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Abstract

In this master’s thesis, a copula approach is used to model the number of claims
made by a customer holding three insurances. It is important for insurance compa-
nies to have good models for the risk profiles of their customers, and the number of
claims is a key element in calculating the expected cost for the company. Using cop-
ulas, multivariate distribution functions are allowed to have any desired marginal
distributions and many different dependence structures, as these can be chosen
separately.

The data used consists of the number of claims made by 74 770 unique customers
during one year. Different count data distributions are considered for the one-
dimensional marginal distributions, while four Archimedean copulas are tested as
models for the dependence structure. To estimate the parameters of the final model,
full maximum likelihood is used, for which new implementations adapted to discrete
data were created.

�2-tests and likelihood ratio tests determined that negative binomial distribution
and zero-inflated Delaporte distribution were the best distributions for the one-
dimensional marginals, while Cramér-von Mises method and Kendall’s Cramér-von
Mises method, using a parametric bootstrap, together with Akaike’s Information
Criterion, suggested Clayton copula to be the most suitable.

The obtained model is compared to the empirical values and to investigate how
well the model fits for different years, it is also fitted to the corresponding data from
the following year. The model provides a good fit both compared to the empirical
values for the year used for inference as well as for the year used for validation.
However, the fit is strongly influenced by the values in the lower tail.

Keywords: Insurances, Copulas, Count data, Negative binomial distribution, Dela-
porte distribution, Full maximum likelihood, Goodness of fit.
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Chapter 1

INTRODUCTION

1.1 Background

In the past twenty years, there has been a growing interest in copulas and their
applications. In short, copulas are multivariate distribution functions with uniform
one-dimensional margins and are used to join arbitrary multivariate distribution
functions to their one-dimensional margins. Working with copulas, multivariate
distribution functions are allowed to have any desired marginal distributions, as
margins and dependence structure are treated separately [Nelsen, 2006]. Due to the
vast number of copula families available, it is possible to capture different depen-
dence structures in a model, while for instance the multivariate normal distribution
is limited to linear dependence.

In contrast to general products, insurances are somewhat special. The difference
lies in the fact that for most other products, the cost for the company is mainly
known at the occasion of the sale and determined by for instance manufacturing
costs, wages and so on, making it possible to set the price to be higher than the
costs. For an insurance however, the income consists of the yearly fee from the
customer while the loss depends on the customer’s behavior and the cost of each
reported claim, making the profit of each insurance contract stochastic. Because of
this, it is of great interest for the insurance company both to be able to set suitable
fees based on the risk profile of the customer and to keep the customers with low
risk profile that give higher profits and even sell complementary products to them.

These issues make it crucial for the insurance companies to have good models
for the number of insurance claims a customer will make, as well as the dependence
between the number of claims in different products. This can be used to model risk
as well as identify high risk customers and selecting which customers to contact for
cross-selling attempts [Thuring, 2012].

1.2 Purpose and Structure

In this master’s thesis, a copula approach is used to model the dependence between
the number of insurance claims during one year made by a customer holding three
different insurances. The data consists of 74 770 different customers to a Danish
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2 Introduction Chapter 1

insurance company and has previously been modeled using multivariate credibility
theory in [Thuring, 2012], while the number of claims made in two of the insurances,
during a different year than the one considered in this thesis, have been modeled
using copulas in [Hage, 2013], where the copula parameters was estimated using
method of moments. In this project, the parameters of the copula and the one-
dimensional marginal distributions are estimated using full maximum likelihood,
with new routines created to be able to handle discrete marginal distributions. The
obtained model is compared to the empirical values and to investigate how well the
model fits for different years, it was also fitted to a validation data set consisting of
corresponding data from the following year.

In Chapter 2, an overview of the theoretical background to copulas and the other
used concepts is given, followed by a description of the procedure and methods
used and a presentation of the results in Chapter 3. In Chapter 4, the results are
summarized and discussed.



Chapter 2

THEORY

2.1 Copulas

2.1.1 Definition

Assume that X1, X2, . . . , Xd are one-dimensional stochastic variables and that a
multivariate model for these is to be found. The traditional way involves a d-
dimensional distribution from a certain family, with joint cumulative distribution
function (CDF) FX(x) = ℙ (X1 ≤ x1, . . . , Xd ≤ xd), which determines both the
marginal distributions and the dependence between the different variables. One
commonly used example is the multivariate normal distribution. This distribution
has normal margins and the dependence is determined by the covariance matrix.

To allow for more freedom in multivariate modeling, one can use copulas. As-
sume that X1, . . . , Xd have CDFs F1(x) = ℙ (X1 ≤ x) , . . . , Fd(x) = ℙ (Xd ≤ xd),
respectively. Note that these marginal CDFs all are functions F : ℝ→ [0, 1] and the
joint CDF is a function FX : ℝd → [0, 1]. This means that each real d-dimensional
vector x = (x1, . . . , xd) leads to a point

(
F1(x1), . . . , Fd(xd)

)
in the d-dimensional

unit hypercube [0, 1]d and that this vector in turn corresponds to a number FX(x)
in the interval [0, 1]. The copula C of X is defined as the function which assigns
this value to each point. [Nelsen, 2006]

The essentials of the definition are summarized in Sklar’s theorem [Nelsen, 2006,
Theorem 2.10.9]:

Theorem 1 (Sklar’s theorem). Let FX be an d-dimensional distribution function
with margins F1, F2, . . . , Fd. Then there exists a d-copula C such that for all x in
ℝd,

FX(x1, x2, . . . , xd) = C
(
F1(x1), F2(x2), . . . , Fd(xd)

)
. (2.1.1)

If F1, F2, . . . , Fd are all continuous, then C is unique; otherwise, C is uniquely
determined on RanF1 ×RanF2 × ⋅ ⋅ ⋅ ×RanFd. Conversely, if C is a d-copula and
F1, F2, . . . , Fd are distribution functions, then the function FX defined by (2.1.1) is
a d-dimensional distribution function with margins F1, F2, . . . , Fd.

Remark. Another way to express (2.1.1) is

C(U) = C(u1, u2, . . . , ud) = FX
(
F−1

1 (u1), F−1
2 (u2), . . . , F−1

d (ud)
)
, (2.1.2)

3



4 Theory Chapter 2

where u1, u2, . . . , ud ∈ [0, 1]. [Nelsen, 2006, Corollary 2.10.10]

2.1.2 Density Function and Probability Mass Function

For a multivariate distribution with continuously differentiable one-dimensional
margins F1, . . . , Fd and copula C, the joint density function fX is equal to the
derivative of the joint CDF. Let

∂dC(u1, . . . , ud)

∂u1 ⋅ ⋅ ⋅ ∂ud
△
= c(u1, . . . , ud), (2.1.3)

and let f1, . . . , fd be the marginal density functions, then

fX(x1, . . . , xd) =
∂dC

(
F1(x1), . . . , Fd(xd)

)
∂x1 ⋅ ⋅ ⋅ ∂xd

= c
(
F1(x1), . . . , Fd(xd)

) d∏
i=1

fi(xi).

(2.1.4)
However, as discrete margins are not differentiable, a multivariate distribution with
discrete margins does not have a density function. Instead, it has a probability
mass function (PMF),

pX(x1, . . . , xd) = ℙ (X = x) . (2.1.5)

This can be expressed using the CDF as well, and therefore also the copula:

pX(x1, . . . , xd) =
∑
i1=0,1

⋅ ⋅ ⋅
∑
id=0,1

(−1)i1+⋅⋅⋅+idℙ (X1 ≤ x1 − i1, . . . , Xd ≤ xd − id) =

=
∑
i1=0,1

⋅ ⋅ ⋅
∑
id=0,1

(−1)i1+⋅⋅⋅+idC
(
F1(x1 − i1), . . . , Fd(xd − id)

)
(2.1.6)

[Panagiotelis et al., 2012]. Note that when implementing this for marginals that
can not take negative values, it might be necessary to check that xk − ik ≥ 0 for
k = 1, . . . , d to avoid errors, depending on how the marginal CDFs are implemented.

2.1.3 Conditions for Two-Dimensional Copulas

For a function C : [0, 1]2 → [0, 1] to be a copula, the following conditions need to
be satisfied:

1. for every u and v in [0, 1],

C(u, 0) = C(0, v) = 0 (2.1.7)

and
C(u, 1) = u and C(1, v) = v; (2.1.8)

2. for every u1, u2, v1 and v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (2.1.9)
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[Nelsen, 2006]

Remark. Note that (2.1.8) implies that all margins of C are uniform on [0, 1]. This
holds for all one-dimensional margins for a d-dimensional copula as well, which
follows from (2.1.2), using that if FX and FX,Y are a one-dimensional and a two-
dimensional CDF respectively, then

lim
y→∞

FX,Y (x, y) = FX(x) and lim
x→∞

FX(x) = 1. (2.1.10)

Further, if C has second order derivatives, (2.1.9) is equivalent to

∂2C

∂u∂v
≥ 0, (2.1.11)

which, due to (2.1.4), is equal to that the density function is non-negative.

2.1.4 Fréchet-Hoeffding Bounds

From the conditions in Section 2.1.3, the following theorem can be obtained [Nelsen,
2006, Section 2.2].

Theorem 2 (Fréchet-Hoeffding bounds, 2 dimensions). For every two-dimensional
copula C and every u and v in [0,1],

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v). (2.1.12)

Remark. The bounds are copulas as well, commonly denoted M(u, v) = min(u, v)
and W (u, v) = max(u + v − 1, 0) and referred to as Fréchet-Hoeffding upper and
lower bound, respectively.

Theorem 2 can be generalized to d dimensions [Nelsen, 2006, Theorem 2.10.12].

Theorem 3 (Fréchet-Hoeffding bounds, d dimensions). If C is any d-dimensional
copula, then for every u ∈ [0, 1]d,

max(u1 + ⋅ ⋅ ⋅+ ud − d+ 1, 0) ≤ C(u) ≤ min(u1, . . . , ud). (2.1.13)

Remark. To clarify that the bound is for the d-dimensional case, a superscript d
can be added. Note that for d > 2, the lower bound is not a copula. [Nelsen, 2006,
Section 2.10]

Another important copula is the independent copula

Πd(U) = U1U2 ⋅ ⋅ ⋅Ud. (2.1.14)

M (2), W (2) and Π(2) all have important interpretations. They represent the cases
of increasing monotone dependence, decreasing monotone dependence (see Section
2.3.3) and independence, respectively.
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2.2 Archimedean Copulas

Among the numerous different copula classes, one of the most important is the
Archimedean copulas. The popularity of the Archimedean copulas is due to the
multitude of nice properties linked to the members of the class and the simple way
in which they are constructed, which have given rise to a vast number of families
in the class. [Nelsen, 2006]

To be able to define the Archimedean copulas, we first need to define the concept
of pseudo-inverses. Let ' be a continuous, strictly decreasing function ' : [0, 1] →
[0,∞] such that '(1) = 0. Then the pseudo-inverse '[−1] of ' is the function given
by [Nelsen, 2006, Definition 4.1.1],

'[−1](t) =

{
'−1(t), 0 ≤ t ≤ '(0),

0, '(0) ≤ t ≤ ∞.
(2.2.1)

Now, a d-dimensional Archimedean copula is defined by

C(U) = '[−1]
(
'(u1) + ⋅ ⋅ ⋅+ '(ud)

)
. (2.2.2)

' is called the generator function and if '(0) = ∞, that is if '[−1] = '−1, ' is a
strict generator. For C to be a copula if d > 2, ' needs to be strict and '[−1] = '−1

needs to be completely monotonic, that is

(−1)k
dk

dtk
'−1(t) ≥ 0 (2.2.3)

for all t ∈ (0,∞) and k = 0, 1, 2, . . . [Nelsen, 2006]. If the inverse of a strict generator
of an Archimedean copula is completely monotonic, the copula is positively lower
orthant dependent (see Section 2.3.5). This implies that all Archimedean copulas
of dimension d > 2 are positively lower orthant dependent [Nelsen, 2006, Corollary
4.6.3].

In Table 2.1, some properties of four Archimedean copulas are presented.

Table 2.1. Four Archimedean copulas, namely [1] Clayton, [2] Frank, [3] Gumbel
and [4] Joe copula. [Nelsen, 2006, Table 4.1]

C� '�(t) � ∈ Strict Limiting and special cases, d = 2

[1] 1
�

(
t−� − 1

)
[−1,∞) ∖ {0} � ≥ 0 C−1 = W , C0 = Π, C∞ = M

[2] − log
(
e−�t−1
e−�−1

)
(−∞,∞) ∖ {0} Yes C−∞ = W , C0 = Π, C∞ = M

[3] (− log t)� [1,∞) Yes C1 = Π, C∞ = M

[4] − log
(
1−(1− t)�

)
[1,∞) Yes C1 = Π, C∞ = M
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2.3 Dependence Measures

Dependence between stochastic variables can be measured in a number of ways. One
of the most frequently used is Pearson’s correlation coefficient, commonly called
linear correlation, defined by

�P (X,Y ) =
cov [X,Y ]√

Var [X] Var [Y ]
. (2.3.1)

Two problems with Pearson’s correlation are that it only measures linear depen-
dence and that it is not invariant to strictly increasing transformations.

A different way to measure dependence is to use concordance. Let (X,Y ) be a
stochastic vector and let (xi, yi) and (xj , yj) denote two observations. Then (xi, yi)
and (xj , yj) are concordant if (xi−xj)(yi− yj) > 0 and discordant if (xi−xj)(yi−
yj) < 0 [Nelsen, 2006]. Two dependence measures that are based on concordance
are presented below.

2.3.1 Kendall’s Tau

Let (x1, y1), . . . , (xn, yn) denote a random sample of n observations from the random
vector (X,Y ). Consuider all

(
n
2

)
pairs and let c denote the number of concordant

pairs and let d denote the number of discordant pairs. Then Kendall’s tau, �K , for
the sample is defined as

�K =
c− d
c+ d

=
c− d(
n
2

) . (2.3.2)

This can be interpreted as the probability of concordance minus the probability
of discordance. Formally, let (X1, Y1) and (X2, Y2) be independent and identically
distributed stochastic vectors. Then the probabilistic definition of Kendall’s tau is

�X,Y = ℙ ((X1 −X2)(Y1 − Y2) > 0)− ℙ ((X1 −X2)(Y1 − Y2) < 0) . (2.3.3)

Assuming that X and Y has the copula C, Kendall’s tau can also be defined ana-
lytically as

�C = 4

∫∫
[0,1]2
C(u, v) dC(u, v)− 1. (2.3.4)

If X and Y are continuous, then �X,Y = �C . [Nelsen, 2006, Section 5.1.1]

2.3.2 Spearman’s Rho

Let (X1, Y1), (X2, Y2) and (X3, Y3) be independent and identically distributed
stochastic vectors with copula C. Then the probabilistic definition of Spearman’s
rho, �X,Y , is

�X,Y = 3
(
ℙ ((X1 −X2)(Y1 − Y3) > 0)− ℙ ((X1 −X2)(Y1 − Y3) < 0)

)
. (2.3.5)
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The analytical definition is

�C = 12

∫∫
[0,1]2
C(u, v) dudv − 3 (2.3.6)

Similarly to the case of Kendall’s tau, the two definitions are equivalent if X and
Y are continuous. [Nelsen, 2006, Section 5.1.2]

2.3.3 Monotone Dependence

Two continuous stochastic variables X and Y are monotone dependent if there exists
a monotone function g for which

ℙ (g(Y ) = X) = 1. (2.3.7)

If g is increasing, X and Y are said to be increasing dependent and if g is decreasing,
X and Y are said to be decreasing dependent. Further, a necessary and sufficient
condition for X and Y to be increasing (decreasing) dependent is that their copula
C is equal to the Fréchet-Hoeffding upper (lower) bound. [Kimeldorf and Sampson,
1978]

2.3.4 Kendall’s Tau and Spearman’s Rho in Some Special Cases

Using the concepts in Section 2.3.3 together with Theorem 5.1.8 and 5.1.9 in [Nelsen,
2006], it follows that both Kendall’s tau and Spearman’s rho for the Fréchet-
Hoeffding upper and lower bound are 1 and −1, respectively. Using the notation
from Section 2.1.4, this can be written as

�M = �M = 1 and �W = �W = −1. (2.3.8)

Further, (2.3.4) and (2.3.6) gives that

�Π = 4

∫∫
[0,1]2
C(u, v) dC(u, v)− 1 = 4

∫∫
[0,1]2
uv dudv − 1 = 4

(∫ 1

0

u du

)2

− 1 = 0

(2.3.9)
and

�Π = 12

∫∫
[0,1]2
uv dudv − 3 = 12

(∫ 1

0

u du

)2

− 3 = 0. (2.3.10)

2.3.5 Multivariate Dependence Measures

The observant readers might have noticed that all dependence measures above are
bivariate. However, it is possible to generalize them to the multivariate case as well,
though these generalizations will not be covered here. The interested can find details
in for instance [Joe, 1990], where generalizations of Kendall’s tau and Spearman’s
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rho are described, [Schmid and Schmidt, 2007], which investigates multivariate ver-
sions of Spearman’s rho and non-parametric estimation of them, or [Mesfioui and
Quessy, 2010], where multivariate non-continuous versions are considered.

One multivariate concept will briefly be mentioned here, that of orthant depen-
dence [Nelsen, 2006, Definition 5.7.1]. Let X = (X1, . . . , Xd) be a d-dimensional
random vector. X is positively lower orthant dependent if for all x ∈ ℝd

ℙ (X ≤ x) ≥
d∏
i=1

ℙ (Xi ≤ xi) (2.3.11)

and positively upper orthant dependent if for all x ∈ ℝd

ℙ (X > x) ≥
d∏
i=1

ℙ (Xi > xi) . (2.3.12)

If both (2.3.11) and (2.3.12) holds, X is positively orthant dependent. The negative
counterparts are defined in the same way, but with reversed inequalities. If d = 2,
this is equivalent with quadrant dependence.

2.4 Discrete Marginal Distributions

When at least one of the marginal distribution functions F1, F2, . . . , Fd is discrete,
there still exists a copula, but, as mentioned in Theorem 1, this is only uniquely
determined on RanF1 × RanF2 × ⋅ ⋅ ⋅ × RanFd. This creates some issues that are
needed to keep in mind [Genest and Nešlehová, 2007]:

1. the dependence is not characterized by the copula alone;

2. concordance measures depend on the marginal distributions as well as the
copula;

3. the probabilistic and the analytical definitions of �K and �S are not equal;

4. monotone dependence does not imply ∣�K ∣ = ∣�S ∣ = 1.

However, a multivariate distribution still often inherits dependence properties from
the copula, and the parameters of the copulas can still be interpreted as dependence
parameters [Genest and Nešlehová, 2007]. Thus, the use of copulas defined as above
still makes sense, despite the issues. Furthermore, in [Faugeras, 2012], alternate
copula definitions that overcome the listed problems are investigated.

2.5 Distributions for Count Data

Count data is a term for data which theoretically can take values at 0, 1, 2, . . . ,∞.
The Poisson distribution is a common choice when modeling count data, for ex-
ample it was used in [Thuring, 2012] for modeling the number of insurance claims.
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However, as its variance is equal to its expectation and as the distribution is a one
parameter distribution, the Poisson distribution lacks somewhat in adaptability,
which calls for distributions that can be better tuned to data. Two generaliza-
tions are the Negative binomial distribution and the Delaporte distribution, which
both are Poisson-mixtures. All three distributions can in turn be generalized by
zero-inflation. Below, properties and definitions of these distributions and concepts
follow.

2.5.1 Poisson Distribution (PO)

The Poisson distribution arises as the number of occurred events during a time
interval, when the events occurs with constant intensity. It is also the limit of
a binomial distribution, when the number of trials tends to infinity as the success
probability approaches zero, while the expected value still is finite [Krishnamoorthy,
2006, Chapter 5].

Let X be Poisson distributed with parameter � > 0. Then the PMF is

pX(k) = e−�
�k

k!
, k = 0, 1, 2, . . . (2.5.1)

The expected value is

E [X] = � (2.5.2)

and the variance is

Var [X] = �. (2.5.3)

[Krishnamoorthy, 2006, Chapter 5]

2.5.2 Negative Binomial Distribution (NB)

Consider a number of Bernoulli trials with success probability p and let X be
the number of failures until the r:th success. Then X has a negative binomial
distribution, X ∼ NBI(r, p). The distribution can be extended to r ∈ ℝ+. Also,
if X∣Θ = � ∼ Po(�) with Θ ∼ Γ(�, �), then X ∼ NBI(�, �

1+� ). This is proved in
Section A.1 in the appendices.

The PMF of X ∼ NBI(r, p) is

pX(k) =

(
k + r − 1

r − 1

)
pr(1− p)k =

Γ(k + r)

k!Γ(r)
pr(1− p)k, (2.5.4)

for k = 0, 1, 2, . . . , where r > 0 and 0 < p < 1. Note that the first expression
does not hold for the extension to r ∈ ℝ+, then the second expression is used. The
expectation and variance are

E [X] =
r(1− p)

p
(2.5.5)
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and

Var [X] =
r(1− p)
p2

(2.5.6)

[Krishnamoorthy, 2006, Chapter 7]
An alternative parametrization sometimes used is{

� = E [X] = r(1−p)
p

� = 1
r

⇔
{
p = 1

1+��

r = 1
�

(2.5.7)

We denote this parametrization with X ∼ NBII(�, �) = NBI
(

1
� ,

1
1+��

)
. The PMF

now is

pX(k) =
Γ(k + 1/�)

k!Γ(1/�)

(
1

1 + ��

)1/� (
��

1 + ��

)k
(2.5.8)

for k = 0, 1, 2, . . . , with � > 0 and � > 0 and the expectation and variance are

E [X] = � (2.5.9)

and
Var [X] = �+ �2�. (2.5.10)

[Stasinopoulos et al., 2008, Section A.10]

2.5.3 Delaporte Distribution (DEL)

If X∣Θ = � ∼ Po(�) and Θ = � + 
 where � ∈ ℝ+ and 
 ∼ Γ(�, �), then X has a
Delaporte distribution, X ∼ DelI(�, �, �), with

pX(k) =

⎧⎨⎩
(

�
1+�

)�
e−�, if k = 0,∑k

i=0
Γ(�+i)��e��k−i

Γ(�)i!(k−i)!(1+�)�+i , if k = 1, 2, . . . ,
(2.5.11)

for � > 0, � > 0 and � > 0 [Vose, 2008, with parameter �∗ = 1/�]. For details of
the derivation of the PMF, see Section A.2 in the appendices. The expectation of
X is

E [X] = �+
�

�
(2.5.12)

and the variance

Var [X] = �+
�

�

(
1

�
+ 1

)
(2.5.13)

[Vose, 2008]. This distribution has also got an alternative parametrization, denoted
X ∼ DelII(�, �, �) = DelI(��, 1

� ,
1

��(1−�) ). See Section A.2 for detailed derivation.

The expectation and variance using this parametrization are

E [X] = � (2.5.14)

and
Var [X] = �+ �2�(1− �)2 (2.5.15)

[Stasinopoulos et al., 2008, Section A.10]
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2.5.4 Zero-Inflated Distributions

Sometimes, the probability for getting a zero needs to be increased for a distribution
to fit data. The idea with zero-inflation is to let X be the product between a random
variable Y and an independent Bernoulli variable I with success probability 1− '.
By choosing ' wisely, the right amount of zeros can be obtained. For a zero-inflated
distribution, the PMF becomes

pX(k) =

{
'+ (1− ')pX(0), if k = 0,

(1− ')pX(k), if k = 1, 2, . . . ,
(2.5.16)

[Johnson et al., 2005, Section 8.2.3]. As E [AB] = E [A]E [B] and Var [AB] =
Var [A]E2 [B]+E

[
A2
]

Var [B] if A and B are independent, the expectation becomes

E [X] = E [I]E [Y ] = (1− ')E [Y ] (2.5.17)

and the variance is

Var [X] = (1− ')Var [Y ]− '(1− ')E2 [Y ] = (1− ')(Var [Y ]− 'E2 [Y ]). (2.5.18)

Zero-Inflated Poisson Distribution (ZIP)

The PMF for a zero-inflated Poisson distribution is

pX(k) =

{
'+ (1− ')e−�, if k = 0,

(1− ')e−� �
k

k! , if k = 1, 2, . . . ,
(2.5.19)

for � > 0 and 0 ≤ ' ≤ 1 [Johnson et al., 2005, Section 8.2.4]. Using (2.5.17) and
(2.5.18), the expectation and variance becomes

E [X] = (1− ')� (2.5.20)

and
Var [X] = (1− ')(�+ '�2) (2.5.21)

respectively.

Zero-Inflated Negative Binomial Distribution (ZINB)

The PMF for a zero-inflated negative binomial distribution using parametrization
NBI is

pX(k) =

{
'+ (1− ')pr, if k = 0,

(1− ')Γ(k+r)
k!Γ(r) p

r(1− p)k, if k = 1, 2, . . . ,
(2.5.22)

for r > 0, 0 ≤ p ≤ 1 and 0 ≤ ' ≤ 1 and the expectation and variance are

E [X] = (1− ')
r(1− p)

p
(2.5.23)
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and

Var [X] = (1− ')
r(1− p)
p2

(
1 + 'r(1− p)

)
(2.5.24)

respectively. Using the parametrization NBII, we get

pX(k) =

⎧⎨⎩'+ (1− ')
(

1
1+��

)1/�

, if k = 0,

(1− ')Γ(k+1/�)
k!Γ(1/�)

(
1

1+��

)1/� (
��

1+��

)k
, if k = 1, 2, . . . ,

(2.5.25)

for � > 0, � > 0 and 0 ≤ ' ≤ 1. The expectation and variance then are

E [X] = (1− ')� (2.5.26)

and
Var [X] = �(1− ')

(
1 + �('+ �)

)
. (2.5.27)

Zero-Inflated Delaporte Distribution (ZIDEL)

The PMF for a zero-inflated Delaporte distribution using parametrization DelI is

pX(k) =

⎧⎨⎩'+ (1− ')
(

�
1+�

)�
e−�, if k = 0,

(1− ')
∑k
i=0

Γ(�+i)��e��k−i

Γ(�)i!(k−i)!(1+�)�+i , if k = 1, 2, . . . ,
(2.5.28)

for � > 0, � > 0, � > 0 and 0 ≤ ' ≤ 1. The expectation and variance are

E [X] = (1− ')

(
�+

�

�

)
(2.5.29)

and

Var [X] = (1− ')

(
�+

�

�

(
1

�
+ 1

)
+ '

(
�+

�

�

)2
)
. (2.5.30)

Using the parametrization DelII, expectation and variance are

E [X] = (1− ')� (2.5.31)

and
Var [X] = �(1− ')

(
1 + �('+ �(1− �)2)

)
. (2.5.32)

Nested Models

Note that negative binomial distribution, zero-inflated negative binomial distribu-
tion, Delaporte distribution and zero-inflated Delaporte distribution are related
and can be seen as nested models. This means that two models can be tested using
simple hypotheses. In Figure 2.1, the relations are illustrated.



14 Theory Chapter 2

Figure 2.1. Relationship between the distributions.

2.6 Parameter Estimation

When making a multivariate model using copulas, one has two possible choices when
estimating the parameters. Either, the parameters of the one-dimensional marginal
distributions and the copula are estimated separately or they are treated together all
at once. When maximum likelihood is used to estimate both copula parameters and
marginal parameters, the first method is called inference for margins [Joe and Xu,
1996]. To use maximum likelihood to estimate all parameters at once is called full
maximum likelihood. A way to estimate the copula parameters without maximum
likelihood is described next, followed by a short description of the full maximum
likelihood method.

2.6.1 Method of Moments

The method of moments is based on the fact that the different moments of a stochas-
tic variable often depend on the parameters of its distribution. If the inverse to these
relations is available and the moments can be estimated, this gives an estimate of
the parameters.

If the analytical expressions for Kendall’s tau and Spearman’s rho are known
for a bivariate distribution, these can be used to estimate the copula parameters.
Let for example (X,Y ) be a stochastic vector with copula C with parameter � and
let �K(�) = �C and �S(�) = �C be Kendall’s tau and Spearman’s rho, respectively.
If we now have estimates �̂C and �̂C , we can estimate � as

�̂ = �−1
K (�̂C) (2.6.1)

or
�̂ = �−1

S (�̂C). (2.6.2)

This is a quite common method, and is for instance used in [Hage, 2013]. However,
for copulas with discrete one-dimensional marginals, the estimate based on Kendall’s
tau might be biased [Genest and Nešlehová, 2007, Section 6.1] and for copulas with
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dimension d > 2, a definition of Kendall’s tau and Spearman’s rho which depends
on the copula parameters is needed.

2.6.2 Full Maximum Likelihood

In the full maximum likelihood method, both marginal parameters and copula pa-
rameters are estimated at the same time using maximum likelihood.

Let X = (X1, . . . , Xd) be a d-dimensional stochastic vector with continuous
margins, use the notations in Section 2.1.2 and let F1, . . . , Fd have parameter vectors
#1, . . . ,#d, respectively, and C parameter vector �. Now, define the parameter
vector � = (#1, . . . ,#d,�). Assume x(1), . . . ,x(n) are n observation vectors of X
independent of each other. The likelihood function is then defined as

ℒ
(
�;x(1), . . . ,x(n)

)
△
=

n∏
i=1

fX(x(i);�) =

=

n∏
i=1

c
(
F1(x

(i)
1 ;#1), . . . , Fd(x

(i)
d ;#d);�

) d∏
j=1

fj
(
x

(i)
j ;#j

)
,

(2.6.3)

using (2.1.4). The log likelihood function is

ℓ
(
�;x(1), . . . ,x(n)

)
△
= log

(
ℒ
(
�;x(1), . . . ,x(n)

))
=

=

n∑
i=1

log
(
c
(
F1(x

(i)
1 ;#1), . . . , Fd(x

(i)
d ;#d);�

))
+

+

n∑
i=1

d∑
j=1

log
(
fj
(
x

(i)
j ;#j

))
, (2.6.4)

and the full maximum likelihood estimate is defined as

�̂
△
= arg max

�
ℒ
(
�;x(1), . . . ,x(n)

)
= arg max

�
ℓ
(
�;x(1), . . . ,x(n)

)
. (2.6.5)

Discrete Case

With the same assumptions as above, but with discrete one-dimensional marginals,
the likelihood function is defined, using (2.1.6), as

ℒ
(
�;x(1), . . . ,x(n)

)
△
=

n∏
i=1

pX(x(i);�) =

=

n∏
i=1

∑
j1=0,1

⋅ ⋅ ⋅
∑
jd=0,1

(−1)j1+⋅⋅⋅+jdC
(
F1(x

(i)
1 − j1;#1), . . . , Fd(x

(i)
d − jd;#d);�

)
.

(2.6.6)

The full maximum likelihood estimate is still defined as in (2.6.5).
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2.7 Model Selection and Goodness of Fit

When trying different models, it is important to be able to evaluate how well the
model fits the data and which model is the best. It is not only important how well
the model fits, but it is also desirable to have a model that is as simple as possible
with as few parameters as possible. This is due to the fact that a model can come
arbitrarily close to the observed data if the number of parameters is sufficiently high
and that the more parameters, the harder it is to estimate them. Using different
goodness of fit tests, measures for how well the models meet these desired properties
are obtained.

2.7.1 Marginal Distributions

�2-test

Let X be a discrete stochastic variable with support {�1, . . . , �m} and let x1, . . . , xn
be n observations of X. Consider the hypothesis that the sample is from a partic-
ular discrete distribution with PMF pX(k;�), where � is a d-dimensional vector of

unknown parameters and let �̂ be an estimate of � based on the sample. The �2-test
is a test of this hypothesis, where the probabilities from the supposed distribution is
compared to the observations. If the squared difference is too large, the hypothesis
is rejected. Below, a way to perform this test follows.

1. Find the observed frequencies, that is the number Oj of data points equal to
�j , j = 1, 2, . . . ,m.

2. Compute the probabilities pj = pX(�j ; �̂) for j = 1, 2, . . . ,m − 1 and pm =

1−
∑m−1
j=1 pj .

3. Compute the expected frequencies Ej = pjn, j = 1, 2, . . . ,m.

4. Evaluate the �2-statistic

�2 =

m∑
j=1

(Oj − Ej)2

Ej
(2.7.1)

5. Compare �2 with the (1−�)th quantile q1−� of a �2(m− d− 1)-distribution.

6. If �2 > q1−�, the hypothesis is rejected.

[Krishnamoorthy, 2006, Chapter 1]

Likelihood Ratio Test

Unlike the �2-test, the likelihood ratio test does not give information of the general
fit of a model. Instead it is a way to select the most appropriate model when
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comparing a restricted model to an unrestricted counterpart. For instance, nested
models can be tested. Consider the hypotheses{

H0 : � ∈ Ω0

H1 : � ∈ Ω ∖ Ω0,

where the dimension of Ω0 is r and the dimension of Ω is m. Then the likelihood
ratio is defined as

� =
sup�∈Ω0

ℒ(�)

sup�∈Ω ℒ(�)
(2.7.2)

and it can be shown that −2 log(�)→ �2(m− r) under H0. [Madsen, 2008, Section
6.5]

Akaike’s Information Criterion

Just like the likelihood ratio test, Akaike’s Information Criterion (AIC) does not
give information of the general fit of a model, but is a way to compare different
models to each other. It is based on the log likelihood value ℓ(�) and the number
of parameters, where a larger number of parameters is penalized. It is defined as

AIC = 2k − 2ℓ(�), (2.7.3)

where k is the number of estimated parameters in the model and ℓ(�) is defined as in
(2.6.4) or in the corresponding way in the discrete case. The best model according
to AIC is the model with the smallest AIC value. [Akaike, 1974] Note that AIC is
not restricted to be used for one-dimensional models.

2.7.2 Copula

Assume that we have data x(1), . . . ,x(n), and that we want to test if the dependence
structure is well represented by some copula family C0. Particularly, we want to
test the null hypothesis H0 : C ∈ C0.

Cramér-von Mises Method

Cramér-von Mises method is based on the empirical copula

Cn(u) =
1

n

n∑
i=1

11
(
F1

(
x

(i)
1

)
≤ u1, . . . , Fd

(
x

(i)
d

)
≤ ud

)
, u = (u1, . . . , ud) ∈ [0, 1]d.

(2.7.4)
The test statistic is

Sn
△
=

∫
[0,1]d

n
(
Cn(u)− C�̂(u)

)2
dCn(u) (2.7.5)

where C�̂ ∈ C0 is the estimated copula [Genest et al., 2009]. Now, assume that we

have data x(1), . . . ,x(n) and that this has some multivariate distribution, where we
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know the one-dimensional marginals F1, . . . , Fd. Assume further that we want to
use the Cramér-von Mises method to test if C�̂ is a reasonable description of the
associated copula. This can be done as follows.

First, the test statistic defined in (2.7.5) can for numerical purposes be calculated
using the Riemann sum approximation as

Sn =

n∑
i=1

(
Cn(ui)− C�̂(ui)

)2
(2.7.6)

[Genest et al., 2009]. A parametric bootstrap for the p-value is performed using the
following algorithm from [Genest et al., 2009, Appendix A].

1. Compute the pseudo-observations

u(i) =
(
u

(i)
1 , . . . , u

(i)
d

)
=
(
F1(x

(i)
1 ), . . . , Fd(x

(i)
d )
)

(2.7.7)

for i = 1, . . . , n. If the marginals are not known, one can use u
(i)
j =

Rij
n+1 =

nF̂j

(
x
(i)
j

)
n+1 , where R1j , . . . , Rnj are the ranks of the jth elements in each obser-

vation vector.

2. Compute the empirical copula Cn(u) according to (2.7.4) and estimate � with

some estimator �̂ =  
(
x(1), . . . ,x(n)

)
.

3. If there is an analytical expression for C�, compute Sn according to (2.7.6),
otherwise, do a Monte Carlo approximation.

4. For some large integer N , repeat the following steps for every k = 1, . . . , N :

(a) Generate a random sample y(1,k), . . . ,y(n,k) from the multivariate dis-
tribution, now with copula C�̂, and compute their pseudo-observations

u∗(i,k) =(u
∗(i,k)
1 , . . . , u

∗(i,k)
d )=

(
F1(y

(i,k)
1 ), . . . , Fd(y

(i,k)
d )

)
for i = 1, . . . , n.

(b) Compute the empirical copula

C∗n,k(u) =
1

n

n∑
i=1

11(u
∗(i,k)
1 ≤ u1, . . . , u

∗(i,k)
d ≤ ud) (2.7.8)

and calculate the estimate �̂k =  
(
y(1,k), . . . ,y(n,k)

)
.

(c) If there is an analytical expression for C�, compute

S∗n,k =

n∑
i=1

(
C∗n,k(u∗(i,k))− C�̂k(u∗(i,k))

)2
, (2.7.9)

otherwise, do a Monte Carlo approximation.

An approximative p-value for the test is given by 1
N

∑N
k=1 11(S∗n,k > Sn).
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Kendall’s Cramér-von Mises Method

Kendall’s Cramér-von Mises method is based on the transformation V = FX(X) =
C(F1(X1), . . . , Fd(Xd)), where C is copula associated with X. This transformation
is called Kendall’s transform. The test statistic is

SKn
△
=

∫
[0,1]

n
(
Kn(v)−K�̂(v)

)2
dK�̂(v), (2.7.10)

where

K�̂(t)
△
=

∫
[0,1]d

11C�(u)≤t dC�(u) (2.7.11)

and

Kn(�)
△
=

1

n

n∑
i=1

11(vi ≤ �), � ∈ [0, 1] (2.7.12)

[Genest et al., 2009].
Now, Assume that we have data x(1), . . . ,x(n) and that this has some multivari-

ate distribution, where we know the one-dimensional marginals F1, . . . , Fd. Assume
further that we want to use Kendall’s Cramér-von Mises method to test if C�̂ is a
reasonable description of the associated copula. A parametric bootstrap for the p-
value is performed using the following algorithm from [Genest et al., 2009, Appendix
B].

1. Compute the pseudo-observations as in (2.7.7) as well as the rescaled pseudo-
observations using Kendall’s transform, v1 = Cn

(
u(1)

)
, . . . , vn = Cn

(
u(n)

)
.

2. Compute Kn as in (2.7.12) and estimate the parameters � with some estimator

�̂ =  
(
x(1), . . . ,x(n)

)
.

3. If there is an analytical expression for K�, compute S
(K)
n according to (2.7.10).

Otherwise, proceed by Monte Carlo approximation by choosing m ≥ n and
doing the following extra steps:

(a) Generate a random sample u∗(1), . . . ,u∗(m) from the distribution C�̂.

(b) Approximate K�̂ by

B∗m(t) =
1

m

m∑
i=1

11(v∗i ≤ t), t ∈ [0, 1] (2.7.13)

where

v∗i = Cm
(
u∗(i)

)
=

1

m

m∑
j=1

11(u∗(j) ≤ u∗(i)), i ∈ [1, . . . ,m] (2.7.14)

and note that mB∗m(v∗i ) is the rank of v∗i among v∗1 , . . . , v
∗
m.
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(c) Approximate S
(K)
n by

S(K)
n =

n

m

m∑
i=1

(
Kn(v∗i )−B∗m(v∗i )

)2
. (2.7.15)

4. For some large integer N , repeat the following steps for every k = 1, . . . , N :

(a) Generate a random sample y(1,k), . . . ,y(n,k) from the multivariate distri-
bution, now with copula C�̂. Compute the pseudo-observations u∗(i,k) =

(u
∗(i,k)
1 , . . . , u

∗(i,k)
d )=

(
F1(y

(i,k)
1 ), . . . , Fd(y

(i,k)
d )

)
and the rescaled pseudo-

observations v∗i,k = Cn
(
u∗(i,k)

)
for i ∈ [1, . . . , n].

(b) Compute

K∗n,k(�)
△
=

1

n

n∑
i=1

11(v∗i,k ≤ �), � ∈ [0, 1] (2.7.16)

and calculate the estimate �̂k =  
(
y(1,k), . . . ,y(n,k)

)
.

(c) If there is an analytical expression for K�, let

S
(K)∗
n,k =

∫ 1

0

(
K∗n,k(t)−K�̂k

(t)
)2
dK�̂k

(t). (2.7.17)

Otherwise, proceed by Monte Carlo approximation as above.

An approximative p-value for the test is given by 1
N

∑N
k=1 11(S

(K)∗
n,k > S

(K)
n ).



Chapter 3

PROCEDURE AND RESULTS

The implementations used for this chapter were done in R. For most of the distribu-
tions, slightly modified versions of distributions found in gamlss-package [Rigby and
Stasinopoulos, 2005] were used and fitdistrplus [Delignette-Muller et al., 2013] was
used for the maximum likelihood estimation of the marginal parameters. The cop-
ulas were implemented using copula-package [Yan, 2007], though a full maximum
algorithm suitable for discrete data, as well as the methods for copula goodness of
fit, are not included in this package and were therefore created.

3.1 Data

The data comes from a Danish insurance company and consists of the number of
insurance claims in three different insurance products; building, car and content
insurance. All in all there are 95 668 unique customers and the different customers
have data collected from different number of years, ranging from one to five. In each
year each customer has all three types of insurance and in total, there are 306 196
such observed vectors.

The customers with data from only one year have been removed from the set,
and for the remaining 74 770 customers, the second last year is used for inference
and the last year is saved for validation later on.

Table 3.1. Mean and variance for the marginal distributions

Marginal Mean Variance

Building 0.1301 0.1481

Car 0.2153 0.3166

Content 0.1253 0.1464

The mean and variance for each product are presented in Table 3.1. In Figure
3.1 to 3.6, histograms for both the data set used for inference and the validation data
set are shown. Notice the high number of zeros, amounting more than 80% of the
data. This suggests that zero-inflated models might be of intereset. It is also worth

21
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Figure 3.1. Histogram for building in-
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Figure 3.2. Histogram for building in-
surance data, validation data set.
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Figure 3.3. Histogram for car insur-
ance data.
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Figure 3.4. Histogram for car insur-
ance data, validation data set.
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Figure 3.5. Histogram for content in-
surance data.
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Figure 3.6. Histogram for content in-
surance data, validation data set.

noting that the variance is greater than the mean for all data sets, hinting that
the Poisson distribution might not be a sufficient model for the margins. Further,
the values for building insurance and content insurance are of the same magnitude,



Section 3.2. Modeling Marginal Distributions 23

while the mean and variance for car insurance claims are greater.

3.2 Modeling Marginal Distributions

The distributions described in Section 2.4 were all tested for each individual marginal
and maximum likelihood was used to estimate the parameters. The �2-test was used
to evaluate if the distribution fits at all while the likelihood ratio test and the AIC
values were used to identify the best model. In Tables 3.2, 3.4 and 3.6, the pa-
rameter estimates and the goodness of fit statistics are presented for each margin
and each model, while the results from the likelihood ratio tests are shown in Table
3.3 and 3.5. For clarity, note that a p-value lower than � = 0.05 suggests that we
should reject H0. The best models are highlighted by italics.

Poisson and zero-inflated Poisson distribution do not fit sufficiently good for
any of the data sets. This observation is consistent with the note on the difference
in mean and variance in the previous section. For building insurance and content
insurance, there are several possible models, but the negative binomial distribution
both have the lowest AIC and is the best model according to the likelihood ratio tests
and is therefore the chosen model, while for car insurance, zero-inflated Delaporte
distribution is the only distribution that is good enough.

Table 3.2. Parametrical marginal distribution for car insurance data

Distr. Param. est. Std. error llh AIC �2-statistic p-value

Po � = 0.2153 0.0017 −44 227.8 88 457.7 6 677 568 0

ZIP � = 0.6468 0.0095 −41 989.1 83 982.1 1 901.137 0

' = 0.6671 0.0045

NB � = 0.2153 0.0021 −42 009.1 84 022.2 128.2689 0

� = 2.4088 0.0610

ZINB � = 0.5052 0.0226 −41 954.8 83 915.7 54.6991 8.797 ∗ 10−8

� = 0.3496 0.0662

' = 0.5739 0.0188

DEL � = 0.2124 0.0021 −42 011.5 84 028.9 135.5536 0

� = 2.4469 0.1894

� = 0.0055 0.0341

ZIDEL � = 0.5733 0.0163 −41 949.1 83 906.2 14.6027 0.3328

� = 2.8917 1.4164

� = 0.7425 0.0778

' = 0.6246 0.0103
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Table 3.3. Likelihood ratio tests for building insurance data

H0 H1 Degrees of freedom p-value

NB ZINB 1 1

NB Del 1 0.8664

NB ZIDEL 2 1

Table 3.4. Parametrical marginal distribution for building insurance data

Distr. Param. est. Std. error llh AIC �2-statistic p-value

Po � = 0.1301 0.0013 −30 420.1 60 842.1 985.0602 0

ZIP � = 0.2572 0.0074 −30 179.8 60 363.7 35.4758 3.485 ∗ 10−6

' = 0.4943 0.0139

NB � = 0.1301 0.0014 −30 167.4 60 338.7 0.3712 1

� = 1.0683 0.0633

ZINB � = 0.1306 0.0314 −30 167.4 60 340.7 0.3809 1

� = 1.0565 0.5104

' = 0.0039 0.2390

DEL � = 0.1301 0.0014 −30 167.4 60 340.7 0.3247 1

� = 1.1486 0.5422

� = 0.0354 0.2192

ZIDEL � = 0.1908 0.04702 −30 167.5 60 343.0 0.4653 1

� = 2.9357 4.96516

� = 0.6256 0.46527

' = 0.3185 0.16780

3.3 Modeling Copula

To model the dependence between the marginal distributions, the four Archimedean
copulas tabulated in Table 2.1 in Section 2.2 were considered. Full maximum like-
lihood was used to get parameter estimates, which implies that new parameter
estimations were obtained for the marginals as well.

The goodness of fit was measured using Cramér-von Mises method and Kendall’s
Cramér-von Mises method, described in Section 2.7. The p-values were computed
from 1 000 bootstrap values and for Kendall’s Cramér-von Mises method, 200 000
Monte Carlo steps were used to estimate B∗m.

It is worth noticing that the value of S
(K)
n,k in Kendall’s Cramér-von Mises method

might sometimes be very high. We see that B∗m(v∗i ) in (2.7.13) compares v∗i to v∗j .
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Table 3.5. Likelihood ratio tests for content insurance data

H0 H1 Degrees of freedom p-value

NB ZINB 1 1

NB Del 1 0.2492

NB ZIDEL 2 0.3948

Table 3.6. Parametrical marginal distribution for content insurance data

Distr. Param. est. Std. error llh AIC �2-statistic p-value

Po � = 0.1253 0.0013 −29 719.8 59 441.6 5341.546 0

ZIP � = 0.2745 0.0078 −29 404.4 58 812.8 157.3674 0

' = 0.5435 0.0123

NB � = 0.1253 0.0014 −29 381.2 58 766.4 7.0059 0.536

� = 1.3129 0.0703

ZINB � = 0.1272 0.0252 −29 381.3 58 768.6 7.3558 0.4988

� = 1.2695 0.4626

' = 0.0149 0.1949

DEL � = 0.1253 0.0014 −29 380.5 58 767.1 3.9395 0.9153

� = 2.2538 0.7333

� = 0.2277 0.1194

ZIDEL � = 0.1795 0.0506 −29 380.3 58 768.6 3.3408 0.9492

� = 3.0673 3.0807

� = 0.5463 0.3816

' = 0.3021 0.1968

Let v∗ℓ be the lowest value among v∗i , then the lowest possible value of B∗m(v∗ℓ ) is
equal to the proportion of observations in the point (0, 0, 0), as we get a tie in the
indicator function for these values. Meanwhile, Kn(v∗i ) in (2.7.15) compares v∗i to
vj , which gives a possibility to get the value Kn(v∗ℓ ) = 0 if v∗ℓ is less than the lowest
value of vi. This possible difference between B∗m(v∗ℓ ) and Kn(v∗ℓ ) is furthermore
amplified, as (0, 0, 0) is both the point corresponding to v∗ℓ as well as the by far
most common point.

The estimated copula parameters, the log likelihood value as well as the AIC
and the goodness of fit measures for the different copulas are presented in Table
3.7. The parameter estimates for the entire models, including the new marginal
parameter estimates, are shown in Tables 3.9 to 3.12.

There is a difference in the result of the two goodness of fit measures. According
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to Cramér-von Mises, Frank and Clayton copula are only significant on the � = 0.01
level, while the other two copulas are not suitable at all. However, for Kendall’s
Cramér-von Mises, all four copula models are significant on the � = 0.05 level.
As Clayton copula has the lowest AIC and is significant on some level for both
goodness of fit methods, it was chosen as the copula for the final model. In Table
3.8, the mean and variance for the marginals in the Clayton copula model have been
calculated using the estimated parameters and the formulas shown in Section 2.5.

Table 3.7. Summary statistics for copula modeling and copula parameter estimates

Copula �̂ Std. error llh AIC p-val. (KCvM) p-val. (CvM)

Clayton 0.8229 0.0256 −100 667 201 352 0.258 0.026

Frank 1.5478 0.0426 −100 688.1 201 394 0.125 0.041

Gumbel 1.0623 0.0030 −101 001.8 202 022 0.169 0

Joe 1.0661 0.0035 −101 076 202 170 0.139 0

Table 3.8. Mean and variance for the marginal distributions, calculated using the
parameters in the Clayton copula model.

Marginal Mean Variance

Building 0.1302 0.1481

Car 0.2145 0.3152

Content 0.1256 0.1460

Table 3.9. Parameter estimates, Clayton copula.

Marginal Param. est. Std. error

Copula � = 0.8229 0.0256

Building - NB � = 0.1302 0.0014

� = 1.0560 0.0628

Car - ZIDEL � = 0.5757 0.0154

� = 2.8136 1.1966

� = 0.7414 0.0680

' = 0.6274 0.0096

Content - NB � = 0.1256 0.0014

� = 1.2894 0.0695
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Table 3.10. Parameter estimates, Frank copula.

Marginal Param. est. Std. error

Copula � = 1.5478 0.0426

Building - NB � = 0.1303 0.0014

� = 1.0638 0.0631

Car - ZIDEL � = 0.5775 0.0569

� = 3.1839 8.2609

� = 0.7539 0.3893

' = 0.6291 0.0364

Content - NB � = 0.1257 0.0014

� = 1.3033 0.0700

Table 3.11. Parameter estimates, Gumbel copula.

Marginal Param. est. Std. error

Copula � = 1.0623 0.0030

Building - NB � = 0.1325 0.0014

� = 1.1942 0.0656

Car - ZIDEL � = 0.5992 0.0194

� = 6.1547 4.2014

� = 0.8154 0.0758

' = 0.6379 0.0115

Content - NB � = 0.1280 0.0014

� = 1.4436 0.0725
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Table 3.12. Parameter estimates, Joe copula.

Marginal Param. est. Std. error

Copula � = 1.0661 0.0035

Building - NB � = 0.1322 0.0014

� = 1.2083 0.0661

Car - ZIDEL � = 0.5878 0.0157

� = 3.3501 1.2708

� = 0.7408 0.0602

' = 0.6318 0.0095

Content - NB � = 0.1277 0.0014

� = 1.4713 0.0735

Figure 3.7. The difference between the PMF of the model and the empirical PMF,
p̂mod(x)− p̂emp(x). Building is fixed to 0.
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Figure 3.8. The difference between the PMF of the model and the empirical PMF,
p̂mod(x)− p̂emp(x). Building is fixed to 1.

3.4 Validation

In Appendix B, contingency tables of the empirical PMF and the PMF for the
estimated model are shown to examine how well the model fits to the data and
in Figure 3.7 and Figure 3.8, the difference between the PMF of the model and
the empirical PMF, p̂mod(x) − p̂emp(x), is plotted, for building equal to 0 and 1,
respectively. Note that it is not the conditional PMF that is plotted.

To investigate how well the model fits for different years, the model obtained
above was fitted to the data from the validation year as well. The marginal parame-
ters were first estimated using maximum likelihood and evaluated using the �2-test
as in Section 3.2. Then the entire model was estimated using full maximum like-
lihood and evaluated using Cramér-von Mises method and Kendall’s Cramér-von
Mises method, as in Section 3.3.

3.4.1 Marginal Distributions

All the three marginal distributions fit significantly well according to the �2-test.
The results are presented in Table 3.13.
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Table 3.13. Parametrical marginal distributions for validation data

Marginal Param. est. Std. error llh �2-statistic p-value

Building (NB) � = 0.1158 0.0013 −27 805.9 4.3514 0.8241

� = 1.1826 0.0728

Car (ZIDEL) � = 0.5540 0.0162 −40 178.4 6.7246 0.9782

� = 7.9100 3.9491

� = 0.8315 0.0513

' = 0.6359 0.0103

Content (NB) � = 0.1118 0.0013 −27 070.3 14.1744 0.1163

� = 1.8108 0.0887

3.4.2 Copula

For the validation data, both Cramér-von Mises method and Kendall’s Cramér-von
Mises method support the model. The numerical values are summarized in Table
3.14. The parameter estimates are found in Table 3.15.

Table 3.14. Summary statistics for Clayton copula and validation data

llh p-val. (KCvM) p-val. (CvM)

−94 350 0.647 0.094

Table 3.15. Parameter estimates, Clayton copula.

Marginal Param. est. Std. error

Copula � = 0.8244 0.0278

Building - NB � = 0.1159 0.0013

� = 1.1790 0.0727

Car - ZIDEL � = 0.5547 0.0179

� = 7.9946 4.6639

� = 0.8313 0.0600

' = 0.6370 0.0114

Content - NB � = 0.1120 0.0013

� = 1.7976 0.0883
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DISCUSSION

4.1 Summary

The purpose with this master’s thesis was to model the number of insurance claims
in three different insurance types during one year using a three dimensional copula.
Further more, maximum likelihood routines suited to models with discrete marginals
were to be created and used for inference.

The marginals were modeled using count data distributions able to model data
with a lot of zeros. The parameters were estimated using maximum likelihood, the
�2-test was used for goodness of fit and likelihood ratio tests and the AIC-values
were used to choose the model fitting best. The negative binomial distribution
proved to be the best distribution to model the building insurance claims as well as
the content insurance claims, while the zero-inflated Delaporte distribution provided
the best fit for the car insurance claims.

Full maximum likelihood was used to estimate the full models with both one-
dimensional marginal distribution and copula parameters and Cramér-von Mises
method and Kendall’s Cramér-von Mises method with parametric bootstraps were
used for goodness of fit testing. The AIC-value was used to choose the best model.

To investigate how well the chosen model performed an other year, it was tested
on data for the next year. Neither the �2-tests for the marginals or Cramér-von
Mises method or Kendall’s Cramér-von Mises method gave any reasons to reject
the model.

4.2 Discussion

All in all, the results seem quite good. The model fits both the empirical values and
the validation data from the following year rather well. The goodness of fit tests
provides support for it and, as seen in Figure 3.7, the absolute value of greatest
difference between the probability mass function of the model and the empirical
counterpart is lower than 0.01. Further more, the mean and variance calculated
using the models is close to the empirical values, as can be seen in Table 3.1 and
Table 3.8.

A part of the reason why several of the Archimedean copulas tested were signif-
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icantly suitable for model the data might be the fact that all Archimedean copulas
are positively lower orthant dependent, that is the probability for all values being
low are greater when considering the entire model than when viewing the one-
dimensional marginals as independent entities. Most of the observations are low
values around zero, why this is a suitable property. Moreover, the probability mass
along the line X1 = X2 = X3 is not prominent for higher values.

However, as can be seen in Figure 3.7, the error in the point (0, 0, 0) is rather
low, suggesting that the error in this point might be very influential for how good
the model is considered to be. This is because of the huge number of observations
in this point. As a consequence, the error is greater for the values right next to
(0, 0, 0). Even though the magnitude of the greatest error is lower than 0.01, this is
a problem, especially since this point might not be the most interesting point from
a risk perspective. It might be feasible to consider a model estimated conditional
on not having a zero to avoid this.

There are some differences in the reached results and the results in [Hage, 2013],
where gumbel copula was the only copula that could not be rejected. There are some
possible explanations for this. For once, the properties of full maximum likelihood
and method of moments might be very different. As the probabilistic and analytical
definition of Kendall’s tau are not equal, the method of moments might give biased
estimates of the copula parameter. The full maximum likelihood routines were
investigated using some minor simulation studies during creation, and these gave
good estimations even though discrete marginals were used. It is worth mentioning
that data from different years were used and that one more dimension was added,
something that might affect the results as well.

One source of concern is the difference in results from Cramér-von Mises method
and Kendall’s Cramér-von Mises method. It seems like Kendall’s Cramér-von Mises
method is more forgiving than Cramér-von Mises method, but which one that is

most reliable is an open question. Taking the huge differences in the values of S
(K)
n

described and explained in Section 3.3 into account, Cramér-von Mises method is
more trustworthy, but as the full maximum likelihood routines, Kendall’s Cramér-
von Mises method was also investigated using minor simulation studies, with results
suggesting that the method performed well for discrete data as well.

The observant reader might have seen that in a few cases, the likelihood for a
distribution that is a special case of another distribution is higher than the likelihood
for the general distribution, which should be impossible. One explanation for this
bewildering fact is likely that different optimization routines for the maximization
of the likelihood were used in a few cases to ensure convergence. The mentioned
special cases were among these.

Working with discrete copulas creates some difficulties in itself. As mentioned in
Section 2.4, a lot of issues arise that need to be taken into account and many things
are not clear if they can be done at all. Further more, the copula package in R is
implemented for continuous data and, for the investigation to work, several of the
functions have been adapted to suit discrete data. Some bugs have been encountered
as well, when working with copula package. For instance, elliptical copulas were
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disregarded from the analysis when it turned out that the values obtained from the
function for the CDFs varied even though the input was not altered.

4.3 Further Research

Now that both full maximum likelihood and method of moments have been used
to model a similar data set, it would be interesting to compare the two methods.
Further more, it might be possible to extend the method of moments to dimensions
higher than 2 using the generalizations of Kendall’s tau and Spearman’s rho men-
tioned in Section 2.3.5. It would also be interesting to compare the copula models
with multivariate credibility theory. A way to examine the two methods can be
to see how well the methods estimate the conditional expectation of the number
of claims in one product given the number of claims in the other products. An
extension to this would be to use the data from one year to make predictions for
the next year.

As was hinted in the previous section, there are several fields regarding copula
models with discrete marginal distributions that can be investigated theoretically,
for instance the properties of the different methods of estimation and goodness of
fit. The alternate copula definition mentioned in Section 2.4 is interesting and to
implement this for the methods used in this thesis would be an interesting path of
research. These methods probably need to use some kind of deterministic adaption
of the alternate definition to ensure convergence. However, care must be taken so
that no new dependence is induced. Some attempts for a maximum likelihood algo-
rithm using a similar method were actually made in this project but was abandoned
because of shortness of time.

A possible continuation would be to model the data conditionally of not having
any zeros, as mentioned in the previous section. This to avoid letting the vast
number of zeros have too much weight. Another way to model is to use pair copula
construction, discussed in [Panagiotelis et al., 2012].



Appendix A

CALCULATIONS

A.1 Negative Binomial Distribution

Let Θ ∼ Γ(�, �), with density function

fΘ(x) =
��

Γ(�)
x�−1e−�x, x > 0, � > 0, and � > 0 (A.1.1)

[Krishnamoorthy, 2006, Chapter 15, with parameter � = 1/b]. If X∣Θ = � ∼ Po(�),
then X has a negative binomial distribution, X ∼ NBI(�, �

1+� ). The PMF is
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(A.1.2)

where the definition of the gamma function, Γ(z) =
∫∞

0
xz−1e−x dx is used in

the last equality. Now, let r = � and p = �
1+� and we get the parametrization

X ∼ NBI(r, p).

A.2 Delaporte Distribution

Let Θ = � + G where where � ∈ ℝ+ and G ∼ Γ(�, �). Then Θ has a shifted
gamma distribution, Θ ∼ SGI(�, �, �). Further, let X∣Θ = � ∼ Po(�), then X has
a Delaporte distribution, X ∼ DelI(�, �, �). [Vose, 2008, with parameter �∗ = 1/�]

To get the probability mass function for X, we first of all establish that Θ has
the density function

fΘ(x) =
��

Γ(�)
(x− �)�−1e−�(x−�), x > �, � > 0, , � > 0 and � > 0 (A.2.1)
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[Krishnamoorthy, 2006, Chapter 15]. The PMF for X then becomes
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where the definition of the gamma function and the binomial theorem are put to
use, as well as two simple changes of variables. Note that k = 0 gives pX(0) =(

�
1+�

)�
e−�.

In gamlss package in R, another parametrization is used. Let Θ = G(1− �) + �,
where 0 < � < 1 and G ∼ Γ( 1

�̃2 ,
1
�̃�̃2 ). Then, Θ has a re-parameterized shifted

gamma distribution, SGII(�̃, �̃, �̃) = SGI(�̃, 1
�̃2 ,

1
�̃�̃2 ) with density function
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for x ≥ �̃, 0 < �̃ < 1, �̃ > 0 and �̃ > 0. Now, let Θ ∼ SGII(1, �1/2, �) and consider
�Θ. This has density function

f�Θ(x) =
(x− ��)1/�−1e−

x−��
��(1−�)

(��(1− �))1/�Γ(1/�)
. (A.2.4)

Let X∣Θ = � ∼ Po(��), then X has a re-parameterized Delaporte distribution,
X ∼ DelII(�, �, �) = DelI(��, 1

� ,
1

��(1−�) ).
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CONTINGENCY TABLES

Empirical values, building = 0

Content

C
ar

0 1 2 3 4 5

0
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5

6

0.6896 0.0535 0.0056 0.0007 0 0

0.0857 0.0112 0.0015 0.0002 0 0

0.0248 0.0037 0.0005 0.0001 0 0

0.0050 0.0010 0.0001 0 0 0

0.0012 0.0002 0 0 0 0

0.0002 0.0001 0 0 0 0

0.0001 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure B.1. Contingency table of the
empirical PMF for when building = 0.

Model, building = 0
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0
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6

0.6894 0.0593 0.0072 0.0009 0.0001 0

0.0778 0.0133 0.0017 0.0002 0 0

0.0224 0.0041 0.0005 0.0001 0 0

0.0052 0.0010 0.0001 0 0 0

0.0011 0.0002 0 0 0 0

0.0003 0 0 0 0 0

0.0001 0 0 0 0 0

Figure B.2. Contingency table of
the PMF from the estimated model for
when building = 0.

Empirical values, building = 1
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0.0612 0.0179 0.0024 0.0003 0.0001 0

0.0097 0.0030 0.0005 0.0001 0 0

0.0031 0.0012 0.0002 0 0 0

0.0008 0.0002 0.0001 0 0 0

0.0002 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure B.3. Contingency table of the
empirical PMF for when building = 1.

Model, building = 1
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0.0630 0.0107 0.0013 0.0002 0 0

0.0142 0.0038 0.0005 0.0001 0 0

0.0043 0.0012 0.0002 0 0 0

0.0010 0.0003 0 0 0 0

0.0002 0.0001 0 0 0 0

0.0001 0 0 0 0 0

0 0 0 0 0 0

Figure B.4. Contingency table of
the PMF from the estimated model for
when building = 1.
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Empirical values, building = 2
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0.0057 0.0025 0.0005 0 0 0

0.0014 0.0007 0.0001 0 0 0

0.0005 0.0002 0.0001 0 0 0

0.0001 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure B.5. Contingency table of the
empirical PMF for when building = 2.

Model, building = 2
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0.0073 0.0013 0.0002 0 0 0

0.0017 0.0005 0.0001 0 0 0

0.0005 0.0002 0 0 0 0

0.0001 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure B.6. Contingency table of
the PMF from the estimated model for
when building = 2.

Empirical values, building = 3
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0.0007 0.0003 0.0001 0 0 0

0.0001 0.0001 0.0001 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure B.7. Contingency table of the
empirical PMF for when building = 3.

Model, building = 3

Content

C
ar

0 1 2 3 4 5

0

1

2

3

4

5

6

0.0009 0.0002 0 0 0 0

0.0002 0.0001 0 0 0 0

0.0001 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure B.8. Contingency table of
the PMF from the estimated model for
when building = 3.

Empirical values, building = 4
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Figure B.9. Contingency table of the
empirical PMF for when building = 4.
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the PMF from the estimated model for
when building = 4.
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POPULÄRVETENSKAPLIG
ARTIKEL

Copulamodellering av skadeanmälningar i försäkringar

Försäkringar är ganska annorlunda jämfört med de flesta andra produkter man
stöter p̊a i sin vardag. För att tjäna pengar p̊a en vara kan ett företag oftast an-
passa priset efter tillverkningskostnaden. Ett försäkringsbolag har däremot prob-
lemet att kostnaderna inte kommer förrän kunden redan har köpt produkten. När
kostnaden väl kommer varierar dessutom b̊ade antalet utbetalningar och storleken
p̊a dem. Det här kräver att försäkringsbolagen kan göra n̊agot slags uppskattning av
hur stor risken är att en viss kund ska r̊aka ut för olycksfall, för att kunna anpassa
försäkringspremien. En annan sak som är bra för ett försäkringsbolag med flera olika
typer av försäkringar, är om det kan välja ut sina bästa, minst riskbenägna kunder
för att försöka sälja tilläggsförsäkringar. P̊a det sättet ökar försäkringsbolaget an-
delen kunder med l̊ag risk för att r̊aka ut för olyckor. För att göra den här typen
av anpassningar krävs bra modeller att räkna med. Bland annat m̊aste man kunna
beskriva hur olika saker är relaterade till varandra, till exempel sambandet mellan
hur m̊anga skadeanmälningar en kund gör i sina olika försäkringar.

Ett hjälpmedel som blivit väldigt populärt de senaste åren är n̊agot som kallas
för copulas. De används för att beskriva beroende mellan olika tal. Idn är att
istället för att göra en enda stor modell p̊a en g̊ang, där varje sak som ing̊ar be-
handlas p̊a samma sätt, modellerar man först en sak i taget. Sedan sl̊as de färdiga
modellerna ihop med hjälp av en gemensam modell, copulan. Copulan beskriver
bara sambandet mellan de olika sm̊amodellerna. Det fina med den här metoden är
dels att man kan välja olika modeller helt fritt för var och en av delmodellerna, dels
att m̊anga olika slags samband kan beskrivas, beroende p̊a vilken copula man väljer
att använda. När man väl valt copula kan man dessutom finjustera inställningarna
för att den ska passa s̊a bra som möjligt.

Det är viktigt att välja rätt copula, eftersom egenskaperna varierar mycket
beroende p̊a vilken man väljer. Ett exempel p̊a när valet inte blev s̊a lyckat är
finanskrisen under 2007 och 2008. Copulas hade blivit populära i modeller för
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konkursrisk i början av 2000-talet, framför allt tack vare att de har goda egenskaper
och att metoden för att göra modeller med dem är intuitiv och lätt att först̊a sig p̊a.
Bankerna använde sig oftast av den s̊a kallade Gaussiska copulan, som är smidig
att använda, men som har en egenskap som gör den olämplig i sammanhanget.
Problemet är att extrema händelser sker oberoende av varandra enligt den Gaus-
siska copulan. Det betyder att om man använder den för att göra en modell för
konkursrisken i tv̊a företag och vet att det är stor risk att ett av dem ska g̊a omkull,
säger det ingenting om risken för konkurs i det andra företaget. Om n̊agot händer
i samhället som gör att m̊anga företag f̊ar ökad konkursrisk samtidigt, missar mod-
ellen det. Modellerna började efter ett tag användas för subprimel̊an ocks̊a, n̊agot
de inte var anpassade till. När huspriserna började sjunka kunde m̊anga hush̊all inte
länge betala sina l̊an, vilket modellerna missade och detta bidrog till finanskrisen.

Det ska kanske nämnas att det inte var modellerna i sig som skapade en finan-
skris, utan sättet och typerna av finansiella instrument man använde dem p̊a. I
vilket fall som helst är det viktigt att öka först̊aelsen om modellerna s̊a mycket
som möjligt. Om man ska använda copulas för att hitta en modell för antalet
skadeanmälningar i en personers olika försäkringar stöter man p̊a nya problem. Det
centrala problemet är att teorin för copulas främst är anpassad för att fungera för
kontinuerlig data, det vill säga tal som kan ha vilka och hur m̊anga decimaler som
helst, medan antalet skadeanmälningar är heltal. Det är inget problem när man gör
modeller för antalet skadeanmälningar i en försäkring i taget, men när man ska sl̊a
ihop modellerna behöver man vara försiktig. En annan sv̊arighet är att de flesta
programpaket som används för att arbeta med copulas är anpassade för kontinuerlig
data. Om man ska arbeta med heltalsdata m̊aste man skriva egna program.

I den här undersökningen studerades data fr̊an 74 770 försäkringsinnehavare som
var och en hade tre försäkringstyper. Datan bestod av antalet skadeanmälningar
per år och m̊alet var att hitta en lämplig copulamodell som passade de aktuella
värdena. Först behandlades varje försäkringstyp för sig och sedan valdes den mest
lämpliga av fyra olika testade copulas till att sl̊a ihop modellen. Den slutgiltiga
modellen anpassades s̊a att den skulle passa datan s̊a bra som möjligt. När den
sedan testades p̊a data fr̊an året därp̊a, visade det sig att modellen stämde bra
även för det året.

Den här modellen kan allts̊a användas för att beräkna det förväntade antalet
skadeanmälningar för en kund. D̊a kan man ocks̊a beräkna den förväntade kost-
naden, om man har bra modeller för storleken p̊a utbetalningarna. Med hjälp av
detta kan man sätta lagom premier p̊a försäkringarna. Har man bara koll p̊a vad
man gör kan man dessutom undvika att skapa en finanskris p̊a kuppen.
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