
Likelihood-free inference and approximate Bayesian computation
for stochastic modelling

Master Thesis
April of 2013 – September of 2013

Written by

Oskar Nilsson

Supervised by

Umberto Picchini
Centre for Mathematical Sciences

Lund University

2013
Lund University

Abstract

With increasing model complexity, sampling from the posterior distribution in a Bayesian context
becomes challenging. The reason might be that the likelihood function is analytically unavailable or
computationally costly to evaluate. In this thesis a fairly new scheme called approximate Bayesian
computation is studied which, through simulations from the likelihood function, approximately
simulates from the posterior. This is done mainly in a likelihood-free Markov chain Monte Carlo
framework and several issues concerning the performance are addressed. Semi-automatic ABC,
producing near-sufficient summary statistics, is applied to a hidden Markov model and the same
scheme is then used, together with a varying bandwidth, to make inference on a real data study
under a stochastic Lotka-Volterra model.

Contents

1 Introduction 2

2 Approximate Bayesian Computation 4
2.1 A first algorithm . 4
2.2 Basic example . 5

2.2.1 Example of Markov model . 6
2.2.2 Example of hidden Markov model . 10

3 Likelihood-free MCMC 15
3.1 Using ABC . 15

3.1.1 The HMM example . 17
3.1.2 Results . 18

3.2 Exact Bayesian inference . 21
3.2.1 Results . 22

4 Semi-automatic ABC 25
4.1 Theory . 25
4.2 The HMM example . 26

4.2.1 Results . 27

5 ABC in a Stochastic Lotka-Volterra model 29
5.1 Varying bandwidth . 29
5.2 Stochastic Lotka-Volterra real data study . 30

6 Closing comments 38

1

Chapter 1

Introduction

Inferential problems come in different complexities. For the easier ones methods have been around
for a long time, while for the more complex ones new methods are still on the rise. In this
thesis, one of the new methods tackling the inference of complex models will be studied. Initially,
a Markov model will be considered and for this there are several inference alternatives, one is
likelihood maximisation. When this model later is advanced to a hidden Markov model (HMM), it
turns out to be extremely difficult to write the likelihood function in closed form or to efficiently
simulate an approximation thereof. The standard inferential way has been the EM algorithm but
e.g. [1] introduces a method for direct maximisation of the likelihood. The final study will be
on the interaction between Lynx and Hares in North Canada in the early 20th century. As a
model, a Lotka-Volterra stochastic differential equation (SDE) subjected to an error model will be
introduced. The likelihood in this case is impossible to find in closed form but there are still ways
of tackling the inference. One way is the very interesting pseudo-marginal MCMC proposed by [2].
By using a bootstrap particle filter to obtain an unbiased estimate of the likelihood function, the
algorithm gives exact inference. For a survey on methods for SDE inference, see [3].
In Bayesian statistics, one needs to evaluate the likelihood function in order to obtain the posterior.
Sometimes though, e.g. for complex models like the ones mentioned above, the likelihood function
might be analytically unobtainable or computationally costly to evaluate. Therefore, one might
want to turn to Approximate Bayesian Computation (ABC), a.k.a. Likelihood-free Computation.
The underlying idea is to obtain the posterior by evaluating the likelihood using simulations thereof.
Hence, its analytical expression does not need not to be known. As standard Bayesian theory, ABC
is based on Bayes’ theorem as described in eq. (1.1), where y is the observed dataset, π(θ|y) the
posterior distribution, π(y|θ) the likelihood, π(θ) the prior distribution, π(y) the evidence and θ
the set of parameters.

π(θ|y) =
π(θ)π(y|θ)

π(y)
(1.1)

In this case, only the relative frequencies of the posterior are searched for and the evidence is a
normalising constant. This will lead us to only study the Bayes’ theorem of the form in eq. (1.2).

π(θ|y) ∝ π(θ)π(y|θ) (1.2)

The first computationally likelihood-free algorithm on the ABC course (Algorithm 1) was proposed
by [4]. Instead of computing the likelihood function it simulates a dataset from the corresponding

2

distribution π(y|θ), using a parameter draw from the prior π(θ), and accepts or rejects the parameter
value if the simulated dataset equals the observed dataset. Thus, it is a special case of the rejection
method [5]. This algorithm was later advanced to, what is often seen as, the first true ABC
algorithm by [6] in Algorithm 2. It includes the tolerance on the difference between the observed
and the simulated dataset in the acceptance stage, which is typical of ABC. This difference is
defined in terms of low-dimensional summary statistics of the datasets which aims at enhancing
sampling efficiency. A third, very important step, in the ABC history is the one made by [7]
where the ABC was put into the Markov chain Monte Carlo (MCMC) framework, later modified to
Algorithm 3 by [8]. In common for all ABC algorithms that incorporate a non-zero tolerance is that
the simplification comes with a bias and therefore, in general, the algorithms target the posterior
approximately. However, computational efficiency is gained since more draws are accepted. One of
the big challenges lies in choosing this tolerance sufficiently low to keep statistical accuracy, while
allowing it to be high enough to make use of the improved sampling efficiency. Another challenge
is to define summary statistics that represent the dataset well. For a thorough historical review of
ABC, see [5].
In chapter 2 the algorithm introduced by [6] will be applied to both a Markov model and an
HMM, whereas the first will be compared to the analytical posterior. Then, the same HMM will be
studied under the MCMC algorithm described by [8]. In order to obtain well-describing summary
statistics, a scheme called semi-automatic ABC will be treated in chapter 4. Finally, inference on
the Lynx-Hares data will be done under the SDE model in chapter 5, where a varying tolerance is
introduced to take advantage of both sides of the trade off concerning the same.

3

Chapter 2

Approximate Bayesian Computation

2.1 A first algorithm

In Bayesian statistics, inference is based on the posterior. Thus, one often wants samples thereof for
Monte Carlo approximations. The most basic algorithm used to simulate from the posterior is the
so called likelihood-free rejection sampling algorithm, as can be seen in Algorithm 1 and formulated
as follows: After the candidate θ′ is drawn from the prior, one simulates a dataset x, on the same
space as y, from the model π(x|θ′) (i.e. the likelihood function of θ′). The parameter θ′ is then
accepted and considered likely to have generated the observed dataset y ∈ Y if x ≈ y and therewith
considered to be an approximate draw from the posterior [8].

Algorithm 1: The likelihood-free rejection sampling algorithm, as described in [8].

1. Generate θ′ ∼ π(θ) from the prior.

2. Generate dataset x from the model π(x|θ′).

3. Accept θ′ if x ≈ y.

The accepted parameter θ′ is then regarded as an approximate draw from the posterior
π(θ|y).

For those not used to Bayesian statistics, the prior is a distribution function that recaps ones prior
believes on the parameter θ ∈ Θ. If one is studying e.g. the height of Swedish women, one might
expect them to be somewhere around 165 cm and put a Gaussian prior centred at the specific
height. If this is completely unknown, a uniform prior can be used.
If one was to use Algorithm 1 under the criterion x = y the accepted θ′ would be an exact draw from
the posterior. In practice it is often extremely unlikely to obtain a simulated dataset, x, identical to
y and therefore the relaxation is necessary in order to achieve an efficient execution. For continuous
data, the probability of this happening is zero. That is, θ′ is accepted with a tolerance ε ≥ 0 if

ρ(x, y) ≤ ε,

where ρ(·, ·) is a distance measure of choice. In general, the probability of generating a dataset x
with a small distance to y decreases as the dimension of the dataset increases. This would lead to

4

a frequent rejection in Algorithm 1 and a highly inefficient execution [9]. Therefore, this relaxation
is instead often represented by a vector, T (typically low-dimensional), of summary statistics of
the simulated dataset x and the observed dataset y[8]. These are chosen to capture the important
information on θ in y and are ideally sufficient with respect to θ, meaning that they contain all the
information on θ in the dataset. If T is sufficient no extra bias is added if the x ≈ y criterion is
represented by [9]

ρ(T (x), T (y)) ≤ ε. (2.1)

Outside the exponential family though, it is often impossible to find a finite set of sufficient summary
statistics, thus explanatory but non-sufficient summary statistics are often used in practice [9].
We now arrive to the likelihood-free rejection sampling algorithm using summary statistics, as can
be seen in Algorithm 2.

Algorithm 2: The likelihood-free rejection sampling algorithm using summary statistics.

1. Generate θ′ ∼ π(θ) from the prior.

2. Generate dataset x from the model π(x|θ′).

3. Accept θ′ if ρ(T (x), T (y)) ≤ ε, where T is a finite set of summary statistics and
ρ(·, ·) is a distance measure of choice.

The accepted parameter θ′ is then regarded as an approximate draw from the posterior
π(θ|y).

This way of simulating yields sampling from π(θ|ρ(T (x), T (y)) ≤ ε) and not the true posterior
π(θ|y), unless the summary statistics are sufficient with respect to θ and the tolerance is set to zero
[8]. Though, using a moderate ε and a sane-minded distance measure, it is assumed to approximate
the true posterior [9]. Note that if ε goes to infinity, the samples will be distributed according to
the prior.

2.2 Basic example

The example considered in this chapter is presented in [9]. It treats a sequence of A’s and B’s
generated by Markov models. First, a simple Markov model (Figure 2.2) is considered, which
is thereupon advanced to a hidden Markov model (Figure 2.4). The aim is to approximate the
posteriors of the parameters in these models. In both cases, the summary statistic T is the number
of switches from A to B and vice versa, while the distance measure is the euclidean distance. For
example, if the observed dataset y = (A,A,B,A,B) and the simulated dataset x = (B,A,A,B,B)
then T (y) = 3, T (x) = 2 and ρ(T (x), T (y)) = 1. This choice of summary statistic is sufficient
with respect to λ for the model in Figure 2.2 and will therefore make exact recovery of the target
posterior possible if ε = 0. However, for the model in Figure 2.4 this is not the case and we do not
try to find a sufficient statistic. Since the event x = y is extremely unlikely for large datasets, the
ABC will not be used without a summary statistic. This setup can be seen as a toy example which
could be advanced to a model grasping the complex nature of DNA sequences. The state space of

5

the Markov model would then, at a minimum, include the four nucleotides adenosine (A), cytidine
(C), guanosine (G) and thymidine (T) (see [10] for an example of HMM’s for DNA analysis).
During the analysis of these two examples, three different prior distributions will appear. These are
Beta(α, β)1 for (α, β) = (8, 1), (α, β) = (38, 2) and (α, β) = (1, 1), all shown in Figure 2.1. Note
that the latter is the uniform U(0, 1) distribution.

Figure 2.1: Prior distributions that will be used in the study of the basic example. These are U(0, 1) (dotted),
Beta(8, 1) (dashed) and Beta(38, 2) (solid).

2.2.1 Example of Markov model

The Markov model studied is presented in Figure 2.2, from which a dataset is generated, with given
probability of transition λ and dataset size n. This will be done for three different sizes, namely
n = 20, 200 and 2000; chosen to illustrate the influence on the method, while the observed dataset
is generated using λ = 0.25. For this Markov model, the exact posterior can, and will, be found
for comparison with the one obtained using Algorithm 2. Furthermore, the acquired posteriors will
be studied under the tolerances ε = 0, 2 and 20. The starting character will be randomly chosen
between A and B, with π(A) = π(B) = 1/2, and since no knowledge of λ is assumed, a U(0, 1)
prior is suitable.

Figure 2.2: The Markov model considered, where λ is the probability of switching from A to B and vice
versa.

1With probability density function defined as f(z) ∝ zα−1(1− z)β−1, z ∈ [0, 1], α, β > 0.

6

Analytical posterior

Let the observed dataset y = (y1, y2, . . . , yn) be an observation of Y = (Y1, Y2, . . . , Yn). Then, by
considering the model and Bayes’ theorem (1.2) it is evident that

π(λ|y) ∝ π(λ)π(y|λ) = π(λ) · π(y1)
n∏
k=2

π(yk|yk−1, λ),

where

π(yk|yk−1, λ) =

λ, if yk 6= yk−1

1− λ, if yk = yk−1

.

Since π(λ) = 1 for λ ∈ [0, 1] and π(y1) = 1/2,

π(λ|y) ∝ 1

2

n∏
k=2

π(yk|yk−1, λ),

where λ ∈ [0, 1]. Hence,

π(λ|y) = Beta

(
n∑
k=2

1(yk 6= yk−1) + 1, n−
n∑
k=2

1(yk 6= yk−1)

)
, (2.2)

where 1(yk 6= yk−1) is the indicator function returning one if yk 6= yk−1 and zero otherwise.

Results

The estimated posterior distributions obtained according to Algorithm 2 using 1,000,000 simula-
tions, together with the analytical posterior as in (2.2), are shown in Figure 2.3 for the dataset
sizes n = 20, 200 and 2,000 respectively. The mean, the median and the 95 % credible interval 2 of
the posteriors are presented in Table 2.1, as well as the number of accepted simulations.
When both ε and the dataset size are 20, all λ’s generated from the prior will be accepted, i.e. the
resulting posterior equals the prior. This can be viewed as the extreme of the fundamental property
in ABC; when ε goes to infinity, the posterior distribution will take the form of the prior. One can
see that the choice of ε clearly affects the outcome of the algorithm, even though the median and
mean of the posteriors in all cases but the one just mentioned are estimated very well (Table 2.1).
As an example; when the dataset size n = 20, only a zero tolerance will result in a fully satisfactory
posterior (Figure 2.3a), even though the one obtained by ε = 2 might be usable too, depending on
preferences. For comparison, the analytical posterior distributions for all three datasets are shown
in Figure 2.3d. So, why would one want to use a non-zero tolerance? Because of the same reason
as one is using a tolerance in the first place, to improve sampling efficiency. For example, when the
dataset size n = 2,000, a zero tolerance and ε = 20 give similar posteriors (Figure 2.3c and Table
2.1), but the latter consists of 20,718 accepted λ’s and the former of only 518.

2Defined as the interval such that there are equal probabilities below and above the interval.

7

Figure 2.3: Markov model example using ABC. The analytical posterior (black) together with the estimated
posteriors of λ for ε = 0 (dark-grey), ε = 2 (medium-grey) and ε = 20 (light-grey) for dataset sizes n = 20
(a), 200 (b) and 2000 (c). These are obtained by Algorithm 2 and 1,000,000 simulations each and shown are
the estimated kernel densities of the posteriors using Matlab’s ksdensity. In (d), the analytical posteriors
for dataset sizes n = 20 (dotted), 200 (dashed) and 2,000 (solid) are shown. The observed datasets are
generated using λ = 0.25, indicated by the vertical lines.

8

ε n Number of accepted λ’s Mean Median 95 % credible interval

0

20 50,077 0.286 0.279 [0.119,0.490]

200 4,962 0.239 0.238 [0.182,0.298]

2,000 518 0.246 0.246 [0.228,0.266]

2

20 249,845 0.286 0.277 [0.088,0.532]

200 25,278 0.239 0.238 [0.181,0.301]

2,000 2,487 0.246 0.246 [0.227,0.265]

20

20 1,000,000 0.500 0.501 [0.025,0.975]

200 204,928 0.239 0.238 [0.125,0.362]

2,000 20,718 0.246 0.246 [0.224,0.269]

Analytical posterior

20 - 0.286 0.279 [0.119,0.491]

200 - 0.239 0.238 [0.183,0.300]

2,000 - 0.246 0.246 [0.227,0.265]

Table 2.1: Markov model example using ABC. The mean, median and 95 % credible interval of the posteriors
of λ in Figure 2.2 when using ABC as well as of the exact posterior. For the ABC, the number of accepted
λ’s is also reported, out of 1,000,000 simulations each. The datasets are generated using λ = 0.25.

9

2.2.2 Example of hidden Markov model

The second model to be studied is the hidden Markov model in Figure 2.4, a model where mea-
surement error is accounted for. It uses a Markov model for an unseen (hidden) Markov chain, as
in Figure 2.2, with transition probability λ. This chain is hidden since there is also a measurement
procedure, where the probability of correct measurement is γ.

Figure 2.4: The hidden Markov model considered, where λ is the probability of switching from A to B and
vice versa, while γ is the probability of making a correct measurement.

Data of this type is referred to as noisy data and is typically non-Markovian. As in the previous
example, a dataset is generated from this model with given λ and γ, namely 0.25 and 0.90. Once
again, the posteriors are estimated using Algorithm 2 for dataset sizes n = 20, 200 and 2000 and
tolerances ε = 0, 2 and 20. The starting character is again chosen from a discrete uniform density
on A and B. This time the exact posterior will not be found analytically, instead the result will
be compared to the one obtained by likelihood-free MCMC in chapter 3. Still, no knowledge of λ
is assumed, and thus a U(0, 1) prior is used for this parameter. Since in the HMM a measurement
process is considered, it is reasonable to assume that the measuring instrument is decent, and thus
a Beta(α, β) prior is chosen for γ. Too see how the choice of the prior affects the obtained posterior,
this will also be estimated using two different sets of (α, β) for all three datasets and tolerances.

Results

The estimated posterior distributions of λ and γ, using Algorithm 2 and 1,000,000 simulations and
dataset sizes n = 20, 200 and 2,000 are shown in Figure 2.5, for tolerances ε = 0, 2 and 20 and
hyperparameters for γ as (α, β) = (8, 1). These hyperparameters yield a prior distribution with a
high probability mass of exact measurement. The mean, the median and the 95 % credible interval
of the posteriors are presented in Table 2.2, together with the number of accepted simulations.
Now, assume that there are reasons to believe that the measuring instrument is good, but really
not perfect (say the package states it measures correctly 95 % of the times), and put another prior
with parameters (α, β) = (38, 2), i.e. with mean 0.95. The estimated posterior distributions using
the latter prior, and their corresponding data, are shown in Figure 2.6 and Table 2.3.
Again, one can see that the effect to the estimated posterior of the tolerance decreases as the dataset
size increases for both choices of prior, as would intuitively be the case. When both the dataset size

10

Figure 2.5: Hidden Markov model example using ABC. The estimated posteriors of λ and γ for ε = 0 (dark-
grey), ε = 2 (medium-grey) and ε = 20 (light-grey) for dataset sizes n = 20 (top), 200 (middle) and 2000
(bottom). These are obtained by Algorithm 2 and 1,000,000 simulations each and shown are the estimated
kernel densities of the posteriors using Matlab’s ksdensity. Here the hyperparameters for γ are (α, β) = (8, 1)
and the true parameter values are (λ, γ) = (0.25, 0.90), indicated by the vertical lines.

and the tolerance are 20, the samples are distributed according to the prior distributions. In this
case, all the posteriors of γ are very similar to the prior in both cases. A fundamental property of
Bayesian analysis is that the impact of the prior decreases as more data is collected [11]. This can
be noted for both sets of hyperparameters in Figure 2.5 and Figure 2.6. For the second choice of

11

hyperparameters, (α, β) = (38, 2), this effect is not as clear as when using (α, β) = (8, 1), indicating
either a stronger or a more posterior-resemblant prior. Stronger in the sense of a more concentrated
probability mass.

Parameter ε n Number of accepted λ’s Mean Median 95 % credible interval

λ

0

20 52,853 0.240 0.225 [0.022,0.560]

200 6,635 0.236 0.257 [0.024,0.378]

2,000 658 0.235 0.261 [0.018,0.345]

2

20 269,690 0.261 0.238 [0.018,0.673]

200 32,362 0.237 0.257 [0.024,0.380]

2,000 3,246 0.232 0.258 [0.021,0.345]

20

20 1,000,000 0.500 0.501 [0.025,0.975]

200 268,002 0.253 0.261 [0.024,0.454]

2,000 26,810 0.234 0.259 [0.025,0.348]

γ

0

20 52,853 0.904 0.924 [0.694,0.997]

200 6,635 0.901 0.909 [0.766,0.996]

2,000 658 0.901 0.909 [0.788,0.993]

2

20 269,690 0.897 0.921 [0.663,0.997]

200 32,362 0.901 0.909 [0.766,0.996]

2,000 3,246 0.900 0.905 [0.785,0.996]

20

20 1,000,000 0.889 0.917 [0.631,0.997]

200 268,002 0.893 0.906 [0.713,0.996]

2,000 26,810 0.900 0.905 [0.785,0.996]

Table 2.2: Hidden Markov model example using ABC. The mean, median and 95 % credible interval of the
posteriors of λ and γ in Figure 2.4 when using Algorithm 2 with hyperparameters for γ as (α, β) = (8, 1).
The number of accepted λ’s and γ’s is also reported, out of 1,000,000 simulations each. The true parameter
values are (λ, γ) = (0.25, 0.90).

When comparing the posteriors obtained by using the two priors on γ, the modes are very similar,
but the second (Beta(38, 2)) have induced less mass in the lower region of λ. This has led to a clear
overestimation of both λ and γ, while the first prior (Beta(8, 1)) seems to give better estimates
(cf. Table 2.2 and Table 2.3). Due to this sensitivity to the choice of prior, it is important to
do a problem and model specific sensitivity analysis on the posterior with respect to the prior. It
is evident that the value of the tolerance might have great effect on the resulting posterior, and
the same type of analysis needs to be done also for the tolerance. Since zero tolerance gives the
most accurate posterior, given the summary statistics, model and priors, e.g. the quadratic loss in
comparison to this posterior as a function of the tolerance can be studied.

12

Figure 2.6: Hidden Markov model example using ABC. The estimated posteriors of λ and γ for ε = 0 (dark-
grey), ε = 2 (medium-grey) and ε = 20 (light-grey) for dataset sizes n = 20 (top), 200 (middle) and 2000
(bottom). These are obtained by Algorithm 2 and 1,000,000 simulations each and shown are the estimated
kernel densities of the posteriors using Matlab’s ksdensity. Here hyperparameters for γ are (α, β) = (38, 2)
and the true parameter values are (λ, γ) = (0.25, 0.90), indicated by the vertical lines.

13

Parameter ε n Number of accepted λ’s Mean Median 95 % credible interval

λ

0

20 57,352 0.243 0.236 [0.033,0.498]

200 6,195 0.289 0.297 [0.136,0.385]

2,000 668 0.295 0.308 [0.169,0.348]

2

20 282,493 0.253 0.241 [0.025,0.553]

200 31,452 0.289 0.297 [0.133,0.387]

2,000 3,191 0.296 0.306 [0.187,0.348]

20

20 1,000,000 0.500 0.501 [0.025,0.975]

200 256,211 0.292 0.296 [0.090,0.456]

2,000 25,918 0.295 0.305 [0.176,0.349]

γ

0

20 57,352 0.945 0.956 [0.867,0.993]

200 6,195 0.944 0.952 [0.853,0.993]

2,000 668 0.945 0.955 [0.852,0.993]

2

20 282,493 0.949 0.956 [0.866,0.993]

200 31,452 0.944 0.952 [0.853,0.993]

2,000 3,191 0.945 0.953 [0.858,0.993]

20

20 1,000,000 0.950 0.957 [0.865,0.994]

200 256,211 0.945 0.953 [0.857,0.993]

2,000 25,918 0.944 0.952 [0.852,0.993]

Table 2.3: Hidden Markov model example using ABC. The mean, median and 95 % credible interval of the
posteriors of λ and γ in Figure 2.4 when using Algorithm 2 with hyperparameters for γ as (α, β) = (38, 2).
The number of accepted λ’s and γ’s is also reported, out of 1,000,000 simulations each. The true parameter
values are (λ, γ) = (0.25, 0.90).

14

Chapter 3

Likelihood-free MCMC

3.1 Using ABC

Likelihood-free inference, including the ABC previously considered, can be seen in the way that it
replaces the posterior in eq. (1.2) (called target posterior) by the augmented posterior

π(θ, x|y) ∝ π(y|x, θ)π(x|θ)π(θ), (3.1)

where x is considered an auxiliary parameter, simulated from π(x|θ) as before. The function
π(y|x, θ) is called weight function, since it induces high values for the posterior when x and y are
similar. For the case when x = y, π(y|x, θ) is assumed to have a maximum with respect to θ.
Furthermore, the marginal posterior π(θ|y) is

π(θ|y) ∝ π(θ)

∫
Y
π(y|x, θ)π(x|θ)dx. (3.2)

Practically, one often targets the posterior π(θ, x|y) whereafter the x’s are ignored.
The augmented posterior π(θ, x|y) will be targeted as the stationary distribution of a generated
Markov chain of {θt, xt}t≥0, using a Metropolis-Hastings (MH) MCMC algorithm. This is theoret-
ically done by using Algorithm 3, where r ((θ′, x′)|(θ, x)) is the proposal distribution.

Algorithm 3: The Metropolis-Hastings algorithm with π(θ, x|y) as stationary distribution.

1. Initialise (θ0, x0). Set t = 0.

At step t:

2. Generate (θ′, x′) ∼ r ((θ, x)|(θt, xt)) from a proposal distribution.

3. Set

(θt+1, xt+1) =

(θ′, x′), with probability 1 ∧ π(θ′,x′|y)r((θt,xt)|(θ′,x′))

π(θt,xt|y)r((θ′,x′)|(θt,xt))

(θt, xt), otherwise

4. Increment t = t+ 1 and go to 2.

15

The acceptance rate in this MH algorithm can be rewritten into a likelihood-free expression if a
trick proposed by [8] is used. That is, by only consider proposal distributions of the form

r
(
(θ′, x′)|(θ, x)

)
= r(θ′|θ)π(x′|θ′).

By using a proposal distribution of this form and by using the proportional expression for the
augmented posterior in eq. (3.1), the acceptance rate in Algorithm 3 can be reformulated according
to

π(θ′,x′|y)r((θ,x)|(θ′,x′))
π(θ,x|y)r((θ′,x′)|(θ,x)) = π(y|x′,θ′)π(x′|θ′)π(θ′)r(θ|θ′)π(x|θ)

π(y|x,θ)π(x|θ)π(θ)r(θ′|θ)π(x′|θ′)

= π(y|x′,θ′)π(θ′)r(θ|θ′)
π(y|x,θ)π(θ)r(θ′|θ) .

The likelihood-free Metropolis-Hastings algorithm invoking this acceptance rate and type of pro-
posal distribution is shown in Algorithm 4, where πε(y|x, θ) is the weight function based on
some tolerance ε (named likelihood-free MCMC algorithm (LF-MCMC) in [8]). This algorithm
will not have the exact augmented posterior π(θ, x|y) as stationary distribution, but instead
πε(θ, x|y) ∝ πε(y|x, θ)π(x|θ)π(θ) where ε suggests it is based on ABC and a tolerance ε. However,
just as in section 2.1, we let this be an approximation of the true augmented posterior π(θ, x|y).
Once again, the target posterior will not be recovered exactly unless the set of summary statistics
is sufficient and the tolerance ε is zero [8].

Algorithm 4: The likelihood-free MCMC algorithm, originating from [8].

1. Initialise (θ0, x0) and ε. Set t = 0.

At step t:

2. Generate θ′ ∼ r(θ|θt) from a proposal distribution.

3. Generate x′ ∼ π(x|θ′) from the model given θ′.

4. Set

(θt+1, xt+1) =

(θ′, x′), with probability 1 ∧ πε(y|x′,θ′)π(θ′)r(θt|θ′)

πε(y|xt,θt)π(θt)r(θ′|θt)

(θt, xt), otherwise

5. Increment t = t+ 1 and go to 2.

The distribution πε(θ, x|y) beeing the stationary distribution of the Markov chain generated by
Algorithm 4 means that the produced sequence of {θt, xt}t≥0 will be of the desired distribution
asymptotically, i.e. when t goes to infinity. Therefore, one defines a burn-in {θt, xt}t=0,...,B where-
after the distribution of the generated sequence is considered to be sufficiently close to the stationary
distribution. However, choosing B is not elementary and will be done by studying the trajectory
of the sampled sequence, i.e. by choosing B to the point whereafter the sampled sequence seems
to have reached its stationary distribution. In Algorithm 4 and in algorithms originating from the
same, x′ needs to be consistent with y. That is, if y is assumed to be noisy so is x′ and if y is not

16

nor is x′. In words of the previous examples: x′ is generated from the model in Figure 2.2 or Figure
2.4 if y is considered noise-free or noisy, respectively.
Typically, the samples should be uncorrelated for Monte Carlo integration to hold. For MCMC
integration though, the ergodic theorem is often called for, implying that the integration is still
valid if the number of samples goes to infinity, even though the samples in MCMC are correlated.
Clearly, there is a trade-off between these two effects. If the number of samples is large enough,
the effect of the samples beeing correlated might be averaged out in the inference [12]. Since the
number of samples is finite, fewer and less correlated samples might give better inference. One way
of constructing less correlated samples is by thinning, i.e. keeping every nth sample and and choose
n such that the autocorrelation function reaches a sufficiently low value desirably fast. The latter
will be done, aiming for the autocorrelation to be negligible at lag 30–50.

3.1.1 The HMM example

Once again, the hidden Markov model in Figure 2.4 will be considered, but this time using the
likelihood-free MCMC algorithm described in Algorithm 4. The same datasets of lengths 20, 200
and 2,000 as well as priors for λ and γ as in section 3.1 are used, while the proposal distributions of
λ and γ are chosen to be independent truncated Gaussian distributions, to the interval I = [a, b] =
[0, 1], according to

rθi(z|θit) =

0, if z ≤ a

fθi (z|θ
i
t)

Fθi (b|θ
i
t)−Fθi (a|θ

i
t)
, if a < z < b

0, if z ≥ b

,

where i = 1, 2, (θ1, θ2) = (λ, γ), θi ∈ I, fθi(z|θit) is the pdf of the Gaussian distribution with mean
θit and Fθi(z|θit) is its cdf, with inverse F−1

θi
(z|θit). Pseudorandom numbers distributed according to

this distribution are drawn using the inverse transform sampling. That is, by using the fact that
Z = R−1

θi
(U |θit) ∼ rθi(z|θit) if U ∼ U(0, 1), where R−1

θi
is the inverse cdf of rθi according to

R−1
θi

(z|θit) =

∞, if z < a

F−1
θi

(
z
(
Fθi(b|θit)− Fθi(a|θit)

)
+ Fθi(a|θit)|θit

)
, if a < z < b

∞, if z > b

.

Since the proposal distributions of λ and γ are independent, it holds that

rθ(z|θt) = rλ(z|λt) · rγ(z|γt)

and because of the independence of the priors, π(θ) = π(λ)π(γ). Therefore, Algorithm 4 can be
reformulated to Algorithm 5 in the HMM example. Proposals generated in this way are said to

17

follow a Metropolis-Hastings random walk.

Algorithm 5: The likelihood-free MCMC algorithm adapted for the HMM example.

1. Initialise (θ0, x0) and ε. Set t = 0.

At step t:

2. Generate λ′ ∼ rλ(z|λt) from a proposal distribution.

3. Generate γ′ ∼ rγ(z|γt) from a proposal distribution.

4. Set θ′ = (λ′, γ′).

5. Generate x′ ∼ π(x|θ′) from the model given θ′.

6. Set

(θt+1, xt+1) =

(θ′, x′), with probability 1 ∧ πε(y|x′,θ′)π(λ′)π(γ′)rλ(λt|λ′)rγ(γt|γ′)

πε(y|xt,θt)π(λt)π(γt)rλ(λ′|λt)rγ(γ′|γt)

(θt, xt), otherwise

7. Increment t = t+ 1 and go to 2.

As a weight function, the uniform kernel density as described in [8] is chosen, i.e.

πε(y|x, θ) ∝

1, if ρ (T (x), T (y)) ≤ ε

0, otherwise

, (3.3)

where the summary statistic and the distance measure are the same as previously. Remember that
since the observed dataset y is noisy, so is the generated x′ in Algorithm 5. That is, x′ is generated
from the HMM in Figure 2.4, given both the proposed λ′ and γ′.

3.1.2 Results

Now, only the Beta(8, 1)-prior will be used for γ while the one for λ is still U(0, 1), and the
posterior will be estimated through Algorithm 5. The datasets are the same used in section 2.2.2.
The standard deviations of the proposal densities are chosen according to Table 3.2 to make the
mean acceptance rates and chain mixing reasonable. An initial 1,000,000 steps were carried out
according to Algorithm 5 for each dataset size n = 20, 200 and 2,000 and tolerance ε = 0, 2 and
20. The mean acceptance rates, chosen burn-ins and thinning rates are declared in Table 3.2. The
resulting trajectories are in Figure 3.2 – 3.4 and the estimated marginal posteriors of λ and γ in
Figure 3.1. Note that the trajectories are shown for illustrative purposes and will not be included
later in the report. The number of resulting draws, the mean and the median of the estimated
posteriors and their 95 % credible intervals are shown in Table 3.1. Note that thinning rates and
burn-ins are accounted for in all results.

18

Figure 3.1: Hidden Markov model example using MCMC ABC. The estimated posteriors of λ and γ for
ε = 0 (dark-grey), ε = 2 (medium-grey) and ε = 20 (light-grey) for dataset sizes n = 20 (top), 200 (middle)
and 2,000 (bottom). These are obtained by Algorithm 5 and consist of draws according to the trajectories in
Figure 3.2 – 3.4. Shown are the estimated kernel densities of the posteriors using Matlab’s ksdensity. Here
hyperparameters for γ are (α, β) = (8, 1) and the true parameter values are (λ, γ) = (0.25, 0.90), indicated
by the vertical lines.

19

Figure 3.2: Hidden Markov model example using MCMC ABC. Trajectories of λ and γ for dataset size
n = 20 and tolerances ε = 0 (top), 2 (middle) and 20 (bottom), obtained by Algorithm 5 according to Table
3.2. The hyperparameters for γ are (α, β) = (8, 1).

Figure 3.3: Hidden Markov model example using MCMC ABC. Trajectories of λ and γ for dataset size
n = 200 and tolerances ε = 0 (top), 2 (middle) and 20 (bottom), obtained by Algorithm 5 according to Table
3.2. The hyperparameters for γ are (α, β) = (8, 1).

20

Figure 3.4: Hidden Markov model example using MCMC ABC. Trajectories of λ and γ for dataset size
n = 2, 000 and tolerances ε = 0 (top), 2 (middle) and 20 (bottom), obtained by Algorithm 5 according to
Table 3.2. The hyperparameters for γ are (α, β) = (8, 1).

The posteriors estimated using MCMC are very similar to the ones using raw ABC in section 2.2.2
(cf. Table 2.2 and 3.1). The most evident differences, still small, are in the estimated posteriors
with zero tolerance at the dataset size n = 2, 000. This is probably explained by the fewer samples
in raw ABC (658) than in MCMC (7,657); hence, the former posteriors might not have converged,
with respect to Monte Carlo error. The more numerous samples in MCMC comes with the price of
beeing correlated, in contrary to the ones in raw ABC, but since the two methods give very similar
results otherwise this does not seem to be a valid cause for the observed difference.

3.2 Exact Bayesian inference

The exact Bayesian inference can be carried out by following the procedure in section 3.1 and
Algorithm 5 with the exception that the weight function is not based on ABC, but instead its
analytical expression. This will enable exact recovery of the target posterior. Once again, let
y = (y1, y2, . . . , yn) be an observation of Y = (Y1, Y2, . . . , Yn), where all Yi’s are conditionally
independent given the hidden state X. Also, let x = (x1, x2, . . . , xn) be the generated dataset in
Algorithm 5, this time the hidden state of the HMM, i.e. generated according to Figure 2.2. By
studying the HMM in Figure 2.4 one can conclude that

π(y|x, θ) =
n∏
i=1

π(yi|xi), (3.4)

where

π(yi|xi) =

γ, if yi = xi

1− γ, if yi 6= xi

. (3.5)

21

Parameter ε n Number of drawn parameters Mean Median 95 % credible interval

λ

0

20 9,900 0.239 0.224 [0.022,0.573]

200 30,625 0.237 0.258 [0.024,0.381]

2,000 7,657 0.249 0.274 [0.035,0.345]

2

20 24,750 0.267 0.242 [0.018,0.696]

200 122,500 0.237 0.257 [0.025,0.381]

2,000 15,000 0.233 0.260 [0.025,0.344]

20

20 61,875 0.499 0.497 [0.025,0.975]

200 122,500 0.253 0.260 [0.025,0.452]

2,000 122,500 0.235 0.261 [0.025,0.348]

γ

0

20 9,900 0.904 0.925 [0.691,0.996]

200 30,625 0.902 0.910 [0.768,0.996]

2,000 7,657 0.910 0.917 [0.790,0.995]

2

20 24,750 0.894 0.920 [0.642,0.997]

200 122,500 0.901 0.910 [0.767,0.996]

2,000 15,000 0.900 0.906 [0.786,0.995]

20

20 61,875 0.889 0.917 [0.633,0.997]

200 122,500 0.893 0.907 [0.716,0.996]

2,000 122,500 0.901 0.907 [0.786,0.996]

Table 3.1: Hidden Markov model example using MCMC ABC. The mean, median and 95 % credible interval
of the posteriors of λ and γ in Figure 2.4 when using Algorithm 5 with hyperparameters for γ as (α, β) = (8, 1).
The number of drawn λ’s and γ’s is also reported. An initial 1,000,000 step MCMC was made, the above
shown result is after the burn-in and thinning is accounted for. Further execution information in Table 3.2.
The true parameter values are (λ, γ) = (0.25, 0.90).

That is, the weight function in the algorithm is calculated by first simulating a hidden dataset x′

from the Markov model, given the proposed λ′, whereafter π(y|x′, θ′) is evaluated by eq. (3.4),
given the proposed γ′.

3.2.1 Results

By applying this theory to our HMM for the given dataset sizes n = 20, 200 and 2,000 one quickly
realises one of the big advantages of ABC – the acceptance rate in the MCMC algorithm gets so low
that the method is computationally in-feasible, already for n = 20. For comparison purposes, we
apply both exact Bayesian inference and ABC to an observed dataset of size n = 5. It is generated
according to the HMM in Figure 2.4, given (λ, γ) = (0.25, 0.90) and is y = (A,B,B,B,B). Of
course, a dataset this short will typically not be best represented by the parameter set (λ, γ) =
(0.25, 0.90) and hence, it is not very likely that these parameter values are recovered from the
inference. Anyhow, it should give insight in whether the ABC with the chosen summary statistic

22

n λ0 γ0 λ std γ std Tolerance (ε) Burn-in Mean acceptance rate Thinning

20 0.5 0.9 0.05 0.05

0 10,000 9.7 % 100th

2 10,000 41.1 % 40th

20 10,000 79.9 % 16th

200 0.3 0.9 0.1 0.1

0 20,000 1.4 % 32nd

2 20,000 6.8 % 8th

20 20,000 43.5 % 8th

2000 0.25 0.9 0.1 0.1

0 20,000 0.2 % 128th

2 40,000 0.8 % 64th

20 20,000 6.5 % 8th

Table 3.2: Hidden Markov model example using MCMC ABC. Choices of initial parameter values, (λ0, γ0),
and standard deviations (std) of the proposal densities for each dataset size n. For each tolerance ε and
dataset size n, the chosen burn-in and thinning rate are shown, together with the mean acceptance rate in
Algorithm 5.

gives reasonable results, and in that case motivate our previous study on the HMM. For both the
exact inference, i.e. when using a weight function in Algorithm 5 as in eq. (3.5), and for the ABC
with weight function according to eq. (3.3), standard deviations for the proposal densities for both
λ and γ are chosen as 0.02. The initial parameter values are set to (λ0, γ0) = (0.5, 0.9). As before,
the prior for λ is U(0, 1) while the one for γ is Beta(8, 1). After a burn-in of 50,000 steps and
a thinning rate of every 128th value for both runs the estimated posteriors, based on the 7,422
remaining samples, are seen in Figure 3.5. The posterior means and corresponding 95 % credible
intervals for the exact Bayesian inference are, for λ, 0.372[0.022, 0.903] and, for γ, 0.880[0.617, 0.996],
while they for the ABC are 0.360[0.028, 0.854] and 0.889[0.635, 0.997] respectively.

Figure 3.5: Hidden Markov model example using exact Bayesian inference. Estimated posteriors for λ and
γ using exact Bayesian inference (solid line) and MCMC ABC (dashed line). The observed dataset was
generated using (λ, γ) = (0.25, 0.90), indicated by the vertical lines.

23

Given the large sample size (7,422) it seems reasonable to assume that the observed difference
between the estimated posteriors of the exact inference and the ABC is not due to Monte Carlo
error but instead statistical bias. However, this is fairly small given the very simple summary
statistic. Note that the estimated posteriors of γ are very similar to the prior, which is expected
for such a short sequence. This small bias might not be a problem, depending on ones demand.
However, as a try for decreasing the introduced bias we will in the next chapter consider a semi-
automatic way of constructing summary statistics.

24

Chapter 4

Semi-automatic ABC

4.1 Theory

Choosing summary statistics is not always straightforward and, as mentioned before, these will
most often be non-sufficient in practice; leading to an introduced bias. A procedure, called semi-
automatic ABC (SA-ABC), is proposed by [13] and aims at high accuracy of specific estimates of
θ instead of trying to minimise the error of the full posterior. This accuracy is defined in terms
of the quadratic loss function of θ which, in the limit of ε → 0, is minimised if the summary
statistics are the true posterior means, i.e. if T (y) = E(θ|y). The minimum loss in ABC occurs
when θ̂ = E(θ|T (y)). That is, by using the quadratic loss function one tries to match the ABC
posterior mean with the mean of the true posterior.
The true posterior means, to be used as summary statistics, are obviously unknown; otherwise the
inference would be done. The idea is to model how the posterior means depend on the dataset, by
Algorithm 6.

Algorithm 6: Semi-automatic ABC, as presented in [13].

1. Use a pilot run of ABC to determine a region, called training region, of non-negligible
posterior mass.

2. Simulate M sets of parameter values, θ1i , . . . , θ
M
i for i = 1, . . . , p where p = dim(θ) from the

priors truncated to the training region and simulate corresponding datasets y1sim, . . . , y
M
sim.

3. Use the simulated sets of parameter values and simulated datasets to estimate the summary
statistics.

4. Run ABC with this choice of summary statistics.

The first step of the algorithm is not necessary in general, but important if the priors are uninfor-
mative, and has the purpose of defining the training region from which the M parameter values
are drawn in the second step. These are drawn from the priors, truncated to this training region,
whereafter corresponding datasets are simulated from the model, given the parameter values.
The motivation of this training region is that we want to base the the estimation of E(θi|ysim) in
the third step on draws from where the posterior distribution has a non-negligible mass. If this was

25

instead based on draws from other regions the risk is that the obtained summary statistics are not
working satisfactorily. If the priors are informative, and based on some knowledge, the first step is
however optional since then there is knowledge of where most of the posterior mass is located.
In the third step of the algorithm, [13] suggests using linear regression with a vector-valued function
f(·) of the dataset as predictors. This constitutes the ”semi” part of semi-automatic ABC, since
f(·) needs to be chosen in the way that f(ysim) is a vector of dataset transformations, which might
be non-linear. The linear regression will give one summary statistic for each parameter, using the
drawn parameter values θ1i , . . . , θ

M
i from the second step as the responses and f(y1sim), . . . , f(yMsim)

as explanatory variables. The model

θi = E(θi|ysim) + εi = β0i + βif(ysim) + εi, (4.1)

with mean-zero noise εi, is fitted using least squares and hence β̂0i + β̂if(ysim) is an estimate of
E(θi|ysim). These summary statistics are only estimates of the marginal posterior means, and as
such there is no mathematical result that guarantees that the scheme in Algorithm 6 produces a
posterior distribution with minimised quadratic loss of θ at the mean. Since one uses the distance
between the summary statistics of the simulated and the observed dataset in ABC, the intercepts
will cancel out and the summary statistic for the ith parameter is chosen to be Ti(ysim) = β̂if(ysim)
[13].
Finally, in the fourth step, the ABC is run using these summary statistics. In [13] it is suggested
to truncate the priors to the training region also for this step. However, here, the priors are used
without truncation and the summary statistics are assumed to hold extrapolatively also outside
the training region.

4.2 The HMM example

In the previous sections, the summary statistic has been chosen arbitrarily as the number of switches
between the two characters A and B. This summary statistic will still be used in the first step of
Algorithm 6, i.e. in the pilot run, to define the training region. Since the aim is to improve the
result found in section 3.1.2, the tolerance used for the pilot run will be zero. That is, the pilot run
is executed according to Algorithm 5 with εpilot = 0 and the number of switches between A and B
as summary statistic. The training region used is the 98% credible interval and the prior for λ is
once again U(0, 1) while the one for γ is Beta(8, 1). This time, only the dataset of size n = 200
will be considered. For the linear regression in the third step of Algorithm 6, the function f(·) is
chosen to capture reasonable characteristics of the dataset such that

f(ysim) = (Number of switches between A and B in ysim, Number of A’s in ysim,

Max. number of subsequent A’s in ysim, Min. number of subsequent A’s in ysim).

(4.2)
For the semi-automatic ABC, i.e. the fourth step in Algorithm 6 and run according to Algorithm
5, the distance measure ρ(·, ·) is once again the euclidean distance.

26

4.2.1 Results

The pilot run (first step of Algorithm 6), i.e. when using the tolerance ε = 0 and the number of
switches as summary statistics in Algorithm 5 was executed for 1,000,000 steps using a burn-in
of 20,000, a thinning rate of every 32nd value, initial values (λ0, γ0) = (0.30, 0.90) and proposal
density standard deviations for both λ and γ as 0.1. This resulted in 30,625 drawn parameter
values, a mean acceptance rate of the algorithm as 1.4 % and training regions [0.012, 0.395] and
[0.745, 0.999] for λ and γ respectively.
In the second step of Algorithm 6, M = 100,000 parameter values and corresponding datasets were
simulated from the priors truncated to these training regions and the HMM in Figure 2.4. Applying
the linear regression, eq. (4.1), in the algorithm’s third step with the function f(·) chosen as in eq.
(4.2), yielded regression coefficients as

β̂λ = (0.00327, 0.00030, -0.00156, 0.00198)

β̂γ = (-0.00226, 0.00029, -0.00141, 0.00097).

(4.3)

The fourth step of Algorithm 6 consists of Algorithm 5 with summary statistics as β̂if(·) with
β̂i according to eq. (4.3). With initial parameter values (λ0, γ0) = (0.30, 0.90), proposal density
standard deviations 0.1 for both λ and γ and a tolerance ε = 0.001, an initial 5,000,000 steps of
Algorithm 5 were run, resulting in a mean acceptance rate of 1.9 %. After a burn-in of 50,000 and a
thinning rate of every 256th value, 19,336 draws remained giving the marginal posteriors estimates
of λ and γ in Figure 4.1. Their means and 95 % credible intervals are 0.259[0.061, 0.387] for λ and
0.915[0.774, 0.997] for γ while their medians are 0.276 and 0.926 respectively.

Figure 4.1: Hidden Markov model using SA-ABC. The estimated posteriors of λ and γ for the dataset size
n = 200. These are obtained by Algorithm 6 with the final step according to Algorithm 5 with tolerance
ε = 0.001. Shown are the estimated kernel densities of the posteriors using Matlab’s ksdensity. The true
parameter values are (λ, γ) = (0.25, 0.90), indicated by the vertical lines.

The observed dataset, this time only the size n = 200 is considered, is once again identical to the
one of the same size used in previous chapters. Therefore, the results found by semi-automatic
ABC will be compared to what was found by Algorithm 5 for the same observed dataset when the
number of switches between A and B was used as summary statistic (Figure 3.1 and Table 3.1 for

27

ε = 0; which is the same run used as the pilot). As previously stated, this semi-automatic ABC
aims at matching the approximated posterior mean with the true posterior mean. The estimated
posterior means were (λ̂SA, γ̂SA) = (0.259, 0.915) and (λ̂, γ̂) = (0.237, 0.902) in the semi-automatic
ABC and the pilot respectively. By the first look, one might be led to conclude that the semi-
automatic ABC did a better job at estimating λ while the pilot did better for γ. Though, this
conclusion is somewhat rushed. Indeed, the observed dataset is generated using (λ, γ) = (0.25, 0.9),
but since the dataset is relatively short (200) and the generation is stochastic, we can not be sure
that this dataset is perfectly representative of this set of parameters. For this example, the effect
of using semi-automatic ABC is probably not so large since the number of switches between A and
B seems to be a relatively good summary statistic. To really see the effect, one could study the
mean quadratic loss for a set of different observed datasets, all generated using (λ, γ) = (0.25, 0.90)
(see [13] where this is done). In this way, the above mentioned uncertainty in whether the observed
dataset is representative of (λ, γ) would cancel out, as well as other variations. This would show if
the semi-automatic ABC in general improves the mean of the estimated posterior in this example.
The 95 % credible intervals of λ and γ decreased by 9 % and 2 % respectively, using semi-automatic
ABC (cf. Table 3.1). The reason could be that the summary statistics of the semi-automatic ABC
are closer to sufficient than the one used in the pilot. It could also be due to the obtained possibility
to choose the tolerance arbitrarily low since the summary statistics have a continuous state space;
in contrary to the discrete state space of the summary statistic in the pilot where a zero tolerance
was the best possible. Logically for non-sufficient summary statistics, there should be a lowest ε
under which no extra precision is gained, whereas the acceptance rate is reduced. Our choice of
tolerance, ε = 0.001, might be below this limit since this has not been studied. An idea for this
is to study the previously mentioned mean quadratic loss, for different choices of ε. This time, we
settle at observing that the semi-automatic ABC seems to work satisfactorily.

28

Chapter 5

ABC in a Stochastic Lotka-Volterra
model

5.1 Varying bandwidth

Now, we aim at improving the likelihood-free MCMC algorithm in Algorithm 4, as is done in
[14]. As before, an approximation to the weight function π(y|x, θ) is needed. A commonly used
approximation is

πε(y|x, θ) =
1

ε
K

(
ρ(T (x), T (y))

ε

)
, (5.1)

where K(·) is a standard smoothing kernel centred at T (x) = T (y) and ε > 0 now takes the role as
bandwidth. As in [8], we define K(·) as the uniform kernel density, why eq. (5.1) equals eq. (3.3).
As previously mentioned, there is a trade-off in choosing ε in the sense that a low ε gives high
statistical accuracy and low acceptance rate while a high ε induces a higher probability of acceptance
and a poorer statistical accuracy. The first idea of improvement tries to exploit both sides of this
trade-off by considering the bandwidth ε an unknown parameter with its own Markov chain [15]. Let
π(ε) be the prior distribution of ε, and let the euclidean distance be the distance measure of choice
and denote it ρ(T (x), T (y)) = |T (x)− T (y)|. As in [14] we will always use the Metropolis random
walk with Gaussian increments. Since the Gaussian increments are symmetric, the acceptance rate
can be simplified according to

K(|T (x′)− T (y)|/ε′)π(θ′)π(ε′)r(θt, εt|θ′, ε′)
K(|T (xt)− T (y)|/εt)π(θt)π(εt)r(θ′, ε′|θt, εt)

=
K(|T (x′)− T (y)|/ε′)π(θ′)π(ε′)

K(|T (xt)− T (y)|/εt)π(θt)π(εt)

Using this, Algorithm 4 can be extended to Algorithm 7. Once again, the simulated dataset x′

needs to be consistent with the observed dataset y, in the sense that they are both subject to
measurement error or both are not. After the simulations, the Markov chain {θt}t≥0 is filtered by
discarding all {θt|εt ≤ ε∗}, where the threshold ε∗ is chosen case specifically. This threshold is set
by studying how the posterior distribution mean and 95 % credible interval of {θt}t≥0 vary with
respect to ε by plotting these of {θt|εt ≤ ε∗} against the all possible ε∗ [15]. To keep the bias low,
a small ε∗ is desirable. Though, this might result in few remaining parameter values and a large
Monte Carlo error, why a larger ε∗ might be favourable. Therefore, we select the smallest ε∗ giving
a reasonably accurate posterior and a satisfactory long sequence of θ. For example, if one wants

29

to approximate the mean of the posterior, [14] suggests to choose ε∗ such that the posterior mean
in the bandwidth plot is approximately constant but still high enough to result in a long enough
sequence of θ.
For a very interesting way of accelerating the computation, see [14] where a so called Early-Rejection
can allow for occasional rejection of a proposal without the need of simulating x (the paper states
an acceleration of 40-50 % in its applications).

Algorithm 7: The likelihood-free MCMC algorithm, with a Markov chain also for the bandwidth ε.

1. Initialise (θ0, x0, ε0). Set t = 0.

At step t:

2. Generate (θ′, ε′) ∼ r(θ, ε|θt, εt) from a proposal distribution.

3. Generate x′ ∼ π(x|θ′) from the model given θ′ and save T (x′).

4. Set

(θt+1, εt+1, T (xt+1)) =

(θ′, ε′, T (x′)), with probability 1 ∧ K(|T (x′)−T (y)|/ε′)π(θ′)π(ε′)

K(|T (xt)−T (y)|/εt)π(θt)π(εt)

(θt, εt, T (xt)), otherwise

5. Increment t = t+ 1 and go to 2.

5.2 Stochastic Lotka-Volterra real data study

As a real life example we will study the data of the yearly number of trapped Lynx and Snowshoe
Hares in North Canada in [16] during the years 1900-1920, see Figure 5.1. In the mean, this is
likely to give a good view of the true relative populations.

Figure 5.1: Number of trapped Lynx and Snowshoe Hares in North Canada during the years 1900-1920 [16].

30

A famous model that incorporates this type of behaviour, the interaction between a predator and
a prey, is the Lotka-Volterra predator-prey model in eq. (5.2), where x1 is the number of prey
(Snowshoe Hares), x2 the number of predators (Lynx), k∗1 the prey growth rate, k∗3 the predator
death rate and k2 the encounter rate of predator and prey [17].

dx1 = (k∗1x1 − k2x1x2)dt

dx2 = (−k∗3x2 + k2x1x2)dt

(5.2)

In this ordinary differential equation (ODE) all parameters k∗1, k2 and k∗3 are considered constant.
However, it does seem more reasonable to assume that the prey growth rate k∗1 and the predator
death rate k∗3 depend on numerous states, e.g. precipitation, temperature and hunting. These are
assumed to vary stochastically such that k∗1 is substituted by k1 +σ1ξ1,t and k∗3 = k3 +σ2ξ2,t where
{ξ1,t}t≥0 and {ξ2,t}t≥0 are Gaussian white noise processes and k1, k3, σ1 and σ2 are parameters. The
parameters σ1 and σ2 represent the randomness ”intensities” of {ξ1,t}t≥0 and {ξ2,t}t≥0 respectively
[18]. Following this, the ODE in eq. (5.2) can be written as the stochastic differential equation
in eq. (5.3). Capital X1 and X2 suggests that the model is stochastic while dW1 and dW2 are
independent increments of standard Brownian motions.

dX1 = (k1X1 − k2X1X2)dt+ σ1X1dW1

dX2 = (−k3X2 + k2X1X2)dt+ σ2X2dW2

(5.3)

As stated before, the data of the trapped animals should ”in the mean” reflect the true relative
populations. Therefore, it is reasonable to assume some sort of an error model. Since not all Lynx
and Hares of North Canada were trapped (or rather tracked in that case) there is an error between
the true relative population and the observed. Other possible errors are ”miswriting” or failing of
reporting the trapped animals. In any of these cases, it seems sensible to assume that the variability
of the error increases with the population sizes. Therefore, we suggest an error model as in eq.
(5.4), where Y is the trapped quantity and X its ”true” correspondence1.

Y1 = X1 + ε1, ε1 ∼ N (0, (σεX1)
2)

Y2 = X2 + ε2, ε2 ∼ N (0, (σεX2)
2)

(5.4)

The model in eq. (5.3), given the error model in eq. (5.4), is assumed to describe the data in Figure
5.1 and the parameters k1, k2, k3, σ1, σ2 and σε will be inferred using the semi-automatic ABC
scheme described in chapter 4, i.e. by Algorithm 6.
In [17] the same data is studied under the ODE model in eq. (5.2), except for that they separate the
parameter k2 into two parameters. However, their result and MLE of the parameters k1, k2 and k3 in
the ODE will be used to put informative priors on the same in the SDE. They found k̂ODE1 = 0.556,
k̂ODE2 = 0.0275 (mean of the two new parameters) and k̂ODE3 = 0.828. Since we have no knowledge
of reasonable values of σ1 and σ2, eq. (5.3) was simulated using the MLE of k1, k2 and k3 and the
SDE Toolbox [19] with the aim to find a reasonable interval for σ1 and σ2. Note that in the coming
analysis, the natural logarithm of the parameters will be studied, to enforce the parameter values

1The Gaussian distribution is denoted N (mean, variance)

31

to stay positive. We found that reasonable priors for log σ1 and log σ2 are log σ1, log σ2 ∼ N (−2, 1)
and by an educated guess, we put log(σε) ∼ N (−5.5, 0.82). Priors for the other parameters are
chosen to be centred around the MLEs according to log(k1) ∼ N (log(k̂ODE1), 0.052), log(k2) ∼
N (log(k̂ODE2), 0.22) and log(k3) ∼ N (log(k̂ODE3), 0.052). We consider these priors informative and
as such, a pilot run and corresponding truncation in Algorithm 6 is not needed.
In the second step of Algorithm 6 M = 840, since [14] suggests 10-20 times d× n simulated sets of
parameters where d is the dimension of the SDE (2), and y1sim, . . . , y

M
sim are full realisations of the

SDE and consistent with the observed dataset, i.e. with added measurement error. Note that no
truncation will be carried out since the priors are now considered informative. Using the function
f(·) as the time ordered dataset, the summary statistics are determined in the third step according
to the linear regression in eq. (4.1) using regression method Lasso.
The fourth step consists of Algorithm 7 where x′ is a full realisation of the SDE with added
measurement error, the parameters of the SDE are considered mutually independent and the prior
for the bandwidth is exponential with mean 0.05, i.e. ε ∼ Exp(0.05). As starting values for the
states we choose the initial observations X1,0 = 30 and X2,0 = 4 while the initial bandwidth is
set to ε0 = 0.1. The SDE parameters’ initial values are the prior means. The inference is run
for 1,200,000 steps using the package abc-sde with numerical integration stepsize 0.02, a thinning
of every 400th value, initial stepsizes for the Metropolis random walk as 0.01 for all parameters
and a maximum value of the random walk for the bandwidth ε as εmax = 0.1. This package takes
advantage of the Early-Rejection mentioned previously, see [14] and [20]. After a burn-in of 120,000
steps, the bandwidth plots as described in section 5.1 with the solid line as the posterior mean and
the 95 % credible interval illustrated by the dashed lines are seen in Figure 5.2. Following the
theory in section 5.1 we choose ε∗ = 0.07 in order to keep the posterior mean in the bandwidth plot
approximately constant for all smaller bandwidths while still allowing for a long enough sequence.
Note that there is a somewhat erratic behaviour for small bandwidths in Figure 5.2. This is what
we want to cancel out by choosing a large enough ε to let the posterior be smooth, i.e. the erratic
behaviour seen is a sign of the Monte Carlo error while the increased credible interval and added
bias (hard to identify) for increasing bandwidth is the loss of statistical accuracy. This choice
of ε∗ leaves 902 samples of the marginal posterior of all parameters, whose priors and estimated
marginal posteriors are seen in Figure 5.3. Using Bayes’ estimator, i.e. the mean of the posterior
as an estimate for the parameters, estimates of the parameters in the SDE and corresponding 95 %
credible intervals are k̂1 = 0.550[0.511, 0.597], k̂2 = 0.0259[0.0238, 0.0281], k̂3 = 0.846[0.777, 0.926],
σ̂1 = 0.099[0.026, 0.264], σ̂2 = 0.080[0.023, 0.323] and σ̂ε = 0.0033[0.0009, 0.0152]. The empirical
mean, 50 % and 95 % confidence intervals of 10,000 realisations of the SDE in eq. (5.3) in comparison
to the observed dataset, using these estimates, are shown in Figure 5.4. A single, well-performing,
realisation is visualised in Figure 5.5.
Given the model, the realisations in Figure 5.4 seem reasonable since the mean roughly follows the
observed dataset. The confidence intervals of the ”peaks” clearly increase, which is intuitive since
a small change in the prey growth rate (k1) or predator death rate (k3), especially at low numbers,
might give extremely different outcomes. To the writer this is known from the interaction between
rodents and birds or Arctic Foxes in Scandinavia. Therefore, the results seem reasonable under the
Lotka-Volterra model.
By looking at the marginal posteriors in Figure 5.3 one can see that they, for log(k1) and log(k3),
are similar to the priors. This is not surprising since the realisation of the SDE marginally changes
with respect to these two parameters in the interval. However, these have physical meanings and

32

reasonable values. These priors have still been somewhat updated by the model and the data to
the posteriors, why we consider the run computationally successful. The marginal posterior of σε
is also close to the prior. The reason could be that the observed dataset under the error model
in eq. (5.4) is not well represented by the SDE model in eq. (5.3). Of course, a bad model is a
possible cause of any unclear results. Another possibility is summary statistics which are far from
sufficient. Therefore, it would have been interesting to compare the result to what is found by an
exact inference, e.g. the one suggested by [2].
It is also unknown to what extent the discretisation of the SDE affects the inference in this case. The
integration stepsize was chosen to the smallest value giving a reasonable execution time (around 6
hours on a well-performing laptop). It is possible that this discretisation is still too rough, resulting
in a bias and hence might affect the inference heavily. A possible way of evaluating this impact
is to run the inference for different stepsizes and compare the estimated marginal posteriors. The
largest stepsize under which the marginal posteriors are negligibly altered would then be a small
enough stepsize, kept as high as possible to maintain computational efficiency.

33

Figure 5.2: Lotka-Volterra study. Posterior means (solid lines) and 95 % credible intervals (dashed) for
varying ε∗.

34

Figure 5.3: Lotka-Volterra study. Estimated posteriors (solid line) and corresponding priors (dashed line).

35

Figure 5.4: Lotka-Volterra study. Empirical mean (solid line), 50 % confidence interval (dotted line) and
95 % confidence interval (dashed line) for 10,000 realisations of the SDE in eq. (5.3) and observed dataset
(rings), using the found parameter estimates.

36

Figure 5.5: Lotka-Volterra study. A single realisation of the SDE using the parameter estimates.

37

Chapter 6

Closing comments

ABC offers a very interesting way of attacking complex models and their parameter estimations
in cases when the likelihood function (model) is easily simulated from. It has proved to be easily
implemented, even for complex models such as SDEs subjected to error models, while the execution
parameters such as the standard deviation of the proposal density in the MH algorithm can be
difficult to choose. For this, there is an interesting scheme called adaptive Metropolis algorithm
proposed by [21]. It uses a zero-mean multivariate Gaussian distribution with covariance matrix Σ
as proposal density, where Σ is continuously updated using the previous values of the simulation.
There are several suggestions on how to treat the bandwidth in the MCMC algorithm. One proposal
is the varying bandwidth introduced in section 5.1. Most challenging was to make sure the accep-
tance rate did not turn too low, possibly affecting other parts of the algorithm negatively, while
keeping the mean acceptance rate at a reasonable level. Of course, to prevent this, the bandwidth
prior could have been truncated to exclude the lower regions. Another is by [8] which for eq. (3.3),
if the parameter proposal is accepted, suggests to set a new tolerance εt = max{ε,min{ε′, εt−1}},
where ε′ = ρ(T (x′), T (y)) and ε is a lower limit. Otherwise, εt = εt−1. This way, εt is asymptotically
the smallest value resulting in a non-zero weight function [8].
Throughout the thesis we have used thinning as a self-evident way of decreasing the correlation
between the draws. There is an interesting article on this matter ([12]) which states that thinning
is usually unsuitable if precision of parameter estimates is of highest concern.
These three suggestions would be interesting to evaluate or study if this work was to be extended.
As a final suggestion, I would recommend [8] and [5] to you who want a great starting point for ABC.

Acknowledgements: I would like to thank Umberto Picchini for showing great interest in my
learning and understanding.

38

Bibliography

[1] R. Turner (2008), Direct maximization of the likelihood of a hidden Markov model. Computa-
tional Statistics and Data Analysis 52 (2008) pp. 4147-4160.

[2] D. J. Wilkinson (2011), Stochastic Modelling for Systems Biology. Chapman & Hall/CRC.

[3] H. Sørensen (2004), ’Parametric inference for diffusion processes observed at discrete points in
time: a survey. International Statistical Review, vol 72, no. 3, pp. 337-354.

[4] Tavaré S, Balding D, Griffith R, Donnelly P (1997), Inferring coalescence times from DNA
sequence data. Genetics 145(2):505-518.

[5] Marin, J. M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012), Approximate Bayesian compu-
tational methods. Statistics and Computing, 22(6), 1167-1180.

[6] Pritchard J, Seielstad M, Perez-Lezaun A, Feldman M (1999), Population growth of human
Y chromosomes: a study of Y chromosome microsatellites. Molecular Biology and Evolution
16:1791-1798.

[7] Marjoram P, Molitor J, Plagnol V, Tavaré S (2003), Markov chain Monte Carlo without like-
lihoods. Proceedings of the National Academy of Sciences 100(26):15,324-15,328.

[8] Scott A. Sisson and Yanan Fan (2010), Likelihood-free Markov chain Monte Carlo. In Handbook
of Markov Chain Monte Carlo, Eds. S. P. Brooks, A. Gelman, G. Jones and X.-L. Meng.
Chapman and Hall/CRC Press.

[9] Mikael Sunn̊aker, Alberto Giovanni Busetto, Elina Numminen, Jukka Corander, Matthieu Foll
and Christophe Dessimoz (2013), Approximate Bayesian Computation. PLOS Computational
Biology, Volume 9, Jan 2013.

[10] Christopher Nemeth, Hidden Markov Models with Applications to DNA Sequence Analysis.
STOR-i, Lancaster University.

[11] Sköld, Martin (2006), Computer Intensive Statistical Methods. Lecture notes. Centre for Math-
ematical Sciences, Lund University.

[12] Link, W. A. and Eaton, M. J. (2012), On thinning of chains in MCMC. Methods in Ecology
and Evolution, 3. 112-115.

[13] Fearnhead P. and D. Prangle (2012), Constructing summary statistics for approximate
Bayesian computation: Semi-automatic approximate Bayesian computation. J. Roy. Statist.
Soc. B, 74 (3), 1-28.

39

[14] U. Picchini (2013), Inference for SDE models via approximate Bayesian computation.
arXiv:1204.5459.

[15] P. Bortot, S.G. Coles and S.A. Sisson (2007), Inference for stereological extremes. Journal of
the American Statistical Association, 477(102):84-92.

[16] E. P. Odum (1953), Fundamentals of Ecology. Philadelphia, W. B. Saunders. Data from
http://www-rohan.sdsu.edu/∼jmahaffy/courses/f00/math122/labs/labj/q3v1.htm.

[17] M. Gesmann (2012), Dynamical systems in R with simecol. Kölner R User Group.

[18] B. Øksendal (2010), Stochastic Differential Equations: An Introduction with Applications.
Springer.

[19] U. Picchini (2007), SDE Toolbox: Simulation and Estimation of Stochastic Differential Equa-
tions with Matlab. http://sdetoolbox.sourceforge.net.

[20] U. Picchini (2013), abc-sde: a Matlab toolbox for approximate Bayesian computation (ABC)
in stochastic differential equation models. https://sourceforge.net/projects/abc-sde/.

[21] H. Haario, E. Saksman, and J. Tamminen (2001), An adaptive Metropolis algorithm. Bernoulli,
7(2):223-242.

40

	Introduction
	Approximate Bayesian Computation
	A first algorithm
	Basic example
	Example of Markov model
	Example of hidden Markov model

	Likelihood-free MCMC
	Using ABC
	The HMM example
	Results

	Exact Bayesian inference
	Results

	Semi-automatic ABC
	Theory
	The HMM example
	Results

	ABC in a Stochastic Lotka-Volterra model
	Varying bandwidth
	Stochastic Lotka-Volterra real data study

	Closing comments

