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1 Introduction
A field of study that has gained prominence in the last twenty years is high
order harmonic generation, a subset of nonlinear optics, both of which will
be described here. With the help of an intense laser field and a generating
medium, extremely short wavelength light can be produced.

Since the generation of harmonics is due to the interaction between the
laser field and atomic electrons in the medium, the harmonics generated can
give a wealth of information about the electronic structure of the atoms and
molecules, which makes it a very interesting tool in atomic physics.

Applications in other fields are easily envisioned when one considers that
the harmonics generated are in the extreme ultraviolet and X-ray spectra.
Radiation in this energy region is already produced in synchrotron storage
rings for the benefit of sciences such as biology, chemistry and materials
sciences.

This thesis considers higher-order harmonic generation (HHG) by a two-
color laser field, in which two fields, one with a frequency twice that of
the other, is used. There are two main reasons for doing this; it affords
greater control of the generating process, and it enables measurement of the
ionization time.

The effects on generation can then be studied as functions of the difference
both in phase and in polarization between the two fields.

HHG with two-color laser fields is not a new subject, and there have been
several experiments performed, in several different configurations, most of
which, however, have only considered either the case when the fields have
fully parallel or fully perpendicular linear polarizations with regards to each
other. Here, cases ”in between” these extremes are considered, in trying to
establish a model for arbitrarily polarized two-color fields.

The work consists of theoretical work and simulations, based on the mod-
els already proposed in this field, as well as analysis of experimental data
previously collected at the atomic physics department of Lund University.
Models for harmonic generation in both parallel and perpendicular configu-
rations are tested, and the aim is to unite them and reconcile them with the
data.

It turns out that most of the models seem to give good explanations
and predictions, and that assumptions given in this report generally prove
accurate.
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Glossary

This paper contains a number of acronyms and terms, most explained in
context but also given here for convenience:

• Laser - Light Amplification by Stimulated Emission of Radiation is a
technique exploiting various electronic properties of materials to enable
the production of extremely coherent and/or intense light.

• Harmonic - A harmonic of an electromagnetic wave is the same as a
harmonic of a sound wave, an integer multiple of its frequency.

• HHG - High-order Harmonic Generation is the process by which
an intense field of (comparatively) low photon energy laser radiation
interacts with atoms, creating highly energetic photons.

• Two-color fields - A two-color laser field is a field that consists of
laser radiation of two different wavelengths (colors), in this case a ω−2ω
field, i.e. a laser beam combined with its second harmonic (twice the
frequency of the fundamental beam).

• KDP - Potassium dihydrogen phosphate is a crystal with a variety
of interesting optical properties, notably being suitable for second har-
monic generation.

• ADK model - The ADK (Ammosov, Delone, Krainov) model de-
scribes atomic ionization in very strong electromagnetic fields (see equa-
tion (4) on page 7) [1].

• Differentiation - This thesis mostly uses the time differentiation
convention ẋ = dx

dt
and ẍ = d2x

dt2
.
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2 Theory

2.1 Electromagnetic radiation
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Figure 1: The electromagnetic spectrum, along with a few points of inter-

est: A, the fundamental field, B, the second harmonic (A and
B making up the two-color field), and C, the 25th harmonic,
which is one of the harmonics measured in the experiment.

This report concerns electromagnetic radiation with different central wave-
lengths and thus photon energies. The fundamental beam of the laser has a
wavelength of 800 nm which puts it in the Near IR range, and has a pho-
ton energy of around 1.55 eV. Its second harmonic has a wavelength of 400
nm, which corresponds to (visible) violet light, and twice the energy (3.1
eV). However, they are colloquially referred to as the ”red” and ”blue” beam,
respectively.

The high harmonics reached are in the XUV (eXtreme Ultraviolet) or
even soft X-ray ranges, with photon energies of around 40-60 eV (wavelengths
down to around 20 nm).

In many cases, one is interested in the frequency, ν, of the radiation, but
for reasons that will become apparent, most calculations in this paper instead
use the angular frequency, ω = 2πν. For this reason the red and blue fields
are also referred to as the ω and 2ω fields.

2.2 Strong fields

The following theory deals mainly with the so-called strong fields regime, that
is, highly intense laser fields. There is no clear boundary to strong fields, but
normally fields with intensities on the order of 1014 W/cm2 and above are
considered strong. This is the scale on which they become comparable to the
atom’s Coulomb potential.
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To achieve these very high intensities, highly focused and very short (tens
of femtoseconds and shorter) laser pulses are used. More on this can be found
in section 3.1 on page 21.

2.3 Nonlinear optics

Nonlinear optics deals with optical media that have a nonlinear relation be-
tween the polarization density and the electric field [8, p. 877]. In the ”nor-
mal” case, this relationship is simply linear,

P = ε0χE, (1)

where ε0 is the permittivity of the vacuum and χ is the electric susceptibility
of the medium. In the presence of strong fields (see the previous section),
however, this response may become nonlinear, and can better be described
as a Taylor series:

P = a1E +
1

2
a2E

2 +
1

6
a3E

3 + . . . , (2)

where a1, a2 and a3 are the first, second and third derivatives of P with
regards to E, a1 then corresponding to the linear relation ε0χ. This makes
it obvious that the prominence of the later terms increases with the field
strength. Normally this is written as

P = ε0χE + 2dχ(2)E2 + 4χ(3)E3 + . . . , (3)

where d = 1
4
a2 and χ = 1

24
a3. These describe the second (depending on χ(2))

- and third (depending on χ(3)) order effects. The total polarization density
can then be described as P = ε0E +PNL, where PNL comprises all the terms
in equation (3) apart from the first one, i.e. all the nonlinear parts.

Some crystalline materials exhibit a very strong d component, and thus
provide efficient second-harmonic generation. One of these is KDP, or potas-
sium dihydrogen phosphate.

Materials that, in contrast with crystals, are isotropic (they are not ”ar-
ranged” along any particular dimension), do not exhibit this second-order
effect, because this requires a different response to E and −E (otherwise the
P response would not be the same). However, it is perfectly possible for
them to have a strong χ(3) component, and generate third, and subsequent
odd, harmonics.
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High-order harmonics are not quite described by this theory, as it depends
on additional factors such as ionization. However, the isotropicity of gases
means that, using only one field, HHG will only result in odd harmonics.

2.4 The three-step model

The so-called simple man’s model or three-step model is a semi-classical
model, featuring a series of assumptions about the manner in which strong
fields interact with atomic electrons [4]. Taken broadly, it assumes that
higher harmonic generation occurs in three steps:

• Tunneling Ionization: The strong laser field distorts the atomic po-
tential, lowering the potential barrier to a level where the electron may
tunnel out of the atom’s potential and enter the continuum outside.
As tunneling is a quantum phenomenon, this must obviously be given
a ”quantum treatment”.

• Propagation: When the electron has left the potential of the atom, it
is acted upon by the field of the laser. This causes it to move around
and, in certain cases, move back towards the atom, having gained ki-
netic energy by acceleration in the electromagnetic field. Just dealing
with electrons in electromagnetic fields, it (generally) suffices to calcu-
late this classically.

• Recombination: If and when the electron comes back to the atom,
it may recombine, that is, assume its place in the atom. When this
happens, a photon is emitted, the energy of which is equal to the sum
of the atom’s potential and the kinetic energy acquired by the elec-
tron. This is also, as implied by the wave-particle duality assumed, a
quantum phenomenon.

Ionization

In atoms, as can be seen in figure 2a on the next page, the elctron is con-
strained by its Coulomb attraction to the nucleus into what’s called a po-
tential well. This well presents a ”barrier” that the electron doesn’t have
sufficient energy to overcome.

A strong laser field presents an electro-magnetic (EM) field, which affects
all charged particles, including the electrons in the atom. If the field strength
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Figure 2: An illustration of tunneling ionization: (a) shows the normal
atomic potential, and (b) shows how this potential is deformed
by the strong laser field.

is sufficiently great it will, in essence, deform the atomic potential. An illus-
tration of this can be seen in figure 2b. The electron may then, in certain
cases, be able to tunnel out through this potential barrier.

Since the EM field of the laser is fluctuating (normally assumed as a simple
sine or cosine function), the ionization probability also varies. However, if
the wavelength of the laser is much greater than the size of the atom1, the
ionization rate Γ across the atom at any given moment can be assumed to
be homogenous and dependent on the amplitude of the field (according to
the so-called ADK model [1]) as

Γ(t) = 4ω0

(
Ip
Eh

)5/2
Ea
E(t)

exp

[
−2

3

(
Ip
Eh

)3/2
Ea
E(t)

]
, (4)

where ω0 is the atomic frequency unit (4.13·1016 s−1), Eh is the ionization
potential of hydrogen (13.6 eV), Ip is the ionization potential of the element
used (in this case, argon, 15.6 eV), Ea is the atomic unit of the electric field
(5.14·1011 V/m), and E(t) is the electric field at the given time t, which is
related to the field intensity I as

I(t) =
1

2
ε0c|E(t)|2, (5)

where ε0 is the permittivity the vacuum and c is the speed of light in vacuum.
This model also needs a series of quantum mechanical corrections described
by [3].

1Compare, to take an example from this experiment, the 800 nm laser wavelength and
the atomic radius of argon (on the order of 0.07 nm [2]).
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Propagation
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(a) The ω and 2ω fields being parallel.
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(b) The ω and 2ω fields as perpendicular.

Figure 3: The two extreme modes of polarization: (a) shows the two
fields as parallel and (b) shows them as perpendicular. Note,
however, that in the actual experiment the ”blue” field was
much weaker.

When the electron has exited the atom through tunnel ionization, it can
be assumed to move classically in the EM field produced by the laser.

The first case, which can be seen in figure 3a, is when the ω and 2ω fields
are both completely linearly polarized along the x axis. Assuming that the
field at time t is given by

Ex(t) = E0 (cos(ωt) + α cos(2ωt+ φ)) , (6)

where E0 is the field’s maximum strength, α is the relative amplitude of
the 2ω field with respect to the ω field, and φ is the phase difference, the
force upon the electron is

Fx(t) = eEx(t) = eE0 (cos(ωt) + α cos(2ωt+ φ)) . (7)

The electron is assumed to just appear outside the potential at a given time
ti. The acceleration is then described as

ẍ(t) =
F (t)

m
=
eE0

m
(cos(ωt) + α cos(2ωt+ φ)) , (8)
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where m is the electron mass and e the electron charge. The velocity is then

ẋ(t) =

∫ t

ti

ẍ dt′ =

∫ t

ti

eE0

m
(cos(ωt′) + α cos(2ωt′ + φ)) dt′ =

=
E0e

mω

(
sin(ωti)− sin(ωt) +

α

2
(sin(2ωti + φ)− sin(2ωt+ φ))

)
, (9)

where ti represent the ionization time, that is, the time at which the electron
exits the atom. To know the velocity of the atom at the return time tr, it is
inserted as t so the velocity becomes

ẋ(tr) =
E0e

mω

(
sin(ωti)− sin(ωtr) +

α

2
(sin(2ωti + φ)− sin(2ωtr + φ))

)
.

(10)
Likewise, from the velocity of the electron, its position at the time t can

be calculated:

x(t) =

∫ t

ti

ẋ dt′ =

∫ t

ti

E0e

mω

(
sin(ωti)− sin(ωt′) +

α

2
(sin(2ωti + φ)− sin(2ωt′ + φ))

)
dt′ =

=− eE0

4mω2
(ω(4(ti − t) sin(ωti) + 2α(ti − t) sin(2ωti + φ))

+ 4(cos(ωti)− cos(ωt)) + α(cos(2ωti + φ)− cos(2ωt+ φ))), (11)

which at t = tr becomes

x(tr) =− eE0

4mω2
(ω(4(ti − tr) sin(ωti) + 2α(ti − tr) sin(2ωti + φ))

+ 4(cos(ωti)− cos(ωtr)) + α(cos(2ωti + φ)− cos(2ωtr + φ))). (12)

Another basic case, seen in figure 3b on the preceding page, is when the
ω and 2ω field are perpendicularly polarized with regards to each other. For
simplicity’s sake it is assumed that the ω field is polarized along the x axis
and the 2ω field along the y axis, with direction of propagation along the z
axis.

For the velocity and position in the x direction, equation (10) and equa-
tion (12) can be used, with α simply being zero (the second harmonic field
has no component in the x direction).

For the y direction, the electron is affected the same way by the 2ω field
as in the previous example (Fy having the same expression as Fx but with
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another field). This means that one may use only the terms in equations (10)
and (12) which are multiples of α. This leads to the following expressions:

ẏ(t) =

∫ t

ti

ÿ dt′ =

∫ t

ti

eE0

m
(α cos(2ωt′ + φ)) dt′ =

=
E0e

mω

(α
2

(sin(2ωti + φ)− sin(2ωt+ φ))
)
, (13)

which at tr is

ẏ(tr) =
E0e

mω

(α
2

(sin(2ωti + φ)− sin(2ωtr + φ))
)
, (14)

and

y(t) =

∫ t

ti

ẏ dt′ =

∫ t

ti

E0e

mω

(α
2

(sin(2ωti + φ)− sin(2ωt′ + φ))
)
dt′ =

=− eE0

4mω2
(ω(2α(ti − t) sin(2ωti + φ))

+ α(cos(2ωti + φ)− cos(2ωt+ φ))), (15)

which finally comes out to

y(tr) =− eE0

4mω2
(ω(2α(ti − tr) sin(2ωti + φ))

+ α(cos(2ωti + φ)− cos(2ωtr + φ))), (16)

Knowing these two cases, the general model for propagation can be con-
structed, assuming the x and y components of the electric field are indepen-
dent.

To calculate any given aspect of propagation (acceleration, velocity, or
position), one simply has to take the two equations, for the x and y com-
ponent, then replace α with α cos(Θ) in the x equation, and α sin(Θ) in the
y equation, where Θ is the angle between the polarization of the ω and 2ω
fields.
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Recombination

When the electron returns to the atom, it has gained additional kinetic energy
from the field. This kinetic energy (the return energy) depends on when it
was released and when it returns, as well as the ionization potential of the
atom itself. When it recombines, this ’excess’ energy leads to a photon
being emitted. The maximum energy the electron can receive (when Ip, the
ionization potential, is greater than Up) [6] is

Ee = Ip + 3.17 Up (17)

where Up is the so-called ponderomotive energy. It represents the average
energy given by the field to the electron, and can be calculated as

Up =
e2E2

0

4mω2
. (18)

The return energy, and return time, dependence on the ionization time ti
can be calculated numerically, by using the propagation equations starting on
page 8, and keeping track of when the electron returns to x = 0. This is seen
in figure 4 on the next page. The red marker in the figure separates the long
and short trajectories, which describe the time in duration of the electron’s
journey (and, by extension, the ionization time). For phase matching rea-
sons (see section 2.9 on page 20), the short trajectories are most commonly
observed.

The kinetic energy can be written classically as mv2/2, which can be
confirmed by examining the expression for the velocity ẋ in equation (10) on
page 9.

The frequency and wavelength of the photon can then be calculated using
Planck’s familiar

Eγ = hν =
hc

λ
. (19)
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Figure 4: The return energy and return time of the electron, as a function
of ionization time. The only field used here is the ω field, and
t = 0 is the starting point of its sinoid shape. Note the red
marker separating the long (to the left) and short (to the right)
trajectories. These are so named because the long trajectories
leave the atom earlier and thus have a longer journey.

2.5 Harmonic spectrum

The ionization in this experiment takes place in a gas, which is isotropic (i.e.
shows no significant changes in relevant characteristics over any particular
direction). This means that the ionization rate when the field is E is the same
as when it’s −E, and gives a T/2 periodicity (T being the laser period)2.

This periodicity of T/2 in the time domain leads to a periodicity of 2ω in
the frequency domain, i.e., when recombination occurs (see section 2.4 on the
previous page) photons of every other harmonic (multiple of the fundamental
frequency) are emitted. Since the first (fundamental) frequency is there,
subsequent harmonics will be odd.

2See section 2.2 on page 4 for a brief explanation of this.
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To achieve even harmonics as well, one may perturb the field in a way
that the two π periods are no longer identical, thus leading to T periodicity
in the time domain and ω in the frequency domain. One way of doing so3 is
to have a weak second harmonic beam copropagating with the fundamental
beam. The total generating field can then be described as in equation (6) on
page 8.

A

B
Figure 5: An illustration of two points at the same time in each

half cycle.

The amplitudes of the even harmonics, then, depend on the level of dif-
ference between these two half cycles. Given two points separated by half
a (fundamental) cycle (see figure 5), they can be approximated to be Dirac
delta functions. The amplitude ’function’ at the given points then reads as
[4]

f(t) =
∑
n

Aδ(t− nT )−Bδ(t− nT +
T

2
), (20)

where A,B is their amplitude and T is the period of the fundamental (IR)
field. In the frequency space, this function corresponds to the Fourier trans-
form:

F(ω) =
A

T

∑
n

δ(ω − nΩ)− B

T

∑
n

δ(ω − nΩ) exp

(
−iTω

2

)
, (21)

where Ω = 2π/T .
If n = 1, 3, 5... (odd harmonics), the expression simplifies to

F(nΩ) =
A

T
− B

T
exp(−niπ) =

A

T
+
B

T
, (22)

3The way this is done in the experimental part.
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and the amplitude of the odd harmonics is thus proportional to A+B.
If n = 2, 4, 6... (even harmonics), it instead gives the exponential

F(nΩ) =
A

T
− B

T
exp(−niπ) =

A

T
− B

T
, (23)

making the even harmonics proportional to A−B.
Complicating this further is the fact that differences in the electric field

between the half cycles can also lead to a phase difference between harmonics
emitted from the two. The phase of the emitted harmonic field [7] can be
calculated as

Σ = −S(p, ti, tr)

h̄
+ qωtr (24)

where q is the harmonic order, ω is the angular frequency of the laser
field, ti and tr are the ionization and recombination times, respectively, and
S(p, ti, tr) is the quasiclassical action, calculated as

S(p, ti, tr) =

∫ tr

ti

dt

(
p2(t)

2me

+ Ip

)
(25)

where p(t) is the momentum of the electron at the time t, me is the electron
mass (making the first term the kinetic energy of the electron), and Ip is
the ionization potential. Assumptions have previously been made that this
difference in phase proves a greater impact on the harmonic spectrum than
the amplitude difference [4].

Considering this phase shift, equation (20) on the preceding page can be
rewritten as

f(t) =
∑
n

Aδ(t− nT )eiΣ1 −Bδ(t− nT +
T

2
)eiΣ2 , (26)

where Σ1 and Σ2 are the phases given by equation (24), or

f(t) =
∑
n

Aδ(t− nT )−Bδ(t− nT +
T

2
)eiΣ3 , (27)

where Σ3 = Σ2 − Σ1.
After this is done, multiplying by the constant T modifies equations (22)

and (23) to

14



F(nΩ) =

{
A+B exp(−iΣ3), n odd
A−B exp(−iΣ3), n even.

(28)

2.6 Ionization gate

Equation (4) on page 7 and its modifications, along with the phase and ampli-
tude modifications in the previous chapter, make up the so-called ionization
gate4. This is one of the modulation models assumed to govern the harmonic
spectrum, especially when the ω and 2ω fields are polarized in parallel with
each other.

The energy can be calculated as a function of the ionization time (see
figure 4 on page 12), and the ionization time can thus be inferred from the
energy. Knowing the energy of a harmonic order,

Eq = qhν, (29)

where q is the harmonic order, the field strength can be calculated at the
ionization time. In this fashion, a ”spectrum” can be constructed using this
composite model. To investigate whether the phase shift effect or the ampli-
tude difference introduced have the largest influence, they can be individually
inserted as modifications for the mock harmonic spectrum.

According to the calculations in the previous section, these modulations
should be the same for all odd (and all even) harmonics. One may then
simulate the intensity of an arbitrary harmonic, and introduce these one by
one and in concert, to investigate their influence. An example of this can be
seen in figure 11b on page 25.

To get the variables to use in equation (28), A and B are easily determined
as the amplitude of the field at any given point, and the amplitude at another
point π (one half cycle) removed. The phase Σ3 can be calculated by using
equation (24) on the preceding page for each of these points, and taking
Σ3 = Σ2 − Σ1.

4The ”gate” is because, just like a logic gate, it can distinguish between conditions, in
this case certain energies and trajectories.
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Figure 6: The intensity variation of the 23rd harmonic, arbitrarily
chosen, but assumed to correspond with results for all
odd harmonics.

2.7 Displacement gate

Recent papers [9, 10] give the assumption that when the 2ω field is perpen-
dicularly polarized to the ω field, this will provide a displacement gate.

This is due to the fact that the ”sideways” polarization will cause the
electron to move away from the atom in a manner that it cannot simply
recombine, since it’s been displaced in the other direction. An illustration of
this phenomenon can be seen in figure 7 on the next page.

Another assumption made in this model is that the perpendicularly po-
larized beam will not perturb the E-field and thus the ionization probability.

The electron has a certain probability of recombining, depending on its
initial velocity. It must have a certain velocity in the y direction to offset
the displacement given by the perpendicular field. The recombination prob-
ability, then, is at its largest when this ”required” velocity ẏ is as small as
possible (because, on average, electrons’ initial velocity in any given direction
is zero).

Considering figure 7 on the following page, for this particular trajectory,
the electron would have to have a velocity ẏ′ in the opposite direction of the
transverse movement. The amount would have to be such that ẏ′ · t is equal
to the displacement.

A more mathematical way of putting this is that y and x should be zero
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Figure 7: An illustration of the displacement gate introduced by a per-
pendicularly polarized second field. The red trajectory shows
an electron moving back and forth in the x dimension as a
function of time, after a while recombining with the atom at
x = 0. The green trajectory does not, because the electron has
moved away from the atom in the y dimension.

at the same time, and for this to be true, equation (16) on page 10 together
with ẏ′ · (tr − ti) should be zero at t = ti. The initial velocity ẏ′ in this case
means the velocity of the electron at the time of ionization.

Assuming a (somewhat arbitrary) velocity distribution ∆v0y, the displace-
ment gate can be calculated as [10]

G(tr, ti, φ) = exp

(
−1

2
v2

0y(tr, ti, φ) / ∆v2
0y

)
. (30)

Deriving v0y(tr) follows from

Fy(t) = mÿ = −eE2ω(t) (31)

where
E2ω(t) = E02ω cos(2ωt+ φ) (32)

and thus
ÿ(t) = −eE02ω

m
cos(2ωt+ φ) (33)
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The velocity can then be calculated by integrating the acceleration and
adding v0y :

ẏ(t) = v0y +

∫ t

ti

−eE02ω

m
cos(2ωt′ + φ) dt′ =

−eE02ω

2mω
[sin(2ωti + φ)− sin(2ωt+ φ)] + v0y (34)

Given that for the electron to recombine with the atom, y(tr) must be 0:∫ tr

ti

ẏ(t) dt = 0

⇒
∫ tr

ti

(
−eE02ω

2mω
[sin(2ωti + φ)− sin(2ωt+ φ)] + v0y

)
dt = 0 (35)

which leads to∫ tr

ti

v0ydt =

∫ tr

ti

−eE02ω

2mω
[sin(2ωti + φ)− sin(2ωt+ φ)] dt (36)

v0y(tr − ti) = −eE02ω

2mω

[
(tr − ti) sin(2ωti + φ) +

cos(2ωtr + φ)− cos(2ωti + φ)

2ω

]
(37)

v0y = −eE02ω

2mω

[
sin(2ωti + φ) +

cos(2ωtr + φ)− cos(2ωti + φ)

2ω(tr − ti)

]
.

(38)

Inserting this into equation (30) on the preceding page gives

G(tr, ti, φ) = exp

(
−1

2
v2

0y(tr, ti, φ) / ∆v2
0

)
= exp

(
−

e2E2
02ω

m28ω2∆v2
0

[
sin(2ωti + φ) +

cos(2ωtr + φ)− cos(2ωti + φ)

2ω(tr − ti)

]2
)
.

(39)
The second term can be dismissed because this function is much slower

given a reasonably long return time [10]. This means that the ionization time
can now be calculated from φ, the phase difference between the ω and 2ω
fields, and vice versa. A simulation of the displacement gate as a function of
φ and ti can bee seen in figure 8 on the next page.
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Figure 8: A plot of the displacement gate as a function of ion-
ization time and phase shift, as given by equation (39)
on the previous page.

2.8 A combination of approaches

Making a few assumptions, the displacement gate described in section 2.7
can be combined with the ionization gate described in section 2.6 to give
a more complete picture of the ionization and recombination of electrons,
considering an arbitrary polarization of the 2ω field.

The first assumption keeps the previously stated assumption that a per-
pendicularly polarized beam does not perturb the field, and extending it by
asserting that the perpendicular component of an arbitrarily linearly polar-
ized 2ω field will not perturb it either. Following in the same vein, it is
assumed that the displacement gate will depend solely on the perpendicular
component.

As the perpendicular component of the 2ω field does not perturb the
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ionizing field, it is then assumed that the tunneling rate perturbation depends
only on the parallell component.

As the two functions cause modulations of the harmonic intensity, a fun-
damental assumption of this report is that they can then be multiplied to-
gether.

2.9 Phase matching

Previous chapters have mainly been concerned with the single atom response,
i.e. simply the interaction between one atom, by itself, and the EM field [5].
However, measuring the signal from a single atom is not possible due to the
density of the sample. Instead, the interaction of a multitude of atoms with
the field must be considered, and this gives rise to macroscopic effects.

The governing factor is the wave vector mismatch between the induced
polarization and the generated harmonic. This consists of four terms: ∆~kq,
the mismatch due to the intensity dependent dipole phase, ∆~kg, the geomet-
rical mismatch, ∆~kn and ∆~ke, mismatch due to dispersion by neutral atoms
and free electrons, respectively.

At low gas pressures and long focal lengths, as in the later considered
experiment, ∆~kq is the dominant factor, and is the only one that differs for
long and short trajectories5. It can be approximated (along the direction of
propagation) as ∆~kq = −α∂I/∂z, where α is a proportionality constant and
I is the intensity.

In a focused beam, the intensity varies along the direction of propagation,
and because of this, the phase matching of the two trajectories depends on α.
It is large for the long trajectories, meaning their phase shifts swiftly along
the direction of propagation (and generation), and that their light is more
likely to be cancelled out at some point. Conversely, it is small for the short
trajectories, giving in turn that they are less likely to be cancelled out and
thus probably will end up with a higher intensity at the point of observation.

5See section 2.4 on page 8.
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3 Equipment and Method

3.1 Experimental setup

KDP

Delay plate

λ/2 plate

Focusing mirror

Input

Gas cell
Grating

Phosphorescent
screen

CCD image of screen

Mirrors

DB

DB

Figure 9: An illustration of the setup. The initial beam enters the KDP chrystal
and generates the second harmonic. The red beam then travels through
a dichroic beamsplitter (DB) and the delay plate. It is then reunited
with the blue beam at another dichroic beamsplitter. Meanwhile, the
blue beam has been led through a λ/2 plate to rotate its polarization.
The two beams are then focused into the gas cell. The harmonics
generated are then led via a grating onto a multi-channel plate, and a
phosphorescent plate connected to a CCD.
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The experiments were performed using a 10 Hz, 800 nm titanium sapphire
laser. The second harmonic was generated by a KDP crystal. At the time
of experiment measurements, the fundamental and second harmonic pulses
were found to have pulse energies of 12 mJ and 0.38 mJ, respectively, thus the
relative amplitude of the blue field was about 18%. This is just an estimate,
however, which may be off mainly for two reasons. One is that two Gaussian
beams with different wavelengths will have different beam sizes in the focal
point. The other is that the gas cell may exhibit other nonlinear effects than
just harmonic generation, among them Kerr lensing, which may lead to a
beam being focused by the medium.

To separate the two beams, dichroic beamsplitters were used. These
transmit a vast majority of the red beam and reflect most of the blue beam.

To control the delay φ, a glass disk was put on a motorized rotary stage
in the beam line of the fundamental beam and rotated over 100 steps. This
varies the amount of glass in the beam path, and thus its time of arrival.

To control the angle of polarization of the second harmonic, a motorized
λ/2 plate was put in its beam line, its polarization rotated in 15 steps.

In total, this means that 1500 configurations were recorded in what’s
known as a 2D scan (because it scans over two variables). To compensate
for random errors, 10 shots were taken for each configuration.

The laser was focused using a concave mirror with 2 m focal length, into
a gas cell where it interacted with an argon gas jet.

An XUV grating spectrometer was then used to analyze the harmon-
ics generated. This instrument has a grating, on which the light is incident.
Light of all relevant wavelengths is then reflected onto a Multi-Channel Plate,
which works as a 2D array of tiny photomultipliers. Because of a high po-
tential difference between its two sides, light entering at any point on this
2D surface will cause an ”avalanche” of electrons on the other side. The
electrons then strike a phosphorescent plate, which is in turn captured by a
simple digital camera (CCD).

3.2 Data processing

An overview of the collected data and the way it was processed can be seen
in figure 10 on the next page. The data collected using the CCD camera
was input into MATLAB. As 10 images were taken for each configuration
(phase and polarization), all of these were averaged. Background radiation,
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Figure 10: An illustration of the data processing. From left to right, top to
bottom: the raw data from the camera, an integration over x for that
particular image, 100 such integrations arranged side by side, and six
”sifted out” harmonic spectra.

measured separately6, was then subtracted from the data matrix.
After that, the data were summed over the x direction, which simply

showed the angular divergence of the various harmonics. These data were
not deemed relevant to the experiment, although some information can be
acquired [4]. The result of the integration can be seen in the top right image.
The data can now be seen as a column vector representing the energy span,

6Not shown in image, as it does not look particularly interesting.
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with each element showing the intensity at that particular energy.
100 of these column vectors, one for each step of phase modulation, were

then put together into a matrix, visualized as the bottom-left image. This,
then shows the intensity of emissions as a function of energy (which harmonic
order) (y direction) and phase (x direction).

Finally, the six most prominent odd harmonic orders were selected. The
reason for using odd harmonics is that even harmonics require a parallel
component of the 2ω field. This means they would not show up when one
expects to study the displacement gate (see section 2.7 on page 16). A thin
region around the main line of each harmonic order was summed in order to
avoid numerical or measurement errors.

Using a cosine function, the periodicity of the intensity changes in the
harmonics could be determined to the point where just a 2π wide ”slice”
could be selected from each. These six slices are shown in the bottom right
image.

The maxima of each of these sifted-out harmonic spectra were then found
using a small program to fit a Gaussian function onto their intensity curves.

3.3 Numerical methods

In order to establish parameters such as the electric field at ti for each har-
monic, at each relative phase and polarization, the equations for the propa-
gation of the electron were evaluated numerically, giving a matrix of infor-
mation similar to that plotted in figure 4 on page 12, which, for each possible
ionization time, contained the return time and the return energy.

Since each harmonic has a fixed energy, it is then possible to scan through
the energy matrix for its energy, to find the ionization times leading to that
particular energy value. By knowing the expression for the field E(t) at time
ti (see equation (6) on page 8), the ionization rate at ti can be established.

At first, only the ’red’ field was used in the calculations and an analytical
expression was used for each of the relevant steps in section 2.4 on page 8.
After several problems changing the expressions to fit a two-color field, the
decision was made to switch to a numerical integration of each time step.
This worked well but was exceedingly slow, so it was scrapped in favor of
integrating the functions analytically using MATLAB’s symbolic math func-
tions.
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4 Results
4.1 Simulation results
Phase and amplitude variation effects on harmonic spectrum
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(a) Phase shift effect on spectrum.
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Figure 11: A simulation of the intensity (colormap from blue to red)

of the 23rd harmonic, varying with the phase and am-
plitude changes brought about by changes in φ shift and
blue field intensity.
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Using the models put together in section 2.6, the impact of the fluctua-
tions in the fundamental field on the phase and amplitude of the harmonic
fields, and their subsequent impact on the harmonic spectrum, could be stud-
ied, as in figure 11 on the preceding page. This picture shows the intensity of
odd harmonics as a function of blue (2ω) field phase and intensity, normalized
to the intensity at no blue field.

Figure 11a shows the intensity of the odd harmonics, considering just the
phase shift (Σ3 in equation (28)). Figure 11b shows the intensity when only
the amplitude shift (A ± B) is considered. In the first case, A and B are
assumed to be equal, and in the second, Σ3 is assumed to be zero.

Finally, figure 11c shows the intensity when both these factors are taken
into account.

Figure 11a agrees particularly well with Fig 3b in [4]. As that article uses a
very similar model for the phase, this is an indication that the implementation
here works as intended.

What the image seems to show is that, in contrast with the assumption
that the phase has a greater impact on harmonic intensity (and thus the
harmonic spectrum), it seems that it is indeed the amplitude shift between
the subcycles, enacted by the blue field phase shift, that proves the greater
influence on the spectrum.

However, the maximum intensity of the 2ω field seems to affect this, as
when the maximum intensity was increased, the importance of the amplitude
shift increased even more. Thus, a reasonable prediction is that the phase
may be the dominant factor if one has a very weak 2ω field.

This considers just the case of parallel polarization, because the perpen-
dicular component of the 2ω field will not affect the ionization rate [10].

A combination of approaches, analyzed

A number of numerical simulations were carried out referring to section 2.8 on
page 19, to study the effect on the harmonic spectrum of both the fluctuations
in tunneling rate and the displacement gate.

Figure 12 on the following page shows a typical result, arbitrarily chosen,
of the simulations, with the effect on the harmonic spectrum of the ionization
gate on top, the displacement gate in the middle, and their product on the
bottom. These simulations were performed on a variety of different blue
field polarization directions, so as to give a reasonable approximation to the
conditions of the experiment.
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Figure 12: A simulation of the harmonic spectrum as a function
of φ, considering the ionization gate (top), displace-
ment gate (middle), and their product (bottom).

What the simulations show, in accordance with the theoretical assump-
tions, is that as the polarization varies, so does the importance of the two
models; the ionization gate is essentially ”flat” (1 everywhere) when the two
fields are perpendicular (since, as the assumption of the gating model states,
the perpendicular field does not perturb the ionization probability), and the
displacement gate is likewise flat when the two beams are parallel (the dis-
placement gate relies on the electron being moved perpendicularly to the
ionizing field).

In the intermediate cases, one can see, as in the figure, that the ”range”
(how far from 1 the amplitude modulation goes) of a given model depends
roughly on the cosine of the angle for the ionization gate and the sine of the
angle for the displacement gate.

Interestingly, as can be seen in figure 12, outside of purely perpendicular
conditions, the displacement gate is affected by the ionization gate pertur-
bation caused by the blue field. This is obvious when one considers that the
displacement gate depends not only on phase, but also on ionization time,
which is changed by perturbations in the ionization gate.
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4.2 Experimental results

Using the displacement gate to measure ionization time
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Figure 13: The classically calculated ionization times for dif-
ferent harmonic orders, along with measured data,
whose ionization times have been calculated using the
displacement gate method.

If the 2ω field is completely perpendicularly polarized, it is assumed [9]
that it does not affect the actual ionization probability of the electron, i.e. it
does not perturb the field in any way, as discussed in section 2.8 on page 19.
A plot can be seen in figure 13, which shows both the classical calculation of
the electron’s energy from ionization time7 and ionization times calculated
using the displacement gate, with the phase φ deduced from experimental
data. In this case, the phase values were extracted from what was determined
to be the closest to perpendicular polarization.

The experimental setup makes it quite easy to determine the relative
phase shifts between two given points, but there is no way of knowing the
absolute phase. Therefore, the absolute phase was determined to be that

7The electron’s propagation was calculated numerically using the equations in sec-
tion 2.4 on page 8.
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phase in which the calculated ionization times matched best with those given
classically. This method holds credence as it is used by [10].

The fit is not perfect, nor is it expected to be, as there are some differ-
ences between the classical return function and the fully quantum mechanical
treatment given to HHG, for example, in [6]. However, it agrees well enough
that the assumption that the perpendicularly polarized component does not
perturb the field seems to hold.

It is quite possible that none of the polarization steps, in which the exper-
iment was performed, corresponds to a perfectly perpendicular polarization,
and thus some perturbation will probably have been introduced by the par-
allel component.

Another possible source of errors or inaccuracies is the assumed intensi-
ties, both the field intensity in general and the relative intensities of the ω
and 2ω fields. The fundamental field intensity determines the maximum har-
monic order that can be reached8. The relative field intensity has a definite
impact on the relative strength of the odd harmonics measured here9.

Polarization and phase dependency of the harmonic spectrum

15 images were analyzed (one for each polarization step, as discussed in
section 3.1 on page 21), and six odd harmonics were isolated from each frame,
15, 17, 19, 21, 23 and 25. On most frames, a ”slope” can be seen across the
image, following the maximum intensities of each harmonic, with the phase
dependency clearly changing between them.

When viewed in succession, it is clear that the slope performs some kind
of pendulous motion, apparently periodic with the polarization direction.

Comparing simulations to experimental data

The images of solely the harmonics discussed in the previous section were
put together with the images produced as ”a combination of approaches”
for comparison. Figure 14 on the next page is presumably where the blue
field is the closest to perpendicularly polarized, and this is also where the
simulations agree the most with the experimental data.

As the perpendicularly polarized condition is in the displacement gate
regime, a reasonable explanation for this is that close to completely perpen-

8See equations 17 and 18 on page 11.
9See section 2.5 on page 12.
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Polarization angle 94° , measured image
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Figure 14: The measured data compared to the simulated at 94◦

polarization, probably the closest to perpendicular
polarization, showing a very good correlation between
simulation and reality.

dicular blue field conditions, the displacement gate is a very good model for
the electrons’ behavior.

The earlier, and later, polarization steps show a form of systemic error in
the simulations, in which the higher orders involved (21-25) show the same
kind of slope change (albeit much weaker) as in the experimental images but
the lower orders do not. This could have a number of explanations, chiefly
that the ionization gate model (or its implementation here) is still somewhat
lacking, or the experimental conditions (laser intensity, focus, even energy)
were not reproduced correctly in the simulations. Two examples of this are
figure 15 and figure 16 on the following page.
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Polarization angle 19° , measured image
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Figure 15: The measured data compared to the simulated at 19◦

polarization, showing a significant difference between
simulation and reality.

Polarization angle 156° , measured image
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Figure 16: The measured data compared to the simulated at
156◦ polarization, with the simulation deviating from
the measured image.
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5 Outlook
There’s certainly much to be done, both with the models and with the exper-
imental data. Due to time constraints, only approximately half of the data
from this experiment have so far been analyzed, and more data could well
improve the results further.

Many approximations have been made, and it is possible that some may
prove inaccurate or outright erroneous. However, many of the models, such
as the displacement gating model and parts of the ionization gate, agree very
well with experimental data and thus seem likely to hold some truth.

This thesis proved challenging from both a theoretical and technical point
of view. Higher harmonic generation is a very current and evolving field of
study, and it was very interesting to get some grasp of the theories and models
put forth to explain it. Technically, it gave a good opportunity to become
more aquainted with MATLAB as a scientific tool, and an insight into data
handling in scientific experiments.

6 Acknowledgements
The author would like to thank Christoph Heyl first of all, for excellent
support as a supervisor. Thanks are also due others at the Atomic Physics
division: Anne l’Huillier, for making this thesis possible and for theoretical
considerations, Piotr Rudawski for input on calibration of data, and Fernando
Brizuela for information on the lab setup.

References
[1] M. Ammosov, N. Delone, and V. Krainov. Tunnel ionization of complex

atoms and of atomic ions in an alternating electromagnetic field. Journal
of Experimental and Theoretical Physics, 64(6):1191, 1986.

[2] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screen-
ing Constants from SCF Functions. II. Atoms with 37 to 86 Electrons.
Journal of Chemical Physics, 47:1300–1307, 1967.

[3] M. B. Gaarde, M. Murakami, and R. Kienberger. Spatial separation
of large dynamical blueshift and harmonic generation. Phys. Rev. A,
74:053401, 2006.

32



[4] X. He, J. M. Dahlström, R. Rakowski, C. M. Heyl, A. Persson, J. Mau-
ritsson, and A. L’Huillier. Interference effects in two-color high-order
harmonic generation. Phys. Rev. A, 82:033410, 2010.

[5] C. M. Heyl, J. Güdde, A. l’Huillier, and U. Höfer. High-order har-
monic generation with µj laser pulses at high repetition rates. Journal of
Physics B: Atomic, Molecular and Optical Physics, 45(7):074020, 2012.

[6] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. l’Huillier, and P. B. Corkum.
Theory of high-harmonic generation by low-frequency laser fields. Phys.
Rev. A, 49(3):2117, 1994.

[7] F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus,
H. Walther, R. Hartmann, and L. Strüder. High-order harmonic gener-
ation at a repetition rate of 100 khz. Phys. Rev. A, 68:013814, 2003.

[8] B. Saleh and M. Teich. Fundamentals of Photonics, 2nd edition. Wiley
Series in Pure and Applied Optics. Wiley, 2007.

[9] D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse,
S. Patchkovskii, M. Y. Ivanov, O. Smirnova, and N. Dudovich. Re-
solving the time when an electron exits a tunnelling barrier. Nature,
485(7398):343–346, 2012.

[10] H. Soifer, M. Dagan, D. Shafir, B. D. Bruner, M. Y. Ivanov, V. Ser-
binenko, I. Barth, O. Smirnova, and N. Dudovich. Spatio-spectral anal-
ysis of ionization times in high-harmonic generation. Chemical Physics,
414(0):176 – 183, 2013.

33


	Introduction
	Glossary

	Theory
	Electromagnetic radiation
	Strong fields
	Nonlinear optics
	The three-step model
	Ionization
	Propagation
	Recombination

	Harmonic spectrum
	Ionization gate
	Displacement gate
	A combination of approaches
	Phase matching

	Equipment and Method
	Experimental setup
	Data processing
	Numerical methods

	Results
	Simulation results
	Phase and amplitude variation effects on harmonic spectrum
	A combination of approaches, analyzed

	Experimental results
	Using the displacement gate to measure ionization time
	Polarization and phase dependency of the harmonic spectrum
	Comparing simulations to experimental data


	Outlook
	Acknowledgements
	References

