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Abstract

Cardiac magnetic resonance (CMR) images are used to investigate the heart for
medical and research purposes. By injecting a contrast substance into the patient,
myocardial infarctions (heart attacks) can be visualized in CMR image sets consist-
ing of a number of image slices at different levels of the heart. Analysis of these
images can detect an infarction, delineate it and estimate its size. This information
is then processed by physicians in order to make a diagnosis and decide the course of
treatment. Manual delineations are time consuming and observer dependent, why
an automated algorithm is desired. Previous work presents a validated automatic
segmentation algorithm that calculates a threshold used to separate the healthy
tissue pixels from the infarction pixels, based on a fixed number of standard devia-
tions. Theoretically, it is known that algorithms based on standard deviations are
likely to be influenced by noise. Therefore, the aim of this thesis was to investigate
if other techniques could be used to compute a threshold that is less noise sensitive
in both humans and animals.

The study included 40 humans and 18 pigs. Two different techniques based on
an Expectation-Maximization algorithm for threshold calculation was developed
and implemented into the previous presented method. One implementation anal-
yses each image slice separately (the slice method), and one takes all slices into
account at once (the set method). The algorithms were evaluated by comparing
computed infarction volume to volumes computed from manual delineations. Both
algorithms show good agreement and low bias with the reference standard. The
slice method yielded the best results on animal data with a high resolution. The set
method yielded the best results in human CMR images, and it show an improved
robustness for increasing noise levels. Both implementations show potential for fully
automatic quantification of myocardial infarction.





Populärvetenskaplig sammanfattning

Denna masteruppsats tar fram en metod för att uppskatta volymen p̊a hjärtinfarkter
utifr̊an MR-bilder. Hjärtat är ett vitalt organ för att h̊alla oss vid liv. Dess uppgift
är att pumpa blod för att förse alla organ med syre. Även hjärtmuskeln själv ska
syresättas med blod fr̊an hjärtat och detta görs genom kranskärl. En förträngning
i ett kranskärl kan orsaka syrebrist i hjärtmuskeln vilket leder till vävnadsdöd, en
hjärtinfarkt. Det kan vara ett livsfarligt tillst̊and d̊a det drabbade hjärtat f̊ar sv̊art
att pumpa. Hjärt- och kärlsjukdomar är i dagsläget den vanligaste dödsorsaken i
världen. Det ställs stora krav p̊a att korrekt diagnosticering kan ske i ett tidigt skede.

MR-kameran möjliggör visualisering av interna strukturer i kroppen genom att ta
till vara p̊a olika vävnaders magnetiska egenskaper, samtidigt som det är ofarligt
för patienten. Genom att injicera en substans i kroppen som absorberas av muskel
som inneh̊aller infarkt åsk̊adliggörs infarkten i MR-bilderna. Frisk muskelvävnad
framställs som gr̊a medan infarkten har en ljusare nyans i de svartvita bilderna.
Genom att analysera bildserier som visar hjärtat p̊a olika niv̊aer kan frisk vävnad
och infarkter klassificeras.

Att rita ut infarkter för hand kräver en gedigen erfarenhet. Det är tidskrävande
och subjektivt beroende p̊a vem som hanterar bilderna. Därför är det av intresse
att analysera bilderna i datorprogram som kan spara tid och ge objektiva resultat.
Infarkten kan d̊a markeras i bilderna och infarktsvolymen beräknas, vilket bist̊ar
läkare i deras arbete.

En metod som används idag för att detektera infarker i MR-bilder utg̊ar fr̊an att
mängden brus i bilderna ligger p̊a ungefär samma niv̊a, oavsett patient och vilken
MR-kamera. Syftet med uppsatsen är att modifiera metoden s̊a att den klarar av
att behandla bilder oberoende av brusniv̊a. Den nya metoden baseras p̊a en al-
goritm som delar upp pixlarna i frisk och skadad vävnad utan antaganden kring
bildkvaliteten.

Den utvecklade metoden har utvärderats p̊a bilder p̊a människor och djur genom att
den beräknade infarktvolymen har jämförts med manuella volymsuppskattningar.
Resultaten stämmer väl överens med varandra. Slutsatsen är att den nya metoden
avsevärt förbättrat detekteringen av infarkter i högupplösta bildserier p̊a djur. Re-
sultaten i levande patienter är likvärdiga med den tidigare metoden under normala
brusförh̊allanden, men har p̊avisat ett bättre resultat i bilder med hög brusniv̊a.
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Abbreviations and Terminology

CMR cardiac magnetic resonance
EM expectation-maximization
Ex-vivo outside the living organism
In-vivo within the living organism
LV left ventricular
LVM left ventricular mass
MO microvascular obstruction
MR magnetic resonance
Myocardium heart muscular tissue
SD standard deviation
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Chapter 1

Introduction

Heart attacks are one of the most common causes of death in the world and heart
disease is one of the most expensive treatments in medical care [1]. When a heart
attack (medically known as a myocardial infarction) has occurred, it is of great
importance to study the extent of the scarred tissue in order to opt for a suitable
treatment.

Magnetic resonance (MR) imaging is a tool that enables physicians to observe inter-
nal body structures non-invasivly. It is the gold standard method for determining
the size of the heart and myocardial infarctions in medicine. Manual segmentation
is time consuming and observer dependent, hence automatic segmentation methods
can be of great use to extract objective information from the images [2].

In the Lund Cardiac MR group two different approaches are used for infarction
delineation, one for patients (in-vivo studies) and another for explanted hearts in
experimental animal studies (ex-vivo studies). Both approaches were presented by
Heiberg et al [3] in 2008. The methods computes the mean and standard deviation
of an area assumed to consist of normal healthy tissue (remote). The pixels are
classified as infarction or remote tissue by calculating a threshold at a fixed number
of standard deviations from the remote mean value. In 2011 Sjögren et al [4] pre-
sented an algorithm for segmentation in images with poorer contrast and showed
that an Expectation-Maximization (EM) algorithm yielded better results than stan-
dard deviations from remote. Therefore the purpose of this study is to investigate
if an EM-algorithm can improve the delineation of myocardial infarctions in both
humans and animals.

1.1 Thesis overview

Chapter 2 in this thesis provides a short medical background to the heart and
cardiac magnetic resonance (CMR) imaging. In Chapter 3 the mathematical theory
is explained. Chapter 4 presents the aim of this thesis. Chapter 5 presents the
methods used and Chapter 6 the validation strategies. The results are presented in
Chapter 7 and Chapter 8 consists of conclusions and discussions.
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Chapter 2

Medical Background

The algorithm developed in this thesis is designed to quantify myocardial infarction,
the size of the heart attack, in the left ventricle as imaged by magnetic resonance.

2.1 Heart anatomy

The heart is a vital organ in the body in order to keep us alive. It is the organ
responsible for pumping blood through the circulatory system in order to supply
the body’s organs with oxygenated blood [5].

The cardiac wall is called myocardium and consists mainly of muscular cells, it
gets its blood supply from the coronary arteries. The myocardium chambers four
cavities; two atria and two ventricles. The inside surface of the myocardium is called
the endocardium and the outer boundary is called epicardium. The left ventricle
(LV) pumps oxygenated blood to the whole body, causing the LV myocardium to
be subject to the highest load and pressure within the heart. It has thicker walls
and demands a higher blood supply than the right ventricle (RV), right atria (RA)
and left atria (LA) [2][5]. A schematic illustration of the heart is shown in Figure
2.1 in the left panel, and an MR image of the four chambers is shown in the right
panel.

2.2 Myocardial infarction

A myocardial infarction is the event of necrosis in the myocardium due to lack of
oxygen, and may lead to serious symptoms and death. The lack of oxygen occurs
due to partially or completely clogged coronary arteries [5]. Myocardial infarctions
often occur in the LV myocardium due to the structure of the coronary arteries.

5
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2.3 Magnetic resonance imaging

The magnetic resonance (MR) camera supplies a magnetic field on the body and
detects the different structures due to the different magnetic properties of the tissues.
It is a method used for visualizing internal images of cross sections inside the body
with a high resolution, without causing any harm to the patients. Cardiac magnetic
resonance (CMR) is the gold standard for measuring the size of myocardial infarction
and of the heart. The right panel in Figure 2.1 shows a long-axis CMR projection
of a human heart.

Figure 2.1: Left panel illustrates the human heart, adopted from [6]. Right panel
shows an MR image of a human heart in long-axis projection, adopted from [2].
The lighter area is blood and the surrounding darker area is the myocardium. LA
is the left atrium, RA the right atrium. RV is the right ventricle and LV is the left
ventricle.

In order to visualize and quantify the myocardial infarction, contrast enhanced
CMR images in the short-axis projection are used. They are acquired by injecting
the patient with a contrast substance that is absorbed by the scarred tissue. This
results in infarcted myocardium with lighter intensities compared to the darker
healthy myocardium.

2.3.1 Ex-vivo and In-vivo imaging

Ex-vivo images are obtained by imaging explanted hearts, while in-vivo images
are captured within a living patient. The main difference between ex-vivo and
in-vivo images is the resolution. Ex-vivo captions allow clear images with a high
resolution (about 0.5×0.5×0.5 mm), a typical image set consists of over 150 short-
axis image slices. In-vivo sets usually has a resolution of 1.5×1.5×8 mm, consists
of 12 slices, and they are noisier than the ex-vivo images. The patient’s breathing
and movements from heartbeats is the source of this extra noise. Despite fewer
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slices than in ex-vivo data sets, manual delineation in in-vivo data sets is still time
consuming and observer dependant. Figure 2.2 shows an example of the short-axis
projection to the left, an ex-vivo animal infarction segmentation in the middle and
an in-vivo human segmentation to the right.

2.3.2 Imaging artifacts

The presence of noise in the CMR images is a challenge that has to be overcome in
order to implement an automatic segmentation algorithm. Noise is captured in all
measurements, but it can be more or less present depending on facts such as camera
settings and movements during the image acquisition.

The contrast substance is injected into the patient so that the infarction can be
visualized in the CMR images. In some cases the contrast is not completely dis-
tributed within the infarction due to obstruction on a microvascular level. This
leads to a dark core surrounded by light intensities. The phenomenon is called mi-
crovascular obstruction (MO) and occurs in both humans and animals. MO should
be classified as infarction despite its dark color in the images.

Another event that may occur due to the contrast substance is the visualisation
of artifacts. The contrast is not exclusively absorbed by the scarred myocardium,
which may result in lighter areas that should not be classified as infarctions. Exam-
ples of sources of artifacts are blood vessels, movements while capturing an image or
camera settings. Artifacts that are detected by automatic segmentation algorithms
must be manually removed by experienced observers afterwards. The right panel
in Figure 2.2 show a human in-vivo image with both MO and detected artifacts
present.

2.4 Software

Segment is a validated software for cardiovascular image analysis that is freely
available for research and educational purposes. It is developed in Matlab by the
Lund Cardiac MR group at Lund University, and a commercial version is sold by the
spin-off company Medviso (http://segment.heiberg.se). The software is especially
developed for MR images, but has expanded to also handle other cardiac imaging
techniques. All cardiac image analysis in this thesis are carried out in Segment
v. 1.9 [7] and the developed algorithms are based on a framework from previous
methods in the software.
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Figure 2.2: Left panel shows a 3D model of the LV epicardium of a pig with an il-
lustration of the position of a short-axis projection. Middle panel shows an example
of an ex-vivo CMR image of a pig heart in short-axis projection with a segmented
myocardial infarction in yellow. Right panel shows a short-axis projection of a hu-
man heart in-vivo, with MO viewed as a dark core inside the infarction area. Green
indicates the epicardium and red lines the endocardium. Yellow lines illustrates
infarction segmentation. Purple lines shows areas that are detected by the segmen-
tation algorithm but should be considered artifacts rather than infarction.



Chapter 3

Mathematical Theory

In image analysis, segmentation is the task of distinguishing different objects or
patterns from each other within a picture [8]. With our eyes, we easily categorize
different structures and objects in images. It may be the presence of a face, a pair
of shoes, a red dot or an area of bright myocardium in a CMR image. For comput-
ers to automatically execute the same task, different segmentation techniques are
required. The technique used in this thesis is segmentation based on clustering.

Clustering is the task of determining which components of a data set that nat-
urally belong together [8]. Applying this to CMR imaging, the components are
pixels and the data set consists of one or more images. The task is to partition the
pixels into two groups; normal myocardium and scarred myocardium in the CMR
images. All images are gray scaled and represented as a matrix where each element
represents a pixel. All pixel intensities in the images are normalized between 0 and
1, where 0 corresponds to black pixels and 1 corresponds to white.

This chapter presents the mathematical theory used in this thesis. The outline
is as follows:

1) The CMR images are assumed to consist of a mixture of Gaussian distributed
pixel intensities.

2) A threshold that separates the healthy tissue from the scarred tissue is computed
by implementing the k-means algorithm and the EM-algorithm into the weighted
method, in order to delineate the infarction and compute its volume.

3) Otsu’s method is used for distinguishing image slices that are completely in-
farcted from slices consisting of only healthy tissue.

4) The SD from remote method is noise sensitive and, when applied on ex-vivo
images, time consuming. It would preferably be replaced by an automatic segmen-
tation method.

9
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3.1 Gaussian mixture densities

When data from two or more Gaussian distributions are mixed into one single data
set, the set is said to consist of a Gaussian mixture density.

Definition 3.1.1. A Gaussian mixture density p(x|µ, σ) is the weighted sum of
K ≥ 2 Gaussian probability densities

g(x|µi, σi) =
1√

2πσ2
i

· exp
{
− (x− µi)

2

2σ2
i

}
, i=1,...,K

with mean µi and standard deviation σi,

p(x|µ, σ) =
K∑
i=1

αi · g(x|µi, σi)

where x is a data vector and αi is the components weights with
∑K

i=1 αi = 1 [8].

Figure 3.1 illustrates an example of a Gaussian mixture density p(x|µ, σ) with K = 3
components g(x|µi, σi).

Figure 3.1: The black line shows an example of a Gaussian mixture density with
K=3 components. The purple, blue and red lines shows the corresponding weighted
Gaussian probability densities.
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3.2 The k-means clustering algorithm

The k-means algorithm is an iterative method that partitions N data components
into K clusters so that each data point belongs to the cluster with the closest cluster
center [9]. The pseudocode for the k-means method with the input data vector x
is given in Algorithm 1. If no a priori information for the initial guess of cluster
centres is available, the Forgy initialization [10] that chooses K random centres from
the data vector x can be applied.

Data: Vector x containing N components to be partitioned.
Result: A data vector classifying each component in x to a cluster

i = 1, ..., K and K different cluster centers c1, ..., cK .
Initialization: determine K initial cluster centres c

(0)
1 , ..., c

(0)
K .

Convergence criteria: When the assignments does not change any more.
while no convergence do

Assignment step;
Find the cluster centre ci with the least euclidean distance to each
component. Assign every component to cluster i = 1, ..., K accordingly.
l
Update step;
Find the mean of all components assigned to each cluster and update the
cluster centres c1, ..., cK to the corresponding mean value.

end
Algorithm 1: K-means algorithm [9].

3.3 Expectation-maximization algorithm

The Expectation-Maximization (EM) algorithm is an iterative method that esti-
mates the parameters θ in statistical models, where some data the model depends
on are unknown. It alternates between conducting two steps until convergence is
reached; the expectation step (E-step) and the maximization step (M-step) [11]. In
this section the EM-algorithm for Gaussian mixture densities will be described.

Assume that the data x = [x1, ..., xN ] is given. The unknown data is the vector
z = [z1, ..., zN ] that indicates which class k = {1, ..., K} each element in x belongs
to.

xi|(zi = k) ∼ N(µk, σk), i=1,...,N

P (zi = k) = αk, where
K∑
k=1

αk = 1.
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The aim is to estimate the parameters θ = (α, µ, σ), where α = {α1, ..., αK},
µ = {µ1, ..., µK} and σ = {σ1, ..., σK}.

The initialization of the algorithm is to guess the initial parameters θ(0). The E-
step is carried out by calculating the weighted normal probability density functions
αk · g(x;µk, σk) and classifying each data component xi to the class k by computing
the responsibilities

γk,i =
αk · g(xi;µk, σk)∑K
l=1 αl · g(xi|µl, σl)

=
p(xi|θ(t)k )∑K
l=1 p(xi|θ

(t)
l )

for each class k (Figure 3.2).

Figure 3.2: Dashed lines represent the remote (g1) and scar (g2) probability densities
and their corresponding responsibility curves γ1 and γ2 are presented as solid lines.

In the M-step the parameters θ(t+1) are updated for k = 1, ..., K as

α
(t+1)
k =

∑N
i=1 γ

(t)
k,i

N
,

µ
(t+1)
k =

∑N
i=1(γ

(t)
k,i · x)∑N

i=1 γ
(t)
k,i

and

σ
(t+1)
k =

∑N
i=1 γ

(t)
k,i ·

(
x− µ(t+1)

k

)T (
x− µ(t+1)

k

)∑N
i=1 γ

(t)
k,i

.
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Convergence is reached when the log-likelihood function

logL(θ;x, z) = logP (x, z|θ) =
N∑
i=1

log

[ K∑
k=1

γk,i

]
is constant [11]. Algorithm 2 illustrates the procedure.

Data: Vector x containing N components to be partitioned.
Result: The parameters θ = (α, µ, σ) for each class.
Initialization: Determine an initial guess θ(0) = (α(0), µ(0), σ(0)).
Convergence criteria: When the log-likelihood function has converged.
while no convergence do

Expectation step;

Estimate the probability densities g(x|θ(t)) and compute the
responsibilities;
for all components i = 1, ..., N do

for all classes k = 1, ..., K do

γk,i =
p(xi|θ(t)k )∑K
l=1 p(xi|θ

(t)
l )

l
end

end
Maximization step;
Update the parameters θ for the new classification.
for all classes k = 1, ..., K do

l

α
(t+1)
k =

∑N
i=1 γ

(t)
k,i

N
l
l

µ
(t+1)
k =

∑N
i=1 γ

(t)
k,i · x∑N

i=1 γ
(t)
k,i

l
l

σ
(t+1)
k =

∑N
i=1 γ

(t)
k,i ·

(
x− µ(t+1)

k

)T (
x− µ(t+1)

k

)∑N
i=1 γ

(t)
k,i

l
end

end
Algorithm 2: EM-algorithm for Gaussian mixture densities [8].
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3.4 Otsu’s method

Otsu’s method is an automatic method for clustering gray scaled pixels in an im-
age into two classes by computing a threshold that divides the two classes. The
threshold is calculated by exhaustive search, so that the variance within the classes
is minimized [12]. Algorithm 3 presents the procedure.

Data: Gray scale image with N pixels to be partitioned.
Result: The threshold k∗ that separates the two classes.

Initialization: Compute the probabilities pi =
ni

N
for each pixel intensity (ni

is the number of pixels with intensity i) and µT =
∑

i(i · pi).
for all possible thresholds k (the range of all pixel intensities) do

ω(k) =
∑k

i=0 pi
µ(k) =

∑k
i=0(i · pi)

σ2
B(k) =

(µT · ω(k)− µ(k))2

ω(k)(1− ω(k))
end
The optimal threshold k∗is the k that corresponds to the maximum σ2

B(k).
Algorithm 3: Otsu’s Method [12].

3.5 Standard deviations from remote method

The standard deviations (SDs) from remote method is a method used for the quan-
tification of myocardial infarction in CMR images [3]. The method requires that
an area assumed to consist of healthy remote myocardium is defined. The method
detects infarctions in the LV-myocardium by computing a threshold as the mean
of the intensities in the remote region plus a fixed number of k standard deviations
(SD). All pixel intensities with a larger value than the threshold is considered to be
infarcted myocadrium.

When the SD from remote method is applied to ex-vivo images, the method requires
that an observer manually delineates two regions in each image slice; a remote re-
gion and a myocardium of interest region [13]. The myocardium of interest region
defines the area of myocardium where an infarction is suspected to be present (Fig-
ure 3.3). The fixed number k is empirically defined to k = 8 [3]. All pixels within
the myocardium of interest region with a higher intensity than the threshold are
defined as scarred myocardium. Algorithm 4 summarise the method.
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Figure 3.3: Short-axis ex-vivo CMR image slice with manually drawn regions of
interest marked with blue lines.

Since the SD from remote method applied on ex-vivo CMR images is semi-automatic
and requires manually drawn areas of interest in over 150 image slices, it is desired
to implement an automatic segmentation method for ex-vivo images to replace it.
An implementation of the SD from remote method is also used in the weighted
method for in-vivo infarction segmentations. It is desired to use another method
for in-vivo data as well, since it can not be concluded that the same fixed number
k suits for every image set.

Data: Data set of CMR images
Result: The volume of scarred myocardium in % of left ventricular mass.
Initialization: Contours that defines the LV myocardium and manually
drawn areas of interest.
for each slice in the data set do

1. Compute the mean µ and SD σ of the pixel intensities in the remote
region.
2. Calculate the threshold = µ+ k · σ and define all pixels within the
myocardium of interest region with a higher intensity than the threshold
as scarred pixels.
3. Calculate the infarction volume.

end
Algorithm 4: SD from remote method for ex-vivo images [3] [13].
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3.6 Weighted method

The weighted method is a method for automated quantification of myocardial in-
farctions in in-vivo CMR images that takes partial volume effects into account [3].
Partial volume effects occur due to variability in the shape and spread of an infarc-
tion between two image slices, and must be taken into account in order to estimate
an accurate infarction volume, see Figure 3.4. The method detects contrast en-
hanced infarctions in the left ventricular (LV) myocardium by defining a region of
remote healthy myocardium and computing a threshold as the mean of the remote
intensities plus a fixed number of k SDs. The fixed number k is empirically defined
to k = 1.8 for in-vivo studies [3].

All pixel intensities above the threshold are defined as scarred myocardium and
weighted according to their intensities in order to compensate for partial volume
effects, then post-processing is performed in order to remove very small infarction
areas and include microvascular obstruction. Algorithm 5 summarises the method
and Figure 3.4 illustrates the idea behind partial volume effects and how the weight-
ing of the pixels is applied.

Figure 3.4: Adopted from [3]. Description of partial volume weighting of an image
from a computer-generated phantom. Left: Short-axis view of 8-mm-thick section
with partial volume effects. Top right: True profile along the marked horizontal line
in the short-axis image. Middle right: Sampled thick section with partial volume
effects. Bottom right: Resulting infarction weight by using the weighted approach.
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Data: Data set of CMR images
Result: The volume of scarred myocardium in % of left ventricular mass

(LVM)
Initialization: Contours that defines the LV myocardium.
for each slice in the data set do

1. Divide the LV myocardium into four equally sized sections. Compute
the mean µ and SD σ for each section and define µremote as the minimum
computed µ.
2. Calculate the threshold = µremote + k · σremote and define all pixels
with a higher intensity than the threshold as scarred pixels.
3. Apply a fast-level algorithm [14] with the speed term as a value
calculated by subtracting the section-specific threshold level from the
pixel intensites.
4. Remove infarction regions that are isolated and smaller than 1.5 cm3,
unless it is the only infarction region in that slice or if the volume consists
of more than 1% of the LVM. If present, include MO into the scarred
region.
5. Calculate the infarction volume by weighting each pixel linearly
proportional to its intensity.

end
Algorithm 5: Weighted method [3].





Chapter 4

Aim

The aim of this thesis is to develop and validate a fully automated segmentation
algorithm for quantification of myocardial infarction in contrast enhanced CMR
images, based on an Expectation-Maximization (EM) algorithm. The purpose is
to study whether an EM-algorithm can improve the delineation of infarctions in
human and animal studies, compared to the previous suggested segmentation algo-
rithms that use a fixed number of standard deviations from remote to determine
the classification of pixels.

The specific aims are the following:

• Develop an EM-algorithm for classification of normal and scar myocardium in
CMR images.

• Implement the developed EM-algorithm into the framework of the previous
suggested method (the weighted method).

• Validate the performance of the new method in both humans and animals.

• Implement the new method into the software Segment.
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Chapter 5

Method

The segmentation algorithms developed in this thesis are based upon the frame-
work of the weighted method implementation in Segment. The modification of the
method is the computation of the threshold that separates healthy and scar pixels,
described as step 1 and 2 in Algorithm 5. An EM-algorithm provides the Gaussian
probability densities for the healthy and scarred myocardium, based on a threshold
which can be calculated in order to delineate the scar tissue. The computation
of the infarction volume in the image set is executed by an already implemented
function in Segment.

All pixel intensities in the images are normalized between 0 and 1, where 0 cor-
responds to black pixels and 1 corresponds to white. The algorithm only takes the
pixels within the delineated LV-myocardium into account. Weighting is not used
on ex-vivo CMR since there are so many image slices at such a short distance from
each other that the partial volume effects are assumed to be negligible. Figure 5.1
illustrates the complete method.

Figure 5.1: Overview of the implemented algorithm.
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5.1 Algorithm requirements

Before implementing the segmentation algorithm, requirements were established.
The goal was to implement new functionality and to fit the developed algorithm
into the framework of the weighted method.

The algorithm must be able to:

• Cluster the myocardium intensities into two classes with the EM-algorithm;
healthy and scarred regions.

• Detect if an image slice contains one or two classes.

• Decide whether an image slice with one class consists of 100% healthy or
scarred myocardium.

• Be implemented into the framework of the weighted method.

The requirements where established based on the aim presented in Chapter 4,
the imaging artifacts presented in Section 2.3.2 and the requirements of the EM-
algorithm itself.

5.2 EM-algorithm implementation

The EM-algorithm was straight forward implemented according to Algorithm 2,
but with a modified convergence criteria that is further described in the subsection
below. The initial guess of the parameters θ(0) = (α(0), µ(0), σ(0)) was obtained by
the k-means algorithm. The output of the k-means algorithm, a vector classifying
each pixel to a cluster, allows the EM-algorithm to compute θ(0) by calculating the
size of each class in percentage as α(0), and taking the mean and standard deviation
of each class as µ(0) and σ(0). The initial guess for the k-means algorithm was the
5th and 95th percentile of the pixel intensities. The percentiles are calculated by
sorting the vector with pixel intensities and dividing it in 100 equally sized spaces
consisting of 1% of the data. The 5th percentile is the boundary point that divides
the lowest 5% of the intensities from the 95% highest intensities. Accordingly, the
95th percentile is the point that divides 95% of the lowest intensities from the
highest 5%.

5.2.1 Convergence criteria

The theoretical convergence criteria for the EM-algorithm is when the log-likelihood
function log L(θ;x, z) no longer changes [11]. Implementing this criterion gives good
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results on artificial phantom data. However, when analysing CMR image sets in the
Segment software the convergence appears to be very slow and the computer often
experience run time instabilities. An alternative convergence criterion was therefore
implemented.

The EM-algorithm classifies all pixels intensities in the E-step in each iteration.
When 0.05% or less of the pixels changed class during the last five iterations, the
algorithm was considered to have reached convergence. This approach gives classi-
fications in agreement with the log-likelihood convergence criteria and works well
when implemented into Segment.

5.3 Detection of the number of clusters

Prior to the start, the EM-algorithm needs the information about the number of
classes K it should cluster the data into. This is indicated to the EM-algorithm
by the number of elements in θ(0). In a CMR image set with myocardial infarction
there are often image slices that contain scarred tissue and some that do not. There
may also occur slices where all myocardium is scarred.

There are two ways to analyse the image data. If the LV segmentations in all slices
are analysed as one data set one can assume it has two clusters. When analysing
each slice separately the number of clusters must be detected before applying the
EM-algorithm. If only one cluster is found it is important to classify the slice as
completely healthy or scarred in order to get the correct infarction delineation and
to compute an accurate infarction volume.

To detect whether two components are present in the current slice, the data is
clustered into two classes by the k-means algorithm. The k-means clustering allows
two Gaussian densities to be estimated. The distance d between the means of the
densities, expressed in the number of standard deviations, is calculated for each slice
and stored in the vector d (Figure 5.2). The vector d is then scaled into

D =
d− dmin

dmax − dmin

where dmin is the minimum value and dmax is the maximum in d. By analysing all
scaled distances D in an image set, conclusions of the number of clusters in a slice
can be drawn. If the scaled distance in an image slice is small compared to the
rest of the elements in D, it can be assumed to consist of one cluster since the two
Gaussian probability densities are so close to each other that the data are better
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represented by one density curve. If the scaled distance is larger than the average
elements in D it can be assumed to consist of two clusters. A limit for when the
distance is large enough to conclude that a specific slice contains two clusters can
be computed by clustering the elements in D with Ostu’s method [12], resulting in
a threshold limit k∗. Each element in D is then compared to the threshold limit
k∗. All slices with a scaled distance that is larger than k∗ is considered to have two
clusters, and one cluster otherwise.

In order to determine whether an image slice with one cluster is completely healthy
or scarred, further analysis is required. This is done after the slices with two clus-
ters are segmented, so that data of normal and scar pixel intensities are available.
The mean of the pixel intensities is stored for each slice considered to consist of
one class, and compared to the mean of all final thresholds that are computed with
the EM-algorithm in the slices with two clusters. If the mean of the intensities is
larger than the mean of all thresholds, that particular image slice is considered to be
completely infarcted. If it is smaller than the mean of all thresholds it is considered
to consist of only healthy myocardium.

Figure 5.2: Illustration of two probability density curves. The means are represented
by red and blue dashed lines. The black dashed line show the distance between the
means. The thin dashed lines show one SD from remote in both directions.
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5.4 Threshold calculation

In the slices where it is determined that two clusters are present, the EM-algorithm
is applied in order to estimate two Gaussian distributions within the myocardium.
The responsibility curve of the scar density is then calculated and the threshold
is set to the pixel intensity where the scar responsibility curve has the value 0.5
(Figure 5.3).

Figure 5.3: Illustration of two estimated probability densities and the scar respon-
sibility curve. The black dashed line shows the threshold. All pixels with larger
intensity than the threshold are classified as scar tissue.

5.5 Final implementation of algorithm

Two different algorithms were implemented in this thesis. One of the algorithms
analyses each slice separately and is called the slice method, it is described in Algo-
rithm 6. The second implementation is called the set method. The latter analyses
all slices as one data set and is described in Algorithm 7. Both methods allows the
observer to manually correct erroneous segmentations afterwards.
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Data: Data set of CMR images.
Result: The volume of scarred myocardium [% LVM].
Initialization: Contours that defines the LV myocardium.
for each slice in the data set do

1. Cluster the data into two classes with the k-means algorithm.
2. Estimate the number of clusters K in the slice.
if K=2 then

3. Estimate the probability densities of the data with the
EM-algorithm. Use the result from step 1 as initialization.
4. Calculate the threshold for this slice and store it.

end

end
5. Analyse whether the slices with one cluster consists of scar or healthy
tissue.
6. Segment each slice according to its threshold.
7. Remove infarction regions that are isolated and smaller than 1.5 cm3,
unless it is the only infarction region in that slice or if the volume consists of
more than 1% of the LVM. If present, include MO into the scarred region.
8. Calculate the infarction volume.
if In-vivo data then

9. Weight each pixel linearly proportional to its intensity.
end

Algorithm 6: The slice method.
l

Data: Data set of CMR images.
Result: The volume of scarred myocardium [% LVM].
Initialization: Contours that defines the LV myocardium.
1. Cluster the data into two classes with the k-means algorithm.
2. Estimate the probability densities of the data with the EM-algorithm. Use
the result from step 1 as initialization.
3. Calculate the threshold for the data and segment the infarction.
4. Remove infarction regions that are isolated and smaller than 1.5 cm3,
unless it is the only infarction region in that slice or if the volume consists of
more than 1% of the LVM. If present, include MO into the scarred region.
6. Calculate the infarction volume.
if In-vivo data then

7. Weight each pixel linearly proportional to its intensity.
end

Algorithm 7: The set method.
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5.6 Attempted approaches

Before reaching the final algorithms, some approaches that did not make it to the
final implementations where studied and tested.

Different approaches for finding the number of Gaussian distributions contained
within the image data were tried out during the development of the algorithms in
this thesis without success. The performance of the jump method [15], a technique
to determine the number of clusters in a data set by means of information theory,
was implemented and tested on a number of CMR images unsuccessfully. Another
unsuccessful approach was to analyse the histogram of the data and try to fit Gaus-
sian mixtures with varying components onto a smoothed histogram function.

A full width half maximum (FWHM) approach [16] has also been implemented into
the weighted method as an alternative threshold computation to the EM-algorithm.
The performance of the FWHM with weighting did not differ enough from the
weighted method based on SDs from remote for it to be studied further.

The possibility that the pixel intensities might consist of a Gaussian mixture with
K = 3 components when MO is present in an image slice was investigated. Analysis
of the pixel intensities in the MO area suggests that they had the same properties as
the healthy myocardium, hence no implementation for Gaussian mixtures for three
components was developed.





Chapter 6

Validation

Two kinds of segmentation algorithms were developed in this thesis; one that anal-
yses each image slice in a data set separately (Algorithm 6: the slice method), and
one which takes the data in all slices into account at once (Algorithm 7: the set
method). Due to the differences between ex-vivo and in-vivo CMR images regarding
resolution and the amounts of image slices in a data set, they need to be studied
and validated separately. The performance of the methods proposed by Heiberg et
al. [3]; 8 SDs from remote for ex-vivo data and the weighted method with 1.8 SDs
from remote for in-vivo data are also studied for comparison.

The validation is performed on the same CMR images that were studied in [3].
The images originate from two MR cameras from different manufacturers. The
results of the methods are compared to a reference standard. The algorithm perfor-
mance was measured by linear regression and by computing the difference in scar
volume between the methods and the reference standard (Bland-Altman analysis).
Differences are presented as mean ± SD in percent of LVM.

6.1 Phantom data

The performance of the EM-algorithm was validated by measuring the percentage
of erroneous classified pixels on artificially created images, so called phantom data,
consisting of a Gaussian mixture density with two equally sized components and
known representative means and SDs according to ex-vivo animal data. Figure 6.1
shows a phantom image and an illustration of its optimal classification.

6.2 Ex-vivo animal data

The ex-vivo study included 18 explanted pig hearts with experimentally induced
infarction by occlusion of the left anterior descending artery. Segmentations using
8 SDs from remote with manual corrections made by an experienced medical pro-
fessional were used as reference standard. The algorithms were evaluated as the
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Figure 6.1: Left panel show a phantom image used to validate the EM-algorithm.
Right panel illustrates how each pixel in the phantom should be classified if the EM-
algorithm performed flawlessly. Black corresponds to the first class and white to the
second class.

difference in scar volume between the new proposed methods based on the EM-
algorithm and the reference standard.

6.3 In-vivo human data

The in-vivo study included 40 patients, 36 men and 4 women. The mean vol-
ume of manual delineations from three independent observers was used as reference
standard. The observers had extensive experience in delineating CMR images and
they used the same LV-segmentation, that is, the same pixels where investigated.
Weighting was used in the algorithms in order to compensate for partial volume
effects.

Three levels of Gaussian noise was added to each subject in order to investigate
the performance of the methods for increasing noise. Figure 6.2 shows an in-vivo
CMR image with a manual delineation for three levels of noise.

Figure 6.2: Short-axis human in-vivo CMR image with the reference standard in
yellow for three different levels of noise.



Chapter 7

Results

7.1 Phantom segmentations

The performance of the EM-algorithm is measured by applying it to phantom image
data, presented in Chapter 6.1. Three phantoms with 100×100 pixels are shown in
Figure 7.1 together with an illustration of the classification results and the Gaussian
distributions.

Figure 7.1: Left column shows the generated phantoms with a fixed number of SDs
from remote between the means of the classes. Middle column illustrates the esti-
mated classification of each pixel after applying the EM-algorithm. Right column
shows the true Gaussian distributions of the classes in red, while the estimated dis-
tributions are presented as black dashed lines. Top row shows consists of a Gaussian
mixture with 2 SDs from remote, second row with 4 SDs from remote and third row
with 8 SDs from remote.
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The segmentation results in the phantoms, measured in percentage of incorrectly
classified pixels for 1 to 10 SDs from remote, are showed in Table 7.1 together with
the percentage of area that overlaps in the true Gaussian probability densities, see
Figure 7.2. The presented values are the average percentages after running the al-
gorithm 100 times. The percentage of the erroneously classified pixels lies close to
the percentage of the area that overlaps in the true Gaussian distributions.

Figure 7.2: Illustration of the overlap between two Gaussian probability densities,
marked in blue.

SDs from remote Error [%] Overlap [%]
1 35 33
2 23 21
3 12 12
4 5.8 5.8
5 2.5 2.5
6 1.0 0.95
7 0.3 0.3
8 0.09 0.09
9 0.02 0.02
10 0.005 0.005

Table 7.1: Left column shows the number of standard deviations from remote of
the components in the phantoms. Middle column shows the average percent of erro-
neously classified pixels. Right column shows the percentage of the area that overlaps
in the true Gaussian distributions.
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7.2 Ex-vivo segmentations

The reference standard for ex-vivo segmentations is 8 SDs from remote with man-
ual corrections. An example of the different segmentation results for the reference
standard, 8 SDs from remote, slice method and set method is shown in Figure 7.3.

Figure 7.3: An example of infarction segmentations by the reference standard, 8 SDs
from remote and slice method.

Figure 7.4 shows the linear regression curve and the Bland-Altman analysis for
8 SDs from remote, the slice method and set method applied on the 18 studied
subjects.

The results of the linear regression and Bland-Altman analysis between the com-
puted infarction volumes and the reference standard volumes are presented in Table
7.2. Differences are expressed as mean ± SD in percent of LVM. The slice method
yields the best fit to the linear regression curve and the lowest bias.

Analisys method R2 Bias
8 SDs from remote 0.87 -7.3 ± 5.0
The slice method 0.93 -1.4 ± 4.7
The set method 0.93 -4.8 ± 4.2

Table 7.2: Ex-vivo results.
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Figure 7.4: Results for the ex-vivo data. Left column shows the linear regression
curve, right column shows the Bland-Altman plot. Top row: 8 SDs from remote.
Middle row: Slice method. Bottom row: Set method.
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7.3 In-vivo segmentations

The reference standard for in-vivo segmentations is the mean volume from three
manual delineations. An example of the different segmentation results for the ref-
erence standard, the weighted method with 1.8 SDs from remote, slice method and
set method is shown in Figure 7.5. Figure 7.6 shows the linear regression curve and
the Bland-Altman analysis for the weighted method with 1.8 SDs from remote, the
slice method and set method applied on the 40 studied subjects.

Figure 7.5: An example of infarction segmentations by the weighted method, slice
method and set method compared and the reference standard.

The results of the linear regression and Bland-Altman analysis between the com-
puted infarction volumes and the reference standard volumes are presented in Table
7.3. Differences are expressed as mean ± SD in percent of LVM. The weighted
method with 1.8 SDs from remote yields the best fit to the linear regression curve
and the lowest bias.

Analysis method R2 Bias
1.8 SDs from remote 0.95 0.4 ± 2.9

Slice method 0.85 -2.2 ± 5.1
Set method 0.93 -0.7 ± 3.5

Table 7.3: In-vivo results.
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Figure 7.6: Results for in-vivo data. Left column shows the linear regression, right
column shows the Bland-Altman plot. Top row: Weighted method with 1.8 SDs from
remote. Middle row: Slice method. Bottom row: Set method.
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7.4 Noise sensitivity

The performance of the weighted, slice and set method for increasing levels of added
Gaussian noise is illustrated in Figure 7.7. Top row show an example of the noise
levels, bottom row show the mean bias and variability in percent of LVM.

Figure 7.7: Top row show an example of the reference standard for three different
levels of added nois;, no added noise (left panel), low level of noise (middle panel)
and high level of noise(right panel). Bottom row show the mean bias and variability
for the weighted method, slice method and set method for increasing amount of noise.

The weighted method presents the lowest variability and is the most sensitive
method to the added noise. The slice method presents a slightly higher variability
than the weighted method, and its mean bias is consistently low for all noise levels.





Chapter 8

Conclusion and Discussion

This thesis presents two implemented methods for segmentation of myocardial in-
farction in CMR images, based on an EM-algorithm. The developed algorithms
has been implemented into the framework of the weighted method and the Segment
software, and the results have been validated on phantom data, ex-vivo CMR images
and in-vivo CMR images. In this chapter the results are discussed and conclusions
are drawn.

8.1 Discussion

An EM-algorithm has been implemented and validated on phantom data. The re-
sults suggest that the algorithm detects the components in the Gaussian mixtures
with a high accuracy. The more overlap the estimated components have, the more
pixels are classified incorrectly. By looking at the true and estimated probability
density curves in Figure 7.1 and Table 7.1, the incorrect classification does not seem
to be caused by poor probability density estimations, but rather because an overlap
creates a theoretical area of uncertainty where a single threshold can not properly
distinguish the two components.

The developed EM-algorithm has been implemented into two variants of the weighted
method. The slice method analyses and computes a threshold for each image slice in
a data set. The set method takes all slices into account at once, calculating a single
threshold that is applied to all slices. Both methods have been implemented into
the framework of the weighted method implementation in the software Segment,
and validated on ex-vivo and in-vivo images.

The results suggest that the set method improves the segmentation of myocar-
dial infarction in both ex-vivo and in-vivo images compared to the previous method
based on a fixed number of standard deviations from remote. The slice method
improved the segmentation in ex-vivo data even further, and no prior manual inter-
action with the images is required any more. Apart from the abolished requirement
of time-consuming manually drawn areas of interest in each image slice, the im-
provement can also been concluded by studying the R2 value from linear regression
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and the bias from Bland-Altman analysis. Both new methods tends to underesti-
mate the scar volumes for ex-vivo and in-vivo data.

In in-vivo images the detection of the number of clusters within a slice does not
perform very well, resulting in a suboptimal infarction quantification. The detec-
tion works well for ex-vivo data, but tends to fail in very noisy images. A reason
that the detection does not work as well for in-vivo CMR images might be due to
the fact that Otsu’s method calculates a global threshold based on only 12 slices,
which might be too little data. A disadvantage of the set method is that it might
experience difficulties in classifying the pixels correctly if the noise levels differs be-
tween the image slices within the same set.

The set method performs slightly worse than the original weighted method with
1.8 SDs from remote under normal noise levels. When adding Gaussian distributed
noise to the images, the set method maintained its low bias and variability while
the previous weighted method’s bias increased accordingly to the noise levels. This
suggests that a segmentation method based on an EM-algorithm is more robust to
different signal to noise ratios.

The run time for both the slice and the set method are good enough to outper-
form the time needed for manual delineations, an image set is delineated in about
10-30 seconds depending on the number of image slices and noise levels.

8.1.1 Limitations

The data studied in this thesis is the same that was used in the paper that proposed
the weighted method [3]. The reason that the implemented methods based on an
EM-algorithm do not consistently outperform the previous method might be that
the weighted method was developed based on these data.

The slice and the set method are both designed assuming that an infarction has
occurred in the studied CMR image sets. This is a limitation since studies of CMR
image sets where no myocardial infarctions have occurred are forced to detect an
infarction anyway. From Figure 7.3 it can be concluded that the methods is able
to handle cases where there is no or very little infarction. This is due to the post
processing removing incoherent infarction areas, suggesting that this limitation can
be overcome in subsequent processing steps.
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8.1.2 Future work

The detection of the number of clusters within a slice does not work properly for
in-vivo data and for very noisy ex-vivo data in the slice method. The development
of a method that better analyses each image slice and detects the presence of a
myocardial infarction correctly regardless of the noise level might improve the per-
formance of the in-vivo quantification algorithm.

The next step for developing the segmentation algorithm further regarding the med-
ical use would be to add a tool that detects which vessel that caused the myocardial
infarction. A priori information about the heart and the cardiovascular system could
then lead to the ruling out of artifacts as infarctions by studying the physiologically
possible areas of infarction in the myocardium.

There is no guarantee that the data actually is distributed according to a Gaussian
mixture density model. It would be an idea to study other density mixtures for
comparison, such as a Rician-Gaussian mixture model since the noise in MR images
are Rician distributed [17].

8.2 Conclusions

The overall results suggest that the implemented methods are equivalent to, or an
improvement over thresholding with a fixed number of SDs from remote.

The implemented EM-algorithm outperforms previously used SD from remote method
for ex-vivo data. Both the slice and the set method show good agreement and low
bias with the reference standard. The slice method appears to have a slightly lower
bias than the set method. Both methods tends to underestimate the infarction
volume. The previously used SD from remote method was semi-automatic since it
required manually drawn areas of interest in over 150 image slices. The new methods
are automatic and do not require any manual interaction prior to the application
of the algorithms, which significantly reduces the time spent by the observer when
quantifying infarctions in ex-vivo data.

For in-vivo images, the slice and the set method with weighting shows good agree-
ment and low bias with the reference standard. Both tend to underestimate the
infarction volume. The set method outperforms the slice method.

The ordinary weighted method with 1.8 SDs from remote showed the lowest bias and
the best fit in the linear regression, but it presented increasing bias with increasing
amounts of noise. The set method showed low bias regardless of the noise level.
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The set method is theoretically more robust to noise than the ordinary weighted
method is, and they perform equally under normal noise levels.

In conclusion, two methods based on a developed EM-algorithm was presented and
implemented into the framework of the weighted method. The automatic slice and
the set method outperformed the previous used semi-automatic 8 SDs from remote
method in ex-vivo CMR images, and the set method outperformed the weighted
method with 1.8 SDs from remote in in-vivo CMR images regarding robustness to
different noise levels. Both implemented methods in this thesis show potential for
fully automatic quantification of myocardial infarction in high resolution contrast
enhanced CMR images.



Bibliography

[1] Marcus Carlsson, ”Aspects on Cardiac Pumping”, Faculty of Medicine Doctoral
Dissertation Series 2007:47, Doctoral Thesis at the Department of Clinical
Physiology, Faculty of Medicine, Lund University, 2007, ch. 1, pp. 1-2.

[2] Helen Soneson, ”Methods for Quantitative Analysis of Myocardial Perfusion
SPECT, Validated with magnetic resonance imaging, phantom studies and
expert readers”, Doctoral Thesis at the Centre for Mathematical Sciences at
Lund University, 2012, ch. 2, pp.3-5.

[3] Heiberg et al. ”Automated Quantification of Myocardial Infarction from MR
Images by Accounting for Partial Volume Effects: Animal, Phantom and Hu-
man Study”. Radiology vol. 246, no. 2, pp. 581-588, February 2008.

[4] Sjögren et al. ”Semi-automatic segmentation of myocardium at risk in T2-
weighted cardiovascular magnetic resonance” in Journal of Cardiovascular
Magnetic Resonance 14:10, 2012.

[5] Eric P. Widmaier, Hershel Raff, Kevin T. Strang, ”Cardiovascular Physiology.
Section B: The Heart” in Vander’s Human Physiology: The Mechanisms of
Body Function, 11th edition, New York, McGraw-Hill, 2008, ch. 12, pp. 360-
367 and 422-424.

[6] Collaborative. ”The Human Heart”, http://en.wikipedia.org

[7] Heiberg et al.: ”Design and validation of Segment - freely avaliable software
for cardiovascular image analysis” in BMC Medical Imaging 10:1, 2010.

[8] Forsyth and Ponce, ”Segmentation and Fitting Using Probabilistic Methods”,
in Computer Vision: A Modern Approach, International Edition, Upper Saddle
River, Pearson Education Inc., 2003, ch. 16, pp. 301-325, 354-372.

[9] J. MacQueen. ”Some Methods for Classification and Analysis of Multivariate
Observations”. Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1 , pp. 281-297, University of California Press,
1967.

[10] Greg Hamerly, Charles Elkan, ”Alternatives to the k-means algorithm that
find better clusterings”. Proceedings of the eleventh international conference
on Information and knowledge management (CIKM), 2002.

43



BIBLIOGRAPHY 44

[11] C. F. Jeff Wu, ”On the Convergence Properties of the EM Algorithm”. The
Annals of Statistics, vol. 11, no. 1, pp 95-103, 1983.

[12] Nobuyuki Otsu, ”A Threshold Selection Method from Gray-Level Histograms”.
IEEE Transactions on systems, Mean, and Cybernetics, vol smc-9, no. 1, 1979.

[13] Götberg et al. ”A pilot of rapid Cooling by Cold Saline end Endovascular Cool-
ing Before Reperfusion in Patients With ST-Elevation Myocardial Infarction”.
Circulation: Cardiovascular Interventions, 3:400-407, 2010.

[14] B. Nilsson, A. Heyden, ”A fast algorithm for level set-like active contours”.
Pattern Recognition Letters, 24:1331-1337, 2003.

[15] Catherine A.Sugar and Gareth M. James. ”Finding the Number of Clusters
in a Dataset: An Information-Theoretic Approach”. Journal of the American
Statistical Association vol. 98, no. 463, pp. 750-763, September 2003.

[16] Hsu et al. ”Quantitative Myocardial Infarction on Delayed Enhancement MRI.
Part I: Animal Validation of an Automated Feature Analysis and Combined
Thresholding Infarct Sizing Algorithm”. Journal of Magnetic Resonance Imag-
ing, 23:298-308, 2006.

[17] R. Mark Henkelman, ”Measurement of signal intensities in the presence of noise
in MR images”, Medical Physics, 12:232, 1985




