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 Abstract 

 

Land degradation has already been treated as one of the most serious problem all 

around the world. This study is a GIS-based time series study which devotes to 

calculate annual soil loss value, seek for soil erosion trends linked with precipitation 

and land use in Manafwa micro-catchment, Mount Elgon region, Uganda. Two 

different versions of Revised Universal Soil loss Equation (RUSLE) are implemented 

and compared, one using flow length and the other using flow accumulation to 

estimate the slope length and steepness (LS) factor. The modeling is carried out for 

the years 2000, 2006, and 2012, and is based on ASTER remotely sensed data, digital 

elevation models, precipitation data from the study area, as well as existing soil maps. 

After running RUSLE model and analyzing the result maps, no significant soil erosion 

trends or patterns are found, as well as significant trends in precipitation and land 

cover changes during last decade. Over exploitation of land is probably compensated 

by improved agricultural management and no significant increase in precipitation. 

Even if there are reports of more intense and increasing amounts of rainfall in the area, 

this could not be verified, neither through analysis of climate data, nor by trends in 

estimated soil loss. 

 

 

Keywords: Soil erosion, Revised Universal Soil Loss Equation (RUSLE), GIS, Time 
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1. Introduction 
 

1.1 Background 

 

As one of the most important basic natural resource, land relates to almost all the 

human activities directly or indirectly, and is crucial for sustaining livelihoods in 

many Sub Saharan African (SSA) countries. Rational utilization of the land resource 

has been treated as the key factor in the development pathways of many SSA 

countries. However, land degradation is one of the major and widespread 

environmental threats both in the past and present years (Xu et al., 2012). Furthermore, 

soil erosion is regarded as the most serious form of land degradation around the world, 

especially in developing countries like Uganda, China and India as well as some 

developed countries like Spain (Brunner et al., 2004; Nekhay et al., 2009; Zhang et al., 

2010). In order to meet their livelihoods, address the economic stress and accelerate 

development, some people and development actors in the developing countries utilize 

land and soil resource in unsustainable and irrational ways as manifested by 

overgrazing, destruction of forest for urban extension, heavy intensity and unscientific 

agricultural activities, land use changes in high-frequency (De Meyer et al., 2011). As 

the result, soil erosion becomes seriously, which negatively impacts the soil quality 

reducing agricultural efficiency, worsening water quality, flooding, debris flow and 

habitat destruction (Park et al., 2011). 

 

Mountain ecosystems are considered as one of the most significant ecosystems, 

providing huge amount of benefits to human both in natural aspect and economic 

aspects via various ecosystem services and products. Nevertheless, unsustainable and 

unscientific land use practices and improper land management causes serious soil 

erosion in mountain regions. More and more studies are carried out focusing on the 

mountainous areas in order to get better understanding about why the phenomenon 

happens and what could be done to solve the problems (Bamutaze et al., 2010; 

Mugagga et al., 2012; Soini, 2005; Prasannakumar et al., 2012). In recent years, 

governments started to pay attention to sustainable agriculture and development. As 

the result, many environment and land degradation assessment policies are announced 

and published, which points out that soil erosion and land degradation in the mountain 

areas are increasingly regarded more serious than in other ecosystems (NEMA, 1998; 

Millward & Mersey, 1999; Angima, 2003; Jasrotia & Singh, 2006). One of the major 

reasons for this is land use changes in high-frequency, not only modifications, but also 

conversion of the land cover, which has negative impact on the environment, 

especially replacement of the forests area by agriculture fields due to the pressure of 

population (Hansen et al., 2001; Lung & Schaab, 2010). The other major reason is the 

irregular terrain and topography in the mountain areas, which means that the slope 
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diversity and heterogeneity are significant factors for the intensity of soil erosion 

(Knapen et al., 2006). Combined with rapid climate variability and changes, mountain 

ecosystems are one of the most sensitive ecosystems to climate change. The variation 

in rainfall pattern significantly impacts the runoff.  

 

In a study by Knapen et al. (2006), carried out on Mount Elgon in Uganda, it was 

observed that East Africa has severe land degradation around the highlands. They also 

point out that high vulnerability of the slopes, the high annual precipitation, including 

steep slope and high weathering rates, can be the important reasons for the serious soil 

erosion in this area. In the end of their report, the human activities due to high 

population density and associated pressures are considered as the most important 

factor for the land degradation. Another study which focused on land use changes 

around Mount Elgon done by Mugagga et al. (2012) indicates that population pressure 

in the Mount Elgon region has resulted in large areas of forest being replaced by 

agriculture fields without sustainable management. These unsustainable and 

unscientific land use practices have caused a lot of environmental problems 

exemplified by landslides, high erosion rates and stream pollution loading on Mount 

Elgon. It is however decided that activities supporting forest replacement by cropland 

and grazing land will continue until 2032 (UNEP, 2004).  

 

East Arica has been emphasized as the focal point of soil erosion. Better management 

and sustainable development measures have to be worked out and implemented. 

 

There are two main approaches to study the soil erosion, depending on spatial and 

temporal scales (Xu et al., 2012). One entails on-site measurements, which perform 

irrigation experiments on small scale plots. The other is the off-site quantification 

through modeling, which can be applied to reveal potential patterns of the soil erosion, 

or evaluate the soil erosion on a large scale. According to Rafaelli et al. (2001), if data 

from field measurements are lacking and sparse due to costs of manpower and time 

constraints, off-site modeling techniques are to prefer. Lack of data is apparent in the 

Mount Elgon region, partly due to climate conditions, with a high cloud cover, and 

partly due to the location, with steep slopes and a spare road network making it 

difficult and expensive to carry out field measurements.  

 

In order to build the quantification model, as many as possible of the criteria which 

influence soil erosion should be taken into consideration. The Revised Universal Soil 

Loss Equation (RUSLE) is a widely used soil erosion intensity evaluation model, 

modified and improved from the Universal Soil Loss Equation (USLE), developed by 

Wischmeier (1976). There are several factors included in this model, such as rainfall 

erosivity, soil erodability, slope length and steepness factor, cover management factor, 
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and conservation practice factor. RUSLE can be treated as a kind of multi-criteria 

analysis, since the results are calculated according to the influencing factors. GIS 

technology is thus appropriate due to its powerful multi-criteria processing and 

calculation capability (Chretien et al., 1994; Fu & Gulinck, 1994). Moreover, in many 

conclusions of previous studies, highly significant spatio-temporal phenomena or 

changing patterns are revealed by applying GIS and remote sensing based soil erosion 

and land degradation modeling (Fistikoglu & Harmancioglu, 2002; Hoyos, 2005). 

Long term studies can be performed, and the changes in soil erosion intensity patterns 

can be shown and analyzed. Hence, evaluation and prediction are possible to carry out 

much easier and faster than before to address hazards caused by soil erosion. 

 

 

1.2 Aims and objectives 

 

The first specific aim is thus to produce high accuracy soil erosion estimates for the 

study area. Secondly, possible climate and soil erosion intensity trends from 2000 to 

2012 are discussed. The original RUSLE model structure is compared with an updated 

RUSLE model, where the slope length factor is replaced by drainage area. If the 

evaluation shows the updated RUSLE model to be more accurate, the model has been 

improved. These aims are addressed through the following objectives:  

 

 To understand the influencing factors in the RUSLE model and the basic usage of 

the model by reviewing literature and previous studies. 

 To perform the two different model calculations for the years 2000, 2006 and 

2012 in order to estimate soil erosion and create soil erosion intensity maps. 

 To compare the accuracy of the two methods and choose a more reliable results 

for discussion.  

 To analyze and discuss the results of possible soil erosion intensity trend from the 

year 2000 to 2012, affecting by precipitation and land cover situation in the study 

area.  

 

 

1.3 Research questions 

 

The major questions which the study attempted to address are: 

 

 Is the updated version of RUSLE, using flow accumulation instead of slope 

length, to prefer? 

 How much soil is lost each year during the last decade in the selected micro-

catchment on Mount Elgon?  
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 What is the soil erosion pattern from the year 2000 to 2012?  

 

 

1.4 General methodology and organization of the thesis 

 

In order to answer the research questions, several steps were undertaken. Firstly, 

relevant literature was reviewed, including basic information about Uganda and the 

certain study area, the factors in the RUSLE model, and knowledge about previous 

use of the model. Secondly, referring to the factors in the model, the datasets of the 

study area were collected from various sources. Digital elevation models (DEM), 

satellite images, climate data for rainfall, and soil classification map were used. 

Afterwards, by applying the RUSLE model and the updated RUSLE model, the result 

of soil erosion intensity of the target years were estimated and presented in tabular 

formats as well as maps. Finally, a comparison was performed to assess the accuracy 

of the results derived using the original RUSLE structure and the modified structure. 

A statistical analysis was carried out in order to explain possible soil erosion patterns 

and trends as well as the climate influence.  

 

As the results, six thematic maps presenting soil erosion intensity were obtained, two 

for each year, as well as the figures showing the percentage of coverage for each of 

the erosion risk level. According to the result maps, the reasons for the differences are 

expected to be found and discussed. Statistic analysis and evaluation will be helpful to 

find those reasons and have a quantitative explanation about soil erosion patterns.  

 

This thesis is organized in seven chapters. As presented before, Introduction Chapter 

gives the background information about soil erosion study field and presents aims and 

objectives of this study. Study Area Chapter introduces the basic information like 

location, topography, climate, soil, vegetation cover and land use of the studied 

micro-catchment. In Materials Chapter, series of the data used in this study are 

provided and introduced with the explanation of the data sources and relevant 

parameters. Methodologies Chapter illustrates the whole RUSLE modeling and 

detailed explanation about each factor computation. Results and Discussion Chapter 

presents six thematic maps showing soil erosion intensity obtained by two different 

methods and the comparison between the methods. Additionally, the limitations and 

difficulties are discussed and pointed out, as well as the relationships among annual 

soil loss, precipitation and land cover changes. Finally, Conclusion Chapter 

summarizes the work done from data collection to final results, as well emphasize the 

limitations and difficulties and gives simple perspectives for future studies.   



 

5 

 

2. Study Area 
 

2.1 Location 

 

The study area is located on the Ugandan territory of Mount Elgon. Mount Elgon is a 

transboundary mountain which lies on the border of western Kenya and eastern 

Ugandan. Mount Elgon can be regarded as the largest and oldest extinct volcano from 

Pliocene age in East Africa. The elevation is about 4322 meters (Claessens et al., 

2007). The actual study area constitutes part of Manafwa catchment, lying on the 

western side as illustrated in the Figure 1 below. The map below shows the position of 

the study area. It is located between latitude 0.893° and 1.084°, and longitude 34.056° 

and 34.384° in WGS84 coordinates system. The total coverage of the study area is 

365 km
2
.  

 

Figure 1. Location for the study area.  
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2.2 Topography 

 

Several studies point out that the geomorphology of the Mount Elgon region is 

dominated by volcanism (Kitutu et al., 2009; Knapen et al., 2006). The elevation in 

the study area varies between 1084 and 2455 meters. Due to mountainous 

characteristics, the variation of the slope is large. The largest slope is 50 degree, 48% 

of the area have slopes less than 5 degrees, 18% of the area have slopes from 5 to 10 

degrees, 23% of the area have slopes between 10 and 20 degrees, and 11% of the 

study area have slopes exceeding 20 degrees.  

 

 

2.3 Climate 

 

The climate of Mount Elgon region can be defined as humid subtropical. It is 

dominated by seasonally alternating moist Southwesterly and dry Northeasterly air 

streams. The mean annual air temperature is about 23 °C. Moreover, average 

minimum and maximum temperature is 15 °C and 28 °C, respectively. The warmest 

months in the year are from January to March and the coolest months are from July to 

August. The onset and cessation of rainfall months are March and December, 

respectively. The mean annual precipitation is generally high around 1500 mm 

(Bamutaze et al., 2010). The precipitation in Mount Elgon region shows a weak bi-

modal pattern. The rainfall differences are mostly influenced by orographic conditions, 

altitude and location. Specifically, in Bamutaze (2010), a long term analysis of rainfall 

pattern for Bududa station which is located in west part of the study area shows a 

weak bio-modal precipitation distribution of the study area. Figure 2 indicates, the 

two rainy seasons in the year are somewhere around May and August.  
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Figure 2. Mean monthly rainfall distribution for Bududa station (Bamutaze, 2010).  

 

 

2.4 Soil  

 

Generally, the soil structure of Mount Elgon is deep and derived from volcanic ash as 

the product of a single weathering cycle (NEMA, 1998). A significant characteristic 

pointed out by Isabirye (2004) is that the soils of this area are highly variable cause of 

the structure of the carbonatite dome. In the study done by Bamutaze (2010), three 

main sources of the soil types in Mount Elgon are stated. Firstly, volcanic ash and 

agglomerate found under volcanic mountains and hills and the pediments of them 

have contributed to derive the soils. Secondly, some of the soils are derived from 

metamorphic rocks, which are the degraded Gondwana surface. Thirdly, another part 

of soils is derived from mixed volcanic-metamorphic rocks.  

 

 

2.5 Vegetation and land cover 

 

The distribution of vegetation in Mount Elgon region is influenced by many physical 

and anthropogenic factors, such as, elevation, aspect, soil, climate, and land use 

practices (Wesche, 2002). Generally, four different broad vegetation communities can 

be observed. Mixed montane forest can be found up to elevation of 2500 meters, 

bamboo and canopy montane forest can be found from 2400 to 3000 meters, and 

moorland can be found above 3500 meters (Scott, 1994). However, the natural 
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vegetation is heavily influenced by human activities. Because of the pressure from the 

rapidly increasing population, natural vegetation is damaged by intense agriculture 

and grazing activities, especially in the area below 2200 meters. Agriculture lands 

occupy 47% of the landscape, and grassland areas cover 22% (Van Heist, 1994). This 

potential damage of the ground cover vegetation of course can lead to an increased 

risk of soil erosion.  

 

 

2.6 Population and land use 

 

The estimated population density of Manafwa catchment region varies between 250 

and 700 persons per square kilometer (Bamutaze et al., 2010). The land use types in 

the Mount Elgon region can be classified as crop lands, secondary forest, natural 

forest, bare land and built up areas. Agriculture lands are the most common land use 

type across this area and agriculture activities are extremely frequent (Van Heist, 

1994). The agriculture activities are mostly carried out below the elevation 2000 

meters. Montane farming system and smallholdings are the most common forms of 

the agriculture in this region (Wasige, 2007). Due to low efficiency of the agriculture 

and the huge pressure caused by the population, the crop lands encroach higher 

mountain area, which can impact on the natural forest area. Mugagga et al. (2012) 

note that the most significant land use changes are the conversion from natural forest 

to other land use types, especially crop lands and grazing lands. This kind of land 

management can easily lead to increased land degradation and soil erosion.  
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3. Materials 
 

3.1 Digital elevation model 

 

Terrain data required for the modeling (flow length, flow accumulation, slope gradient 

etc) were all extracted from a DEM. This original DEM was provided and 

interpolated from a 10 meters resolution contours map by Department of Mapping and 

Surveys for Uganda. The extracted raster DEM was generated in ArcGIS 10 by using 

the inherent protocols. It is under WGS 1984 spatial reference coordinates system and 

projected to UTM Zone 36N projection system. The spatial resolution is 25 meters. 

The elevation range of the Mount Elgon region is from 1041 meters up to 4301 meters. 

The DEM data were used to estimate slope gradient, flow direction, catchment area, 

flow length and flow accumulation for the study.  

 

 

3.2 Climate data 

 

The climate data are from Bamutaze (2010), collecting from four different climate 

stations: Bududa, Bulucheke, Buwabwale and Nabumali. The position of the climate 

stations and the location of the study area are shown below in Figure 3. The rainfall 

data are obtained from the Department of Meteorology of Uganda. The climate data 

include precipitation, relative humidity, solar intensity, wind speed and temperature. 

All the data are provided in DBF format, which can be read as tables by ArcGIS 10 or 

Excel.  

 

Figure 3. Location of the climate stations and the study area.  
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Only precipitation is interesting for this study. The data are distributed in daily form. 

The rainfall depth data in millimeter for the target years 2000, 2006 and 2012 were 

extracted from a large dataset. The precision of this dataset is 0.01 millimeters. The 

rainfall erosivity factor was estimated by interpolating the values from these climate 

stations.  

 

 

3.3 Soil data 

 

Due to limitations in the available soil data, a combination of two different types of 

soil data was used in this study. Two soil maps which contain different soil types as 

attributes are used (Bamutaze, 2010). The soil types are in FAO (Food and 

Agriculture Organization) classification system. One soil map contains more detailed 

soil information of the area located in southwest part of Mount Elgon region. 

Unfortunately, there are some gaps in the data. In order to fill these gaps, another 

Uganda nation level soil map with lower resolution was used to make updating and 

correcttions. As a result, a full soil map of southwest Mount Elgon was generated to 

aid the estimation of the soil erodability factor.  

 

 

3.4 Satellite remote sensing images 

 

The used ASTER satellite images are from the summer period of the years 2000, 2006 

and 2012.  

 

The spatial resolution of the satellite images are 15 meters. All images were geo-

referenced under the WGS84 coordinate system. Detailed information about the used 

ASTER images is shown in Table 1. The three satellite images used are expected to 

be from the same date. However, due to the heavy cloud coverage in Mount Elgon 

region during summer time, this requirement is difficult to fulfill. The data used in 

this study are the best combination which can be found. The detailed explanation and 

discussion is presented in the discussion section.  
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Table 1. The instruction for the ASTER images.  

Product 

ID 
Time Central Coordinates 

Cloud 

Coverage 
Bands 

prodat011 2012/6/27 
Lat: 1.107, 

 Long: 34.261 
20% 

Band1, Band2, 

Band3N 

prodat012 2006/8/30 
Lat: 1.111,  

Long: 34.236 
13% 

Band1, Band2, 

Band3N 

prodat013 2000/9/30 
Lat: 1.124,  

Long: 34.144 
4% 

Band1, Band2, 

Band3N 

 

There are three bands in the downloaded data, BAND1, BAND2, and BAND3N. The 

corresponding wave lengths of the three bands are shown in Table 2. 

 

Table 2. The wave length for each of the bands in VNIR subsystem for ASTER. 

Band No. Wave length (μm) Color 

1 0.52-0.60 Green 

2 0.63-0.69 Red 

3N 0.78-0.86 Near-infrared 

 

In the downloaded data, the digital values for Green, Red and Near-infrared band 

were interpreted following the spectral reflectance characteristics. That means the 

satellite images can be used for NDVI calculation directly in the further processing 

stage. The NDVI maps indicate the land cover environment. NDVI was thus used to 

estimate the cover management factor which is one of the components in RUSLE 

model.  

 

 

3.5 Field data 

 

Field measurements of soil erosion collected and presented by Bamutaze (2010) are 

used in this study.  Soil loss was measured in field at eleven different locations in the 

study area. All measurements were carried out by the use of sediment traps in open 

streams. 
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4. Methodologies 
 

4.1 The RUSLE model 

 

The RUSLE soil erosion model is used to estimate annual soil loss value and estimate 

soil erosion intensity in a catchment. The RUSLE model is based on the USLE 

erosion model structure which was developed by Wischmeier & Smith (1978), and 

improved and modified by Renard et al. (1997). Five parameters are used in the 

RUSLE model to estimate soil loss. They are rainfall erosivity (R), soil erodability 

(K), slope length and steepness factor (LS), cover management factor (C) and 

conservation practice factor (P). Referring to RUSLE model, the relationship is 

expressed as:  

 

A = R × K × LS × C × P                                                                                               (1) 

 

where A (t ha−1 y−1) is the computed spatial average of total soil loss per year; R 

(MJ mm ha−1 h−1y−1 ) is the rainfall erosivity factor; K (t ha h ha−1 MJ−1 mm−1) is 

the soil erodability factor; LS is the slope length and steepness factor (dimensionless); 

C is the land surface cover management factor (dimensionless); and P is the erosion 

control or called conservation practice factor (dimensionless).  

 

The methods and formulas for estimating each of the parameters in the RUSLE model 

are mainly based on three previous studies by Bamutaze (2010), Pilesjö (1992) and 

Prasannakumar et al. (2012). The work flow is shown in the flow chart below in 

Figure 4. 
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Figure 4. Flow chart of RUSLE modeling. 

 

 

4.2 Rainfall erosivity factor (R) 

 

The rainfall erosivity factor indicates the erosive force of a specific rainfall 

(Prasannakumar et al., 2012). The relationship between rainfall erosivity and rainfall 

depth developed by Wischmeier & Smith (1978) and modified by Arnoldus (1980) 

was used to translate the rainfall depth to rainfall erosivity. The calculation formula 

was as follows: 

 

R =  1.735 × 10(1.5×log 10 (
P i

2

P
)−0.08188 )12

i=1                                                                    (2) 

 

where R is rainfall erosivity value in MJ mm ha−1 h−1y−1, Pi is the monthly rainfall 

in mm; and P is the annual rainfall in mm.   

 

In order to apply the relationship above, the monthly and annual rainfall depth are 

required to be prepared in raster format. Thus, the original rainfall data which 

distributed in daily form from four climate stations was extracted and summed up to 

monthly rainfall and annual rainfall depth for the three target year 2000, 2006 and 

2012. The position of the stations and the corresponding rainfall depth values were 

imported to ArcGIS as point vector data. Afterwards, Inverse Distance Weighting 

(IDW) interpolation with second power calculation was applied to create totally 13 
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rainfall depth maps, 12 monthly and an annual rainfall depth maps, for each of the 

target years. The relationship developed by Wischmeier & Smith (1978) was used to 

construct rainfall erosivity maps.  

 

As the results of the relationship, the rainfall erosivity of the study area for the year 

2000, 2006 and 2012 varies from 897 to 2813 MJ mm ha−1 h−1y−1. The highest and 

lowest values both appear in the year 2000. The southwestern part of the study area 

always has the highest rainfall erosivity values. Three rainfall erosivity maps are using 

the same stretch method and stretch scale to help comparison.  

 

In Figure 5 below, the spatial distribution of the computed rainfall erosivity for the 

year 2000 is given. The range of the rainfall erosivity varied from 897 to 2813 

MJ mm ha−1 h−1y−1 with the average value 1448 MJ mm ha−1 h−1y−1.  

 

Figure 5. Rainfall erosivity map for the year 2000. 

 

For the year 2006, the rainfall erosivity factor was found to be 1027 to 1607 

MJ mm ha−1 h−1y−1 with the average value 1200 MJ mm ha−1 h−1y−1 for the entire 

study area. The map showing rainfall erosivity factor is shown in Figure 6. 
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Figure 6. Rainfall erosivity map for the year 2006. 

 

From the rainfall erosivity map Figure 7 for 2012, the largest amount of rainfall was 

observed. The map shows the range of the factor values changed from 1249 to 2803 

MJ mm ha−1 h−1y−1 with the highest average value 1776 MJ mm ha−1 h−1y−1 in the 

three target year.  

 

Figure 7. Rainfall erosivity map for the year 2012. 
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4.3 Soil erodability factor (K) 

 

Soil erodability values were estimated based on the soil map, which contains the soil 

classification according to FAO standards. The finial soil map is shown below in 

Figure 8. There are totally five types of soil classified in the study area, Nitisols, 

Gleysols, Petric Plinthols (Acric), Lixic Ferralsols and Acric Ferralsols.  

 

Figure 8. Soil map contains five different soil types in the study area. 

 

Table 3 presents the percentage of the area taken by each type of soil. Lixic Ferralsols 

takes 46.6% of the study area. The other four types of soil take the area from 10% to 

20 %.   

 

Table 3. The percentage of the area taken by five types of soil. 

Soil Types Percentage of Area (%) 

Nitisols 10.8  

Gleysols 10.9  

Petric Plinthols (Acric) 14.0  

Lixic Ferralsols 46.6  

Acric Ferralsols 17.7  

 

Different soil types normally have different structure, which influence the intensity of 

the soil erosion. The soil erodability K-value indicates the vulnerability and 

susceptibility of the certain type of soil to detachment by erosion (Hoyos, 2005). The 

higher erodibility value the soil has, the more erosion will be suffered when the soils 

are exposed to the same intensity of rainfall, splash or surface flow (Hudson, 1981). 

The unit for soil erodibility is t ha h ha−1 MJ−1 mm−1.  
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Pilesjö (1992) estimates soil erodibility values using the color of the soils according to 

Bono & Seiler (1983), Bono & Seiler (1984) and Weigel (1985). There are some other 

professional calculation methods for K-value, but more detailed information is 

required for different types of soil. In this case, this is the best way the estimated K-

value due to the limitations from available data. Table 4 below shows the K-value for 

different soil colors.  

 

Table 4. The K-value for different soil color. 

Color K-value 

Black 0.15 

Brown 0.2 

Red 0.25 

Yellow 0.3 

 

The five different soil types were assigned K-values according to the color of the soils. 

The colors for the five different types of soil are obtained from ISRIC (World Soil 

Information) (2013). For the Ferralsols soil, there is no detailed subclass classification 

in the ISRIC document. The color is set to either red or yellow. The K-values for 

these two Ferrosols were thus set using the mean K-value of red and yellow color. 

The K-values of the five types of soil are shown in Table 5.  

 

Table 5. The colors and corresponding K-values for soils in the study area. 

Soil Type Color K-value 

Nitisols Red 0.25 

Gleysols Black 0.15 

Petric Plinthols (Acric) Red 0.25 

Lixic Ferralsols Red or Yellow 0.275 

Acric Ferralsols Red or Yellow 0.275 

 

With the help of reclassification tool in ArcGIS, the cell values which indicated the 

soil types were replaced by using the K-values shown above. Three different K-values 

are obtained finally, 0.15, 0.25, 0.275 t ha h ha−1 MJ−1 mm−1 . The map of soil 

erodability factor is shown in Figure 9. 
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Figure 9. The translated soil erodability (K-value) factor map of the study area. 

 

 

4.4 Slope length and steepness factor (LS) 

 

The slope and steepness factor (LS) is a combination of slope steepness and slope 

length, to high degree affecting the total sediment yield from site. It is considered to 

be one of the most challenging to derive (Fu et al., 2005). Prasannakumar et al. (2012) 

claim that generating the LS-factor also captures factors like compaction, 

consolidation and disturbance of the soil.  

 

In this study, two different parameters are used to calculate the LS-factor, flow length 

and flow accumulation. With the help of ArcGIS, the original DEM with 25 meters 

resolution was firstly converted to slope map in degree and flow direction map. 

Afterwards, the flow direction map was used to create maps of flow length and flow 

accumulation. According to the smallest pixel size from satellite images, maps of flow 

length and flow accumulation were resampled to 15 meters resolution.  

 

Both flow length and flow accumulation can be used to estimate the contribution of 

upstream cells in a DEM to the downstream cells. Flow length, also called slope 

length, estimates the water flow along lines while flow accumulation is based on 

drainage area. For a specific cell, the flow accumulation is estimated based on the 

upslope area and not just along flow lines.  

 

The LS factors were estimated applying the equation proposed by Moore & Burch 

(1986a, b). In the equation, the flow length and flow accumulation part is the number 
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of upslope cells which contribute to a given cell. In addition, in ArcGIS calculation, 

both flow length and flow accumulation are the number of upslope cells which 

contribute to a particular cell, so they can be replaced by each other in the equation. 

The relationship is as follows:  

 

LS = (Flow length (or Flow accumulation)  ×
Cell  size

22.13
)0.4 × ((sin slope)/

0.0896)1.3                                                                                                                     (3) 

 

where LS is the combination of slope length and steepness; Flow accumulation or 

flow length is the accumulated upslope contribution to a cell; Cell size is the 

resolution of the raster image,  and Sin slope is the sin value of the slope in degrees.  

 

The estimated LS values based on flow length, varying between 0 and 184, are 

presented in Figure 10.  

 

Figure 10. LS-factor map obtained by using flow length. 

 

For the second method, flow accumulation was used in the formula to replace the 

variable flow length. LS-factor map looks like the map below in Figure 11. It is very 

similar to the LS-factor map obtained by using flow length, but the range of the values 

varies from 0 to 95.  
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Figure 11. LS-factor map obtained by using flow accumulation. 

 

 

4.5 Cover management factor (C) 

 

The cover management factor represents the effect of plants, crop sequence and other 

cover surface on soil erosion. The value of C-factor is defined as the ratio of soil loss 

from a certain kinds of land surface cover conditions (Wischmeier & Smith, 1978).  

 

According to Prasannakumar et al. (2012), the Normalized Difference Vegetation 

Index (NDVI) can be used as an indicator of the land vegetation vigor and health. In 

addition, Karydas et al. (2009) and Tian et al. (2009) state that due to the variety of 

the land cover patterns, satellite remote sensing data can act as an extremely important 

role to estimate the C-factor.  

 

In this study, the original satellite images from the year 2000, 2006 and 2012 with the 

reflectance values in bands green, red and near-infrared, were converted to NDVI for 

the corresponding years. The NDVI calculation formula can be represented as 

following:  

 

NDVI =
rNIR −rRed

rNIR +rRed
                                                                                                         (4) 

 

where rNIR is the reflectance value in near-infrared band; rRed is the reflectance 

value in visible red band.  
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After calculated NDVI, the C-factor can be estimated by applying the relationship 

used in Zhou et al. (2008) and Kouli et al. (2009):   

 

C = exp⁡(−α ×
NDVI

β−NDVI
)                                                                                                (5) 

 

where C is the calculated cover management factor; NDVI is the vegetation index, 

and α and β are two scaling factors. Van der Knijff et al. (2000) suggest that by 

applying this relationship, better results than using a linear relationship can be 

obtained. They suggest the values for the two scaling factors α and β to be 2 and 1, 

respectively.  

 

Because of the cloud cover in the rainy season, the quality of the satellite images is 

limited, which may cause some uncertainties in the results. In order to remove cloudy 

areas, the clouds and the shadow of clouds, were classified by using unsupervised 

classification with the spectral bands green, red and near-infrared. The number of 

unsupervised classes was set to 15 classes. The classes, automatically clustered by the 

unsupervised classification tool in ArcGIS, were finally grouped to construct cloud 

layers. In the C-factor maps and final results, the clouds areas are shown as the black 

with no data. Figure 12 shows the coverage percentage of classified cloud in the study 

area.  

 

Figure 12. Coverage percentage of the classified cloud in the study area. 

 

Obviously, in the year 2012, 12.38% of the study area is covered by clouds. And only 

0.59% of the study area, which is the least, is covered by clouds in the year 2006. For 
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cloud problem, more explanation and discussion is handed out in discussion section. 

In the last step to generate C-factor maps, a low pass filter was applied to smooth the 

images, in order to decrease the negative influence of the noise in satellite data. At the 

same time, some uncertainties were caused because of the filter. 

 

By running the formula with the raster calculator tool in ArcGIS, the C-factor maps 

were obtained. For the year 2000, C-factor values varied from 0.00008 to 0.58 and the 

spatial variability is shown in Figure 13. According to the map, some clouds are 

located along the east boundary of the study area.  

 

Figure 13. C-factor map of the study area in the year 2000. 

 

For the year 2006, the C-factor map is shown in Figure 14. The C-factor varies from 

0.0002 to 0.66. This image contains the least clouds among the three C-factor maps 

for the target years. Therefore, it may have the least uncertainties caused by cloud 

cover.  
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Figure 14. C-factor map of the study area in the year 2006. 

 

With the map showing the C-factor for the year 2012 presented below in Figure 15, 

the C-factor values vary from 0.0027 to 0.55. For the year 2012, the satellite image is 

covered by clouds with 20%. Therefore, in the result map of C-factor, the cloud area 

which is shown as no data is the most among the three C-factor maps.  

 

Figure 15. C-factor map of the study area in the year 2012. 

 

As presented in the three C-factor maps (Figures 13, 14, 15), it is obvious that the 

areas around or close to the clouds has very high C-factor values, which are shown in 

reddish color. These areas are the shadows of the clouds. This issue will cause some 

uncertainties. The detailed explanation is given in the discussion section.  
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4.6 Conservation practice factor (P) 

 

The conservation practice factor (P) is also called as support factor. It represets the 

soil-loss ratio after performing a specific support practice to the corresponding soil 

loss, which can be treated as the factor to represent the effect of soil and water 

conservation practices (Omuto, 2008; Renard et al., 1997). The range of P factor 

varies from 0 to 1. The lower the value is the more effective the conservation 

practices are.  

 

In this study, this conservation practice factor was assigned to the maximum value of 

one (1) for the entire study area for running the RUSLE model. It is because there are 

no significant conservation practices detected. In Manafwa, most of the conservation 

practices are tree planting, and can thus be considered to influence the cover 

management factor (C) (Bamutaze, 2010).  
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5. Results and Discussion 
 

In order to estimate annual soil loss, the five factors were multiplied according to the 

relationship in RUSLE model. In total six layers with annual soil loss were computed, 

two for each year, one using flow length and one using flow accumulation. The soil 

loss was classified into soil erosion risk maps with five different soil erosion risk 

levels according to Bamutaze (2010). The threshold for each of the risk level is 

presented in Table 6.  

 

Table 6. Categorization of soil erosion risk. 

Erosion Risk Threshold (𝐭 𝐡𝐚−𝟏 𝐲−𝟏) 

Very Low Soil Loss ≤ 2 

Low 2 ＜ Soil Loss ≤ 10 

Moderate 10 ＜ Soil Loss ≤ 50 

High 50 ＜ Soil Loss ≤ 100 

Very High Soil Loss ≥ 100 

 

 

5.1 Soil erosion risk based on flow length method 

 

In general, the soil erosion risk maps obtained by flow length method have relatively 

high annual soil loss values. Exploring the maps (see Figure 16), it can be concluded 

that more than 50% of the area is exposed for very high erosion risk. 

 

For the year 2000, Figure 16 below illustrates the estimated erosion risk. The soil loss 

estimated by flow length method in this year varies between 0 and 4995 t ha−1 y−1, 

with the average value 364 t ha−1 y−1. The following histogram Figure 17 shows the 

land coverage percentage of each soil erosion risk level. 62.24% of the area has a very 

high erosion risk, 12.42% a high risk, 16.91% a moderate risk, 6.02% a low risk, and 

only 2.42% a very low risk of soil erosion. 
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Figure 16. Soil erosion risk map obtained by flow length method for the year 2000. 

 

 
Figure 17. The percentage of coverage for the erosion risk map 2000 by flow length 

method. 

 

For the year 2006, the erosion risk map is shown in Figure 18. The estimated annual 

soil loss varies between 0 and 4698 t ha−1 y−1, which is similar to the result of year 

2000. However, the mean value is 231 t ha−1 y−1, which is much lower than 2000. 

The histogram Figure 19 shows that, 54.77% of the area has a very high erosion risk, 
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16.33% a high risk, 19.7% a moderate risk, 6.8% a low risk, and only 2.41% a very 

low risk of soil erosion. 

 

Figure 18. Soil erosion risk map obtained by flow length method for the year 2006. 

 

 
Figure 19. The percentage of coverage for the erosion risk map 2006 by flow length 

method. 

 

The result for 2012 showed in Figure 20, the estimated soil loss values vary between 0 

and 6053 t ha−1 y−1. The mean soil loss value is 362 t ha−1 y−1, which close to the 

one for year 2000. From the histogram Figure 21, 55.82% area is under very high 
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erosion risk, which closes to the year 2000. 55.86% of the area has a very high erosion 

risk, 14.23% a high risk, 19.8% a moderate risk, 7.45% a low risk, and only 2.69% a 

very low risk of soil erosion. There is a increasing for the area of low and moderate 

erosion risk compared with year 2000. The coverage percentage of year 2012 is very 

similar to the situation in 2006.  

 

Figure 20. Soil erosion risk map obtained by flow length method for the year 2012. 

 

 
Figure 21. The percentage of coverage for the erosion risk map 2012 by flow length 

method. 
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5.2 Soil erosion risk based on flow accumulation method 

 

Generally, the absolute values of annual soil loss using the flow accumulation are 

much smaller than the results estimated by using flow length method. The results also 

coincide better with field data, and thus more reliable.  

 

In the year 2000, Figure 22 below, the highest estimated soil loss is 1198 t ha−1 y−1. 

The mean value for the whole study area is 103 t ha−1 y−1. In histogram Figure 23, 

30.94% of the study area is classified to have a moderate soil erosion risk. Higher and 

much higher risks are allocated to 18.54% and 30.3% respectively, while 13.79% of 

the area has low erosion risk and 6.43% very low risk. 

 

Figure 22. Soil erosion risk map obtained by flow accumulation method for the year 

2000. 
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Figure 23. The coverage percentage of the erosion risk map 2000 by flow 

accumulation method. 

 

The estimated soil erosion risk map for the year 2006 is shown in Figure 24. In this 

year, the estimated annual soil loss varies between 0 and 1129 t ha−1 y−1, which is 

almost the same as for the year 2000. However, the mean value decreases to 67 

t ha−1 y−1, which is the lowest estimated mean soil loss value of all the results. From 

Figure 25, the histogram also shows that, 38.96% of the area has a moderate risk of 

soil erosion, high and very high risks are allocated to 19% each, 15.65% of the area 

has a low risk, and 7.05% has a very low risk of soil erosion.  
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Figure 24. Soil erosion risk map obtained by flow accumulation method for the year 

2006. 

 

 
Figure 25. The coverage percentage of the erosion risk map 2006 by flow 

accumulation method. 

 

For the erosion risk map Figure 26 in the year 2012, estimated soil loss varies 

between 0 and 1454 t ha−1 y−1 . The value 1454 t ha−1 y−1  is higher than the 

maximum values for 2000 as well as 2006. As usual, the area covered by moderate 
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erosion risk is the most, which shows in the histogram Figure 27 with value 32.47%, 

followed by very high risk 27.85%, low and high risks 16%, and very low risk 7.84%.  

 

Figure 26. Soil erosion risk map obtained by flow accumulation method for the year 

2012. 

 

 
Figure 27. The coverage percentage of the erosion risk map 2012 by flow 

accumulation method. 
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5.3 Comparison of the two modeling methods 

 

Based on the results obtained by the flow length and flow accumulation method, a 

comparison of accuracy was carried out in order to judge which of the two methods 

that gave the better and more accurate result. The comparison was made from two 

aspects.  

 

Firstly, from the cartographic point of view, the estimated result maps obtained by 

using flow length method have a large area assigned high and very high soil erosion 

risk levels. The areas with very high erosion risk level are 62.24%, and 54.77% and 

55.82% for the year 2000, 2006 and 2012, respectively. Comparing with field visits 

and interviews with farmers this is unrealistic. Additionally, the classification method 

used to generate the soil erosion risk maps is referring to a published study by 

Bamutaze (2010), reporting lower soil erosion risks in the region. Altogether, this 

indicates that the results obtained by using the flow accumulation method are better.  

 

Secondly, according to the results reported by Bamutaze (2010), from a nearby area in 

the nineties, the average annual soil loss value was 43 t ha−1 y−1, with the maximum 

value 585 t ha−1 y−1  on pixel level, and the highest potential value reaching 778 

t ha−1 y−1.  In the study presented in this project, the results obtained by using the 

flow accumulation method give the average annual soil loss values 103 t ha−1 y−1, 67 

t ha−1 y−1 , and 101 t ha−1 y−1 , with the highest values 1198 t ha−1 y−1 , 1129 

t ha−1 y−1 and 1454 t ha−1 y−1 for the year 2000, 2006 and 2012, respectively. These 

estimates are much closer to the previous study than the results obtained by using the 

flow length method.   

 

To conclude, the results obtained by using the flow accumulation method seem more 

accurate and reliable than using flow length. Thus, further discussion about the soil 

erosion trend and the relationships between soil erosion and precipitation and land 

cover is based on the results obtained by the flow accumulation method.  

 

 

5.4 Soil erosion trends related to precipitation and land cover 

changes 

 

Mean annual precipitation and mean R-factor of the study area for three years are 

presented in Figure 28 as blue and red line, respectively. From 2000 to 2006, the 

mean annual precipitation decreases from 1290 mm to 1200 mm. Afterwards, the 

increase from 1200 mm to 1249 mm from the year 2006 to 2012. The mean annual 

precipitation for 2012 is approximately the same as for the year 2000. The R-factor 
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shows the similar trend. However, the mean R-factor value in the year 2012 is 

significantly higher than during the year 2000  (1776 MJ mm ha−1h−1y−1 and 1448 

MJ mm ha−1h−1y−1). This means that the rainfall 2012 has the biggest effect on soil 

erosion among the three target years. 

 

Figure 28. Precipitation and R-factor changes from 2000 to 2012. 

 

Regarding land cove, mean NDVI was used as the detector for land cover changes. As 

illustrated in Figure 29, mean NDVI values increase from 0.56 to 0.59 during the 

years 2000 to 2012.  The increasing trends considered as very weak.  

 

Figure 29. Mean NDVI for entire study area from year 2000 to 2012. 
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In more detailed, the histogram in Figure 30 shows comparison of the NDVI increase 

and decrease among the three target years. The increasing of NDVI indicates better 

ground cover vegetation condition. The maps showing NDVI changes among year 

2000, 2006 and 2012 are located in Appendix Figure 1, 2 and 3. 

 

From the year 2000 to 2006, 57.14% of the land area has an increasing NDVI. This 

area is mainly located in the western part of the study area. The area with decreasing 

(47%) appears mainly in the south and east. From 2006 to 2012, an increasing trend is 

kept with the increasing coverage percentage of 58.58%. The increasing NDVI is still 

located in the western part of the study area. The decreasing NDVI is mainly in the 

northeast. Comparing the year 2000 and 2012, 64.06% of the land has an increasing 

NDVI. Even if the analysis is influenced by cloud cover and not significant, one can 

see clear indications that most of the western part of the study area has got more 

vegetation cover during the last decade. However, a regular polygon located in the 

southwest corner has a large decrease in vegetation cover, may be caused by artificial 

activities such as urban construction, or agriculture land conversion.  

 

Figure 30. Coverage percentage of NDVI increase and decrease from year 2000 to 

2012. 

 

Soil erosion changes and trends can be explored in Figure 31 below. The estimated 

soil erosion decreases between 2000 and 2006, and increases between 2006 and 2012. 

This “trend” is similar to the precipitation trend discussed before. The R-factor in the 

year 2006 is much lower than the year 2000 and 2012 which is shown in Figure 28. It 
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seems that soil erosion is more sensitive to precipitation and to be no significant 

relationship between land cover changes and soil erosion on study area scale.  

 

Figure 31. Mean annual soil loss for entire study area from year 2000 to 2012. 

 

With illustration in Figure 32, the histogram indicates the increase and decrease of 

annual soil loss among the year 2000, 2006 and 2012. The maps presenting increase 

and decrease of annual soil loss is attached in Appendix Figure 4, 5 and 6. From year 

2000 to 2006, 65.57% of the study area has a deceasing trend of annual soil loss. Most 

of the area with large decrease is located in the northeastern part of the study area. 

From 2006 to 2012, there is a general increase in soil erosion risk (52.17% of the 

study area). The areas with higher risk for soil erosion are generally located in the 

southwestern part of the study area. When comparing the two years 2000 and 2012, 

one can conclude that 60.51% of the land has a decreasing trend in soil erosion risk. 

The 39.49% of the land with an increasing risk is mainly located in northeastern 

corner, southeastern corner, and some of the western part of the study area. The 

relatively high decrease in soil erosion risk can be seen as contradictory in comparison 

with the high maximum soil loss (1454) detected in the year of 2012. One explanation 

can however be that the erosion area decreases but the intensity of the erosion at some 

particular place increases.  
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Figure 32. Coverage percentage of soil loss values increase and decrease from year 

2000 to 2012. 

 

 

5.5 Uncertainties and limitation 

 

In general, due to the specific characteristics of study area, a mountainous area located 

in Mount Elgon region, finding the data which fulfill the requirement of RUSLE 

modeling is very difficult. In this study, most of the data are provided by local 

departments and researchers except for the ASTER remote sensing data. Due to lack 

of the data, the time series study was only carried out for three target years, 2000, 

2006 and 2012. Mainly five key points are highlighted in following explanation for 

each of the original data. 

 

In the result maps, some of the estimated soil loss values are very high, reaching 1454 

t ha−1 y−1  using flow accumulation, and 6053 t ha−1 y−1  using flow length. The 

original DEM data is an interpolated 25 meters resolution raster map based on 

digitized contour lines. Due to 25 meters resolution, some sinks and breaks in the 

reality cannot be observed by DEM data and detected when using DEM data for 

calculating flow length and flow accumulation. In other words, the breaks in the flow 

pass may not be detected and the flow length and flow accumulation are overmuch 

calculated. This results in exaggerated estimations of flow lengths as well as flow 

accumulation, with correspondingly high LS-values. Additionally, because the DEM 

is interpolated from 10 meters contours map by local department, there are 

uncertainties when performing the interpolation.  
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Regarding precipitation, only data from four rainfall stations in the region were 

available for the three years 2000, 2006 and 2012. The precipitation maps for the 

entire study area were generated by running IDW interpolation with the data from 

these four points. Moreover, the location for the four climate stations used for 

interpolation is clustered in the eastern part of the study area. One can thus expect the 

interpolated precipitation values to be more accurate in the eastern part of the study 

area than the other areas. If the limitation of the original rainfall data can be solved 

and more rainfall data is available, the uncertainty from R-factor can be significantly 

reduced.  

 

In the soil map, only five types of soil are detected in the study area, which does not 

have a good quality. In Uganda, soil mapping is still at a coarse scale, which also can 

be treated as a challenge to seek for good soil data. Anyway, with more detailed soil 

map can achieve a more accurate result. In addition, the method used to estimate K-

factor is according to the color of the particular type of soil, which can be called as a 

rough estimation method and it is not accurate enough. In the study done by Xu et al. 

(2012), a more professional K-factor estimation method which refers to Sharpley & 

Williams (1990) is mentioned and presented. In order to apply this method, more 

detailed soil parameters are required, for instance, the subsoil sand fraction, the silt 

fraction, the clay fraction and topsoil carbon content in percentage. With more 

detailed soil information and using a more accurate estimation method, the K-factor 

values will be improved.  

 

There are also uncertainties in the cover management factor which was estimated by 

the use of ASTER satellite images. There are mainly two sources generating the 

uncertainties, one is related to the temporal distribution of the satellite data, and the 

other related to cloud cover.  

 

The satellite data it is supposed to befrom the same month and in summer time. The 

reason for this is that not only this period has the most vegetation cover, but also that 

it is the most serious erosion period due to rainy rains. However, the rainy season and 

the mountainous climate conditions result in extremely cloudy weather. It was 

impossible to find satellite data from the same month for different years. For the target 

year 2000, 2006, 2012, the images used in this study are from September 30, August 

30 and June 27, respectively. We can thus expect more uncertainty in the image from 

July 2012. The land cover situation two month earlier than the other two target years 

may be significantly different.  
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The uncertainties relating to cloud are always a big problem when using remotely 

sensed data. In this study, all the images are influenced by cloud cover. Especially, in 

the year 2012, the cloud covers more than 12%. Because the shadow of the cloud has 

the negative effect on in NDVI and estimated C-factor values, the cloud was over- 

classified when carrying out the classification. The classified cloud area also contains 

the cloud shadow. Even though an over-classification was performed, some noise 

pixels still remained. In order to reduce the influence by these, a low pass 3x3 average 

filter was used to smooth the C-factor data layer.  

 

The comparison made to adjust which method is better is mostly on qualitative aspect. 

Due to lack of the measurement field data, the quantitative evaluation is unable to be 

performed. However, from qualitative aspect with comparing with previous study, the 

results obtained by using flow accumulation are more prefer.  

 

If all the problems mentioned above are solved and taken into consideration, by 

applying RUSLE model, the uncertainties in the estimated soil erosion results can be 

reduced significantly. In addition, more and better construction for the GIS database 

in this study field will also lead to increase the available data for time series study. 

Therefore, more detailed and continuous study can be performed.  
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6. Conclusion 
 

This study attempts to find soil erosion patterns from year 2000 to 2012 due to climate 

and land cover changes based on estimating annual soil loss by applying two different 

versions of RUSLE model in Manafwa micro-catchment, Mount Elgon region, 

Uganda. The methodologies are based on previous studies, Bamutaze (2010), Pilesjö 

(1992) and Prasannakumar et al. (2012). Based on the results and the further analysis, 

the following conclusions can be drawn. Firstly, no significant trends in precipitation 

changes during the last decade are found. Even if there are reports of more intense and 

increasing amounts of rainfall in the area, this could not be verified, neither through 

analysis of climate data, nor trends in estimated soil loss. Secondly, the risk of soil 

erosion is not significantly different year 2012 compared to year 2000, and also no 

significant trends through target years. Thirdly, no specific trends or patterns in soil 

loss, precipitation and land cover have been found. Fourthly, even though there are no 

significant trends found, the mean annual soil loss values seem more sensitive to 

precipitation changes. Finally, the modified RUSLE model using flow accumulation 

instead of slope length is more preferred when estimating risk of soil erosion.  

 

The study comes here, all the aims are achieved and all the research questions can be 

answered. As mentioned before, no significant trends and patterns of soil erosion are 

found. Over exploitation of land is probably compensated by improved agricultural 

management and no significant increase in precipitation.  

 

The results obtained by this study are basically reliable, even if there may be some 

uncertainties and limitations during the processing of the study. For future studies 

working on this field, more targets years are suggested to be treated on. Furthermore, 

for a much better research, better datasets are needed. Thus, the construction and 

improvement of the database used for environmental analysis are expected to be 

implemented to reduce the uncertainties and limitations. Hopefully, more studies in 

this field will be carried out to estimate and solve land degradation problems, provide 

early warming service for the geologic hazard.  
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Appendix 
 

 

 

Figure 1. The map of NDVI change between year 2000 and 2006. 

 

 

Figure 2. The map of NDVI change between year 2006 and 2012. 

 



 

47 

 

 

Figure 3. The map of NDVI change between year 2000 and 2012. 

 

 

Figure 4. The map of soil loss change between year 2000 and 2006. 
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Figure 5. The map of soil loss change between year 2006 and 2012. 

 

 

Figure 6. The map of soil loss change between year 2000 and 2012. 
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