us to make an educated guess regarding the direction of our bias. 

plim β̂1 = β1 +
∑ αn

N
n=2 σε

2

1
1 − β1α1

[∑ (αn + α1βn)2N
n=2 Var(xn) + ∑ αn

2N
n=2 σε

2 + σu
2]

 

Focusing on fiber coverage among households, in our main model (first column of 

table 2) the point estimate of β1 is negative. As for our controls, our point estimates of βn are 

all positive, i.e. education and income are both positively correlated with employment. Let us 

further assume that employment, education, population and income all have a positive effect 

on fiber coverage among households, i.e. α1, α2, α3, α4 are all positive. Given these 
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assumptions, the probability limit of β̂1 will necessarily be greater than the true value of β1. 

Thus, the negative effect associated with fiber among households could in fact be even more 

negative. However, note that this exercise is entirely dependent on the assumption that our 

controls are exogenous, a very strong assumption. 

5.3 IV estimations 

As stated previously, our static instrument necessitates a purely cross-sectional model. 

In the first stage of our two-stage least squares approach we obtain fitted values for our 

endogenous regressor (fiber coverage) using our instrument as well as exogenous covariates. 

See appendix for results from the first stage regressions. To control for non-linear effects of 

topography, we include both the standard deviation as well as the variance of our sample 

elevation profiles as instruments for fiber coverage. Although we technically only have a single 

instrument at our disposal, the inclusion of a quadratic term allows us to include both types of 

fiber coverage as endogenous regressors and still be able to fully identify all parameters. As 

we hypothesize that both types of fiber coverage are uniquely relevant, omitting one of them 

could introduce inconsistency.  

A simple way of examining the strength of a potential instrument is the sample 

correlation between the instrument and the endogenous regressor. The correlation between 

topographical standard deviation and fiber coverage among households is stronger than the 

correlation with fiber coverage among workplaces10. This is expected, since households 

presumably have a greater geographical dispersion across the municipality compared to 

workplaces. Combined with the fact that our panel data model produced interesting results, 

suggesting a negative effect of fiber coverage among households, we will focus on fiber 

coverage among households in our IV approach to try to confirm the results from our panel 

data estimates.  

One of our concerns from the panel data model is that none of our controls can be 

attributed exogeneity in relation to contemporaneous changes in employment rate. Therefore, 

we specify two models, differing only in the set of controls used. One in which we use a lag in 

levels as a way of achieving plausible exogenity. For example, since average municipal income 

in 2007 can be assumed to be exogenous with respect to the change in income between 2007 

                                                 

10
 The sample correlation coefficient is -0.1984 for households versus -0.1456 for workplaces. 



 

28 

 

and 2011, we can safely control for income without violating the assumptions of the TSLS 

estimator. We simply use lags in levels as a way of making our controls are their own 

instruments. We also estimate a model where the controls are differenced in the same way that 

we difference our dependent variable. While this practice violates the basic assumptions of 

using IV (the change in average income from 2007 to 2011 is not exogenous with respect to 

the change in employment during the same period), consistently differencing our controls could 

better explain the variation in employment and thus provide a more reliable estimate of the 

fiber effect.  Models with the change in employment rate from 1999 to 2003 as a control for 

any unobservable municipal ability regarding employment were also estimated initially. This 

control did not significantly alter the results and as including lags of the dependent variable 

can be problematic when interpreting the results, these models are not included here. 

Tables 3 and 4 present the results from our TSLS estimations. As way of examining 

the sensitivity of our results, four different specifications were estimated for each of our two 

baseline models. In the first columns of tables 3 and 4, fiber coverage among households as 

well as among workplaces were included as endogenous regressors. In the second column, 

coverage among households are included as an endogenous regressor while coverage among 

workplaces is treated as an exogenous control. This constitutes a violation the basic 

assumptions of IV since we have good reason to suspect that fiber coverage among workplaces 

is partially determined by employment, but it is nonetheless interesting to compare these results 

to those in the first column. The point estimate of the workplace effect does not seem to differ 

much from the instrumented estimate in the first column, this could be a sign that any 

correlation between workplace coverage and the error term is not enough to be a significant 

source of inconsistency. However, the Derbin-Wu-Hausman11 test suggests that OLS is, as 

hypothesized, inefficient. In the third and fourth column, fiber coverage among workplaces and 

households are excluded, respectively. As the two are correlated, we are introducing a source 

of bias by not including them jointly. The comparatively small and insignificant estimation of 

the fiber can probably be attributed to the fact that one variable is left two explain the two 

diametrically different influences of fiber coverage. 

Overall, the results from our two models are similar. Both appear to confirm the results 

from our main fixed effects model, i.e. a negative effect associated with household coverage 

                                                 

11
 IV extension of a standard Hausman (1978) specification test. Tests the null of OLS consistency against the alternative of 

OLS inconsistency by implementing the residuals from the first stage TSLS-regression as a variable in an auxiliary second stage regression. 
If the residuals are significant in the auxiliary regression, OLS is inconsistent. 
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and a positive effect of workplace coverage. As expected, the controls are far less significant 

when expressed as levels. Evidently the level of income, population and education are not good 

predictors of future short-term changes in employment. Disregarding endogeneity issues, the 

Cragg-Donald statistic suggests that the two sets of controls performs equally as first-stage 

predictors of the change fiber coverage. Worth noting is also the increased size and significance 

of the household coverage effect in the model with controls expressed as levels, this could 

suggest that there are issues of endogeneity present in the differenced model. 

There are many reasons to be cautious when interpreting the results. The effects of 

fiber coverage are unrealistically large. The partial derivative of change in employment with 

respect to the change in household coverage over the period is about -0.19 to -0.24, i.e. a 100 

percentage unit increase in coverage is associated with a 19-24 percentage unit decrease in 

municipal employment rate compared to no change in coverage during 2007-2011. However, 

it is useful to keep in mind that in a real world setting, this negative effect is confounded with 

the apparently positive effect associated with increase workplace coverage, which is greater in 

magnitude than the household effect in all our models. Compared to our panel data model, our 

IV models do not offer the same possibility to control for unobservable heterogeneity as we 

have no municipal-specific intercepts. Consequently, we run a greater risk of omitting a 

relevant control, observable or not.  

Our main concern is the weakness of our instruments. Upon comparing the Cragg-

Donald statistic to the tabulated values of Stock & Yogo (2005), it is apparent that the true size 

of any standard Wald-test on our estimates have a size greater than 25 percent, the largest size 

for which a critical value is commonly tabulated. However, Moreira’s (2003) conditional 

confidence intervals does reject the hypothesis that the effect associated with fiber coverage is 

equal to zero at the five percent level in the model where only household coverage is 

instrumented (the third column of tables 3 and 4). Moreira’s method cannot readily be applied 

to models with multiple endogenous variables, and for our two models with a single coverage 

variable (columns 3 and 4 in both tables), the standard errors are too large to provide a bounded 

interval. Taken both measures of instrument strength into account, our assessment is that 

topographical variation simply does not explain fiber coverage well enough to provide robust 

results. The magnitude of issues caused by our dependent variable being dependent on our 

instrument is difficult to judge, but this can likely be handled be a well-specified set of controls. 
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Table 3: IV estimations, controls in levels 

𝑇𝑆𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑡𝑎𝑔𝑒. 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒: ∆𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡2007−2011 

 Both fiber 

types of 

coverage are 

instrumented  

Only 

household 

coverage is 

instrumented 

Only 

household 

coverage is 

included 

Only 

workplace 

coverage is 

included 

∆𝐹𝑖𝑏𝑒𝑟 𝐻𝐻2007−2011 -0.2319 
(0.09586)** 

-0.2318 
(0.0957)** 

-0.0725  
(0.0538) 

 

∆𝐹𝑖𝑏𝑒𝑟 𝑊𝑃2007−2011 0.2842 
(0.1393)** 

0.2778 
(0.1131)** 

 
0.0092 
(0.0538) 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2007 0.0004 
(0.0024) 

0.0005 
(0.0018) 

0.0004 
(0.0023) 

-0.0022 
(0.0014) 

𝐼𝑛𝑐𝑜𝑚𝑒2007 -0.0028 
(0.0225) 

-0.0014 
(0.0142) 

0.0281 
(0.0162) 

0.0121 
(0.0145) 

𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛2007 0.0137 
(0.0267) 

0.0140 
(0.0264) 

0.03539 
(0.0237) 

0.0392 
(0.0163)** 

𝑅𝑜𝑎𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦2005

∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦2007 
0.00004 
(0.0002) 

0.00005 
(0.0001) 

0.00002 
(0.0002) 

-0.0002 
(0.0001) 

No of observations 289 289 289 289 

Cragg-Donald statistic 1.333 4.654 1.770 1.333 

Conditional C.I.  
(p-value for 𝐻0: 𝛽𝑓𝑖𝑏𝑒𝑟 𝐻𝐻 = 0) 

 0.0004 Unbounded  

Pagan-Hall  
(p-value for H0: homoskedastic 

errors) 
0.8761 0.8814 0.9567 0.8404 

Derbin-Wu-Hausman 
(p-value for H0: instrumented 

fiber coverage is exogenous) 
0.0024 0.0005 0.0444 0.9301 

***: significant at the  

1 percent level 

**: significant at the  

5 percent level 

*: significant at the  

10 percent level 

Standard errors in parentheses. Population, population density and income 

refer to the natural logarithm of these variables.  
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Table 4: IV estimations, controls in differences 

𝑇𝑆𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑡𝑎𝑔𝑒. 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒: ∆𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡2007−2011 

 
Both types of 

coverage are 

instrumented  

Only 

household 

coverage is 

instrumented 

Only 

household 

coverage is 

included 

Only 

workplace 

coverage is 

included 

∆Fiber HH2007−2011 -0.1949 
(0.1119)* 

-0.1895 
(0.1065)* 

-0.0519 
(0.0531) 

 

 

∆Fiber WP2007−2011 0.2102 
(0.1411) 

0.2293 
(0.1248)* 

 
-0.0005 
(0.0507) 

∆Population2007−2011 0.0483 

(0.0573) 

0.0431 

(0.0531) 
-0.00008 
(0.0436) 

-0.02712 
(0.0262) 

∆Income2007−2011 0.1499  
(0.0366)*** 

0.1535 
(0.0352)*** 

0.1502 
(0.0351)*** 

0.1604 
(0.0263)*** 

∆Education2007−2011 0.2303  
(0.1486) 

0.2229  
(0.1442) 

0.3481 
(0.1193)*** 

0.3578 
(0.0928)*** 

Road density2005

∗ Pop density2007 
0.000033 
(0.00025) 

-.00005 
(.0001) 

0.0002 
(0.0002) 

-0.00003 
(0.0002) 

Number of observations 289 289 289 289 

Cragg-Donald statistic 1.183 2.669 1.240 1.225 

Conditional C.I.  
(p-value for 𝐻0: 𝛽𝑓𝑖𝑏𝑒𝑟 = 0) 

 0.0234 Unbounded  

Pagan-Hall  
(p-value for H0:  

Homoskedastic errors) 
0.7720 0.7728 0.8082 0.1134 

Derbin-Wu-Hausman 
(p-value for H0: instrumented 

fiber coverage is exogenous) 
0.0687 0.0239 0.1671 0.8737 

***: significant at the  

1 percent level 

**: significant at the  

5 percent level 

*: significant at the  

10 percent level 

Standard errors in parentheses. Population, population density and income 

refer to the natural logarithm of these variables.  
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6 Discussion 

The data set examined in this thesis is very different from the sets used previous 

research. Longitudinal data on actual broadband availability does not seem to be readily 

available in a majority of countries, and many researchers are forced to use proxies (Kolko, 

2012 and Kim & Orazem, 2012). In addition to a good measure of actual availability, the 

primary advantage of our data is the separation of coverage between workplaces and 

households. Previous studies have used a single coverage variable, even though the internet 

applications utilized by businesses and the public sector are very different from those utilized 

by consumers. Our results indicate that there are indeed multiple effects at work. We have 

considered a few of the methodological pitfalls which cloud the possibilities of form 

conclusions, the evidence is there for the reader to judge. Or primary concerns are the weakness 

of our instruments and the apparent sensitivity to different specifications. These concerns can 

at least partially be attributed to our fairly small number of observations. As a comparison, 

Kolko (2012) has roughly 26 000 observations at his disposal. The fact that our sample covers 

years characterized by a general economic downturn also puts the generalizability of our results 

into question. We must also keep in mind that a decrease in municipal employment rate can be 

caused by a net inflow of unemployed rather than a decrease in the number of employed, which 

is why we control for municipal population. But we cannot fully dismiss the possibility that 

expanded fiber coverage is correlated with a number of unobserved factors jointly influencing 

the desirability of a municipality. A change in desirability could cause an in- or outflow of 

unemployed looking for work, as people can be assumed to be fairly mobile across 

municipalities. However, expanding fiber coverage is in itself a laborious task. Although any 

directly job-creating effects are most certainly insignificant in any major city, it does serve to 

further merit our results for more extensive research. Potential econometric issues caused by 

the high degree of correlation between our coverage variables is a source of error left 

unexamined here, but this is nonetheless an issue to be addressed by future research using 

coverage data with similar multicollinear properties. 

Assuming there is truth behind our somewhat controversial finding of a negative effect 

associated with fiber coverage among households, an explanation might be found in the fact 

that we are studying a new generation of internet access technology. As such, our results must 

be interpreted in light of the set of internet applications made available by fiber. Our hypothesis 

is that the benefits of this new set of applications is geared towards consumers, large 
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organizations and businesses in the field of high-tech. The latter two are arguably more likely 

to be established in major cities, which could explain any heterogeneous effects across 

municipalities, briefly explored here by weighting observations according to population. With 

weighting, household coverage is positively associated with employment, although weakly so. 

This is in line with Forman et al (2009) who found that internet investment is associated with 

increased wages primarily among skilled urban works.  

As for consumer applications, if we recognize that all internet applications can be 

placed in one of two categories, productivity and entertainment, the argument is fairly straight-

forward. Presumably, it is mainly the latter category which enjoys the benefits of the increases 

bandwidth and decreased latency associated with a fiber optic connection. Video on demand-

services, online gaming, gambling and peer-to-peer file sharing are just a few examples of 

entertainment applications whose quality increases in proportion to bandwidth. On the 

productivity side, applications such as online job-searching, e-mail and teleconferencing are 

arguably less prone to increase in quality as connections are enhanced. Continuing along this 

line of reason, a possible explanation is that increased availability of high-speed internet has 

mainly boosted internet applications which are substitutes rather than compliments to labor, 

giving rise to an increased demand for leisure. This is a highly disputable statement, but it is 

nonetheless very likely that entertainment applications are universally consumed whereas the 

domestic use of “productive” applications is limited to a select few and highly dependent on 

one’s occupation, education and IT-literacy.  

 

7 Conclusion 

Our results weakly support the consensus surrounding the positive effect of IT on firm 

productivity, expressed in our study as the positive effect on employment associated with 

increased fiber coverage among workplaces. This effect is most evident in our IV model, 

although with varying degrees of significance. The effect fluctuates and even reverses across 

subsamples and model specifications, possibly due to the small sample employed. 

What is difficult to reconcile with previous research is the observed negative effect 

associated with fiber coverage among households. While our instrumental variable approach 

does not provide conclusive support of the negative effect of fiber coverage among households 

observed in our fixed effects regression, presumably due to a weak set of instruments and/or 
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too few observations, the possibility of such effects should not be dismissed. As studies such 

as Kolko (2012) have not separated household and workplace coverage, our results do not 

directly contradict previous results. They do however pose an interesting set of questions.  

Methodological issues aside, speculating around why a negative effect might arise is 

not difficult. As the cost of fiber decreases, the technology is likely to be adopted by consumers 

to whom high speed internet have a low or even negative marginal productivity in terms of 

employment. In a broader perspective, we are facing difficult questions surrounding the 

economic effects of total internet diffusion after the initial broadband honeymoon is over. 

As for future research topics, an alternative identification strategy and/or more data is 

needed in order to provide more robust results. Our approach does not control for the possibility 

that there is some time-varying variable affecting both changes in fiber coverage and 

employment, observable or not.  
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9 Appendix 

9.1 TSLS-estimations, first stage STATA print-outs 

 

                                                                              

                      topo_var

Included instruments: L4.ln_pop L4.roads_pop L4.ln_inc L4.edu topo_stdev

                                                                              

       _cons    -1.642369   1.581761    -1.04   0.300    -4.755926    1.471188

    topo_var     6.93e-06   4.07e-06     1.70   0.090    -1.08e-06    .0000149

  topo_stdev    -.0015026   .0008001    -1.88   0.061    -.0030775    .0000724

              

         L4.     .0155951   .2401142     0.06   0.948    -.4570486    .4882388

         edu  

              

         L4.     .1257182   .1302477     0.97   0.335    -.1306629    .3820993

      ln_inc  

              

         L4.     .0017074   .0011327     1.51   0.133    -.0005222    .0039369

   roads_pop  

              

         L4.      .036475   .0138476     2.63   0.009     .0092172    .0637328

      ln_pop  

                                                                              

     fh_diff        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

Residual SS             =  7.535958009                Root MSE      =    .1635

Total (uncentered) SS   =  23.23575931                Uncentered R2 =   0.6757

Total (centered) SS     =  8.937947542                Centered R2   =   0.1569

                                                      Prob > F      =   0.0000

                                                      F(  6,   282) =     8.74

                                                      Number of obs =      289

Statistics consistent for homoskedasticity only

Estimates efficient for homoskedasticity only

              

OLS estimation

First-stage regression of fh_diff:

                       

First-stage regressions

. ivreg2 emp_diff (fh_diff fw_diff = topo_stdev topo_var) l4.ln_pop l4.roads_pop l4.ln_inc l4.edu, first

                                                                              

                      topo_var

Included instruments: fw_diff L4.ln_pop L4.roads_pop L4.ln_inc L4.edu topo_stdev

                                                                              

       _cons     1.228106   .5680665     2.16   0.031     .1099001    2.346312

    topo_var     8.18e-07   1.46e-06     0.56   0.575    -2.05e-06    3.69e-06

  topo_stdev     -.000467   .0002864    -1.63   0.104    -.0010308    .0000968

              

         L4.     -.043145    .085673    -0.50   0.615    -.2117874    .1254973

         edu  

              

         L4.    -.1078641   .0467693    -2.31   0.022    -.1999268   -.0158014

      ln_inc  

              

         L4.     .0004995    .000405     1.23   0.218    -.0002977    .0012968

   roads_pop  

              

         L4.     .0106618    .004975     2.14   0.033     .0008688    .0204547

      ln_pop  

              

     fw_diff     1.178739   .0267988    43.98   0.000     1.125987    1.231491

                                                                              

     fh_diff        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

Residual SS             =   .955746028                Root MSE      =   .05832

Total (uncentered) SS   =  23.23575931                Uncentered R2 =   0.9589

Total (centered) SS     =  8.937947542                Centered R2   =   0.8931

                                                      Prob > F      =   0.0000

                                                      F(  7,   281) =   335.27

                                                      Number of obs =      289

Statistics consistent for homoskedasticity only

Estimates efficient for homoskedasticity only

              

OLS estimation

First-stage regression of fh_diff:

                       

First-stage regressions

. ivreg2 emp_diff (fh_diff = topo_stdev topo_var) fw_diff l4.ln_pop l4.roads_pop l4.ln_inc l4.edu, first
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                      topo_var

Included instruments: L4.ln_pop L4.roads_pop L4.ln_inc L4.edu topo_stdev

                                                                              

       _cons    -1.642369   1.581761    -1.04   0.300    -4.755926    1.471188

    topo_var     6.93e-06   4.07e-06     1.70   0.090    -1.08e-06    .0000149

  topo_stdev    -.0015026   .0008001    -1.88   0.061    -.0030775    .0000724

              

         L4.     .0155951   .2401142     0.06   0.948    -.4570486    .4882388

         edu  

              

         L4.     .1257182   .1302477     0.97   0.335    -.1306629    .3820993

      ln_inc  

              

         L4.     .0017074   .0011327     1.51   0.133    -.0005222    .0039369

   roads_pop  

              

         L4.      .036475   .0138476     2.63   0.009     .0092172    .0637328

      ln_pop  

                                                                              

     fh_diff        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

Residual SS             =  7.535958009                Root MSE      =    .1635

Total (uncentered) SS   =  23.23575931                Uncentered R2 =   0.6757

Total (centered) SS     =  8.937947542                Centered R2   =   0.1569

                                                      Prob > F      =   0.0000

                                                      F(  6,   282) =     8.74

                                                      Number of obs =      289

Statistics consistent for homoskedasticity only

Estimates efficient for homoskedasticity only

              

OLS estimation

First-stage regression of fh_diff:

                       

First-stage regressions

. ivreg2 emp_diff (fh_diff = topo_stdev topo_var) l4.ln_pop l4.roads_pop l4.ln_inc l4.edu, first

                                                                              

                      topo_var

Included instruments: L4.ln_pop L4.roads_pop L4.ln_inc L4.edu topo_stdev

                                                                              

       _cons    -2.435209   1.253932    -1.94   0.053    -4.903464    .0330454

    topo_var     5.18e-06   3.23e-06     1.61   0.109    -1.17e-06    .0000115

  topo_stdev    -.0008785   .0006343    -1.39   0.167    -.0021271      .00037

              

         L4.     .0498331   .1903492     0.26   0.794    -.3248525    .4245187

         edu  

              

         L4.     .1981629   .1032531     1.92   0.056    -.0050818    .4014076

      ln_inc  

              

         L4.     .0010247   .0008979     1.14   0.255    -.0007427    .0027922

   roads_pop  

              

         L4.     .0218991   .0109776     1.99   0.047     .0002906    .0435075

      ln_pop  

                                                                              

     fw_diff        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

Residual SS             =  4.735925113                Root MSE      =    .1296

Total (uncentered) SS   =  15.99660603                Uncentered R2 =   0.7039

Total (centered) SS     =  5.631396369                Centered R2   =   0.1590

                                                      Prob > F      =   0.0000

                                                      F(  6,   282) =     8.89

                                                      Number of obs =      289

Statistics consistent for homoskedasticity only

Estimates efficient for homoskedasticity only

              

OLS estimation

First-stage regression of fw_diff:

                       

First-stage regressions

. ivreg2 emp_diff (fw_diff = topo_stdev topo_var) l4.ln_pop l4.roads_pop l4.ln_inc l4.edu, first
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                      topo_var

Included instruments: ln_pop_diff L4.roads_pop inc_diff edu_diff topo_stdev

                                                                              

       _cons     .2404599   .0537424     4.47   0.000     .1346728    .3462471

    topo_var     5.48e-06   4.10e-06     1.34   0.183    -2.60e-06    .0000135

  topo_stdev    -.0012427   .0008011    -1.55   0.122    -.0028197    .0003343

    edu_diff    -.2397411   1.424854    -0.17   0.867    -3.044441    2.564959

    inc_diff    -.1245283   .4106107    -0.30   0.762    -.9327794    .6837227

              

         L4.     .0033343   .0010771     3.10   0.002      .001214    .0054546

   roads_pop  

              

 ln_pop_diff     .4049197   .4089079     0.99   0.323    -.3999795    1.209819

                                                                              

     fh_diff        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

Residual SS             =  7.850216656                Root MSE      =    .1668

Total (uncentered) SS   =  23.23575931                Uncentered R2 =   0.6621

Total (centered) SS     =  8.937947542                Centered R2   =   0.1217

                                                      Prob > F      =   0.0000

                                                      F(  6,   282) =     6.51

                                                      Number of obs =      289

Statistics consistent for homoskedasticity only

Estimates efficient for homoskedasticity only

              

OLS estimation

First-stage regression of fh_diff:

                       

First-stage regressions

. ivreg2 emp_diff (fh_diff fw_diff = topo_stdev topo_var) ln_pop_diff l4.roads_pop inc_diff edu_diff, first

                                                                              

                      topo_stdev topo_var

Included instruments: fw_diff ln_pop_diff L4.roads_pop inc_diff edu_diff

                                                                              

       _cons     .0270241   .0196214     1.38   0.170    -.0115994    .0656477

    topo_var    -5.26e-07   1.46e-06    -0.36   0.718    -3.40e-06    2.34e-06

  topo_stdev    -.0001473   .0002846    -0.52   0.605    -.0007076     .000413

    edu_diff    -.7632073   .5044868    -1.51   0.131     -1.75626    .2298458

    inc_diff     .0309501   .1453842     0.21   0.832    -.2552302    .3171304

              

         L4.    -.0001382   .0003892    -0.36   0.723    -.0009044    .0006279

   roads_pop  

              

 ln_pop_diff      .338816   .1447469     2.34   0.020     .0538901    .6237418

     fw_diff     1.171609   .0263983    44.38   0.000     1.119645    1.223572

                                                                              

     fh_diff        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

Residual SS             =  .9800771016                Root MSE      =   .05906

Total (uncentered) SS   =  23.23575931                Uncentered R2 =   0.9578

Total (centered) SS     =  8.937947542                Centered R2   =   0.8903

                                                      Prob > F      =   0.0000

                                                      F(  7,   281) =   325.95

                                                      Number of obs =      289

Statistics consistent for homoskedasticity only

Estimates efficient for homoskedasticity only

              

OLS estimation

First-stage regression of fh_diff:

                       

First-stage regressions

. ivreg2 emp_diff (fh_diff = topo_stdev topo_var) fw_diff ln_pop_diff l4.roads_pop inc_diff edu_diff, first
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                      topo_var

Included instruments: ln_pop_diff inc_diff edu_diff L4.roads_pop topo_stdev

                                                                              

       _cons     .2404599   .0537424     4.47   0.000     .1346728    .3462471

    topo_var     5.48e-06   4.10e-06     1.34   0.183    -2.60e-06    .0000135

  topo_stdev    -.0012427   .0008011    -1.55   0.122    -.0028197    .0003343

              

         L4.     .0033343   .0010771     3.10   0.002      .001214    .0054546

   roads_pop  

              

    edu_diff    -.2397411   1.424854    -0.17   0.867    -3.044441    2.564959

    inc_diff    -.1245283   .4106107    -0.30   0.762    -.9327794    .6837227

 ln_pop_diff     .4049197   .4089079     0.99   0.323    -.3999795    1.209819

                                                                              

     fh_diff        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

Residual SS             =  7.850216656                Root MSE      =    .1668

Total (uncentered) SS   =  23.23575931                Uncentered R2 =   0.6621

Total (centered) SS     =  8.937947542                Centered R2   =   0.1217

                                                      Prob > F      =   0.0000

                                                      F(  6,   282) =     6.51

                                                      Number of obs =      289

Statistics consistent for homoskedasticity only

Estimates efficient for homoskedasticity only

              

OLS estimation

First-stage regression of fh_diff:

                       

First-stage regressions

. ivreg2 emp_diff (fh_diff = topo_stdev topo_var) ln_pop_diff inc_diff edu_diff l4.roads_pop, first

                                                                              

                      topo_var

Included instruments: ln_pop_diff inc_diff edu_diff L4.roads_pop topo_stdev

                                                                              

       _cons     .1821733   .0429118     4.25   0.000     .0977053    .2666413

    topo_var     5.12e-06   3.27e-06     1.56   0.119    -1.32e-06    .0000116

  topo_stdev     -.000935   .0006397    -1.46   0.145    -.0021941    .0003242

              

         L4.     .0029639   .0008601     3.45   0.001     .0012709    .0046568

   roads_pop  

              

    edu_diff     .4467928   1.137705     0.39   0.695     -1.79268    2.686266

    inc_diff    -.1327051    .327861    -0.40   0.686    -.7780705    .5126603

 ln_pop_diff     .0564213   .3265013     0.17   0.863    -.5862678    .6991105

                                                                              

     fw_diff        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

Residual SS             =  5.004958943                Root MSE      =    .1332

Total (uncentered) SS   =  15.99660603                Uncentered R2 =   0.6871

Total (centered) SS     =  5.631396369                Centered R2   =   0.1112

                                                      Prob > F      =   0.0000

                                                      F(  6,   282) =     5.88

                                                      Number of obs =      289

Statistics consistent for homoskedasticity only

Estimates efficient for homoskedasticity only

              

OLS estimation

First-stage regression of fw_diff:

                       

First-stage regressions

. ivreg2 emp_diff (fw_diff = topo_stdev topo_var) ln_pop_diff inc_diff edu_diff l4.roads_pop, first
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9.2 Python script to obtain municipal elevation profiles 

import csv 

import urllib.request 

from xml.etree import ElementTree as ET 

 

COORD_BASE_URL = "http://nominatim.openstreetmap.org/search/se" 

ELEVATION_BASE_URL = "http://maps.googleapis.com/maps/api/elevation/xml" 

 

def CsvOutput(url,mun_query): 

    xml_string = urllib.request.urlopen(url).read() 

    xml = ET.fromstring(xml_string) 

    mun_list=[] 

    mun_list.append(str(mun_query).strip("[]")) 

    for e in xml.iter('elevation'): 

        elev = ET.tostring(e, method="text", encoding='utf-8') 

        mun_list.append(elev) 

    return mun_list 

 

def GetElevation(coords,mun_query): 

    e=0 

    i=1 

    l = [] 

    while i < 5: 

        first = coords.find('"',e) 

        last = coords.find('"',first+1) 

        l.append(coords[first+1:last-1]) 

        e=last+1 

        i=i+1 

    elevation_url = ELEVATION_BASE_URL + "?path=" + str(l[0]).strip('[]') + "," + 

str(l[2]).strip('[]') + "|" + str(l[1]).strip('[]') + "," + str(l[3]).strip('[]') + 

"&samples=200&sensor=false" 

    print(elevation_url) 

    return CsvOutput(elevation_url,mun_query) 

     

 

def GetCoords(mun_query): 

    url = COORD_BASE_URL + '?q=' + str(mun_query).strip('[]') + '&format=json' 

    json = urllib.request.urlopen(url).read() 

    jsonstr = str(json) 

    begin = jsonstr.find('relation') 

    end = jsonstr.find('administrative') 

    if begin == -1: 

        return None 

    else: 

        bb_long = jsonstr[begin:end] 

        display_name = bb_long[bb_long.find("display_name"):] 

        print(display_name) 

        bb_short = 

bb_long[bb_long.find('boundingbox')+12:bb_long.find('boundingbox')+93] 

        return GetElevation(bb_short,mun_query) 

 

data = [] 

with open("municipalities.csv", 'r', newline='') as csvinput: 

    munreader = csv.reader(csvinput, dialect='excel') 

    for row in munreader: 

        print(row) 

        elevation_list = GetCoords(row) 

        with open("output200.csv", 'a', newline='') as csvout: 

            wrtr = csv.writer(csvout, delimiter=';', dialect='excel') 

            wrtr.writerow(elevation_list) 

 


