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Abstract

The Next to Minimal Supersymmetric Standard Model (NMSSM) allows
a CP violating phase at tree level in the Higgs sector. This CP violation
will introduce new mixing between the neutral Higgs states and give rise to
changes in the mass spectrum and couplings. We investigate these effects in
light of the newly discovered Higgs boson, as its measured properties provides
new limits on the Higgs sector. We try to impose these new limits and, in
particular, investigate the apparent excess in the vy channel. We also have
a small discussion about naturalness in the choice of parameters.



1 Introduction

With the recent discovery of a Higgs boson [1] [2] by the ATLAS and the CMS collabo-
ration the final missing piece of the Standard Model of particle physics might soon be in
place. The Standard Model (SM) on the other hand is not the final answer, even if the
inclusion of gravity is ignored, as there are both experimental results like dark matter
which are not included and theoretical problems within the theory. Still the discovery is
of great interest as the properties of the found Higgs will put more constraints on beyond
the standard model physics. In addition the measured Higgs shows an interesting excess
in the decay Higgs going to two photons, although the errors are too large to confirm
anything.

One way of extending the standard model is by making it supersymmetric. Super-
symmetry [3], [4], [5] relates fermions and bosons and thus one needs to introduce new
bosons corresponding to the known fermions and new fermions corresponding to the
bosons. As of now no such particle has been discovered but their presence might still
be observable as they provide additional intermediate states in SM processes which can
alter for example decay processes and cross sections. More directly one needs to intro-
duce new Higgs bosons to provide mass to all particles so the measured Higgs boson can
be a mixture of these states and thus have different properties from the standard model
Higgs.

Supersymmmetry is introduced for a number of reasons. The main one is the hierarchy
problem where, in the SM, the loop corrections to the Higgs mass gives quadratic terms
in the cutoff scale typically at the GUT or Planck scale. Supersymmetry solves this
issue as boson and fermion loops come with different sign and the contributions cancel
each other. Amongst other benefits, there is a cold dark matter candidate if the theory
preserves R-parity, the additional particles can provide unification of the different gauge
couplings at the GUT scale and supersymmetry is also a necessary ingredient in several
other extensions such as string theory.

The minimal supersymmetric extension of the standard model (MSSM) is made by ex-
tending all SM fields into superfields, which include both fermionic and bosonic degrees
of freedom, thereby representing both the ordinary particles and their new supersym-
metric partners. One also has to include an additional Higgs doublet. This is necessary
as in a supersymmetric theory the same Higgs doublet cannot provide mass to, for exam-
ple, both the up and down quarks and therefore provides the smallest extension which
includes all of the SM. Even if we ignore the breaking mechanism of Supersymmetry,
which is necessary as no supersymmmetric partner have yet been discovered, the MSSM
still has problems. Among them is the so called p-problem which comes from the u-
parameter which is not determined by supersymmetry breaking and that couples the
two Higgs doublets in the superpotential. This parameter has the dimension of mass
and can in principle be of the order of the Planck mass which would require large can-
cellations with soft supersymmetry breaking parameters. Furthermore the Higgs sector
is very restricted and at tree level the mass of the lightest Higgs is less than the Z boson
mass. S0 to reach a mass of around 125 GeV, significant loop corrections are required.
Although this is not entirely impossible, large amounts of fine tuning of the available



parameters is necessary.

The Next to Minimal SuperSymmetric Model (NMSSM) on the other hand can solve
the p-problem. By introducing a new scalar singlet that couples to the two Higgs dou-
blets and giving this field a Vacuum expectation Value (VeV) during the supersymmetry
breaking one can arrive at an effective p parameter of the right order. It also has several
other advantages. One example is that the Higgs sector is less restricted and a higher
Higgs mass is more easily achieved. In addition, of interest to us is that it allows for CP
violation at tree level compared to the MSSM where it is only possible at 1-loop level.

In the CP conserving case the addition of this new singlet gives rise to one additional
CP even and one CP odd state compared to the MSSM. The masses of these will depend
on new parameters of the NMSSM which are not determined by the vacuum conditions
of electroweak symmetry breaking and thus introduces a new mass scale to the Higgs
sector. This leads to a change in the mass relations from the MSSM as the Higgs states
mix. The CP violation will provide an additional mixing of the Higgs states so no clear
CP states exist, and give rise to additional changes in the Higgs masses, couplings to
other particles etc.

For analyzing the NMSSM we first use the Sarah [9] [10] [11] version 3.2.0 program for
an implementation of the CP violating NMSSM. Using this model we then used SPheno
[12] [13] version 3.2.2 to get the phenomenology for different choices of input parameters.
Finally we also used HiggsBounds [14] [15] [16] version 4.0.0 to get constraints on the
Higgs sector.

This thesis is structured as follows. In section 2 we make an introduction to super-
symmetry. In section 3 we introduce the NMSSM, give some relevant properties of the
Higgs sector and how to achieve CP violation at tree level. In section 4 we discuss
the scanned parameter space and discuss the constraints we impose from experiments
and from naturalness. In section 5 we present the results from the different scans we
performed. The summary and conclusions are in section 6.

2 The basics of supersymmetry

Supersymmetry provides an interesting theory to study and can be approached from
two different viewpoints (for a full review of supersymmetry, including more references
to the original literature, see for example [6]). First it provides a solution to some of
the remaining issues of the standard model as already mentioned in the introduction,
on the other hand it can be seen as an extension of the spacetime symmetries of special
relativity. Here, as we focus on the Higgs, we will begin with the quadratically divergent
loop contributions to the Higgs mass, the so called hierarchy problem in the standard
model.

2.1 SM and the Hierarchy problem

Before we move on to this we begin with a short reminder of the SM and what must be
included in a supersymmetric theory consistent with experiments. The SM is a gauge



theory, that is we obtain interactions of the fields by demanding that the theory is
invariant under a local gauge transformation. As the transformation is local a derivative
acting on a field will not be invariant under this gauge transformation and the derivatives
are therefore replaced with a covariant derivative of the form

Vi =0.+gA, (1)

Here the new A, is needed to make the derivative invariant under the gauge trans-
formation. From a physical standpoint this new term acting on a field represents an
interaction with a gauge field A, with a coupling strength g. The SM is invariant under
the combination of three gauge groups on the form

U(l)y ® SU(2), ® SU(3)c (2)

and the fields carry different charges under these groups depending on how they interact
with them. Here both quarks and leptons carry weak hypercharge (Y), while colour
charge (C) is only carried by quarks. The weak interaction (L) on the other hand is a
bit different as it only interacts with the left handed components so we must split the
left and right handed components as

Q= (si) , ugr, dg, L= (:ﬁ) , €R (3)

and the same for the second and third generation of quarks and leptons. We did not
include any vg as, for simplicity, we will treat the neutrinos as massless.

The observed W+ and Z bosons both have mass which is not directly possible in
a gauge theory as mass terms would violate the gauge symmetry. This electroweak
symmetry breaking is done via the Higgs mechanism where a new field is introduced
which has weak charge and hypercharge. With a potential with a non zero minimum
means this field will have a natural Vacuum expectation Value (VeV). As the vacuum
is no longer symmetric under the U(1)y ® SU(2), transformations the symmetry is
said to be spontaneously broken. By the Goldstone theorem any broken continuous
symmetry will lead to massless particles known as Goldstone bosons, a total of 3 for
U(1)y ® SU(2), breaking. As the broken symmetries are gauge symmetries the gauge
fields obtain mass terms in terms of the VeV. The gauge fields mix with the Goldstone
bosons which becomes the longitudinal polarisations of the now massive W* and Z
bosons. In addition one combination of the gauge fields, namely the photon, is still
massless.

The Higgs mechanism can also generate masses for the fermions which cannot have
a mass term without violating the SU(2), symmetry. Excitations from this VeV will
constitute the final particle of the SM, the Higgs boson. As the VeV part of the field
will be used to generate mass it will couple to particles proportional to their mass.
Although the SM explains almost all that we know in particle physics it still has a few
remaining problems and, as mentioned earlier, the hierarchy problem is a relevant one
for supersymmetry.



The hierarchy problem is why does the Higgs boson obtain a mass so much lower
than the Planck mass. For a fermion Yukawa term of the form —AsH f f we get a loop
contribution to the Higgs mass as

A 2
Am?2, = — |87J;|2 A%y + log — term (4)

where Ayy is the momentum cutoff scale used to regulate the loop integral. The value of
this cutoff can be of order of the Planck mass which generates a correction 30 orders of
magnitude larger than the observed mass. The cutoff can be lower but then one needs to
introduce new physics at this scale to account for the cutoff. For other heavy particles,
if there existed a heavy scalar S, introduced perhaps to solve some of the remaining
problems, it whould have a coupling to the Higgs field of the form —Ag|H|?|S|* which
would generate a mass correction on the form

2
Am?3, = |1)€\;712 (A?]V —2meIn (Apy/ms) + .. ) (5)
which also have the same diverging terms.

To get the low mass for the observed Higgs boson all the large contributions must
cancel almost perfectly. There are also Higgs theories where the Higgs is not a funda-
mental particle and therefore can avoid this issue, but otherwise we have to cancel the
contributions somehow. Such a cancellation seems very unnatural for parameters that
do not need to be related in any way so a convenient way around this is by invoking
a symmetry. In particular we want a symmetry that demands the terms to cancel ex-
actly. The different signs between the fermion and boson contributions suggests that a
symmetry relating bosons and fermions might be the answer.

Such a symmetry is called supersymmetry and it does not only provide a reasonable
way to cancel the quadratic Ayy terms, in fact they must always cancel exactly, even
for higher order contributions. A symmetry that relates bosons to fermions will, as
mentioned previously, have to be related to the spacetime symmetry as they transform
different under Lorentz transformations. We will return to this later but first we begin
by regarding an operator that transforms fermions to bosons.

2.2 A supersymmetric theory

In writing down supersymmetric theories we will use the two-component Weyl spinor
notation, as summarized in the Appendix.

If an operator Q generates the transformation between fermionic and bosonic states
the operator must itself carry spin, in the simplest case 1/2. Then the operator will
have left handed components (), and the hermitian conjugate will be the right handed
component. Now these objects must satisfy anticommutation relations as follows

{Qaa QTB} = JZBP”
{Qa, Qs} ={QL Q}} =0



Where the P, is a conserved 4-vector quantity. By the Coleman-Mandula theorem [7]
the choice for P, is greatly restricted and in realistic cases it has to be the ordinary 4-
momentum. These operators on the other hand commute with the squared mass operator
—P,P" and the generators of the gauge transformations. Therefore the new particles
must have the same mass and the same electric, weak isospin and colour charges. This
means that supersymmetry must be broken and we will come back to that a bit later,
first we see how to form a supersymmetric field theory.

The simplest case is a free field theory containing a two component Weyl fermion ).
By supersymmetry we must also include a complex scalar field as its superpartner. For
free fields the respective contributions to the Lagrangian density are given by

ﬁscalar = _au¢*a,u¢ ﬁfermion = 2¢T5“au¢ (7)

Now a supersymmetry transformation should turn the scalar field into a fermion field
and the simplest possibility is

i =ep 3¢ =€yl (8)

where the € is an infinitesimal anticommutating two component Weyl fermion, with
dimension [mass]~'/?, that parametrizes the supersymmetry transformation. This leads
to a change in the scalar part of the Lagrangian as

6£sca1ar = —68“1/13;@* - eTanTau(b (9)
If we want this to cancel with the change in the fermion part we must have
0o = —i(0"e")a0ud  OUL = —i(ea")ad,o" (10)
This leads to a change

O Lermion = —€0"0”0,10,0" + 2/1T6”0“6T81,8u¢* (11)

which can be rewritten using identities for the Pauli matrices as

6 Ltermion = €0"10,¢* + '0")1 0,6 — 0, (ed”d"0,¢" + e d* + eW)T@“gb) (12)

Now the first terms cancel and the second term is a total derivative so the action
remains unchanged by this transformation. In addition we get the commutator for two
different supersymmetry transformations parametrized by €; and €, to be

(0, 0e, — 0ey0c, ) = i(—ela“eg + 620“61)3%25 (13)

So the commutator gives back the derivative of the field. As the operator —id, corre-
sponds to the generator of spacetime translations P, we have the same structure as the
commutation relation in eq. 6 and the correct form for the commutator can be derived
from this relation. But first there is a small problem. For the fermion field we get



(0¢;0cy — Oey0ey )We = —i(a“ei)aegauw + i(a“eg)aq@“w (14)

This can be rewritten using the Fierz identity and the result is
(0e0ey = 0300 )00 = i(—€10% €l + €20"€))0the + i€1a€45" 0t + 206100, (15)

The first term is the desired one but we also get two additional terms. These vanish
on shell, when the classical equation of motion o#9,1 = 0 are satisfied. However in a
quantum theory, where one can have off-shell solutions, the equations of motion are not
satisfied. In order to solve this an auxiliary field F with no kinetic term is introduced.
It has dimension of [mass]? and a potential term

Eauxiliary =I"F (16)

This gives the equations of motion F' = F* = 0 but by introducing supersymmetry
transformations as

OF = —ielghonh  OF* = —idahiate (17)

and in addition adding an extra term to the transformation of ¥ and '

0o = _Z.(O-MET)ocaugb + €l 61/}; = _i(eau)daugb*EdF (18)

we arrive at what we want, that the contributions cancel up to a total derivative term.
Finally the equation

(0c,0e, — 0ey0e) X = i(—€10% €l + €x0™€])D, X (19)

holds for all X € {¢, ¢*, v, 9!, F, F*} from which it can be shown that the algebra for
the supersymmmetry generators is, up to a multiplicative factor, as in eq. 6.

2.3 Chiral interactions

For a proper supersymmetric theory one also needs to introduce interactions, both gauge
interactions and non gauge couplings. We begin with the non gauge interactions and try
to introduce a potential term to a model similar to the one above. For interactions to
be interesting we introduce a number ¢ of different supersymmmetric pairs. So for each
fermion field v¥; we have a corresponding scalar field ¢; with an auxiliary field F; as in
the above section. The most general renormalizable potential terms we can write are

Lins = (= 5W sty + W'Fi + 2" FiFy + ce) = U (20)

where W%, W 29 and U are polynomials in the scalar fields ¢, ¢* of degree 1, 2, 0 and
4 respectively. Since the free terms are invariant under supersymmetry transformations
by themselves the interaction terms must also be invariant. This eliminates the U term
and the 2% as it turns out that nothing can cancel the change in the Lagrangian from



these terms under a supersymmetry transformation. The remaining terms, proportional
to W4 and W*¢, will be related and therefore similar names have been introduced. For
the moment we will assume no relation between these and instead derive the necessary
relation.

We divide the variations into two parts and demand that they cancel separately. First
we consider the case where the variation acts on the IW;; and we get

16Wii 16w
T2 o0 () (Dihs) = 5 567

The contribution (e )(1;1);) does not occur anywhere else and the only way to have
them cancel is via the Fierz identity

5£int’oanij = < (GT%D(%%) + C'C'> (21)

(€r) (Vit)y) + (ea) (Vyn) + (edby) (Pts) = 0 (22)

Thus the ‘%: must be entirely symmetric under interchange of ¢, 7, k. In addition, for

the term (e )(1;1);) there is no such relation and the W% must thus not contain ¢*.
In other words, the W% must be a holomorphic function of ¢. So now we have

W = M 4y, (23)
In fact it is convenient to write this term as

) 52
i = 24
W= 5000, (24

where we have introduced the so called superpotential W

W= SMY60; + 60,01 (25)

which is not an ordinary potential, it is a holomorphic function in the scalar fields ¢.
From the variational part that contains a spacetime derivative we have

S Lintlo = (IW90,0,00"e" + iW O 1hiote" + c.c.) (26)
this will turn out to be a total spacetime derivative if
]
W' = 27
50, (27)

and so the relation between the W and W# is established in terms of the superpotential.
In fact the superpotential does more than that. The new terms F;W*® and F;}W™ gives
the equations of motion for the F field as

E =W F =W, (28)

so the F terms in the ordinary potential can be entirely rewritten in terms of the super-
potential, in what is called an F-term.



2.4 Gauge interactions

We also need to incorporate gauge interactions in our picture. As the approach will
be fairly similar to the previous one we will mostly state the results with little or no
derivations. For a gauge field Aj where a runs over the adjoint representation of the
gauge group (a=1,....,8 for SU(3) 1, 2, 3 for SU(2) and 1 for U(1) ). We also need to
introduce the corresponding two component Weyl fermions A*. These will now transform
under the gauge transformations as

Al — A%+ 9, A"+ g f*CAD A (29)

A® = AT g fOAPAC (30)

where A parametrizes an infinitesimal gauge transformation, g is the coupling strength
and fe¢ are the structure constants of the gauge group. As before we need an auxil-
iary field D® with the same gauge transformation as the A\*, dimension [mass]? and an
equation of motion D* = D* = 0. The Lagrangian is given by

1 1
Lomuge = =7 Fpu, P + NGV A+ 5 DD (31)

with the usual field strength
FS, = 0,A5 — 0,A% + gf " AL A, (32)
and covariant derivative of the \* as

VAT = G\ + gf P ALN (33)

The supersymmetric transformations are given by

a 1 - a a —
5AM = —E(ETO‘M)\ + )\T O-NE)
1
AL = —— Fo 4 ——e, D" 34
f< ekl + 75 (34)
§D" = %( — efg1V A + v, ATte)

and the supersymmetric transformations also satisfy

(0c,00y — 0y0c, ) X = i(—€10M €l + 30t )V . X (35)

for X € {F},, )%, A D D%} similar to the previous result, but with the covariant
derivative instead of the ordinary derivative.

We must finally introduce the gauge coupling together with the ¢ and v fields pre-
viously discussed. To do this we must change all the ordinary spacetime derivatives to
covariant ones



V. Xi = 0,X;, —igAiTHV X, (36)

for X; € {1y, ¢;, F;} where we let the fields transform under the gauge group in a
representation with the hermitian matrices (7°)} satisfying [T, T°] = i f**T*.

This couples the vector bosons to the fermions and scalars. The A\* and D® must also
have the corresponding couplings in order for the theory to be supersymmetric and the
terms turn out to be

Lestra = —V29(¢"T V)N — V2N ()T T¢) + g(¢*T"¢) D" (37)

Finally the supersymmetric transformations for the ¢, 1, and F' must also have covariant
derivatives and an additional term in the 0 F as

0p = e
5o = —i(0"e) oV .0 + € F (38)
OF = —ie'a"V yib; + V2g(T¢) et AT

and similar for the hermitian conjugates. As a final point the equations of motion for
the D field will now be

D" = —g(¢°T"¢) (39)

So similarly to the F field, which could be expressed in terms of the superpotential by
the so called F-term the D® can be expressed in the scalar fields which is called the
D-term.

2.5 Superfields

Now we have a fully functioning supersymmetric model but there is another approach
which is more close to special relativity. One can express a supersymmetric theory by
introducing new anticommutating coordinates 8¢, QL in addition to the z* spacetime co-
ordinates. Therefore we need to know a bit about anticommutating Grassman variables
7.

For a function in the 7 variable, using that n? = 0 we get that a Taylor expansion in
7 terminates

) = fo+ fin (40)
from this expansion derivatives of a function is simply
d
- = 41
dn (n) = h (41)

but more interesting, if we want to define integration in a way with similar properties
as the normal integral, such as integration by parts, one defines it as

10



/ Fn)dn = fi (42)

So integration and derivation are the same. For our case we need the new variables ¢ and

QL to be complex anticommutating two component spinors with dimension [mass]~'/2.
As they combine with the totally antisymmetric e,z
00 = 9a€a566 (43)

the squared terms are not zero but the higher order terms are. Thus a field S(a#, 0, 0")
over superspace can be expanded in the # and 6" with coefficients only depending on z*

S(z*,0,0") = a+0¢ + 0"\ 4+ 00b+ 0'0Tc + 076" 0v, + 070T0n + 001" + 00070Td (44)
In superspace we can define supersymmetry transformations by defining the operators

A e A :
Qo = i5ga (0"0M),0, Qf = ~i5pat
From this we can see that they fulfill the anticommutation relations required for a
supersymmetry transformation

+ (00")50,, (45)

5 Oty — 9540
{Qu, QL) = 20" 0,

A b A (46)

{Qaa QB} = {QQ?QB} =0

The supersymmetry transformation d. of a superfield S is defined in terms of the Q
as

1
V2
For the physical fields to be invariant under supersymmetry transformations some

constraints must be put upon them. First are the chiral superfields ® which can be
described by the so called chiral covariant derivatives given by

0 0
Dy=———i(0"0")40, Di=———+i(00"):0 48
aea ( ) 2 «a aeaT ( ) I ( )
Some algebra shows that these commute with the supersymmetry transformation d, so
the derivatives are covariant with respect to supersymmetry.

We can now define a chiral superfield & as satisfying

35S = (eQ + QNS (47)

Di® =0 (49)

This constraint can be solved and the solution can be written as

11



® = ¢ +i0'6"00,¢ + iee(ﬁmaﬂﬁw + 260y — %eema—#aﬁp + 00F (50)

where our naming of the variables ¢, ¥ and F' comes as, if one does the algebra, they
have the same properties and supersymmetry transformations as the corresponding fields
in the previous sections.

We also need to introduce the vector superfield V' which comes from imposing that
the field is real, that is V' = V*. This will lead to the following constraints on a general
superfield

CL:CL*, é“T :XT> C:b*, UMZU:, nT:CTa d=d" (51)
By redefining the fields

: 11
o = Ao — %(oﬂaﬂé)a, vu=Au d=5D+ ;9,0 (52)

we can also get the gauge fields with the same properties as in the previous section. The
vector field will be

V(2",0,0") =a + 0¢ + 0T¢" + 00b+ 0700" + 075104, + 0T0T0(\ — %aﬂaﬁ )+ 5
) 1 1
+ 099" (\' = 55"9,€) + 066'6" (5D + 50,0"a)

Now there are some additional fields, the a, £ and b fields. Fortunately one can do a
supergauge transformation to eliminate these new fields in the so called Wess-Zumino
gauge.

Just as we integrate a Lagrangian density over the entire spacetime we can construct
a superspace Lagrangian by also integrating over the superspace coordinates. To ensure
that the theory is supersymmetric one needs to form terms that are invariant under the
supersymmetry transformation.

For a vector field it turns out that the so called D-term

Vlp = / d*0d*0" v (2, 6,07 (54)

is invariant under supersymmetry transformations and thus is a valid term in a La-
grangian. Another way to form an invariant term is for a chiral field in a so called
F-term

] = / 420 = / 420420 5*(61) (55)

As a product of chiral superfields is a chiral superfield, any holomorphic function of
superfields must also be chiral. Thus we once again introduce the superpotential W but
now as a function of the chiral superfields ®. In addition if we form a vector superfield
from a chiral one as ®®* we can form an ordinary Lagrangian density as

12



L= [@'01] + [W(®)] (56)

If we put in the same superpotential as in eq. 25 but with a superfield ® instead of
the scalar field ¢ we obtain the same Lagrangian density.

We do not introduce the gauge interactions here, it requires a bit of extra work but
one obtains the same result as in the previous section. Instead the important idea is that
we can formulate the same theory in terms of superfields and a superpotential. Thus to
specify a supersymmetric theory we as usual need the field content, although this time
in terms of superfields and their charges under gauge groups. In addition the rest of the
physically allowed interactions can be expressed in terms of the superpotential.

2.6 Supersymmetry breaking and the MSSM

We know that supersymmetry cannot be an exact symmetry since the superpartners
must have the same mass and charges as the ordinary particles and no supersymmetric
partner has been found. To explain this some sort of breaking mechanism is needed to
make the supersymmetric partners too massive for detection. Usually supersymmetry is
broken by spontaneous symmetry breaking, just like the electroweak breaking, that is the
fundamental theory is supersymmetric but we get a vacuum state that is not. There are
many ways that supersymmetry can be broken, through so called F and D-term breaking,
through gauge and gravity mediated breaking. In most practical cases however we make
no assumptions how the supersymmetry is broken and simply parametrize the breaking
by the so called soft breaking terms

Loosi = — (%Ma)\“)\“ n %aiﬂ"f@qﬁj(pk + %b%@j F bl + c.c> —(m¥)ig"e  (57)

The terms consist of masses M, for the gauge fermions \, scalar squared masses b and
(m?), scalar couplings a”/* and finally so called tadpole couplings . These terms might
seem a bit arbitrary but a supersymmetric theory with these soft breaking terms will not
have quadratic divergences. In addition the different ways of generating supersymmetry
breaking will in most cases give terms of this form.

To see how a realistic supersymmetric theory looks like, we can use the Minimal
Supersymmetric Standard Model (MSSM) as an example. In this model we need to
specify superfields so that all the SM fields are included. First we have the gauge
superfields in Table 1. and the chiral superfields in Table 2. In these tables we have
introduced the naming convention for the supersymmetric particles (sparticles). The
supersymmetric partner field is usually indicated by a ~ on top. The scalar superpartners
are named by adding an ”s” before the ordinary particles name and for the fermionic
superpartners we end their name with ”-ino”.

In addition, just as the B and the three W bosons mix to the v, Z and W=, the
Higgsinos, winos and binos are mixed and the physical states are called charginos and
neutralinos.

13



Table 1: Gauge superfields (SF) in the MSSM and the corresponding ordinary and su-

’ Name ‘ SF ‘ Spm% ‘ Spin 1 ‘ SU(N) ‘
bino, B boson | B Aj U(1)
winos, W bosons | W | Ay, SU(2)
gluino, gluon i g SU(3)

persymmetric particles.

| Name | SF| Spin0 | Spinj; [(U(1)® SU2)®
squarks, quarks | @ (ﬂL,JL) (ur,dp) (%, 2,3)

( x 3 families ) | @ i, uly (—2,1,3)
d | dy dj (5.1.3)

sleptons, leptons | L | (v.er,) (v,er) (—3,2,1)
( %3 families ) | ¢é & el (1,1,1)
Higgs, Higgsinos | H, | (H,H°) | (H;,H?) (3,2,1)
Ay | (HO.Hy) | () (—1,2,1)

Table 2: The Chiral superfields in the MSSM, their charges under the gauge groups and
the corresponding ordinary and supersymmetric particles.

Apart from the supersymmetric partners the only extra bit compared to the standard
model is an additional Higgs doublet. It is necessary, as the superpotential must be a
holomorphic function in the superfields which prevents the use of both the H and H'
to generate the up and down quarks respectively as is done in the SM. Instead we need
two different Higgs fields to make up the mass terms without using complex conjugates.

Before we come to the superpotential we want to consider the so called R parity. In
the SM one has the lepton and baryon number for which no experimental violation have
been seen. In supersymmetric theories this is introduced in terms of matter parity

Py = (=1)*F0 (58)

which forbids terms that violate conservation of baryon and lepton number in the su-
perpotential. This gives the quarks and leptons a matter parity of 1 and the Higgs fields
matter parity of -1. For a supersymmetric theory we rewrite this in terms of R-parity
as

Pr = (_1)3(BfL)+23 (59)

9o

which is obtained by adding a term proportional to the spin ”s”. This is the same
as matter parity as the product of (—1)?* for all particles in a vertex must be +1 by
conservation of angular momentum. Using R-parity instead of matter parity shows the
difference between the ordinary and supersymmetric partners. Sparticles have an R-
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parity of —1 while ordinary particles all get +1. Thus R parity means that there can be
no mixing between the ordinary particles and the sparticles. In addition any interaction
vertex must involve an even number of sparticles. This has important phenomenological
consequences. First this means that we always produce an even number of sparticles
in collider experiments. In addition a single sparticle cannot decay into a state of only
ordinary particles which means any free sparticle that is not the lightest one must decay
into a final state with at least one particle being the lightest sparticle. In addition this
lightest sparticle (referred to as the LSP) must be stable and such provides a candidate
for dark matter. As the name Minimal suggests, R-patrity is always assumed to hold in
the MSSM.

The superpotential for the MSSM (the neutrinos are assumed massless for simplicity)
is given by

Warssar = (4 (Q7)'el]) + y d'(Q" Y eHa) + yP &' (LY eHa) + [u(Hy eHa)] - (60)

where the index i and j runs over the 3 generations. The y matrices are dimensionless
couplings, with the diagonal part giving the fermion mass terms and the off diagonal
elements giving rise to the CKM mixing for quarks. In addition there is a term with the
two Higgs fields corresponding to the Higgs mass term of the SM. Finally supersymmetry
breaking is needed but unless a specific breaking scenario is considered it is introduced
via soft breaking terms as in eq. 57. We get a number of new interactions and the general
form of these new interactions can be seen in fig. 1. Of course the interacting particles
must carry correct charge for gaugino interactions and all of the usual quantum numbers
must be conserved.

In addition to the scalar interactions the extra Higgs doublet gives rise to several new
Higgs states. In total there are now 8 real degrees of freedom for the Higgs fields. As in
the SM three off these will end up as longitudinal components of the W* and Z bosons
but it now leaves a total of five Higgs fields remaining. Of these, two will be charged and
for the three uncharged, two will be scalar and one will be a pseudoscalar. The Higgs
sector will be the focus of the remaining paper but in our case it will be the NMSSM
which mainly differ from the MSSM by its two additional Higgs states.

3 CPV in the NMSSM

For the NMSSM (see [8] for a general introduction to the NMSSM) one wants to generate
the p-term in the Higgs potential dynamically. For that we will introduce a new Higgs
superfield S with no electric charge and a singlet under SU(2) and SU(3). This will
give rise to two additional Higgs states and as they mix with the MSSM Higgs states
they will alter their properties.

Here we use the Z3-symmetric version and extend the MSSM superpotential, with the
p-term set to 0, as

Wxnssy = Warssar + )\S’(ﬁgeﬁd) + §S3 (61)
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Figure 1: New interactions from the supersymmetric theory. For the Feynman diagrams
a solid line with a wavy line on top corresponds to the gauginos and the dotted
line to scalars, both Higgs fields and sfermions. Reading from top left we have:
the gauginos can interact with the ordinary gauge fields, the scalars can also
interact with the gauge fields and on the second row the gaugino can also
interact similar to a gauge boson but it turns a fermion to a scalar and finally
the sfermions and Higgs can have 3 and 4 scalar interactions.
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In addition supersymmetry must be broken and new supersymmetry breaking terms
must be introduced for the new singlet field S in the ordinary potential as

1
Vmssy = Vissu + m§|5|2 + ()\A)\S(ngﬂd) + gliA,.iS?’ + h.C.) (62)

The new A parameter will give rise to an effective u term as Av, where v, is the vacuum
expectation value for the new S field. The s term is necessary since without it the
superpotential would have a global U(1) Peccei-Quinn symmetry. This symmetry will
be broken when the S-field acquires a VeV and by the Goldstone theorem there whould be
a massless Perci-Quinn mode which has not been observed. Thus these two parameters
are the essential to the NMSSM. For the other supersymmetry breaking parameters we
use generic soft breaking terms.
This will give us the tree level Higgs potential as

ViiggsNnvssm = Vo + Vi + Vo g (63)

where

2 2
Vo = L(HLH?) + TH(HLH, P — | H{HyP)

Vi = IA\P|SPP(HIH, + HIHy) + [N H e Hy|? + |6?||S|* — (A" HEFeH, S + h.c.)

1
Viose = my HYH, +m3y HIHy +m3[S|* + (NANS(HL eHy) + gmAHS3 + h.c.)
(64)

In the Higgs sector of the MSSM, any possible complex phase in the Higgs sectors
parameters can be rotated away by redefining the fields and thus the MSSM must be
CP conserving at tree level. In the NMSSM this is not possible for the following reason.
The phase of Hl'eH, and S can be used to rotate away any complex phase in kA, and
AA, but there are still complex phases in A and x. These phases only enter as physical
parameters in the term Ax* so a phase ¢ = arg(Ax*) must be introduced.

There is also the possibility of having spontaneous CP violation in the Higgs sector by
having relative phases for the complex VeV of the Higgs fields. One of the phases, taken
to be vy, can be rotated away and the v, and v, have phases ¢, and ¢, respectively.
In the end, taking into account the so called tadpole equations (eq. 65 below), the
only independent CP violating parameter will enter as a linear combination of these as
I = Im(As*e?~29%), so one can still treat ¢ = Arg[Ax*] as the CP violating phase. In
addition there are several possibilities to introduce CP violation at 1-loop level, just as
in the MSSM, but the focus of this paper is on the tree-level CP-violation so we will not
look at what effects these forms of CP violation have.

As already mentioned the parameters of the Higgs potential cannot be chosen inde-
pendently of each other as the vacuum must have a stationary point at the VeV. These
conditions are called the tadpole equations and are given by
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2 2 2
+ A R
v, LT 92 va(v3 — v2) + %vd(vi + v?) — Evuvg =0

2 2 NE
Uymy — Ravqug 91 _ggQ Uu(vg — Uﬁ) + %vu(vg + v?) — Evdvg =0
)\ 2
vsmg — Ryvgvy + Rov? + %UD(UE +v?) + |k[*0? — Rugu,vs = 0 (65)

1
Lov,vs + 5%1}? =0

1
Lvgvs + §vdv§ =0

Lvgv, — Iﬁvg + Tvgu,vs =0

where we have the vacuum expectation values v? = v3 + v2, v, for the respective Higgs
fields and tanf = v, /vy. We also use the following shorthand for the real and imaginary
parts

R = Re(Ax*e!(®==205))
Ry = Re(AAye'@utos)) (66)
R, = Re(kA.e™?)

I = Im(Afﬁ*ei(‘z’“’?d’S))
I = Im(AA,e(@ut9s)) (67)
I, = Im(kA,e™s)

The last three tadpole conditions makes it possible, as previously mentioned, to elim-
inate two phases and express all the imaginary parts in terms of I. The other three
tadpole conditions can be used to eliminate three other parameters. In our study we
will solve for the R,, Ry (thus indirectly determine the A, and A,) and mj . The
remaining parameters cannot be removed and will not directly depend on others. Thus
we can solve for the physical properties such as the masses of the Higgs bosons in terms
of these parameters.

For the NMSSM Higgs sector, the additional S field gives an additional scalar and
pseudoscalar Higgs for a total of 3 scalars and 2 pseudoscalars in the CP conserving
case. In the CP violating case, the two types will be mixed and there are no clearly
defined CP states. The mass matrix for the neutral Higgs bosons will thus be

Ms Mcpy
68
<<MCPV)T Mps (68)
Where Mg is the 3 x 3 mass matrix for the scalars and Mpg the 2 X 2 mass matrix for
the pseudoscalars. In the CP conserving case these are the only terms present so they
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can be diagonalized separately. The CP violation introduces the Mgpy term, which
depends on the previously mentioned I = Im(\x*e®*~2%:) and is given by

T 0 —3ugsp
Mcpv = ? 0 —37]505 (69)
v, 4vsgeg

where sg = sin 8 and cg = cos 3. The other matrices are given by

m2cg + (R + %)% IA2vgv, — m%spes — Ravs — R;}? IA2vgvs — Ravy, — Ruyv?
Ms = INvgvy, — m%spcs — Ravs — R;)g m2sp + (R + %)% IA2v,0s — Ravg — Rvgv?
A2vgvs — Ryvy — Ry v? IAPv,vs — Ryvg — Rogv? 2|k|%v? + R#j”“ + Rvs
(70)
Moo — (2R\ + Rus)/sin (25) (Rx — Rus)v (71)
ps = (Ry — Ru,)v Ryv?sin (23)/(2v,) — 3R.vs + Rv?*sin (213)

Diagonalizing the CP-violating mass matrix gives 5 Higgs states with no definite CP
properties denoted hq, ..., hs with corresponding eigenvalues m%l, . .m%%. These are as
usual arranged in increasing order so h; is the lightest Higgs. If the lightest Higgs boson
is mostly pseudoscalar then it is possible that the discovered boson corresponds to the
next to lightest Higgs but otherwise the discovered boson should be the lightest one. In
the CP conserving case the tree level limit on the mass of the lightest CP even boson
will be increased to

22 sin2(26)) (72)

meWSSM < mQZ<Cos2(25) + R
1 2

compared to just the first term m?% cos?(23) for the MSSM. For the CP violating case this
limit will instead limit the lightest Higgs, without any constraints on its CP properties.
This comes about as the CP violation terms in the mass matrix are off diagonal and
symmetric, and such terms will decrease the lowest eigenvalue (and increase the highest).
For the remaining Higgs particles the change will vary from case to case. There are still
some limits to the modification as the diagonalization leaves the trace unchanged so the
sum of the masses squared will still remain unchanged by a CP violating term.

However, things might not be as convenient as first imagined. If we solve for R, and
R, using the tadpole equations one gets,

1 1 2 2
= ( — g Reav] + migou + A% JgrgQ va(vg = vg) + (AP (v + v§)> (73)
1/1 2 2 9
R = — (5 Roqva?—mdotemdy o2+ L2 (02 2) AP (024 2 (u2—0d) o P

(74)
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where we note that these parameters depend on the real part of R which changes with
the CP violating phase. This means that a change of phase cannot be done without
altering some other parameters which are not the explicit CP violating ones. For our
choice of free parameters, the change in the diagonal terms in the mass matrices will
cancel so the CP phase will still not change the masses directly at tree level.
The mass of the charged Higgs boson can also be solved for in these parameters and
one gets
mi. = miy, — [A*0*/2 + (2R + Rvg)v,/ sin (23) (75)

where once again the CP violating contributions cancel and the charged Higgs mass is
unaffected by a change in CP phase at tree level.

The implementation of the model is done through the SARAH and SPheno programs.
As a supersymmetric model only requires the particle content, gauge groups, superpo-
tential and the supersymmetry breaking terms, a supersymmetric model can be defined
rather easily. From this much work is required to derive the ordinary potential, calculate
the Feynman rules, derive and diagonalize mass matrices and rotate to mass eigenstates.
This is what Sarah does and a bit more. The program also calculates the masses to next
to leading order and the renormalization group equations at two loops. In addition,
among the many versions of output, it can output the analytical expressions derived in
terms of source code for SPheno. With this source code, if values for the parameters
are provided, either at a grand unified level or, as in this thesis, at a lower energy scale,
Spheno calculates the physical properties. The program solves the two loop renormaliza-
tion group equations numerically and all the masses of the supersymmetric particles are
calculated, including mixing, flavor structure and CP violation, up to one loop level. In
addition other measurable properties are then derived such as decay widths and branch-
ing ratios. SPheno also calculates changes in several low energy observables compared
to the SM such as b — sy decays and the anomalous magnetic moments.

4 Parameter space and constraints

For the Higgs sector in the CP conserving NMSSM there are six independent parameters
usually taken to be k, A\, Ay and A, from the Higgs potential and tang and v, the VeVs.
As the § field was introduced to solve the p-problem it is convenient to use pirr = Avg
instead of v,.

In addition, as mentioned before, we will also replace A, and Ay, which is necessary
in the CP violating case, with quu and m% from the Higgs potential. This is not usually
done, as the more commonly used approach, even in the CP conserving case, is to replace
them with a Higgs mass term such as my+. Instead we solve for A, and A, using m7,_
and m% as input in the tadpole conditions. As mentioned in the previous section this is
a convenient choice as it does not lead to a direct change of the Higgs masses but only
alters the mixing between them.

For the parameters that do not appear directly in the Higgs part of the potential,
we consider a universal Mgugy scale for the sfermion masses at the supersymmetry
breaking scale. So the corresponding mass matrices Mg, M|, etc. are diagonal and have
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all diagonal elements equal to Mgysy which we take to be 1 TeV. The gaugino masses
are taken to be related as in the constrained MSSM with unification at Mgy, thus we
use M7 = 100 GeV, My = 200 GeV and M3z = 800 GeV.

For the parameters that are varied, we input their values at the low energy scale
Q=120 GeV and the ranges are chosen as follows below. Note that A and k are given
real ranges and the CP violating phase is varied separately as we will also investigate
the CP conserving case for comparison.

tang € [1,60]

A €10,0.7]

K € [-0.7,0.7]

p € [100,1000] GeV

Ay = A, = A, € [—-5000,5000] GeV
m}; € [—0.5,10] TeV?

m% € [-10,10] TeV?

¢ = arg(Ax") € [0, 27]

The reasoning behind the choices are as follows. For A, x and tanf we demand
perturbativity up to the GUT scale and then the parameters have to be constrained
within these ranges [17]. In addition it is only the sign of the product Ax which is
important in the CP conserving case and in that case the sign is assigned to x. For the
1 parameter we have a lower bound from experimental limits on the Higgsino mass. The
upper bound is not a fixed one, but since one reason we introduced the NMSSM was to
allow a natural low p parameter we do not allow it to get too large as one needs more
fine tuning of the model with a larger u. For the different A parameters we want to in
part consider the m}' [18] scenario. The A; parameter describes the mixing between
the right and left handed top squarks which contributes to the Higgs mass at loop level.
The contribution to the Higgs mass has a maximum for A4, = v6Mgsysy, and similarly
for the other A’s. Furthermore, as we will see, the solutions will be unphysical at a
bit higher A so we include the full range of allowed A’s. The mj, and m% have no
direct limits on them. On the other hand, from a naturalness point of view, they are
supersymmetry breaking parameters which we assumed previously to be of the mass
scale of order TeV, so the masses should be at most a few TeV. The harder limit on
negative m%,u arises as other physical mass terms get a negative mass squared, and thus
we have not gotten any allowed point outside this range from SPheno (see the left plot
in fig. 2).

As mentioned above m3; and m% are not constrained by other considerations so
first we let them vary randomly whithin natural bounds of [~10,10] TeV? for these
parameters. The rest of the parameters was varied as above until we got 2000 accepted
points in SPheno. Looking at the actual available parameter space as shown in fig. 2
we see to the left that we do not get any accepted points for larger negative values of

m3;,. In addition m% , which in our case is solved for in the tadpole equation, is also
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Figure 2: Illustration of limits in the parameter space (see text for details). To the left
the accepted points in the m¥ , m% plane are shown. To the right the mj; as
a function of tans

a supersymmetry breaking parameter and from the figure we see that it often gets out
of the natural bounds of around 10 TeV?. Thus there might be some interest to also
examine a more constrained parameter set such that these derived masses also lies within
the natural bounds. From the tadpole equations (65) we get a relation between m3,
and m3; ,

2 24, 2 2 G+, o o 2
my, = tan3my + (tan 6—1)<T(vu—vd)+u ) (77)

From this we see that m%; will be larger than m#% by at least a factor of tan®s and

thus a natural constraint on m7;, still allows a larger than natural m% . In addition the
other terms are not insignificant for low m?%; and if we want mj; within a natural value
further constraints are needed on p and tang.

Constraining the parameter space is not obvious, if we want m%,d within its natural
bound one way is to limit the m%{u by a large amount. This on the other hand removes the
possibility of a large m%{u in those cases when tan?g is low. In addition the contribution
(tan*8 — 1)p* can easily give a large m%;, even with no mj . Therefore we leave the
above parameter choice alone in the first part of our study and let m%{d obtain larger
values than what would at first be considered natural.

In addition we generate a more limited scan by using the above ranges for all param-

eters except tan’( and m3; for which the additional constraints

(tan’8 — 1)p* < (2TeV)?, tan’Bmj; < (2TeV)’ (78)

are imposed in addition to the previous ones. This limits m%d within natural bounds, but
it also puts limits on tan?3. Finally we will compare this scan to the more unconstrained
one.

For experimental constraints we at first use the program HiggsBounds version 4.0.0
[14] [15] [16] which contains all the current constraints from direct Higgs searches. It
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takes the number of charged and neutral Higgs bosons, their masses, widths, branching
ratios and production cross sections as input. With this the program chooses the analysis
which has the best expected exclusion limit and then tests it against the 95% confidence
interval of that analysis with data from LEP, Tevatron and LHC.

There are also other constraints from direct searches for the supersymmetric partners,
from cosmological constraints on dark matter and several low energy observables from
flavor physics and the anomalous magnetic moment of the muon. As the gaugino masses
are kept fixed in the scan we do not investigate relevant parts of the parameter space for
dark matter candidates and thus we do not apply these constraints. For the low energy
observables we will use the constraints for the anomalous magnetic moment of the muon,
the loop mediated decay b — sy and also the py parameter, given by p = "%—VZV cos Oy, that
describes new sources of SU(2),, symmetry breaking compared to the SM. The limits on
the parameters are from [19],[20]. Finally as HiggsBounds only tests for the most likely
channel for exclusion, we can get an accepted result from HiggsBounds by having the
lightest Higgs avoiding detection without there existing any particle around 125 GeV.
Thus we finally demand that there should be at least one Higgs in the 120-130 GeV
mass range.

5 Parameter Searches

For the first part of the investigation we perform a broad parameter scan by varying
the parameters within the ranges given by eq. 76. Most of the points generated are not
allowed for theoretical reasons and give no output from SPheno. For the points that
was allowed from SPheno we produced a total of 20000 points in both the CP violating
and the CP conserving cases for comparison. We did also attempt some simulation with
maximal CP phase. However they turned out to be rather uninteresting since, as we
will see later, a larger CP phase limits the allowed ranges of A and x which the CP
violating terms in the mass matrix also depend upon. Thus the results we obtained was
essentially the same as with the varying CP phase.

Since the allowed ranges of m%{d and m%u was already discussed in the previous section,
the correlations between the other Higgs sector parameters: tang, A, s, i and ¢ is shown
for the CP conserving case in fig. 3 and CP violating one in fig. 4. The correlations
between A and k arise from the demands of peturbativity [17]. The relatively low values
for A on the other hand is presumably from the tadpole equations as they are more
often possible to solve for high v, which favors a low A for a given p. In the CPV case,
large k and A\ appears mostly for low ¢ as the CPV terms in the Higgs mass matrix
are also proportional to Ax. Thus the limits on the CPV terms, which arises from the
lightest Higgs obtaining a negative mass squared, prevents them from obtaining large
values for large CP violation. The p and tanf parameters on the other hand do not have
large correlations with any of the other input parameters, but for tang lower values are
favored and for p there is a slight favor for higher values.

The mass spectrum for the Higgs sector is of special interest as there has to be a
candidate that fits with the newly discovered boson at the LHC. As seen in fig. 5 we
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Figure 3: Correlations between input parameters in the CP conserving case. Points are
plotted as follows: first black points are acceptable model points from SPheno
but excluded by HiggsBounds, red points are excluded by the other constraints,
see text for details, finally green are allowed by all constraints.

get accepted points in a mass range around 125 GeV. In addition, especially for the
CP violating case we also get a decent number of points that are pseudoscalar-like with
much weaker channel strengths which thus can have avoided detection. On the other
hand, they are mostly excluded for other reasons, in particular as the next to lightest
Higgs is far too massive to be the discovered boson as the mass we obtain is usually
rather large, in the range of a few TeV. Finally the charged Higgs mass should have a
mass scale comparable to the next to lightest Higgs mass and we see it also obtains large
values. For comparison the squarks and sleptons all end up with masses around 1 TeV
which is the Mgy gy we used to fix their mass matrices.

The observed Higgs has so far had nearly all of its properties measured to be close
to what is expected in the standard model. One difference is the Higgs to two photon
channel which in the ATLAS experiment is higher than expected with a measured signal
strength of 1.557033 [21]. At the same time the CMS has not observed this excess with
a signal strength of 0.7710:27 [22]. Therefore we compare the signal strength going to a
final state xx, in this case taken to be v~ or bb for comparison, to what a standard model
Higgs boson (H) with the same mass would have. Using that the dominating form of
production is gluon-gluon fusion we get the signal strength

R (99 = hi)nmssm Br(hy — 22)nvssm -
9 o(99 — H)sm Br(H — zx)sn
(g9 = M)~mssu Br(hi = xx)Nmssu
(99 — H)sm Br(H — zx)sy

(79)

where in the second equality we have made the assumption that the differences in the
radiative corrections for production and decay cancel in the ratio, following for example
23] [24].
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colour coding is the same as in fig. 3
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conserving case to the left and CP violating to the right. The same colour
coding is used as in figure 3
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Figure 6: The plots show the signal strength to vy and bb as a function of the Higgs
mass. To the left the CP conserving case and to the right the CP violating
case. The same colour coding is used as in figure 3.
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Figure 7: The signal strength to vy and bb as a function of tan3 with both figures in the
CP violating case. The same colour coding is used as in figure 3.

The signal strengths for vy and bb in different models are shown in fig. 6. As can be
seen from the figure there is not much spread in the results, fixed squark and slepton
mass scale means there is little change from these particles in the loop corrections.
Similarly, the in general high mass of the other Higgs bosons means loop corrections
with these particles will be suppressed. Still the results are in agreement compared with
observation. There may also be a small enhancement in the vy channel compared to
the SM and in addition the bb channel is also slightly weaker than the SM. The largest
signal strength to vy was found for low tang as shown in fig. 7, while the low tan/ gave
no enhancement to bb. Finally as seen in fig. 6 there appears to be barely no difference
between the CP violating and the CP conserving cases.

To single out the effect of the CP phase we would like some benchmark scenarios and
vary the CP phase. Here we use the m}"** and no-mix scenarios as discussed in section
4 as benchmarks. Values obtained for the A; parameter are plotted against the lightest
Higgs mass in fig. 8. Here we see that the Higgs mass reaches its maximum for around
A = \/éMQ and also has a local minimum for A; = 0. We also used more colours for
the constraints as the different exclusion regions are clearly shown here. The anomalous
magnetic moment of the muon excludes next to no points, the p-parameter excludes
large |A;| and the loop mediated decay b — sy exclude points with negative A;. Finally
the points with positive A; and low mass that passes the HiggsBounds check are only
excluded as we cannot find a next to lightest Higgs in the correct mass range. We also
see the upper limit for |A;|, as the lightest Higgs gets a negative mass for large values of
|A;|. Now typical benchmark points can be selected for the m}"* and no mix scenarios.

Before we move over to the benchmark points we will consider some additional con-
straints on the model. As mentioned at the end of the constraint section we discussed
the m%d parameter and natural constraints on this. Thus we also investigated a more
constrained version of the model. We generated another set of points by using the ad-
ditional constraints discussed at the end of the section on parameter choices. As before,
we produced a total number of 20000 points that was allowed from SPheno in this con-
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Figure 8: The lightest Higgs mass as a function of A;, the CP conserving case to the left
and CP violating to the right. The points excluded by HiggsBound are colored
black and the accepted ones green as in the other plots but the additional
constraints are shown as different colours. Points excluded by the anomalous
magnetic moment of the muon are colored purple, by the p parameter blue,
by b — s7v decay are red and finally these which do not have any Higgs in the
range of 120-130 GeV are colored orange.

strained model, but as we are interested in the differences to the previous result we only
did it for the CP violating case.

The notable differences are shown in fig 9. The values obtained for A are in general a
bit higher, closer to the theoretical limit. In addition the constraint on tan is dependent
on the p parameter, but as we select the p parameter first there is not a bias towards
lower p. The lowering of tanf does remove the top end of the lightest Higgs mass as this
gives the largest loop corrections. In particular it removes the possibility of the no-mix
scenario with the observed Higgs being the lightest one. It does, on the other hand,
restrain the heavier Higgs masses and the charged Higgs mass. Still, masses of a few
TeV are favored so the masses are still rather large. For the other plots we made, apart
from the already shown constraints, the more constrained model gives no noticeable
changes.

To study the effects of the CP phase, benchmark points were chosen as in table 3. As
seen in fig. 8, in the no-mix scenario the Higgs boson can barely reach the observed mass
range and as such the available parameter space is very limited, with large tang needed
to reach the observed mass range. In fact the point chosen was the only one accepted
by all constraints unless one wants to go a bit further away from A; = 0. For the m}"**
scenario we choose two points, the first (1) in the observed range and the second (2)
with a higher mass for the lightest Higgs than observed as the mixing will reduce its
mass and thus get it back into the observed mass range.

For the m}"** scenarios, in the two example points, as we can see in fig. 10 and 11
respectively that the lightest Higgs mass decreases with more CP violation as expected
with more mixing of the states. In the first example there is also a jump as the mass of
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Figure 9: Results from the more constrained parameter scan. The first two plots should
be compared with the corresponding plots in figure 3. The following plots
shows the results corresponding to the results of figure 5 and 8. The same
colour coding is used as the corresponding image in the non constrained model.
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Model | tanf Y k| | p[GeV] | my [GeV?] | mg[GeV?] | A, [GeV]
mpr*®(1) | 1.758 | 0.004956 | 0.1022 | 480.5 7.815-10% | 9.696 - 10* 2462
myi®(2) | 10.84 | 0.1303 | 0.2088 | 848.5 | —1.328-10° | 3.815 - 10* 2429
no-mix | 36.23 | 0.05048 | 0.1603 | 490.6 | —9.752-10* | 9.720 - 10° 19.35

Table 3: Values for the points chosen for the two m}'** and the no-mix scenarios. All

values given to four significant digits.

the lightest Higgs boson turns mostly pseudoscalar while the second one does not. We
do not know precisely why this happens but we tried a few other points and both cases
occur frequently. The fact that the second one is much sharper comes from the higher
A and x which makes a change in CP phase have larger effect on the CP violating mass
term as Mepy < Ak. Here we also see the limits for large CP phase together with high
A and K

The more massive Higgs bosons also change their masses although the changes does
differ as examplified by the next to lightest Higgs in fig. 10 and 11. At the same time
the charged mass changes similar to the next to lightest Higgs mass in the first scenario.
As mentioned previously the charged mass should be unaffected by a change in the CP
phase at tree level. Thus the changes we see in the more massive Higgs might at least
in part come from 1-loop corrections. In addition to this, precisely how the heavy Higgs
masses change depends on which Higgs state it is close to in the CP conserving case.
This can be seen in the different behavior for the next to lightest Higgs in fig. 10 and 11.
The similar change in the first scenario compared to the charged Higgs suggests that it
in this case is close to the next to lightest CP even Higgs as its mass is close to that of
the charged one. For the second scenario, as it does not follow the change in the charged
one it is presumably closer to the lightest CP odd. Also as the CP violating terms are
larger in this scenario we get a much larger effect from the CP violation.

Looking at the sum of the Higgs masses Zle mii in fig. 10 and 11, which at tree level
corresponds to the trace of the mass matrix and therefore should be unchanged, we see
that this is not the case, thus supporting that the change comes from loop corrections
to the masses.

Finally the signal strength to 77 shows a slight increase with some CP violation
compared to the bb which does not. Still, as seen in fig. 6, the v channel does increase
and reaches a maximum at a slightly lower mass range and the effect is probably due
to the changing mass. Thus the changes in signal strength might be an entirely indirect
effect as the CP phase affects the Higgs mass. The jump in mass is reflected in the jump
in coupling as it is in one case discontinuous while in the other case a gradual change.

The no-mix case proved to be much less interesting for the lightest Higgs as seen in
fig 12. The mass and with it the channel strengths barely change at all with the CP
phase. On the other hand the masses of the heavier Higgs bosons does experience far
more change than in the m}'** scenario. The large change in the charged Higgs boson
indicates that the changes are mostly from loop corrections also in the non charged case
and the sum of the Higgs masses seems to confirm this.
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We also attempted to find a suitable point where the next to lightest Higgs was the
observed one. The unconstrained parameters we used meant very few next to lightest
Higgs of masses close to that of the observed Higgs even in our more constrained run.
The result was not good as we did not find a single Higgs with both the right mass and
couplings close to the SM. Thus we could not conclude anything more on the scenario
with the next to lightest Higgs as the observed one.

6 Conclusion

In this thesis we have investigated the Next to Minimal Supersymmetric Standard Model
(NMSSM). The extended Higgs sector in these models can lead to large phenomenological
differences compared to the standard model and we confronted the model with the
newest constraints from the properties of the newly discovered Higgs boson. In particular
the effects of a tree level CP violating phase, which is possible in the NMSSM, was
investigated and how this effects the phenomenology.

A supersymmetric theory was investigated as it solves the hierarchy problem for the
Higgs boson, apart from providing interesting possibilities for new physics such as a dark
matter candidate in the lightest supersymmetric partner. The NMMSM was chosen over
the Minimal SuperSymmetric Model (MSSM) as the MSSM has the so called p-problem
where the u parameter naturally has a value of order of the Planck mass and cancellations
down to the EW scale would be required to obtain the measured Z mass. The NMSSM
on the other hand provides a natural way to obtain a small value for this parameter.
In addition the MSSM has a more constrained Higgs sector and it can barely reach the
observed Higgs mass via large loop corrections while the NMSSM can much more easily
do so.

Since we used the rather unusual choice of m%; and m% as free parameters we had
the difficult task of constraining these parameters as they are not directly constrained
by experiments. We tried to apply some natural bounds but this was not obvious as
this also gives limits on the available parameter space for other parameters.

For the results we saw that there is still plenty of available points in the parameter
space even when demanding that the lightest Higgs is in the mass range of the measured
Higgs. On the other hand the heavier Higgs had high masses, up to tens of TeV, mainly
due to the unconstrained parameters we used. In addition we also investigated the signal
strengths to see if they matched the SM prediction and how large any differences were.
In general they did differ a bit especially the decay to bb which always was slightly
lower than expected but the majority of points are within experimental limits from the
LHC. Even the possible excess of di-photon events in the ATLAS experiment could be
consistent with our model, especially for scenarios with a low tanf. The changes in
couplings between the different parameter points was not so large as the loop induced
coupling to 7, where large effects can be seen, needs lighter new particles, such as the
charged Higgs contributing in the loop to give a noticeable effect.

When it comes to constraining the parameter space, we also did simulations where we
demanded that the derived parameter m%,d should also lie within the naturalness bound
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we imposed on m%[u. This did limit the high masses for the other Higgs bosons but they
still typically have masses of a few TeV. We did on the other hand not take into account
the other derived parameters such as the trilinear scalar couplings Ay and A, on which
one could also impose a bound and check what limits this gives. On the other hand,
as it is commonly done to use parameters such as my,, as a free parameter there might
also be some interest to compare the differences between such a bound and naturalness
bounds we used here and see what limits they put on each other and on measurable
properties.

In addition we varied the top squark mixing A; as this gives loop corrections to the
lightest Higgs boson mass. With this we used the m}"** and the no-mix scenarios to pick
typical points to investigate the effects of the CP violation. We could get large changes
in the masses when varying the CP violating phase for the Higgs bosons that become the
lightest CP-odd and CP-even when there is no CP violation present. The masses of the
other Higgs bosons had fairly small changes which also appeared to mostly come from
1-loop effects. The changes in couplings came rather fast with the mixing of the lightest
Higgs making it more pseudoscalar like. Otherwise there was not a lot of changes in the
couplings.

The large masses typically found for the heavier Higgs bosons also limits the case for
the discovered Higgs boson being the next to lightest one. While we did find parameter
points for which the lightest Higgs boson avoided detection, especially in the CP violating
scenarios, we did not find a suitable next to lightest Higgs boson to match up with the
observed one. This was mostly due to the relatively unconstrained parameters which
did not provide statistics in this particular region. On the other hand, as the scenarios
with CP violation had a much larger number of undetected light Higgs, CP violation in
the case of the next to lightest Higgs as the observed one might be of interest for further
investigation.
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7 Appendix
Four vectors are represented by Greek indicies pu,v,...=0,1,2,3 and we have
o= (6T), P = (B T), =0/, -V) (80)
with the spacetime metric as
g = diag(—1,+1,+1,+1) (81)

In addition we will use the two component Weyl spinor notation instead of four compo-
nent Dirac or Majorana spinors. For this we use the representation for the v* matrices

as
0 o*
no_

0 __ =0 __ 10 1 =1 _ 0 1

O'—O'—(O 1 5 g = g = 1 O 5
2__72_ 0 _Z 3__,3_ 1 O
““’_(10’”_"_0—1’

The 4-component Dirac spinors can be decomposed into two two-component anticom-
mutating objects &, and x'® whith spinor indicies @ = 1,2 and & = 1,2

= (;) (84)

The &, is called a left handed Weyl spinor and x'® a right handed Weyl spinor. This
comes naturally as if we act with a right or left handed projection operator on the Dirac

spinor we get
€a 0
PLY = (0 , PrVU = XTd (85)

thus justifying their name. The hermitian conjugate of a left handed spinor (undotted
indicies) is a right handed one (dotted indicies) and vice versa. This is why we write
as a right handed spinor and we will use daggers to denote right handed spinors through-
out this paper. The spinor indices are raised and lowered by the totally antisymmetric
€ tensor where

where

(83)

612 = —621 = —€12 = €21 = 1 (86)

In general we suppress the spinor indicies when we contract over them

X = ax” = Eapx’, Eo'XT = (0N ] (87)
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which we do throughout the paper.
Finally there are many useful identities for these objects, the one used here several
times is the Fierz identity

Ea(XN) + Xa(§) + na(§x) =0 (88)
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