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Abstract

The Internet of Things is an emerging concept where every device, regard-
less of size, have their own connection to the Internet. This thesis examines
what possible limitations are imposed on the functionality of resource con-
strained, wireless devices. Several different technologies are evaluated and
compared, before a set of them is chosen for inclusion in an implementation,
for example: IEEE 802.15.4, 6LoWPAN and CoAP.

The implementation uses the Contiki operating system, and runs on a
Texas Instruments CC2530 SoC. We then examine several different perfor-
mance aspects of our implementation: the amount of data sent, memory us-
age and energy consumption. The results are discussed together with security
aspects applicable to the Internet of things. The memory usage and power
consumption were found to be severe issues. Due to the small amount of
memory on the chip, all features could not be used at the same time. In ad-
dition, the power consumption was found to be too high for battery-powered
usage, giving a lifetime of only 27 hours using a button cell battery. The con-
clusion is that hardware with more memory, and lower power consumption is
required. New protocols for radio power-saving should also be developed and
implemented in software.

Keywords: Internet of Things, Contiki, CC2530, 6LoWPAN, CoAP
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Sammanfattning

Internet of Things – sakernas internet – är ett framväxande koncept där varje
enhet, oavsett storlek, har en anslutning till Internet. Detta examensarbete
undersöker vilka möjliga begränsningar i funktionalitet detta får på trådlösa
enheter med begränsade resurser. Flera olika teknologier undersöks och jäm-
förs, innan ett antal väljs ut för att ingå i en implementation, till exempel:
IEEE 802.15.4, 6LoWPAN och CoAP.

Implementationen använder operativsystemet Contiki och körs på ett Texas
Instruments CC2530 SoC. Flera prestandaaspekter undersöks: mängden skic-
kad data, minnesanvändning och energiförbrukning. Resultaten diskuteras till-
sammans med säkerhetsaspekter att ta hänsyn till i Internet of Things. Minne-
sanvändningen och energiförbrukningen är de mest problematiska områdena.
På grund av chippets begränsade mängd minne kan inte all funktionalitet
användas samtidigt. Dessutom är energiförbrukningen för hög för längre tids
strömförsörjning med batteri, vilket ger en livslängd på enbart 27 timmar med
ett knappcellsbatteri. Slutsatsen är att hårdvara med mer minne och lägre
energiförbrukning behövs. Nya protokoll för energibesparande radioanvänd-
ning behöver också utvecklas och implementeras i mjukvara.

v



vi



Acknowledgements

First we would like to thank our examiner Roger Henriksson, who has supported us during
the whole thesis.

We would also like to thank our supervisors at connectBlue: Mats Andersson for his
valuable support and many interesting discussions about the future of Internet of Things;
and Jonas Jonsson for introducing us to wireless technologies and getting us up to speed
with the hardware.

Finally we would also like to thank all employees at connectBlue for their feedback,
questions and for making us feel welcome.

vii



viii



Contents

1 Introduction 1
1.1 Purpose and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 About connectBlue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Wireless technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Bluetooth Low Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 IPv6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 REST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 CoAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Complete solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Current standardisations . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Choosing technologies 13
3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Implementation 17
4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Contiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Sensor node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Difficulties during implementation . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Call stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



CONTENTS

4.3.2 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Evaluation of the implementation 25
5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Packet size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.3 Packet size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Discussion 35
6.1 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 ROM usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 RAM usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.3 Stack usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Packet size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Conformance to standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5.1 End-to-end security . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5.2 Wireless link security only . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5.3 Mixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5.4 Other security-related problems . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusions 43
7.1 Future of the Internet of things . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 47

A Glossary 51

B Division of work 53

C Popular science article 55

x



Chapter 1

Introduction

On today’s Internet, there are lots of connected devices, for example: computers, cell
phones, televisions and game consoles. Today most people think it is a requirement that
their cell phone has an Internet connection, but still this is quite a recent development.
The next step is to connect even more, and even smaller devices to the Internet. Potential
use cases could be found in the areas of home automation, healthcare, personal fitness,
and many others. This development has already started with for example domestic alarm
systems, where home owners can monitor temperatures and turn the alarm off and on
using their cell phones [1]. However, since there is a lack of standards, it is complicated
to make devices from different vendors communicate with each other.

The interoperability between different devices is a central part of the Internet of Things
concept [2]. A house could be equipped with both a domestic alarm system like [1] and
also with a remote control heating service like [3]. Instead of manually having to lower the
temperature upon leaving the house, the alarm system could notify the heating system
that the house is empty, such that the heating system can lower the temperature. Also less
hardware would be required, since both systems use temperature readings, but currently
they would use separate temperature sensors. If they were conforming to the Internet of
Things concept, they would share a single temperature sensor.

In the Internet of Things, every device has a connection to the Internet. This makes it
possible for devices to exchange information between each other, but also for the devices
to reach, or to be reached from the Internet. This might not sound like it is difficult,
but when the devices are very small, have limited power and need to be cheap, special
solutions will be required to get a well-functioning system.

1.1 Purpose and goals
The purpose of this master’s thesis is to examine what, if any, limitations are imposed on
the functionality of small nodes. The nodes should be able to be battery powered, should
not require charging, and need battery life in the range of months or ideally years. Several
aspects of the implementation must also be examined: packet sizes, memory usage, energy
consumption, reliability and security.
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1. Introduction

To examine this, the nodes should be connected to a wireless network, so that they
can be reached from the Internet. There exists several wireless technologies and multiple
protocols to make this possible. This means that each technology and protocol need to be
examined, and that a decision has to be made on what to use. The decision needs to be
based on a set of requirements. After this, the implementation effort can be started.

When an implementation has been completed, it should also be evaluated according to
the earlier described aspects. The method and performance metrics to use when evaluating
the implementation will be discussed.

1.2 About connectBlue
We have conducted our master’s thesis together with connectBlue, a company located in
Malmö, Sweden.

ConnectBlue is a company specialised in providing wireless solutions. They develop
both complete units for point-to-point communication and wireless modules for embedding
in other products. They also provide custom solutions to clients. Currently, the company
provides modules for Bluetooth, Bluetooth Low Energy, IEEE 802.15.4 and Wi-Fi (IEEE
802.11).

1.3 Report structure
In Chapter 2 we present a background overview of several different technologies that

may be used in the Internet of Things, and finally how they can be combined in a
complete solution.

In Chapter 3 we compare the technologies described in the background, and decide
which to use in the implementation.

In Chapter 4 our implementation is presented from a hardware and software perspec-
tive. We also discuss problems encountered during the implementation phase.

In Chapter 5 we evaluate the implementation. First the methods are discussed, and
then the results are presented.

In Chapter 6 the results from the previous chapter are discussed and analysed.

In Chapter 7 the results of this thesis are summarised, and possible future work is dis-
cussed.
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Chapter 2

Background

There exist several different technologies that can be utilised in the Internet of Things.
The purpose of this chapter is to give an overview of some of them. We will start by
comparing different wireless technologies, continue by discussing protocols on the network
layer and then talk about application level protocols. Finally we will give an overview of
how the protocols on the different layers can be combined into complete solutions, and
give examples of current standardisation efforts.

2.1 Wireless technologies
The vision with Internet of Things is that every device should have an Internet connection.
Connecting everything with cables would not be feasible, so other solutions must be found.
There are two major solutions to avoid dedicated network cables: send the data over
radio or use power line communication. The latter requires the device to have a mains
connection, and cannot be used for battery powered devices. However, wireless techniques
can be used by any type of device and thus they are the focus of this report.

There exists a very large amount of wireless technologies today. When choosing which
to consider further we have set up a small set of requirements.

• The technologies should use the 2.4 GHz band, which is one of the ISM (Industrial
Scientific Medical) bands. The frequency range is 2.400 GHz–2.500 GHz. This fre-
quency band is available for use throughout the whole world, without requiring a
license [4].

• The specification of the wireless standard should be open. With an open standard
we mean a standard that is publicly available for anyone to download and examine.

2.1.1 IEEE 802.15.4
IEEE 802.15.4 is a standard for low-power Wireless Personal Area Networks (WPAN). Its
purpose is to provide low-data-rate, low-cost, low-power and short-range wireless commu-
nication for embedded devices [5]. The standard only defines the physical layer (PHY) and

3



2. Background

the media access control layer (MAC). There are several complete communication stack
specifications which are built on top of the IEEE 802.15.4 standard, for example ZigBee
and WirelessHART [2].

A Personal Area Network (PAN) consists of a PAN coordinator node and several PAN
members. The PAN coordinator is responsible for assigning unique addresses to the nodes
within the PAN. Nodes can act as a PAN coordinator in one PAN and simultaneously act
as a PAN member in another PAN.

A node is either a Full-Function Device (FFD) or a Reduced-Function Device (RFD).
FFDs are capable of acting as coordinators and may not enter sleep mode. A RFD is
typically a small, battery-powered device for simple applications, which spends most of its
time in sleep-mode. An FFD can connect to several FFDs and RFDs, while a RFD can
only connect to a single FFD.

The networks can be arranged in three different topologies: star topology, mesh topol-
ogy and cluster tree topology. In a star network, every PAN member node is directly
connected to the PAN coordinator, as shown in Figure 2.1. The area of the network is
limited, since all nodes has to be within range of the coordinator.

Coordinator

FFD RFD RFD FFD

Figure 2.1: IEEE 802.15.4 star topology.

In a mesh network all FFD PAN members can connect to each other. This increases
both the area and the robustness of the network. The covered area is increased since nodes
do not have to be in the range of the coordinator, and the traffic can be forwarded by
intermediate nodes. The robustness increases as well, since it might be possible to find an
alternative route even if a connection between two nodes is lost. An example of a mesh
structure is shown in Figure 2.2.

In a cluster tree network the nodes are connected in a tree topology. Each connected
FFD with children may create its own PAN, where the FFD becomes PAN coordinator
within the new PAN [5]. This increases the area of the network, just like in mesh networks,
but also increases the maximum number of connected nodes. A disadvantage is that the
latency for sending data over the network may also increase. An example of a cluster tree
network is shown in Figure 2.3.

It is important to notice that IEEE 802.15.4 does not define how routing should be
performed when mesh topology or cluster tree topology are used [5].

There are two kinds of node addresses in an IEEE 802.15.4 network: a short (16-
bits) and a long (64-bits) identifier. The PAN coordinator assigns a unique (within the
PAN) short identifier to every node. The long identifier is assigned to the node when
manufactured, and it is globally unique. The first 24-bits of the long identifier is unique
to the manufacturer. Both addresses can be used to address a node. There is also support
for broadcast messaging, but not for multicast messaging [6].

4



2.1 Wireless technologies

Coordinator

RFD FFD FFD RFD

RFD

FFD

FFD

FFD RFD

Figure 2.2: IEEE 802.15.4 mesh topology.

Coordinator

RFD FFD FFD

RFD FFD Coordinator

RFDFFD

Coordinator

FFD

Figure 2.3: IEEE 802.15.4 cluster tree topology.
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2. Background

IEEE 802.15.4 has a maximum transfer rate of 250 kbit/s and a maximum range of a
few tens of meters [2]. There is however a sub-gigahertz version of IEEE 802.15.4, which
provides a longer reach but with a maximum rate of 20 kbit/s. The maximum payload of
an IEEE 802.15.4 physical frame is 127 bytes [6].

A typical low power IEEE 802.15.4 transceiver, like the CC2420 from Texas Instru-
ments, consumes 18.8 mA when receiving data and 17.4 mA when transmitting data, at a
voltage of 3.0 V [7].

The frequency of the radio is in the range 2.4000 GHz–2.4835 GHz, divided into 15
different channels with 5 MHz channel spacing. The standard specifies how 128-bit AES
can be used for link layer security, to provide confidentiality and integrity [2].

2.1.2 Bluetooth Low Energy
Bluetooth Low Energy (BLE) is a part of the Bluetooth v4.0 standard, adopted in 2010-
06-30 [8]. It is meant to be an alternative to classic Bluetooth, but better suited for low
power applications. BLE is not compatible with classic Bluetooth, and devices that wish
to communicate with both types of devices must implement support for both protocol
stacks. However, BLE can be integrated into a current Bluetooth implementation without
too much effort [9].

The frequency band is divided into 40 different channels. BLE uses frequency hop-
ping to change channel, which reduces problems with interference. Frequency hopping
is performed according to a pattern that the master decides and notifies the slave about.
Change of frequency is done for every few packets sent. BLE also uses Adaptive Frequency
Hopping, which means that it can detect channels that have a lot of interference, and avoid
using them for transmissions [10].

Bluetooth Low Energy only supports a single type of network topology: the star
topology [9]. This is because the standard states that: “Physical links between slaves in a
piconet are not supported. At this time, slaves are not permitted to have physical links to
more than one master at a time.” [11]. A network consists of a single master and one or
more slaves; together they form a piconet, as can be seen in Figure 2.4. Since no physical
links are allowed between slaves, communication between slaves has to pass the master.

Master

Slave Slave Slave Slave

Figure 2.4: A Bluetooth Low Energy piconet.

To save energy, the slave nodes only wake up periodically to listen for data from the
master. The master decides this interval, and ensures that each slave has a unique time
slot. The medium is thus divided using a Time Division Multiple Access algorithm. If a
long interval is chosen, energy consumption can be very low. A study [9] shows that a
Bluetooth Low Energy System-on-a-Chip module with a CR2032 button cell battery of
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2.1 Wireless technologies

230 mAh can get a lifetime of up to 14.1 years in ideal conditions.
The BLE master uses 32-bit addresses to identify the slaves, but the maximum number

of nodes in a piconet is much smaller than 232. The number of slaves depends on the
periodic interval in which the slaves wake up. If the periods between wake-ups are long,
more nodes can be a part of the piconet since there are more free time slots to use. The
number of slaves a master can handle varies from 2 to 5917 nodes [9].

Bluetooth Low Energy has a maximum bandwidth of 1 Mbit/s on the physical layer,
but the maximum application layer throughput is 236.7 kbit/s under ideal circumstances
[12]. The throughput is, however, dependent on the radio conditions.

BLE supports link level security: AES-128 is used in CCM mode, which encrypts the
data and calculates a MAC. This ensures both confidentiality and integrity for the data,
which is important since any device in range can listen to the data sent over the shared
radio medium.

Every BLE device has a 48-bit unique device address, which is static and assigned by
the manufacturer of the device. Since this address is static, it could be used to track the
user of the device, since the device address is used in BLE communication. For privacy
reasons, BLE devices can instead generate private addresses, which cannot be resolved by
untrusted devices.

BLE does not only specify the physical and link layer, but also higher layers. Generic
ATTribute profile (GATT) is an application layer protocol that allows exchange of data
in the form of properties between devices. GATT does only exist in BLE.

2.1.3 Wi-Fi
Wi-Fi, also called IEEE 802.11, is a widely used standard for wireless Internet. It is de-
signed to provide high throughput for the connected devices. The maximum bandwidth of
Wi-Fi depends on the standard used. For example, 802.11g and 802.11n have a maximum
bandwidth of 54 Mbit/s and 600 Mbit/s respectively.

The frequency band is divided into 14 different channels, with a channel width of
20 MHz [13]. This means that the channels partly overlap, because the total width of the
frequency band is only 100 MHz. Wi-Fi does not have any built-in functionality to reduce
interference by switching channel, so having multiple access points within range of each
other may require frequency planning to maximise performance.

There are two different types of network topologies: infrastructure and ad-hoc. In
infrastructure mode, there is a central access point which all devices can connect to.
Devices that are in range of each other can communicate directly, otherwise the traffic is
forwarded by the access point [4].

In ad-hoc mode a connection is established between two or more nodes without an
access point. The nodes can only communicate with each other, and cannot reach another
network.

There are several different security mechanisms in Wi-Fi. The latest standard, WPA2,
uses a protocol called CCMP which uses AES to provide data confidentiality, authentica-
tion, integrity and replay protection [13].

Low-power Wi-Fi modules have significantly lower power requirements than ordinary
Wi-Fi modules [2]. Still, transmit power is roughly 300 mW, and using a CR2032 button
cell battery with a voltage of 3.0 V this will require a current of 100 mA. This peak current
would reduce the lifetime of the battery significantly [14].

7



2. Background

2.2 Networking
With the exception of Wi-Fi, the wireless techniques described earlier were not initially
designed to be used by devices when connecting to the Internet. Instead they have been
used for point-to-point communications, only sending small amounts of data. This means
that there is no standardised way to take the step out on the Internet.

Today, the Internet Protocol (IP) is used for devices on the Internet to reach and
communicate with each other. There are several reasons to also use IP on the devices
in the Internet of Things [15]. IP has been used for a long time and is proven to work
well on lots of devices. The widespread use means that there is a lot of infrastructure
that supports IP, this means that it is easy to connect new devices. Finally, IP is also an
open standard, which together with the widespread use means that a lot of people have
knowledge of the protocol.

2.2.1 IPv6
Today IPv4 is the main protocol used on the Internet, but a transition to IPv6 is on its
way. The reason for this transition is the limited address space in IPv4, which only has
a total of 232 addresses. With a world population of 7 billion [16], and a future in which
every person has several Internet enabled devices, it is trivial to see that the address space
of IPv4 is not enough. IPv6 solves this by enlarging the address space to 2128, which
should make it possible for every device to have a unique address.

When connecting many new devices to a network, it is desirable to avoid having to
configure every device manually. For some very small devices it may even be impossible
due to the lack of an input interface. IPv6 can also solve this problem by IPv6 Stateless
Address Autoconfiguration. In summary, it generates working IPv6 addresses without
manual intervention.

However, all these new features comes at a cost: IPv6 headers are generally larger
than IPv4 headers due to the longer addresses. Since wireless technologies like Bluetooth
Low Energy and IEEE 802.15.4 have small packet sizes, a large header reduces throughput
because there is less available space for the payload. This can be solved by using a protocol
called 6LoWPAN. It is used to compress the standard IPv6 header to a smaller size, which
reduces the overhead and thus increases the maximum possible payload.

Currently, 6LoWPAN is only available for IEEE 802.15.4, but there is currently an
effort by the IETF to adapt it to Bluetooth Low Energy [17].

2.3 Application
The final goal is to actually send useful data using IP over the wireless media. There are
a couple of technologies that are useful for the Internet of Things on the application layer.

2.3.1 REST
REpresentational State Transfer (REST) is an abstract model of web architectures, which
can be used as a guideline when designing web-based applications [18]. It has become
widely used when designing and implementing web services [19].

REST defines a set of constraints, with the purpose “. . . to minimize latency and net-
work communication, while at the same time maximizing the independence and scalability

8



2.3 Application

of component implementations.” [18]. These constraints can be summarised into:

Client – Server The architecture is client – server based, where the client requests data
from the server. The server processes the request and responds.

Stateless The communication should be stateless, which means that the client itself is
responsible for keeping track of its state and has to provide the server with all
required data at each request. Therefore the server does not have to store any
session data between requests.

Cacheable The response data to a request should be declared, implicitly or explicitly, as
cacheable or non-cacheable. If the data is cacheable and the client sends the same
request again, it is possible to use the cached data, if a cache is available. This
technique reduces the server load.

Uniform interface A uniform interface for accessing and manipulating resources reduces
complexity and makes the architecture more scalable. A typical uniform interface is
HTTP, which only provides eight basic methods. Four of these: GET, PUT, POST
and DELETE, are used to access and modify resources. A resource is reached by its
Uniform Resource Identifier (URI). URIs contain either the name of the resource,
called Uniform Resource Name (URN); the address of the resource, called Uniform
Resource Locator (URL); or both [20, 21].

Layered system Layers are used to make the architecture more scalable. The layers are
hierarchical, and communication is only allowed between immediate layers. This
allows the system to be distributed among several computers.

Code-on-demand Code-on-demand is used to extend the functionality of the client, by
using scripts or applets. This reduces the requirements for the client implementation
and makes the client more adaptable.

Architectures that fulfil the REST design criteria are denoted RESTful [20].

2.3.2 SOAP
SOAP, an acronym for Simple Object Access Protocol, is a protocol for communication
between a sender and a receiver. Communication is done by sending messages in a well-
specified XML-format [22]. The SOAP message is embedded in what is called an envelope,
which consists of an optional header and a message body. The XML schema used for all
data is defined and specified in the message, so that the sender and receiver know how to
parse the data.

SOAP data is generally used in an RPC (Remote Procedure Call) way, where the
messages sent represent function calls. This means that the client implementation simply
issues a method call. This method call is then translated to SOAP messages by a library.
Usually there is just a single URL that implements several methods [6]. Depending on the
content of the SOAP message, different responses are returned. This is a major difference
compared to a RESTful architecture.

SOAP is not bound to a specific underlying message exchange protocol. It can be used
with HTTP, SMTP, POP, raw TCP, etc. It is often used over HTTP, and the SOAP 1.1
specification defines how messaging works over HTTP [22].

Since all SOAP messages are required to conform to a given schema and be valid XML,
they have a fairly large size when compared to RESTful techniques. The overhead includes
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2. Background

things like <soap:...> tags, which can include (long) URLs to schemas. The size of these
messages are normally not an issue, but may be worth considering when data is sent over
low bandwidth connections such as IEEE 802.15.4 and Bluetooth Low Energy.

2.3.3 CoAP
CoAP, or Constrained Application Protocol, is a web application layer protocol that is
tailored for devices with limited resources. It is currently under development by the IETF,
and as of this writing the current draft version is draft-ietf-core-coap-13 [23].

CoAP is similar to the well-known and widespread HTTP, which is used throughout
the web. Both protocols use URIs to locate resources, they support Content Types to
describe the format of data and the user of the protocol can expect the messages to be
reliably transferred. HTTP and CoAP also shares a common set of request methods: GET,
POST, PUT and DELETE. All of this makes CoAP easy to understand and integrate into
the current architecture of the web.

To make CoAP especially suited for limited devices, it does have several important
differences compared to HTTP. First of all, CoAP does not require a reliable transport
protocol, which means that it can be used over UDP. Reliable transport protocols, like
TCP, increases the complexity, size and resource usage of the software, which may be
unwanted or even impossible to use on a constrained device. Instead CoAP implements
its own optional, light-weight, and simple, but not fully-featured reliability mechanism.

Another major difference is the format of the header. In HTTP options and request
method are transmitted in clear-text, which means that even a basic request consists
of several bytes of data. The CoAP header has a binary format instead, where request
method and options are encoded into various bits and in a specific order. This reduces
the data that has to be sent, received and parsed by the endpoints.

A problem with CoAP is the fact that it is not as widespread as HTTP. This limits the
number of devices that can communicate with servers running CoAP. However, because
of the similarities between the protocols, it is possible and fairly easy to create a proxy
that converts between the protocols. The CoAP standard does even have a dedicated
section for “Cross-Protocol Proxying between CoAP and HTTP” [23]. Proxies may even
be transparent, such that neither endpoint actually knows about the fact that a protocol
translation is being performed by an intermediate party.

Another, albeit temporary, problem with CoAP is that it is currently only a draft.
Changes between drafts are sometimes significant, and may be neither forward nor back-
ward compatible. This requires that all CoAP software implement the same version of the
protocol.

2.4 Complete solutions
There exist several different approaches of how Internet of things can be accomplished.
A gateway will always be required to connect the nodes to the Internet, since the nodes
are wirelessly connected. The gateway is equipped with a wireless transceiver for the
nodes, and it is connected to the Internet as in Figure 2.5. The communication between
Internet and the gateway should be over HTTP, which infers TCP/IP. We have divided
the approaches into four different solutions, which differs in the way data is sent between
the nodes and the gateway. An overview is found in Table 2.1.

In the first solution the gateway must have knowledge of the type of data sent, because
it must repackage the data during communication between the node and the Internet. This
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Internet Gateway

Wireless
node

Wireless
node

Wireless
node

HTTP over
TCP/IP

Figure 2.5: Gateway, node and Internet overview.

Table 2.1: Overview of different gateway - node solutions.

Network layer Application layer
1 Non-IP Non-standard
2 IPv6 HTTP
3 6LoWPAN HTTP
4 6LoWPAN CoAP

means that the gateway must be extended for future new node types. It must also perform
address translations between IP and the addresses used on the wireless network.

In the second solution ordinary IPv6 is used on the nodes, which means that the
gateway can simply act as a router and relay packages without having to care about their
contents. Because of this the gateway can be fairly simple. However, it requires quite a
lot of data to be sent over the wireless link. This is typically used in Wi-Fi networks.

The third solution also uses IPv6 addressing but with header compression, called
6LoWPAN. This reduces the data sent on the network layer, but still has the benefits
of the previous solution. The complexity of the gateway is increased somewhat, because
it has to perform conversion between IPv6 and 6LoWPAN.

The fourth solution is as well based on 6LoWPAN, but also tries to minimise the data
on the application level. By using CoAP the HTTP data can be compressed, so that less
data needs to be sent over the wireless link. This means that the gateway needs to perform
the conversion between HTTP and CoAP. However, the gateway does not need to care
about the actual contents of the HTTP conversation, which means that it can handle new
node types.

2.4.1 Current standardisations
There are currently several on-going standardisation efforts on different levels for Internet
of Things.

The IP for Smart Objects (IPSO) alliance is a non-profit association promoting the
use of IP for devices in the Internet of things. They provide an application framework
for accessing data from devices [24]. The framework defines a RESTful design, and only
covers the application layer, the underlying transport could be anything. IPSO Alliance
does not develop any standards on their own, and their framework is only considered as a
set of guidelines.

Smart Energy Profile 2.0 (SEP 2.0) is a draft standard for energy monitoring and
controlling over the Internet. It is defined by the ZigBee Alliance and relies on the ZigBee
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IP stack. The ZigBee IP stack uses 6LoWPAN on top of IEEE 802.15.4. On top of this it
uses HTTP over TCP. This corresponds to the third solution in Table 2.1.

There are currently on-going negotiations and standardisation efforts regarding how
Bluetooth Low Energy devices should be able to connect to the Internet. Two main
approaches are discussed. The first approach is to use the existing GATT profile to
communicate data between the wireless devices. Data repackaging and translation will be
required at the gateway. This corresponds to the first solution in Table 2.1. The second
approach is to replace GATT with 6LoWPAN. A recent prototype implementation proved
that it is possible and that the power consumption does not increase much compared to
GATT [25]. The prototype implementation corresponds to the fourth solution in Table 2.1.

There are also several other organisations who develop and promote the Internet of
Things: European Telecommunications Standards Institute, IoT-A, Eclipse M2M and
IoT@Work.
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Chapter 3

Choosing technologies

We need to combine several of the technologies described earlier. To be more specific,
we need a wireless technology, a network layer protocol and finally an application layer
protocol. First a set of guidelines are described, and then these guidelines are used in the
discussion when choosing the technologies.

3.1 Methods
To choose appropriate technologies, a list of guidelines has been developed.

• The nodes have very limited resources when it comes to RAM, energy supply and
ROM. This aspect must be considered during the whole process.

• IP should be used in all communications because of the reasons stated in Section 2.2.

• Nodes should require minimal configuration to work in a network.

• Current standards and guidelines should be taken into consideration, and should be
preferred to custom solutions.

• Existing implementations of technologies should be investigated. A well-tested and
proven implementation may be better to use.

3.2 Discussion
Starting with the wireless technologies, we have looked at three different options: IEEE
802.15.4, Bluetooth Low Energy and Wi-Fi.

Wi-Fi is a well-tested and widespread wireless technology, which is used together with
IP. Networks can be found in homes, schools, universities, workplaces and in public loca-
tions. There is, however, a big drawback of Wi-Fi: its power consumption. Wi-Fi is not
suitable for the kind of small battery-powered devices that this thesis is aimed towards,
as discussed in Section 2.1.3.
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Bluetooth Low Energy and IEEE 802.15.4 both have similar, low energy requirements
and are well suited for low power devices. BLE does only support the star topology, while
IEEE 802.15.4 also supports mesh and cluster tree topologies. The two latter topologies
can extend the range of the wireless network, as explained in Section 2.1.1.

Bluetooth Low Energy uses adaptive frequency hopping to reduce problems with inter-
ference. This makes it more robust compared to IEEE 802.15.4, which only uses a single
channel. This is important when used in areas with many different wireless networks that
can interfere with each other.

Another difference between the two wireless technologies is their maximum payloads.
IEEE 802.15.4 has a maximum payload of 72–116 bytes, while BLE has 23 bytes. If the
data cannot fit into a single packet, it must be fragmented and sent in several packets. This
increases the overhead and thus it is preferable if all data can fit into a single packet. Since
IEEE 802.15.4 has a larger maximum payload than BLE, it has an advantage. However,
BLE has a defined way to fragment packets, while IEEE 802.15.4 has not. This means
that support for fragmentation has to be added on top of IEEE 802.15.4.

As described earlier, IPv6 should be used on the wireless network. However, IPv6 is
not well suited when the maximum payload is low, since the IPv6 header is 40 bytes large.
For BLE, fragmentation will be inevitable, and for IEEE 802.15.4 a large portion of the
payload will be consumed by the header.

6LoWPAN is a solution to this problem. It compresses the header such that more data
can be fitted into the packets. 6LoWPAN can be used with both wireless technologies. It
was first developed for IEEE 802.15.4 as RFC4944 [26] in 2007. It has since then been
adopted also for BLE, but it is still a draft [17]. It is advantageous to use a finished
standard because it is finalised and has been tested. Another advantage is that there
exists open-source implementations of 6LoWPAN for IEEE 802.15.4, which could be used
in an implementation [27].

IEEE 802.15.4 and BLE are both suitable to use as a wireless technology, but because
writing a new implementation of 6LoWPAN for BLE would be a hard and time-consuming
task, out-of-scope of this master’s thesis, IEEE 802.15.4 will be used.

The most natural and simple solution would be to simply forward the HTTP traffic
from the gateway to the end node. HTTP does require a reliable transport protocol,
usually TCP. Using TCP would require the nodes both to send and receive several packets
to setup and maintain the connection. This utilises more resources on the node, both
ROM and RAM. It also increases the amount of sent data over the wireless link, and
increases the likelihood that a packet needs to be fragmented.

CoAP can be used to translate HTTP into a more compact, binary format. This
reduces the data that needs to be sent wirelessly. In addition, CoAP does not require
the use of a reliable transport protocol, which means that the control data of TCP can
be avoided. Because the traffic between the gateway and Internet should be HTTP,
a translation between CoAP and HTTP would be required in the gateway. Since the
resource usage in the gateway is not as important as on the nodes, this is not a problem
and CoAP is preferable.

SOAP is considered more complex and requires more overhead, compared to a RESTful
design [19]. SOAP is based on XML, which is verbose and requires parsing. An XML
parser requires extra RAM and ROM, and because the nodes are limited it is favourable
to avoid it, if possible. The verbosity of XML also requires more data to be sent over
the wireless link, which is amplified by the possible fragmentation of packets. A RESTful
implementation does not have to use XML, and could thus avoid the problems above.

The IPSO Alliance application framework defines a RESTful design, and the guidelines
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are supported by several organisations and companies. Because of this, it is suitable as a
foundation for the implementation.

In Section 2.4.1 Smart Energy 2.0 and GATT were presented. Neither of them were
found to be suitable.

GATT is not IP-based, and can be ruled out immediately.
Smart Energy 2.0 utilises HTTP and TCP, which would increases the demands on the

node’s performance. In our opinion, this is unnecessary when CoAP and UDP could be
used instead. Another disadvantage is that SEP 2.0’s primary focus is energy monitoring
and control, and is not adapted for other types of data.

3.3 Summary
To summarise, the following techniques will be used in the implementation:

• IEEE 802.15.4 on the physical layer

• 6LoWPAN on the network layer

• CoAP over UDP on the application and transport layer

• IPSO Alliance application framework as a guideline when designing the API
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Chapter 4

Implementation

When the various technologies have been chosen, we need to select the various pieces of
hardware and software so that we can actually implement our solution.

We did not have many hardware options to choose between. Since connectBlue had
modules with IEEE 802.15.4-radios and microcontrollers, we developed our solution based
on this hardware.

With the hardware on the nodes fixed, the software needed to be chosen such that it
works on the given architecture. This does of course limit the available software. Fur-
thermore, it is beneficial to use as much pre-written software as possible. It would not
be reasonable to write a solution starting from scratch, since this would require writing
radio drivers, a complete network stack, etc. This would require a significant amount of
time, and it would probably be inferior to more mature and well-tested software. We have
tried to use as many pre-written pieces of software as possible, and worked on integrating
them. Using open-source software is a requirement, since we want to be able to adapt the
software to our specific needs without any additional costs.

The gateway should be a device that has access to unlimited power and resources, in
contrast to the nodes. Therefore it can be practically any device. A requirement is that
it should be able to run Linux.

4.1 Hardware
The target hardware for the sensor nodes is a module from connectBlue. The module is
equipped with a TI CC2530 SoC, a TI TMP112 temperature sensor, a ST Microelectronics
LIS3DH accelerometer and an internal or external antenna. The CC2530 combines an
IEEE 802.15.4 transceiver and an 8051 host microcontroller with 256 KB of ROM and
8 KB of RAM. Only 223 B of the RAM is available for the call stack [28]. The node does
also include a UART interface, which can be used to communicate over a serial link. A
picture of the module can be seen in Figure 4.1(a).

A Texas Instrument CC Debugger is used for programming and to supply the node
with power. The node can also be powered by mounting it on a USB-dongle, as seen in
Figure 4.1(b). The dongle also makes it possible to access the UART interface over USB.
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(a) Stand-alone node. (b) Node mounted on USB-dongle.

Figure 4.1: The nodes placed on a standard-sized keyboard.

A BeagleBone single-board computer is used as the gateway hardware. The Beagle-
Bone has a 720 MHz ARM processor, 256 MB of RAM and is suitable for running Linux.
It is equipped with an Ethernet port and a USB port. This is more than enough for our
purposes, and it should not force any restrictions on our solution.

4.2 Software
Our solution consists of several different pieces of software. An overview of how they
relate to each other can be seen in Figure 4.2. All software used in the implementation is
open-source.

Sensor node

Routing process

Border router

CoAP server

SLIP process jCoAP proxy

BeagleBone

SLIP tunnel

Forwarder

Serial
IEEE 802.15.4

Internet

Contiki

libcoap

Contiki
Linux

Gateway

iptables

Figure 4.2: Architectural overview of the software.

Contiki [27] was used as foundation for the sensor node implementation. Contiki is a
light-weight operating system for devices with limited resources. It has built-in support
for several of the technologies we are interested in, for example IPv6, 6LoWPAN, rout-
ing, CoAP and an IEEE 802.15.4 radio driver. Contiki has support for several different
microcontrollers and platforms, among others: the CC2530 platform.

Libcoap [29] is a light-weight CoAP library which implements the, as of this writing,
latest CoAP draft: draft-ietf-core-coap-13. It is intended to be used with both Linux
and Contiki. Libcoap is used as the CoAP server implementation on the sensor node.

Arch Linux [30] is used as operating system on the BeagleBone gateway. Iptables is
used to create a transparent proxy between the Internet and the nodes.

We have also used a Java based CoAP library, jCoAP [31]. It includes an HTTP to
CoAP proxy, which is used in the gateway. The library does not conform to the latest
CoAP draft (draft-ietf-core-coap-13), but we have made some changes to make it
compatible with libcoap.
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4.2 Software

Since Java does only allow a limited subset of socket options, we have written a small
forwarder software, that forwards traffic to the jCoAP proxy.

The border router uses the same hardware as the sensor nodes, but is connected to a
USB-dongle. It also runs Contiki, but with a routing process and a SLIP process. SLIP
is used for IP communication over a serial line. The border router is able to translate
between IPv6 and 6LoWPAN. IPv6 is used on the serial line and 6LoWPAN is used on
the wireless link.

A SLIP tunnel runs on the BeagleBone, so that the serial interface can be treated as
a network interface, which allows routing of traffic to and from the interface.

4.2.1 Contiki
The main idea behind Contiki is to provide a light-weight operating system for small
wireless devices in the Internet of things. The operating system is designed in a scalable
way, that makes it easy to add and modify components. Contiki contains various useful
components, such as: timers, radio drivers, radio duty cycling (RDC) drivers, threads and
processes.

By using the well-tested and certified uIP communication stack for IPv6 and 6LoW-
PAN, which is included in Contiki, we avoid implementing this functionality by ourself,
which probably would be very time-consuming. A 6LoWPAN adoption layer for IEEE
802.15.4 is also included in the 6LoWPAN implementation, which enables packet frag-
mentation, header compression and link layer forwarding [2]. Contiki also supports RPL
(Routing Protocol for LLNs), which is an IPv6 routing protocol designed for low power
and lossy networks [32].

There are two CoAP libraries included with Contiki: erbium and RESTful contiki. We
did not manage to get any of these implementations to run on the nodes. It is also worth
mentioning that neither of the libraries supports the latest version of CoAP, which made
them less interesting to use in our implementation.

In the Cooja simulation environment for Contiki, it is possible to simulate and debug
networks. Unfortunately there is no simulation support for the CC2530 platform. Sim-
ulations are however useful for understanding Contiki and its components, especially the
network components.

An application to estimate the energy consumption is also included in Contiki. It keeps
track of the amount of time the system spends in a certain state. If the energy consumption
are known for every state, the total estimated consumption can be calculated.

Another energy related feature of Contiki is its support for Radio Duty Cycling pro-
tocols. To reduce the power usage of the node, the radio can be turned off. During this
time, the node is unable to receive or send data. To prevent packet loss from occurring, a
protocol must be defined so that nodes are able to receive data even though they are not
listening all the time.

Contiki supports several different RDC protocols, but there are only two which can be
used together with IP: ContikiMAC and nullrdc. The latter is a simple protocol with a
duty cycle of 100 % – the radio is turned on all of the time. This means that data can be
sent or received at any time.

ContikiMAC can reduce the radio duty cycle to well below 5 %, depending on settings
[33]. Nodes wake up periodically with a frequency of typically 2 Hz to 16 Hz. When a
node wants to send data, it sends the same packet repeatedly such that the receiving node
is guaranteed to be awake sometime during the transmission. As soon as the receiver has
woken up and has received the packet, an acknowledgement is sent, and the sender can
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stop the strobing. For example, if the wake up frequency is 2 Hz, the sender may need to
send for 0.5 s to match the receiver’s wake up interval. If a sender wants to broadcast a
packet to all nodes within range, it will always have to send during the whole interval.

Contiki uses a hardware watchdog timer to prevent system hangs. The timer has to
be cleared periodically before it expires, otherwise something probably went wrong and
the system resets.

The RPL routing protocol has functionality for detecting if a neighbour node becomes
unreachable, and will then automatically repair and reroute the network. This improves
the reliability for networks that contains movable nodes or nodes that are periodically
unreachable.

Contiki does not provide any security features. There are however external security
libraries that can be used with Contiki [34]. The CC2530 has hardware accelerated AES-
128 encryption and decryption, which is suitable for security functionality.

Even though Contiki supports the CC2530 platform, the standard code base is not
very suitable for the platform because of its limited call stack size. Therefore a patched
version of Contiki has been used [35]. A more detailed discussion regarding this can be
found in Section 4.3.1.

4.2.2 Sensor node
Contiki is used on the sensor nodes for handling communication and interfacing hardware.
A CoAP server process runs in Contiki, where the libcoap library is used as the server
implementation.

A temperature resource is registered at the start up of the CoAP server process. The
resource’s URI, the type of the resource and an interface description are set when a resource
registration is performed. A handler function is also registered for each associated method
that the resource supports. The handler functions are used for executing the requested
method and for generating a proper response.

The CoAP server process waits until a message is received. When a message is received,
the request handler processes its content. The request handler first checks that the data
forms a CoAP message, if it does not, the message is dropped and the process waits for a
new message. If the requested resource is not present, the server responds with code 404
(Not found). The server responds with code 405 (Method Not Allowed), if the requested
resource exists but there is no handler registered for the specific method. If the request
is for a valid resource and there is a valid handler function registered for the method, the
corresponding handler function is called and finally the response is sent. A flowchart of
the server request-response cycle can be found in Figure 4.3.

The different handler functions contains application specific code, like reading temper-
ature data, which is used for the GET request for the temperature resource.

A typical temperature GET response is shown below. The response is in JavaScript
Object Notation (JSON) format, which is a way to serialise objects to text, similar to
XML. The response conforms to the Sensor Markup Language (SenML), which the IPSO
Alliance application framework refers to [36].

{"e":[{"n":"urn:dev:mac:1234567890123456:temp","v":30.6250}]}

It is an element (e), with two fields, name (n) and value (v). The name is a URN (urn),
that specifies a device (dev) that is identified by its MAC address (mac) 1234567890123456
and the resource is a temperature sensor (temp). The measured value of the resource is
30.6250.
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Wait for request

Request handler
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 (Method Not Allowed)
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Figure 4.3: Flowchart of server request handling.

The server does also respond to GET requests of the /.well-known/core URI. It
is a standardised URI for service discovery, which can be used to discover and retrieve
information about available resources [37, 38]. The response returned to the client includes
all resources and their attributes. The resources and capabilities of the node are described
according to the IPSO Alliance application framework. This makes it possible for other
devices that confirm to the same guidelines to interface the resources hosted on our node.

4.2.3 Gateway
The gateway consists of two parts: the border router and the BeagleBone. The path a
request takes through the gateway is shown in Figure 4.4.

Sensor node Border router

SLIP process jCoAP proxy

BeagleBone

SLIP tunnel

Forwarder

CoAP,
UDP and

IPv6
CoAP, UDP and

6LoWPAN

Internet

Contiki

libcoap

Contiki
Linux

Gateway

iptables

HTTP,
TCP and

IPv6

Figure 4.4: Path of a request through the gateway.

As mentioned previously, the BeagleBone part of the gateway runs Arch Linux as its
operating system. It was chosen because the authors have previous experience with it and
because it offered pre-compiled code for all kernel modules required. More specifically, we
used the Linux iptables to route traffic between the connection to the Internet and the
wireless sensor nodes. The gateway also runs a transparent proxy that translates between
CoAP and HTTP. When traffic arrives on the network interface connected to the Internet,
iptables will redirect all traffic on HTTP port 80 to the Forwarder. All other traffic will
be handled as normal.

The Forwarder is a small C-program written by us. It simply forwards all connections
from one socket to another. In this case it forwards all traffic on port 1234 to port 8080,
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the latter is the port used by the jCoAP proxy. This might seem like an unnecessary
redirection, but it is required. We want our proxy to be transparent; it should accept
packets that has another destination than the host the proxy is running at. Normally,
sockets in Linux will silently drop such packets, but it can be told to accept them by
setting a socket option called IP_TRANSPARENT. This option can, however, not be set on
sockets from within Java. By using our forwarder we can accept all traffic, and then open a
local connection to the proxy, which allows it to receive packets using the standard socket
options.

jCoAP is a Java library for CoAP, which also includes an implementation of a proxy
that translates between HTTP and CoAP. When an HTTP request arrives, it parses it
and creates a new CoAP request which it sends to the node over the SLIP tunnel interface.
When the sensor node sends back a response, a translation in the opposite direction, from
CoAP to HTTP, is performed. jCoAP does not support the latest CoAP version, but we
have modified the source so it is compatible with draft-ietf-core-coap-13, the same
version libcoap uses.

The SLIP (Serial Line over IP) tunnel is a part of Contiki. SLIP is used to encapsulate
IP packets and send them over a serial link. The application will connect to a serial port
and create a virtual network interface which can be used by Linux as any other network
interface.

The serial interface is the connection between the two parts of the gateway. The
border router runs on identical hardware as the sensor nodes, but are connected with a
USB-dongle such that a serial interface can be accessed.

On the border router Contiki is used as operating system. The border router has two
interfaces: a serial interface and a wireless radio. By running a special SLIP process,
packets can be routed between the two interfaces. The outcome is that packets received
over the SLIP tunnel can be forwarded and sent wirelessly. The opposite direction is also
possible: data received on the wireless interface will be forwarded and sent over the SLIP
tunnel to the BeagleBone.

The border router is also responsible for converting between IPv6 and 6LoWPAN. IPv6
is used in almost every communication link, but the final step from the border router to
the sensor node uses 6LoWPAN. The conversion is handled automatically by Contiki.

4.2.4 Development tools
During the development we have compiled Contiki on Ubuntu Linux 12.10. Compila-
tion of Contiki for the CC2530 has been done with SDCC ncs51 3.1.1 #7100 using the
huge-model for the 8051 architecture. SDCC has been built according to the instructions
in [39].

4.3 Difficulties during implementation
All implementation has not been straightforward. In this section we discuss some issues
that we had and how we dealt with them.

4.3.1 Call stack
The lack of call stack space has caused a lot of trouble during the whole project. The
reason is that the 8051 architecture uses an 8-bit stack pointer, which results in a maximum
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stack size of 256 bytes. However, the first 33 bytes of the stack are reserved and cannot be
used. This reduces the maximum stack size even more, down to 223 bytes.

The standard code base of Contiki is not very well suited for the CC2530 platform, due
to the limited stack size. It causes very frequent stack overflows, which result in crashes
and unexpected behaviour.

There is however a branch of Contiki, contiki-sensionde, with stack usage optimisations
for the 8051 architecture [35], which we have used instead. These optimisations reduces
the stack usage a lot, and makes it possible to run Contiki on 8051 based platforms [28].

Whenever a function call is made, memory is allocated at the stack and is later regained
when the function returns. The amount of memory that becomes allocated when a function
is called depends on: where the function is located in the ROM; the number of arguments
and the size of their data types; and local variables within the function and their sizes.
This gives us several methods to reduce the stack pressure:

Avoid function calls The stack usage for passing arguments and for executing a function
call, can be saved by defining the function as inline and thereby avoiding a function
call. Even though some stack space can be saved by declaring functions as inline, it
may also increase the total stack usage. The local variables from the inlined function
will be moved to the calling function, which will increase the stack allocation of the
calling function. Therefore this method should be used with care and preferably
only be applied for nested function calls. The ROM memory footprint will increase
if an inline declared function, is called from more than one location in the code.

Use as few function arguments as possible Another method for saving stack space
is to reduce the number of arguments passed to a function. This can save a lot
of stack space, especially if the arguments are of large data types. Sometimes an
argument is passed along several nested function calls. Then it might be possible to
declare a global variable that can be assigned to the argument, instead of passing it
to each new function call. This can result in code that is harder to understand and
maintain, and should therefore be used with care.

Use as few local variables as possible Variables can be allocated with either auto-
matic storage duration (on the stack) or with static storage duration (in RAM).
There is no support for dynamic allocations in our implementation. The stack usage
can be reduced by declaring local variables as static. Since the RAM is also limited
(7936 bytes), it is not possible to declare all local variables as static. The build tools
will generate errors if we are using more RAM than available. This is in contrast to
the stack usage, which the build tools does not analyse at all. Since we cannot fit
all local variables into RAM, we have to decide which to store in RAM and which
to store on the stack. First off all, variables in functions that has to be reentrant
cannot be moved to RAM. Variables that end up near the bottom of the stack,
variables that are used in functions that are frequently called and large variables or
large arrays, should preferable be stored in RAM.

Do not use larger data types than necessary By not use larger data types than nec-
essary, unused memory resources wont be wasted. This advice is applicable for all
parts of the code, but will affect different memory areas depending of where the vari-
ables are declared. As told before, the stack is affected by local non-static variables
and by function arguments.

In summary it is possible to reduce the stack usage, but some of the optimisations
require consideration and should be used with certain caution. Some of the improvements
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may cause reduced stack usage at the cost of increased usage of other memory resources.
The code can also become harder to understand and maintain. It is always important to
be restrained with the memory resources and not to use more memory than required.

4.3.2 Development tools
SDCC has been used to compile and link the source code. Usually connectBlue uses the
IAR embedded workbench for Microsoft Windows as development environment for the
CC2530 chip. Therefore we made some efforts in building Contiki with the tools from
IAR embedded workbench, without any success.

The use of SDCC implies several drawbacks. It has no support for hardware debuggers,
which is very desirable. Another missing feature is support for mixed declarations and
statements, since some parts of Contiki, as well as code from other projects, expects the
compiler to support this.

We also experienced that bitfields caused strange behaviour and did not work as in-
tended. This forced us to rewrite some parts of libcoap that used bitfields.

Using the inline keyword does not produce the expected outcome either. If a static
function, used only at a single place in the code, is declared as inline, not only will the
code of the function be inlined, but a callable function will also be generated. This almost
doubled the required RAM and ROM usage of the function. Instead of inlining functions
we made macros out of some functions, and we also made copy-and-paste of some other
functions.

We believe that some of these problems would have been avoided if we were able to
use IAR embedded workbench.
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Chapter 5

Evaluation of the implementation

As described in the introduction, there are several aspects of the implementation that
must be examined. In this chapter we will examine memory usage, energy consumption
and packet size.

We will first discuss the evaluation methods chosen, and later present the actual results.

5.1 Methods
Before any measurements are performed, we have to decide and discuss what methods to
use to measure the performance. This section will discuss our choice of methods.

5.1.1 Memory usage
The memory usage is a central part of this master’s thesis. We want to measure the
memory cost of the Internet of things functionality. The results can be used not only to
compare with other systems, but also to specify memory requirements when designing a
new product.

There are mainly three different memory types that we want to measure: RAM, ROM
and call stack. The stack is actually a reserved part of RAM, thus we will further on refer
to RAM as the area of RAM excluding the reserved stack area.

We want to measure the memory requirements for the CoAP server and also for both
of the RDC drivers: nullrdc and ContikiMAC. A minimal, non-functional, RDC driver
implementation, called stubrdc, will be used as a reference to measure nullrdc and Con-
tikiMAC.

ROM usage

We want to measure the ROM usage of Contiki without any RDC driver or additional
applications. The ROM usage will also be measured for the CoAP server application, the
nullrdc RDC driver and the ContikiMAC RDC driver. SDCC will be used to measure
the ROM usage. When the project is compiled with SDCC, the total ROM usage is
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presented. All debugging functionality such as printouts and logging will be disabled
during the measurements.

RAM usage

The RAM usage will also be measured. We will use the same method for measuring RAM
usage as described for ROM usage above, since SDCC also presents the total RAM usage.

Stack usage

As described in Section 4.3.1, the stack has caused a lot of problems. We want to evaluate
the stack usage of two different versions of the CoAP server, one without any optimisations
and one that has stack optimisations.

It is a lot harder to measure the call stack usage, compared to measuring ROM and
RAM usage. We will select certain functions in the code where the stack pointer will be
printed to the UART. The checkpoints will be placed in functions that are used when a
CoAP GET request is received and handled. We can compare the results between the
different versions to get an indication of how much the stack usage differs between the
versions. However, this is not a very accurate and deterministic method for measuring the
call stack usage, since the results are affected by other processes and events.

The maximum reached stack depth will also be printed whenever the stack pointer is
printed, to be able detect possible stack overflows. The non-optimised version of the CoAP
server is only able to handle GET requests for unknown resources and respond with code
404 (Not found). Because of this we will send a GET request for an unknown resource
when the measurements are performed.

A better method for measuring stack usage would be to use a hardware debugger for
monitoring and debugging the call stack. This is not possible, since we have not been able
to use a debugger together with the development environment.

It is also possible to analyse the code and to calculate a theoretical call stack usage,
or even better to do this for the generated instructions. Since the code is very complex
and hard to analyse manually, we decide to not use this method.

5.1.2 Energy consumption
The energy consumption of the nodes is a very important result. We have previously
discussed that nodes should be able to be battery powered, with a battery life in the range
of months or even years. To calculate the estimated battery life, we want to measure the
average current consumption.

The nodes should be connected as in Figure 5.1. The power source is a USB-powered
debugger device by Texas Instruments. A shunt with a resistance of 1.1 Ω is used, and
an oscilloscope and a voltmeter can be connected over the shunt to measure the voltage
over the shunt. Using Ohm’s law, the current used by the node can be calculated as:
I = Ushunt/R.

There are two main sources of power consumption in the hardware: the radio trans-
ceiver and the CPU. The hardware also has some other components, such as temperature
sensors and voltage regulators. We choose to include these in the same category as the
CPU, since it is hard to measure them independently. We expect the radio transceiver to
affect the energy consumption the most, so we want to measure the radio’s part of the
total power consumption.

To do this we have set up a number of different test cases:
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3.3 V
Shunt

1.1 Ω
Multimeter

Node

Figure 5.1: Energy measurement

1. CPU active, radio listening 100 % of the time (using Contiki’s nullrdc RDC driver)

2. CPU active, radio turned off completely (using Contiki’s nullrdc RDC driver, but
disable the turn-on function of the radio)

3. CPU active, radio using ContikiMAC with a check rate of 2 Hz

Using test cases 1 and 2 we can calculate the radio’s effect on the total consumption.
We expect the radio’s share to be a very significant part. Using test case 3 we can verify
that the power consumption is lowered by using a radio duty cycling protocol.

The actual radio duty cycle (percentage of time the radio is turned on) can be estimated
by using Contiki’s built-in energy estimation features [40]. It works by keeping track of
for how long the radio has been turned on, in terms of CPU clock ticks. By counting the
total number of clock ticks the node has been turned on, an estimate of the radio duty
cycle can be calculated. The current number of ticks can be sampled periodically, so that
the radio duty cycle can be measured over time.

In the default configuration, the energy estimation data is printed over the UART.
However, if we wish to measure the real energy consumption we cannot keep the node
connected to the computer all the time. The USB and FTDI components require extra
power, and our measurements would be more inexact. This means that the node must run
independently with only a power source attached. Since we still need to get the samples
from the node, they need to be sent wirelessly. Sending data at every sample is impossible,
since we also want to be able to measure on a completely idle node. Our solution is to
store all sampled data on the node until the test is finished. We then request each sample
using a simple protocol based on UDP. This solution requires a significant amount of RAM
on the node, which limits the maximum length of a test to around 10 min.

When the radio is constant off, the node cannot send any energy estimation data.
Therefore we have performed this test in two parts: first we measure the average current
consumption, and then we connected the node to the computer with USB and performed
the test once again, this time saving the energy estimation data.

Even if the node does not send any application level data, the underlying network
layer send routing information periodically. Therefore we want to measure the energy
consumption both when the node is idle (no application layer data is sent) and when some
data is sent. Due to the memory restrictions on the node, we cannot make the energy
measurements using libcoap together with ContikiMAC. Instead we choose to send periodic
ICMP PING messages to the node to simulate application level data. Our different tests
are:

Idle test The node and the border router are restarted simultaneously. A sample is taken
every 5 s for a total of 10 min (120 samples). No application level data is sent from
or to the node.
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Ping test The node and the border router are restarted simultaneously. A sample is
taken every 5 s for a total of 10 min (120 samples). After waiting 2 minutes, 60 ping
messages are sent to the node from the computer, passing the border router. One
message is sent every second, with a packet size of 18 bytes. After this we wait
one minute before we send the exact same ping sequence again. Finally, during the
remaining five minutes of the test, no application data is sent.

To make the tests as reproducible as possible the sequences are scripted using Makefiles.
However, the reboot of the border router and the node is done manually by pressing the
reset buttons at the same time as the script is started.

The CPU’s energy usage should also be possible to lower by using low-power modes
supported by the CPU. We have not been able to get them working correctly together
with Contiki, which makes it impossible for us to measure potential savings.

5.1.3 Packet size
The main reason for choosing CoAP over HTTP was the reduced overhead in both the
application and transport layer. Furthermore, we chose to use 6LoWPAN instead of
regular IPv6 to further reduce the overhead. We want to evaluate this choice to see if the
overhead really is reduced.

We will do this by looking at a single request-response cycle, using two computers
and a node. To perform the measurements, we connect the border router and a wireless
IEEE 802.15.4 sniffer to one of the computers. On the same computer we also run the
CoAP-HTTP proxy, the forwarder and a packet capturing application. We will use Wire-
shark to capture packets from the three different interfaces: the SLIP tunnel, the wired
Internet connection and the wireless sniffer. In this way, we can follow the same request
and response traversing the three different interfaces, and examine the packets’ contents.
Finally, we use the second computer to generate the HTTP request, using Mozilla Firefox
as the client.

This will give us the following protocol combinations:

• IPv6, TCP and HTTP. A GET request is sent from the web browser to jCoAP.

• IPv6, UDP and CoAP. jCoAP translates the request from HTTP to CoAP and
forwards it to the border router.

• 6LoWPAN, UDP and CoAP. The border router sends the request to the sensor node
over the wireless link, compressing the IPv6 header using 6LoWPAN.

• 6LoWPAN, UDP and CoAP. The node handles the request and sends the response
wirelessly to the border router.

• IPv6, UDP and CoAP. The border router decodes the 6LoWPAN header and sends
the response to jCoAP.

• IPv6, TCP and HTTP. jCoAP translates the response from CoAP to HTTP and
forwards it to the web browser.

In this measurement we are only interested in comparing the sizes of the network,
transport and application layers. Therefore we have removed any link layer headers to get
comparable results.
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Since TCP is a connection-oriented protocol, it will also require a connection to be
setup, closed and that all data received is acknowledged. Some CoAP requests are also
acknowledged. We choose to ignore the connection setup and tear-down of the TCP
connection when comparing packet sizes. We also ignore stand-alone acknowledgement
packets. It is however important to remember that there are some more data sent not
included in our comparison.

5.2 Results
This section presents all the results from our measurements, according to the methods
described earlier. All results come from our modified version of Contiki and libcoap.

5.2.1 Memory usage
ROM usage

The ROM usage of CoAP server is shown in Table 5.1. Table 5.2 displays the ROM usage
of the different RDC drivers. The tables also contains the percentage of the 262 144 bytes
of total ROM available.

Table 5.1: ROM usage, with and without CoAP server.

ROM ∆ ROM of total ROM
Without CoAP server 113 209 B 0 B 43.2 %
With CoAP server 191 850 B 78 641 B 73.2 %

Table 5.2: ROM usage of the different RDC drivers.

ROM ∆ ROM of total ROM
stubrdc 113 209 B 0 B 43.2 %
nullrdc 115 100 B 1891 B 43.9 %
ContikiMAC 126 847 B 13 638 B 48.4 %

RAM usage

The RAM usage of CoAP server is shown in Table 5.3. The RAM usage requirements
for the different RDC drivers can be found in Table 5.4. The tables also displays the
percentage of the 7936 bytes of total RAM available.

Table 5.3: RAM usage, with and without CoAP server.

RAM ∆ RAM of total RAM
Without CoAP server 5525 B 0 B 69.6 %
With CoAP server 7763 B 2238 B 97.8 %
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Table 5.4: RAM usage of the different RDC drivers.

RAM ∆ RAM of total RAM
stubrdc 5525 B 0 B 69.6 %
nullrdc 5605 B 80 B 70.6 %
ContikiMAC 5775 B 250 B 72.7 %

Stack usage

We measured the call stack usage for two different implementations of the CoAP server:
one without any optimisations, referred to as version 1, and the other one with call stack
optimisations, referred to as version 2. We inserted checkpoints at ten different locations
in the code, in both versions. The measured stack pointer values are shown in Table 5.5
and plotted in Figure 5.2. Note that the stack grows from lower addresses towards higher
addresses, in the range 0–255. The maximum stack pointer value for version 1 was 255,
which occurred between checkpoint 7 and 8. For version 2 the maximum stack pointer
value was 221, which also occurred between checkpoint 7 and 8.

Table 5.5: Stack pointer values at different measurement points.

Checkpoint
1 2 3 4 5 6 7 8 9 10

CoAP server v1 74 119 123 169 172 208 220 236 232 136
CoAP server v2 74 135 125 133 136 172 184 200 196 136
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Figure 5.2: Graph showing the stack usage for two different
CoAP server implementations.
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5.2.2 Energy consumption
In Table 5.6 the average current consumption of a node is shown for the Idle test. The
node is running and the border router is within range. This means that the only data
being sent and being received by the node is routing data required to create and maintain
the connection. When the radio is constant off, the node will not be able to communicate
and cannot create a connection at all. The average RDC have been calculated using the
data from Contiki’s energy estimation feature. The graphs of the corresponding energy
estimation can be seen in Figure 5.3.

Table 5.6: Energy consumption and average RDC for different
radio duty cycle protocols running the Idle test.

RDC protocol Average RDC Average current consumption
Radio constant on 99.8 % 26.9 mA
Radio constant off 0 % 8.3 mA
ContikiMAC 1.7 % 8.5 mA
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Figure 5.3: Energy estimation graphs when running the Idle test.
Solid black line is RDC since the last sample. Blue dashed line is
the moving average RDC.

We have also measured the energy usage and radio duty cycle when data is being sent
over the link using the Ping test. There is no point in sending data when the radio is
constantly turned off, so this case has been ignored. The results can be seen in Table 5.7
and Figure 5.4.

Table 5.7: Energy consumption and average RDC for different
radio duty cycle protocols running the Ping test.

RDC protocol Average RDC Average current consumption
Radio constant on 99.8 % 26.9 mA
ContikiMAC 1.7 % 8.5 mA
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Figure 5.4: Energy estimation graphs when running the Ping
test. Solid black line is RDC since the last sample. Blue dashed
line is the moving average RDC.

5.2.3 Packet size
We have extracted the data from Wireshark to give a visual representation of the dif-
ferent parts in the packets and how their sizes are affected by the compression achieved
by the various protocols. The different parts and their respective colour encodings are:
network layer, transport layer and application layer. The request packets can be seen in
Figure 5.5 and the response packets in Figure 5.6. The size of the packets and the layers
can be seen in Table 5.8.

Table 5.8: The size of the packets and their parts, expressed in
bytes.

Request Response
HTTP CoAP IPv6 CoAP

6LoWPAN
CoAP
6LoWPAN

CoAP IPv6 HTTP

Network 40 40 21 12 40 80
Transport 32 8 8 6 8 64

Application 303 15 15 69 69 227
Total 375 63 44 87 117 371
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|‘....O.@........| |‘......@........| |x...?..........c|
|................| |................| |........3....@..|
|..K..:y....P1...| |..K..:y....3....| |..sen.tempQ)|
|{..w.. ..6......| |@....sen.tempQ)|
|..*~...]GET /sen|
|/temp HTTP/1.1..|
|Host: small-node|
|..User-Agent: Mo|
|zilla/5.0 (Macin|
|tosh; Intel Mac |
|OS X 10.8; rv:15|
|.0) Gecko/201001|
|01 Firefox/15.0.|
|1..Accept: text/|
|html,application|
|/xhtml+xml,appli|
|cation/xml;q=0.9|
|,*/*;q=0.8..Acce|
|pt-Language: en-|
|us,en;q=0.5..Acc|
|ept-Encoding: gz|
|ip, deflate..Con|
|nection: keep-al|
|ive....|

Figure 5.5: The request part of the request-response cycle. From
the left: HTTP request, CoAP and IPv6 request, and finally CoAP
and 6LoWPAN request.

|~............3..| |‘....M.?........| |‘......@........|
| A‘E...!..{"e":[| |..K..:y.........| |..K..:y.........|
|{"n":"urn:dev:ma| |.........3...M A| |.........P..{..w|
|c:12345678901234| |‘E...!..{"e":[{"| |1......x........|
|56:temp","v":30.| |n":"urn:dev:mac:| |......*~HTTP/1.1|
|6250}]}| |1234567890123456| | 200 OK..Content|

|:temp","v":30.62| |-Type: text/plai|
|50}]}| |n..Content-lengt|

|h: 61..Date: Wed|
|, 13 Mar 2013 10|
|:44:51 CET..Expi|
|res: Wed, 13 Mar|
| 2013 10:44:52 C|
|ET..Connection: |
|keep-alive....|
|‘....].@........|
|..K..:y.........|
|.........P..{...|
|1......x........|
|......+.{"e":[{"|
|n":"urn:dev:mac:|
|1234567890123456|
|:temp","v":30.62|
|50}]}|

Figure 5.6: The response part of the request-response cycle.
From the left: CoAP and 6LoWPAN response, CoAP and IPv6
response, and finally HTTP response.
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Chapter 6

Discussion

We will first discuss and analyse the results of the measurements from the previous section.
Later our implementation’s conformance to the standards we have chosen will be analysed,
and finally the security aspects of our implementation will be discussed.

6.1 Memory usage
As described in Section 4.3, memory usage has been an issue during the implementation.
In this section we evaluate the various memory figures: ROM, RAM and call stack usage.

6.1.1 ROM usage
The results of the ROM usage measurements can be seen in Table 5.1 and Table 5.2. From
the first table, we can see an increase in ROM usage of 78 641 bytes when the CoAP server
is enabled. This corresponds to an increase of 69.5 %. The footprint of the compiled code
consumes 73.2 % of the total amount of ROM.

The second table shows an increase in ROM usage of 1891 bytes for nullrdc, and an
increase of 13 638 bytes for ContikiMAC. None of the RDC protocols requires a lot of ROM
when compared to the rest of Contiki. The amount of occupied ROM is however about 7
times more for ContikiMAC compared to nullrdc.

We can conclude that 205 488 bytes of ROM is required to be able to fit Contiki with
both ContikiMAC and CoAP. This means that 56 656 bytes of ROM will left for user
specific applications.

6.1.2 RAM usage
The results from the RAM usage measurements with and without the CoAP server can
be found in Table 5.3. It shows that the RAM used by the base functionality of Contiki is
5525 bytes, that corresponds to 69.6 % of the total available RAM. When the CoAP server
is enabled, the RAM usage increases with 2238 bytes, which results in 97.8 % of the total
RAM being occupied.
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In Table 5.4 the RAM usage for the different RDC drivers is presented. Enabling
nullrdc caused an increase of the RAM usage with 80 bytes. For ContikiMAC the RAM
usage increased with 250 bytes, which is slightly more than 3 times that of nullrdc.

As we can see, a lot of RAM is being used by Contiki, but the CoAP server does also
consume a lot of RAM. This can be derived to stack optimisation, where local variables
in functions has been moved to RAM to reduce stack pressure. Therefore a much lower
RAM usage can be expected for implementations with more stack space.

To run Contiki with both ContikiMAC and CoAP server, 8013 bytes of RAM is re-
quired. Since the chip is only equipped with 7936 bytes of RAM, this is not possible. Even
if it would fit into RAM, it would probably require more stack than available, since both
CoAP server and ContikMAC requires a lot of stack space.

6.1.3 Stack usage
In order to measure the impact of stack optimisations, we made some measurements. We
used two different versions of the CoAP server, one without any optimisations and one
with stack usage optimisations.

When we first integrated the CoAP server into our project, it could only handle CoAP
GET requests for unknown resources, due to stack overflows. We then applied the stack
optimisations described in Section 4.3.1, and were able to get it functioning properly.

The results of the measurements can be found in Section 5.2.1. It shows that more
stack memory was used in the optimised version at the early checkpoints (2 and 3) where
the stack usage was low, and later when the stack usage increased even more, the non-
optimised code used more stack. This shows that the applied optimisations improved the
stack usage for the optimised implementation.

The maximum stack value of the optimised version was 221, which implies that no stack
overflow has occurred. However in the non-optimised version, the maximum possible stack
value 255, was reached. We cannot tell if the stack overflowed or not, since the node did
not crash. We did however observe strange behaviours from the node, causing the response
to be resent, even though it was successfully received the first time. This indicates that a
stack overflow probably occurred.

The ContikiMAC RDC driver required a lot of stack space, which at first made it
impossible to use without getting stack overflows. We had to make several stack optimi-
sations to be able to use ContikiMAC without any stack overflows.

We have not made any approximation of how much stack that would be required for
this kind of system. To make the code run with the current stack space, a great deal of
optimisations are required. These optimisations can make the code harder to understand
and to maintain. In addition, it is most probably very hard to fit both a good RDC protocol
and CoAP server so that they can work together. Our conclusion is that 223 bytes of stack
is not enough due to these reasons.

6.2 Energy consumption
In Section 5.2.2 we presented the results of the energy consumption measurements. Start-
ing at the Idle test, looking at Table 5.6 and Figure 5.3 we can see that the Contiki energy
estimation feature seems to be working. When the radio was constantly turned off, a radio
duty cycle of 0 % was reported, just as expected. With the radio constantly turned on,
a duty cycle of 99.8 % was reported. Looking at Figure 5.3(a) we can see that the first
sample does not have a duty cycle of 100 %, which causes the average RDC to be slightly
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below 100 %. This is because the radio is not turned on until other initialisations have
been performed in Contiki.

Assuming the current consumption of the radio is proportional to the duty cycle, we
can calculate the expected average current consumption iD for a duty cycle of D as:

iD = i0 + i0.998 − i0
0.998 − 0 × D

where i0.998 is the average current consumption of an RDC of 99.8 %, i0 the average current
consumption of an RDC of 0 %, and 0.998 and 0 are duty cycles.

Calculating the expected average current consumption for an RDC of 1.7 % gives that
i0.017 = 8.6 mA. Our measured value was 8.5 mA, which is slightly lower, but still the
energy estimation mechanism seems to be reliable.

Continuing with the Ping test, we see from Table 5.7 and Figure 5.4 that the average
RDC and current consumption remain the same as for the Idle test. This is not surprising
when the radio is constantly turned on, since in this case the current consumption should
be independent of the radio utilisation. In the case of ContikiMAC the RDC and current
consumption should increase with a higher radio utilisation. Looking at Figure 5.4(b) we
can clearly see that the RDC is higher during the ping intervals 120 s–180 s and 240 s–300 s.
The RDC during these intervals is quite low, rarely over 2 %, which does not affect the
total average RDC much.

In Figure 5.4(b) there is a significant difference in RDC during the sending of ping
responses and the sending of RPL broadcast messages (the spikes with RDC ≈ 11 %).
The reason is that broadcast messages need to be sent during the whole 0.5 s interval, so
that all possible receivers’ wake-up intervals are covered. When sending a ping response,
the message is destined for the border router, which is constantly awake. As soon as it
receives the ping response and acknowledges it, the node can stop sending and turn off
the radio again. As we can see, this reduces the radio utilisation significantly.

After verifying that the current consumptions seems to be correct, we can estimate
the lifetime of our node assuming they are running on batteries. As mentioned earlier, a
typical CR2032 button cell battery has a capacity of 230 mAh. Using ContikiMAC, this
would give a disappointing lifetime of 27 h. Even if the button cell battery is replaced with
AA batteries with a capacity of 2300 mAh, the lifetime would be in the range of 1.5 weeks.
Since these kind of nodes need a lifetime of months, or even years, this makes our current
implementation unsuitable.

Even with the radio completely turned off, we had a current consumption of 8.3 mA.
This means that the radio uses only 2 % of the total current in the case of ContikiMAC.
The CC2530 chip has support for three different levels of power saving, which reduces the
current consumption to 0.2 mA, 1 µA and 0.4 µA respectively [41]. During sleep the radio
and the CPU are turned off and can not be used. We have not managed to get these
power saving modes to work correctly. Also, these values do only indicate the current
consumption of the SoC. However, as mentioned in the hardware section, our node consists
of more hardware than the CC2530, all of which consume some extra current.

In an ideal world, the only current drawn from our node should be the current drawn
by the use of the radio. This means that the theoretical lowest possible average current
consumption we could get from our node would be 0.2 mA. This is the ContikiMAC
consumption with the zero percent duty cycle consumption subtracted. However, even
under these ideal conditions, the standard CR2032 battery of 230 mAh would only have a
lifetime of 48 days. This means that either a redesigned radio duty cycling protocol, or a
chip with lower radio current usage is needed.
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6.3 Packet size

The results from Table 5.8 shows that CoAP with 6LoWPAN reduces the overhead sig-
nificantly. The request is reduced from 375 B to 44 B, a compression ratio of 0.12. The
response has a compression ratio of 0.23.

There are a couple of things to notice about the data. First, we see that the CoAP-
HTTP proxy reduces the application layer data with 95 % for the request. CoAP does
compress HTTP headers by using a binary format, instead of a textual representation
used in HTTP. This is only a part of the explanation. A lot of data is saved by sim-
ply ignoring some HTTP headers, which are of no importance in CoAP. As an example,
the following headers from the HTTP request in Figure 5.5 are not present in the CoAP
request: User-Agent, Accept-Language, Accept-Encoding and Connection. The re-
maining headers are compressed to the binary CoAP format.

Looking at the request, we can also see that 6LoWPAN can compress the network
layer to almost half the size of IPv6, a significant improvement. Moving from TCP to
UDP also lower the size required on the transport layer by a factor four.

Looking at the response, we can see that both the network and transport layers have
an even lower size for CoAP/6LoWPAN compared to the request, even though the ex-
act same protocols are used. This is because 6LoWPAN uses UDP compression in the
response, which means that UDP information is included in the 6LoWPAN header. This
also removes the UDP length field, which can be calculated from the link-layer size instead.
This reduces the transport layer data from 8 to 6 bytes. Note that there is no real UDP
header in the data, but we have counted the bytes used for UDP header compression in
the 6LoWPAN header as the transport layer size.

We do not fully understand why the UDP header compression is not performed on
the request. We believe the reason is that the border router only act as a router, and
that Contiki does not compress the network layer when packets are routed from the SLIP
interface to the wireless interface. When the response is created on the node, a completely
new packet is generated, which then triggers the UDP header compression.

Looking at the HTTP response, we see that the network and transport sizes are doubled
compared to the HTTP request. This is because the response is sent in two separate
packets, each having one IPv6 header and one TCP header. The application layer data
is actually smaller in the response than in the request, so there should be no need to
split the packet because of this. Looking at the packet dump in Figure 5.6 we see that
the application data is split right between the HTTP headers and the HTTP body. This
seems to be done by the HTTP library used by the jCoAP proxy, for reasons unknown to
us. Since the HTTP request is only sent on the Internet, these extra network layer and
transport layer headers should not be a problem.

As mentioned in the methods, extra TCP overhead is not included in these figures. For
every HTTP connection a TCP connection has to be established and later terminated, and
the packets in the connection have to be acknowledged. As an example, a TCP connection
establishment requires three TCP packets, all of which would require their corresponding
network layer headers. If a connection has to be established for every request, this incurs
a lot of extra data having to be sent and received.

We think that the CoAP conversion is a significant improvement, since it reduces
the load on the nodes. The amount of data that the node needs to receive and send is
much lower than if HTTP would have been used. Using UDP also reduces the memory
consumption on the node, since no TCP state has to be recorded in memory.
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6.4 Conformance to standards
In our solution we use several different standards and RFCs. Since interoperability is
an important aspect in the Internet of Things, it is important that an implementation
conforms to the standards used. This section describes features that are missing from our
implementation, which makes it incompatible with different standards. Some standards,
particularly CoAP, includes a wide range of optional features. Such missing optional
features are not included here.

The maximum packet size for IEEE 802.15.4 is 127 bytes. However, IPv6 requires that
the underlying layers support packets of at least 1280 bytes [42]. This means that link-
layer fragmentation support must exist. Contiki does support fragmentation of packets,
but due to memory limitations, we cannot support both CoAP and fragmentation at the
same time.

Apart from being being non-standard, this also limits the use cases of the nodes. A
maximum packet size of 127 bytes means that we can send a maximum of 71 bytes of CoAP
data in one packet. This is especially an issue for service discovery, since it is only possible
to fit a single resource in the /.well-known/core resource listing. If every node should be
able to supply different resources, for example one temperature sensor and one humidity
sensor, fragmentation support would be required to be able to use the service discovery
features.

6.5 Security
Our solution has no built-in security at all. This means that anyone could eavesdrop, forge
or access the node’s resources. One of the main reasons for this lack of security is that
there is no built-in support for any security in the Contiki operating system. This section
is therefore devoted to describing possible attacks, and possible solutions, together with
their feasibility for resource limited nodes.

Traditionally, sensor networks and other small items have never had a direct connection
to the Internet. The wireless networks have been isolated, without contact with the outside
world. When building the Internet of things it may be easy to move rapidly, but we must
also take a step back and consider the security of the devices.

There are several situations where security of the data can be important. For example,
in the area of healthcare the privacy is important. A patient using medical equipment
that connects to the Internet may not want his or her data to be accessed by unauthorised
people. It is important that the developers of the system make the users aware of possible
limitations in their implementation, such that users can make informed decisions about
the data sent on the network.

There are several security issues that must be considered when connecting new devices
to the Internet. Considering a small sensor node, one might want to ensure that only
certain people have access to the sensor’s value over the Internet. This of course requires
support for authentication and authorisation, but it will most certainly also require con-
fidentiality. There is limited use of requiring authorisation if the data can be heard by
an eavesdropper. If we instead consider an actuator, the user will almost certainly want
authorisation to avoid that anyone can make changes. However, confidentiality might not
be required in this case.

Looking from the other direction: how can the user be sure that the value returned
comes from the correct node and that is has not been tampered with during the transmis-
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sion? This is solved by requiring authentication of the other party and message integrity.
Depending on the security level required, this problem can be solved differently. For

some appliances, it may be enough to secure the wireless link between the node and the
border router. Others may require end-to-end security.

6.5.1 End-to-end security

A solution to all these problem could be DTLS, Datagram Transport Layer Security [43].
It is an adaption of TLS, Transport Layer Security, to work with unreliable transport
protocols such as UDP. It is designed to be as similar as possible to TLS, and supports
mutual authentication, confidentiality and message integrity. Authorisation would have
to be handled by the application on the node.

There exists previous implementations of DTLS for Contiki, but they are not at all
adapted for our platform, and are not officially included in Contiki. In [34] the maximum
stack usage is over 2400 bytes, and the amount of RAM required is 1961 bytes. The exact
figures would not be the same if ported to CC2530, but it is clear that DTLS is unsuitable
for our platform. Furthermore, the implementation in [34] required pre-shared keys, which
requires manual key management. A certificate-based solution may be even more costly
in terms of resources.

Since DTLS is an end-to-end security protocol, it also requires that CoAP is used all
the way from the client to the node. If a CoAP-HTTP proxy is used on the gateway, some
sort of mixed solution is required, as described later in Section 6.5.3.

6.5.2 Wireless link security only

So far only end-to-end security protocols have been discussed. If only the wireless link
needs to be secured, it can be done on several different layers: the transport layer, the
network layer or on the link layer. IEEE 802.15.4 has defined link layer message encryp-
tion and integrity using AES-CCM. Unfortunately, there is no defined key management
protocol for link-layer security, and one would have to be defined for secure operation.
The use of link layer encryption will encrypt the whole MAC payload, which includes all
data and IP headers. All traffic from the node will be affected. This may or may not be
positive. Some applications on the node might not require encryption or authentication,
while some does it. At the link layer there is no way to distinguish these cases.

IPsec could also be used to provide encryption and authentication. Just like on the
link layer it will affect all traffic from the node. It is also important to note that there
are currently no specific adaptions for IPsec in 6LoWPAN, which means that the IPsec
headers cannot be compressed. The implementation [44] proposes header compression for
IPsec in 6LoWPAN, and shows that authentication and encryption in IPsec only adds an
extra 3 bytes of data compared to link layer authentication and encryption.

Finally transport layer security is also a possibility, using DTLS as described above.
This would make it possible for the node to have different services requiring different
security features. However, using encryption at this layer just to provide security for the
wireless link would require the gateway to act as a proxy, decrypting data at the transport
layer and then repackage it and send it to the Internet. This increases the complexity of
the gateway.
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6.5.3 Mixed
A possible scenario is that we ideally would like end-to-end security, but because we want
to use the CoAP-HTTP proxy this is impossible. The reason this is not possible is because
the proxy must read and transform the contents of the HTTP and CoAP packets, which is
only possible for packets that are not encrypted or authenticated. However, if we already
trust the gateway to convert the data, we might as well trust it as a party in our secure
communications. If the gateway is trusted, we could use DTLS between the gateway and
the node, and ordinary TLS between the gateway and the client.

As previously discussed, DTLS requires significant resources, which may not be avail-
able. In the solution of the previous paragraph, DTLS could easily be replaced by another
protocol, since this does not affect the client at all. This makes it possible to use a more
light-weight encryption and authentication scheme, for example on the link layer or net-
work layer. This reduces the resources required on the node, and still provides security on
the Internet as well as on the wireless link.

6.5.4 Other security-related problems
Because of the nodes’ limited resources in terms of CPU, memory and network bandwidth,
Denial of Service (DoS) attacks are an issue if the nodes are to be access directly from
the Internet. The best location to counter these attacks is in the gateway, since it it has
unlimited power, and in general better performance [45].

DoS attacks can also be performed by jamming the radio channel. This can disturb the
transmissions significantly [46]. This affects IEEE 802.15.4 since it does not use frequency
hopping. The jamming attack requires the attacker to be within fairly close range of the
wireless network, which makes it more difficult. However, if the network is located in a
public space it may still pose a significant threat.

Access control to the wireless network is also an important feature, so that only au-
thorised nodes are able to be a part of the wireless network. IEEE 802.15.4 have some
support for this through the use of access control lists (ACLs). The ACLs are used to
set the keys used for encryption and authentication, and by requiring all packets to be
authenticated non-authorised devices can be kept out from the network.
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Chapter 7

Conclusions

The goal of this thesis was to examine possible limitations in the functionality of small,
constrained, wireless devices. Our study shows that with our choice of hardware, an
implementation will be severely limited in terms of both features and power consumption.

It was not possible to fit both the CoAP server and the energy saving features on the
chip at the same time, and even if it were possible, the energy saving protocols are not
efficient enough to use small button cell batteries. This is an important result, since it
shows that hardware with more memory is not enough; better energy saving protocols or
more power-efficient hardware is also required.

The use of CoAP together with 6LoWPAN seems to work well, especially when com-
bined with the proxy at the gateway. It significantly reduces the amount of data sent,
which is important for wireless transmissions. An HTTP and TCP implementation would
not have been possible to fit on our device, but even if it was possible, the extra resources
used by these two protocols may be better spent on the actual user application.

Choosing Contiki as the operating system has simplified the implementation a lot. It
includes support for most of the protocols required on every layer. Implementing a network
stack on our own would have been a very time-consuming task. Contiki is well-supported,
and there is a lot of activity on the mailing list and in their code repository. This is good
because it shows that the project is actively developed, and that it is actually used and
tested.

To solve the issues described earlier, there are two main solutions: Better, more power-
efficient hardware with more memory, need to be used; and more efficient power-saving
radio duty cycling protocols need to be developed. Additional future work is required to
investigate or develop such hardware and protocols.

7.1 Future of the Internet of things
We think that the future of the Internet of things is bright, even though our implementation
did not show any impressive performance. During the project we have seen a lot of activity
regarding the Internet of things, and we expect even more activity in the future, which
will result in new standards and technologies.
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We think that several different communication technologies will be used to achieve the
visions of the Internet of things, both wired and wireless. We have used IEEE 802.15.4,
but as mentioned in the Background, it exists several other different technologies like BLE
and Wi-Fi. BLE can be found in many new smartphones, which may make it suitable for
devices you carry with you. Wi-Fi may be used in appliances where the power consumption
is not restricted. New technologies will probably also be developed. An example is the
emerging standard Weightless, which relies on a dedicated infrastructure of base stations,
much like cellular networks, without the need of a border router [47].

We believe that IP will be used by the majority of all devices in the Internet of Things,
and that the majority off all wireless technologies will support IP. IEEE 802.15.4 and Wi-
Fi already supports IPv6, and there is an on-going effort to support it in BLE as well. In
this way the wireless technology can be chosen freely, to suit a specific use-case, without
requiring application layer modifications.

The adoption of the Internet of things allows better system integration and reduces
the amount of independent parallel systems. More systems can share resources and data,
and thereby benefit from each other.

A potential use case for Internet of Things-enabled devices is to reduce energy costs.
Equipment that consumes a lot of power could contact the energy supplier and find out
at which time the energy price is the lowest. In this way the society utilises the power
grid more efficiently. There are probably a lot of other potential areas where Internet of
Things will benefit people.

7.2 Future work
There is a lot of work that could be done in possible future implementations. Using our
current hardware, there are some improvements that can be made:

• Try to optimise the stack usage even further. This can make it possible to add new
features. It should be noted that this probably requires widespread changes in code,
with patches that are unsuitable for other platforms. If open-source code is used,
maintaining code with lots of patches may be a lot of work.

• Run the border router directly on the BeagleBone by connecting an IEEE 802.15.4-
radio directly to it. That way we are not restricted by the limited resources of the
current border router, which for example affects the number of maximum connected
nodes and maximum number of routes.

Another option is to use different hardware, presumably hardware that has more re-
sources available, especially more stack memory. Texas Instruments has a new chip called
CC2538, which has a more powerful CPU with more stack and RAM [48]. There is al-
ready a port of Contiki to this platform, and because of the increase of stack and RAM
we believe that it would solve several issues with our current implementation.

Our current solution requires clients to connect to the node every time it want to
check whether some data has been updated or not. An alternative solution would be a
kind of subscription solution, where clients subscribe to different resources and get notified
by the server when these resources change. There is an observe extension to CoAP [49],
which allows a client to request that the server sends an updated value to the client when
such a new value exists. This could be implemented to avoid the client doing periodic
polling. The solution could also be combined with a new HTML5 feature, still in draft
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form, called Server-Sent Events [50], which would allow the subscription based service to
be used with HTTP and TCP. This would require such functionality to be implemented
in the CoAP-HTTP proxy.

There is also potential to make the nodes cloud-enabled, so that they push data to
the cloud, which can then later be fetched by clients. This could potentially reduce the
workload on the node, simplify security schemes and reduce power consumption, since the
node does only have to send data at its own discretion.

Future work could also focus on other wireless techniques, like Bluetooth Low-Energy
or Weightless. They have no support in Contiki, which is adapted for IEEE 802.15.4. This
would require some other operating system, or even writing your own.
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Appendix A

Glossary

6LoWPAN IPv6 over Low power Wireless PAN

ACL Access Control List

AES Advanced Encryption Standard

BLE Bluetooth Low Energy

CBC-MAC Cipher Block Chaining Message Authentication Code

CCM Counter with CBC-MAC

CCMP CCM Protocol

CoAP Constrained Application Protocol

DoS Denial of Service

DTLS Datagram Transport Layer Security

FFD Full-Function Device

GATT Generic ATTribute

IPSO IP for Smart Objects

JSON JavaScript Object Notation

LLN Low power and Lossy Network

MAC Media Access Control or Message Authentication Code

PAN Personal Area Network

RDC Radio Duty Cycling

REST REpresentational State Transfer
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RFD Reduced-Function Device

RPC Remote Procedure Call

RPL Routing Protocol for LLNs

SenML Sensor Markup Language

SEP Smart Energy Profile

SLIP Serial Line Internet Protocol

SOAP Simple Object Access Protocol

SoC System On a Chip

TI Texas Instruments

TLS Transport Layer Security

UART Universal Asynchronous Receiver/Transmitter

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

WPA2 Wi-Fi Protected Access 2
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Appendix B

Division of work

Most of the practical implementation work has been done jointly, because of limited hard-
ware resources both in terms of sensor nodes and workstations.

The following sections have been written jointly:

• Chapter 1 (Introduction)

• Section 2.2 (Networking)

• Section 2.4 (Complete solutions)

• Chapter 3 (Choosing technologies)

• Section 4.1 (Hardware)

• Section 5.1.3 (Packet size)

• Section 5.2.3 (Packet size)

The following sections have been written by Jimmy:

• Section 2.3.1 (REST)

• Section 4.2.1 (Contiki)

• Section 4.2.2 (Sensor node)

• Section 4.2.4 (Development tools)

• Section 4.3 (Difficulties during implementation)

• Section 5.1.1 (Memory usage)

• Section 5.2.1 (Memory usage)

• Section 6.1 (Memory usage)

• Section 7.1 (Future of the Internet of things)
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B. Division of work

The following sections have been written by Linus:

• Section 2.1.3 (Wi-Fi)

• Section 2.3.2 (SOAP)

• Section 2.3.3 (CoAP)

• Section 4.2.3 (Gateway)

• Section 5.1.2 (Energy consumption)

• Section 5.2.2 (Energy consumption)

• Section 6.2 (Energy consumption)

• Section 6.3 (Packet size)

• Section 6.4 (Conformance to standards)

• Section 6.5 (Security)

• Chapter 7 (Conclusions)

• Section 7.2 (Future work)
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Appendix C

Popular science article
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C. Popular science article

Performance of devices in the Internet of Things

Jimmy Assarsson
Linus Karlsson

June 3, 2013

On today’s Internet there are
lots of connected devices, like cell
phones and computers. The next
step is to connect more and more of
our things to the Internet. This the-
sis examines if and how small, wire-
less, battery-powered devices can
be connected, and how it affects
them.

Getting a device to work for a long
time using only battery power is hard. It
is even harder when the device commu-
nicates wirelessly, since radio transmit-
ters consume a lot of power when they
are used. Finally, since we do not want
to change batteries in every small gadget
too often, we expect a battery lifetime of
months, or even years.

One of the most common wireless
technologies today are Wi-Fi, which can
be found in essentially all laptops and
smartphones today. Unfortunately, Wi-
Fi consumes too much power if you
want long battery lifetime. Therefore
we have examined other wireless tech-
nologies, and decided to use one called
IEEE 802.15.4 instead. It is also impor-
tant to minimise the amount of data sent,
because more data means that the ra-
dio transceiver has to be turned on for
a longer period of time.

We have developed our solution using
modules from connectBlue, a picture of a
node can be seen in Figure C.1.

To minimise the data sent we have
used various compression techniques that
reduces the data. A protocol called
6LoWPAN is used to reduce the size of
IPv6 headers, and CoAP is used instead
of HTTP on the application layer.

Figure C.1:
Module on a
standard-size key-
board.

Since these are protocols that are not
very common, there is in general no sup-
port for them on ordinary devices con-
nected to the Internet. Because of this,
we have also developed an intermediate
gateway which translates between CoAP
and HTTP. This way, any ordinary web
browser can communicate with our mod-
ules, even though they do not talk the
same protocol. The gateway has two
interfaces: one wireless interface which
communicates with the modules, and one
wired interface which communicates with
the rest of the Internet. In this way, the
gateway act as a bridge between the small
modules and the big Internet.

We have used only open-source soft-
ware to create our solution. As operat-
ing system we have used Contiki, which
is specifically designed with the Internet
of Things in mind. It supports a great
deal of the techniques we are interested
in. Furthermore we have used libcoap as
server on the modules, and jCoAP as the
software performing the protocol transla-
tion on the gateway.

During implementation, we quickly
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found that the hardware available had
very limited memory resources. This
made it very hard to fit all features on
the device at the same time. This re-
quired us to use a special version of Con-
tiki, adapted for our hardware. Still, we
could not fit all functionality we wanted
in memory at the same time.

We investigated several different as-
pects of our solution: amount of data
sent, memory usage, energy consumption
and security.

We found that the amount of data
sent was reduced significantly by using
CoAP and 6LoWPAN. It was only 12 %
to 23 % of the equivalent data in HTTP
and IPv6 format.

As mentioned earlier, we had diffi-
culties with the modules’ memory us-
age. Depending on which memory that
was exhausted, we got issues like spo-
radic resets or compilation errors. Some
of the errors could be fixed by patching
the code, while in some cases we had to
remove the functionality completely.

We did also measure the energy con-
sumption and compared two different op-
tions: one where the radio was turned on
all the time, and one power-saving radio
protocol where the radio was turned on
only 1.7 % of the time. The latter re-
duced the total power consumption with
69 %. Still we found that the total power
usage was too high, giving a battery life
of only 27 hours with a button cell bat-
tery. This is far too low for any practical
purposes.

Our solution has not focused on any

security issues, but if it were to be used
in production, encryption and access con-
trol should be implemented. This is im-
portant to avoid unauthorised people to
read the data, or to manipulate it. The
main reason our solution did not include
any security features was because there is
no built-in support for this in the open-
source software we have used.

After evaluating the performance of
our implementation we found that mem-
ory and power usage of our solution are
the main issues. The problems can be at-
tributed to both hardware and software.
The amount of memory is very limited
on our modules, and our conclusion is
that hardware with more available mem-
ory is required to create fully-featured so-
lutions. New hardware can reduce power
consumption, since other processors and
radio transceivers may have lower power
requirements. Power consumption can
also be reduced by software, for exam-
ple by creating a new power-saving radio
protocol. In this way, the radio could be
turned on for a smaller amount of time
to reduce the energy used.

Even though our implementation is
far from perfect, we believe that the In-
ternet of things has a bright future. We
see possible future application areas in
for example: home automation, health-
care, personal fitness, and many others.
In this way, Internet of Things will be-
come an integrated parts of our life —
but not as long as battery replacements
have to be done frequently.
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