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Abstract

This master's thesis aim to see if �uctuations in the environment can
make a stable predator-prey system naturally evolve into an unstable sys-
tem. In [1], Abrams and Matsuda uses numerical methods to investigate the
stability properties of a predator-prey system and looks at the e�ect that
the unstable population dynamics have on the mean population sizes and
the mean predation pressure. After re-deriving some of their main results, I
introduce white noise in the prey equation to model the �uctuations which
occur in e.g. the weather. Using both algebraic and numerical methods I
present how di�erent sets of parameters will a�ect the evolution of the sta-
bility of the system. The evolution of the prey population is assumed to
select through the trait that codes for the prey's vulnerability. The param-
eter describing the prey vulnerability is therefore used in the evaluation of
the direction of the evolution, which is done using techniques from Adaptive
Dynamics.

Unlike [1], I choose to separate the time scales of which the population
dynamics and evolution occur on and evaluate the direction of the evolution
by looking at the selection gradient. It is found out that the system can
change its stability properties if the �uctuations reach a certain level. Based
on numerical simulations, this level of �uctuations seems possible to exist in
real ecological systems. The unstable evolution is possible since cycling dy-
namics have a negative e�ect on the mean predator population and positive
on the prey dito.
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Chapter 1

Introduction

1.1 Background

A predator-prey model system is as a mathematical system consisting of two
or more time dependent entities which rates of change can be described by
ordinary di�erential equations1. The entities are biologically interpreted as
densities of e.g. animals or plants and their governing di�erential equations
are often of non linear character. The non-linearity causes a complex struc-
ture of the resulting dynamical system which makes it often impossible to
get closed form solutions. One must therefore consult numerical methods
to solve the system of equations. However, much of the systems qualita-
tive behavior can still be uncovered using algebraic tools only, i.e. �paper
and pencil mathematics�. When the system is within its stable region of
the parameter space, the population densities will always converge towards
the steady state, i.e. the stable �xed point. How the system behaves while
reaching the �xed point depends on the eigenvalues of its Jacobian matrix.
The Jacobian is a linearized version of the non linear system and is only a
valid approximation close to the �xed point. If one or more parameter values
are increased/decreased to the extent that the system no longer is stable, the
system can no longer be linearly approximated hence computer simulations
are the only way to get a good idea of the system's behavior[2]. That the
system has become unstable does not mean that the populations we model
will crash and die. In predator-prey systems it is common that when the
border of the stable parameter space has been reached, a Hopf bifurcation
occurs[4]. This is a fancy word of saying that a pair of complex conjugated
eigenvalues gets positive real parts. This makes the �xed point unstable and
the populations will start cycling in time, no longer reaching their steady

1Predator-prey systems can also be described by di�erence equations, but the biological
interpretation will be di�erent as such model will give us discrete generations of �xed size.
In a �rst order di�erence equation, we have that between the generations n and n+ 1, all
individuals at n are assumed to die and immediately be replaced with new individuals of
the next generation[4], something we don't consider here.
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8 INTRODUCTION

state values. That is, the �xed point is no longer an attractor of the system,
but as the trajectories in phase space are bounded we end up with another
attractor which is called a limit cycle[4][7].

Introducing stochasticity into the system by white noise in the prey pop-
ulation (speci�ed below) will more or less disturb the system in terms of it
not being able to settle at its steady state anymore (if the system originally
was stable). In case of an unstable system, the phase diagram will no longer
have its smooth, counter-clockwise cycles, see Figure 1.1. The �uctuations
can be driven by changes in the environment of the predators and prey, e.g.
the weather and food availability. Assuming that the prey are herbivores of
some kind, their growth rate depends on the quality and amount of plants
they have access to. �Bad� weather or low food availability will have neg-
ative e�ects on the prey population growth rate while �good� weather and
high food availability will then have a positive dito. The �uctuations in
the prey population will have an e�ect on the predator population as well,
where a higher prey density would result in more predators and vice versa.
It has been shown that unstable systems with cycling populations shifts the

Figure 1.1: The prey population increases in size when the system gets un-
stable while the opposite is true for the predator population, which explains
the South-East shift of the mean populations compared to the equilibrium
populations.

mean population sizes in a South-East direction from the steady state in
phase space[2], see Figure 1.1. This means that the mean predator popula-
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tion decreases while the mean prey population increases with the instability
of the system. Stochastic variations also have similar e�ect on the mean
population sizes as unstable deterministic cycling systems have, which could
possibly have an e�ect on the system's evolutionary dynamics[8]. This could
make it possible for further evolution of a behavior, i.e. changing the value of
a parameter to further increase �tness. As stochasticity doesn't change the
stability regions of the parameters, we know that enough increase/decrease
of their values will make the system unstable. This leads us to the main
question; Can a two dimensional predator-prey system evolve into an unsta-
ble state if there are �uctuations in the prey population density? Another
question is how the stochastic variations will e�ect an already unstable sys-
tem. If further evolutionary change is possible, will this drive the system
towards greater instability or could the amplitude of the oscillations perhaps
be damped?

One could imagine a real biological system with two trophic levels that have
existed for a long time with negligible deviations from their equilibrium den-
sities. Both populations have with time co-evolved and the predators have
specialized in hunting the preys while the preys have specialized in defense
from the predators. Now if something happens which directly e�ects the
prey's total growth rate, e.g. the mean temperature changes and causes
irregular food availability for the prey, the prey population size will start
to vary in a stochastic manner. A sudden drop in prey density will have a
negative e�ect on the predator population, which will decrease. The lower
predation pressure will in its turn have a positive e�ect on the prey popula-
tion which will start to increase. If there instead is a sudden increase in prey
density it will have a positive e�ect on the predator population, which will
increase the predation pressure felt by the prey, and the prey population will
start to decrease. As we assumed that the original deterministic system was
stable, this should also be the case with the new stochastic system. How-
ever, as the new stochastic system has small �uctuations in the equilibrium
populations, further optimization of their behavior(s) might be possible. If
the prey population are able to evolve into an unstable parameter region,
the whole system will get unstable. Hence the �uctuations have caused the
predator-prey system to become evolutionary unstable.

The prey population are assumed to have a certain vulnerability which de-
cides how hard or easy they are to catch in the eyes of the predators. Low
vulnerability can be interpreted as the prey are less likely to take risks while
foraging and thereby not bump into a predator as often as a prey individ-
ual with higher vulnerability. Biologically speaking, it is possible that the
vulnerability of individuals could vary over the course of a year. If the prey
species are such that they feed their young, this time of the year might en-
courage the parents to take higher risks while foraging, while other parts of
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the year they are more careful. However, here we don't consider this kind of
behavior, as an individual's vulnerability is assumed constant over its life-
time. The genetic trait that codes for the vulnerability of the prey is assumed
to be inherited from the parent (asexual reproduction) to its young. Deal-
ing with adaptive dynamics (an introduction to AD is given in the second
next section) it is common to think of life as a game where the individu-
als are the players and their di�erent genetic traits give raise to di�erent life
strategies[3]. In this context we think of the vulnerability as the strategy that
di�erent prey individuals play with. The individual with the best strategy
compared to the others should have the greatest pay-o� and those individuals
with a poor strategy should have less. The pay-o� in evolutionary games is
called �tness. Prey individuals that are very likely to survive and reproduce
have high �tness, while individuals that are not have low �tness. Thereby
will the genetic traits of the high �tness individuals decide the direction of
the evolution. In this case evolution acts on the vulnerability and should
thereby be the parameter that is used in the evaluation of the �tness of the
prey. In predator-prey systems, the �tness G of a population N is de�ned as
its per capita growth rate and is thereby derived directly from the equation
of its total growth rate, i.e. G = Ṅ/N . The �tness is typically a function
of one or more trait values and it could be thought of as a ��tness function�.
Intuitively one might in our case think that the �tness evaluation should
be very simple as prey with low vulnerability take less risks and are thereby
more likely to survive. However, as there are a certain trade-o� built into the
model, prey with low vulnerability also have a low rate of reproduction. We
can think of this as they are not able to harvest the same amount of food as
prey with higher vulnerability. To exemplify the e�ect of the trade-o� one
can think of two di�erent parenting strategies within a population. If we
assume that all prey get the same amount of o�spring, strategy 1 is to give
all o�spring equal amounts of food and thereby have a high survival rate of
the o�spring, with the setback that the parents take a lot of risks and dies
more often than those parents using strategy 2. Strategy 2 is then to focus
on the raising of one (or few) o�spring(s), which gives the o�spring a low
survival rate but the parents have a higher likelihood of surviving. If both
parents die, independent of strategy used, the o�spring will also die and this
will of course happen most often for strategy 1-parents.

Using the �tness function, we want to �nd out whether in a prey popu-
lation with a certain vulnerability, will a prey individual with slightly higher
or lower vulnerability have a higher �tness than the average prey? To an-
swer this, it is however often easier to use the selection gradient, which is the
derivative of the �tness function with respect to the trait value. The selec-
tion gradient enables us to see the direction of the evolution in a simpler way
than the �tness function. As the evolution selects for prey with high �tness,
this corresponds in our model to either increase or decrease the vulnerability
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of the prey population. If the selection is favorable for higher vulnerabilities,
the selection gradient take a positive value, while a negative value indicates
that selection is favorable for prey with lower vulnerabilities. This is a direct
consequence of the shape of the �tness function at the speci�c point in time
we look at, as the evolution will always push the populations in the uphill
direction in the �tness landscape. When the population have reached its
peek in the �tness landscape, this corresponds to a selection gradient that
equals zero[3][6].

To provide answers to the di�erent questions, I will scrutinize the system
using both analytical and numerical methods. The algebraic tools used are
on the level that an engineering student on his or her last years of studies
should be able to follow. All the numerics and simulations used are imple-
mented in Matlab.

1.2 De�ning the Equations

A two dimensional predator-prey system is de�ned by a set of equations on
the form

Ṅ = fN (N,P ) (1.1a)

Ṗ = fP (N,P ) (1.1b)

where N is the density of the prey and P is the density of the predators.
The term �density� means here the number of prey or predator individuals
per area unit. The area unit can be di�erent between the populations, e.g.
we could measure the prey density in # prey per 100 m2 and the predator
density in # predators per 1 km2 depending on what suits us best. The
functions fN and fP describes the total growth rates of the prey respectively
the predators. If these terms are positive it means that the populations are
increasing in size whereas negative terms indicates decreasing populations.
In this project the functions fN and fP are de�ned as

fN = N [r(C)− kN − CPα(C,N)] (1.2a)

and
fP = P [BCNα(C,N)− d]. (1.2b)

In the equation for the prey density (1.2a) there is one positive contribution
and two negative. The positive contribution is called the intrinsic growth
rate of the prey and is simply the birth of new prey individuals. The second
term is restricting the total growth rate of the prey population by making it
dependent the square of the current size and thereby introducing a maximum
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size of the population. Biologically this could mean that there are limited
amount of food and space for the prey population. This makes the popula-
tion growth rate smaller as the population grows until it reaches a maximum
value, the carrying capacity. The last term is the negative contribution from
the predation on the prey population by the predators. The equation de-
scribing the change in predator density (1.2b) has only two terms, whereas
the positive contribution is the birth rate of new predators as a result of the
predation on the prey and the negative contribution is their death rate. The
parameter C is the vulnerability of the prey population and is de�ned as the
rate at which an unsatiated predator captures a prey during its active search
time. Only strictly positive values on this parameter is of interest here and
therefore it is further assumed that C > 0 always holds.

In system 1.2 we see that the birth rates of both populations and the preda-
tion mortality of the preys are all functions of the vulnerability. The birth
rate of the preys is assumed to be linearly dependent on the vulnerability,
i.e. r(C) = R+ qC, where R, q > 0. The birth rate of the predators and the
death rate of the prey are depending on the function α(C,N) = 1/(1+hCN)
which is the rate at which the predators search for the prey. The constant h
is known as the handling time of the predators and is the refractory period of
the predators, i.e. when a prey has been caught; how long does the predators
have to rest and digest their meal before hunting again.

The construction CNα(C,N) is called the predators' functional response
and is here of the so called type II2. It is the functional response that gives
the rate of prey consumption per predator. Vice versa tells CPα(C,N) how
much preys that are consumed per time unit and prey. B is the yield factor
that converts consumed prey into new predators and is a measure of how
e�ective the predators take care of the caught prays.

In a realistic model, the total birth rate of the prey and the death rate
of the predators should be depending on their current population sizes. This
is achieved here by the products r(C) · N in Equation 1.2a and d · P in
Equation 1.2b. Further, the chance of an encounter between the preys and
predators is proportional to both their sizes, N · P , which is seen in terms
describing the predation of prey and birth of predators. Writing out all the
ingoing functions gives us the following system of di�erential equations

Ṅ = N

(
R+ qC − kN − CP

1 + hCN

)
(1.3a)

Ṗ = P

(
BCN

1 + hCN
− d
)
, (1.3b)

2Having α(C,N) = 1 would be a type I functional response.
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where all the constants are assumed strictly positive. The time scale that
these equations acts within is called the ecological time scale. This time scale
is where the population dynamics occur and could thereby be considered as
�small�. The evolution on the other hand is assumed to act on a much larger
time scale, the evolutionary time scale, and we can thereby use a constant C
in our equations for the population dynamics.

1.3 Dimension Analysis

Working with dynamical systems, it is interesting to know how the param-
eters e�ects the properties of the system, i.e. how sensitive the system is
to a certain change in the parameters and how the stability properties will
be altered. Making a dimension analysis and re-de�ne the parameters will
reduce the number of parameters signi�cantly, which will make this analysis
easier. This means that the system should be rewritten on a dimensionless
form. As C is the key parameter, we typically want to re-scale this parame-
ter into having dimension 1. The same goes for parameters d, h and q. B, k
and R are parameters that are used to normalize the system. By re-de�ning
C → C?, d→ d?, h→ h? and q → q? as

C? =
B

k
C, d? =

1

R
d, h? =

R

B
h, and q? =

k

BR
q

the original system de�ned by 1.3 can now be rewritten on a dimensionless
form. Our time dependent entities N? and P ? are now N? = NR/k respec-
tively P ? = PBR/k, while the time itself is t? = t/R. However, to get an
easy notation the superscript stars are now dropped and from now on are all
the entities and parameters on the dimensionless form presented here. The
new dimensionless version of system 1.3 is

Ṅ = N

(
1 + qC −N − CP

1 + hCN

)
(1.4a)

Ṗ = P

(
CN

1 + hCN
− d
)
, (1.4b)

where now all the ingoing entities and parameters have dimension 1.

1.4 Adaptive Dynamics

This and the following section are meant as a brief introduction to some of
the most general concepts within the �eld of adaptive dynamics (AD). The
reader could for example consult [3] and [6] for a more thorough introduction
to the subject.
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AD is used to describe how populations will evolve on the evolutionary time
scale by using a combination of population dynamics and game theory. It is
closely related to what is known as quantitative genetics (QG), but is more
easy to use, mathematically speaking. The main di�erence between AD and
QG is how the trait values are distributed within the population. A trait
value is typically represented by a real number. The di�erent traits an indi-
vidual has makes up its phenotype, which in turn decides the strategy the
individual is playing. In this report we only have one trait, thus the trait
and phenotype are equivalent.

In QG there are assumed a certain genetic variance within the population,
centered around the most common value, e.g. a kind of normal distribution
of trait values. If a trait slightly away from the mean is more preferable,
i.e. gives higher �tness (the �tness concept is described in the next section)
the whole distribution will slide towards this value, making it the new mean
value. In contrast, AD assumes that all individuals of the population have
the same trait value (plays the same strategy), i.e. a monomorphic pop-
ulation (a Dirac distribution). These individuals are called the residents.
Among the residents there will on rare occasions show up individuals with
di�erent trait values, mutants. Having di�erent genetic traits than the res-
idents alters the strategy the mutant plays, for example while foraging or
searching for a partner.

Both AD and QG are so called frequency dependent models, which means
that the success of a certain strategy depends on frequency of which it is
played and how common other alternative strategies are. This is where AD
is more favorable, as the mutant's environment is de�ned only by the strategy
played by the residents. This an e�ect of the assumption that we consider
mutants rare in the population and should therefore not e�ect each other.
The mathematical treatment now becomes easy as we only have to compare
two strategies, one played by the resident population and one by the mutant.
If the mutant's strategy is better than the residents', the mutant will be able
to spread its genes in the population and thereby become more and more
common. Finally, there will be no individual left playing the old resident
strategy and all new individuals plays the mutant strategy. The mutant
strategy have thereby become the new resident strategy. If a new mutant,
with an even better strategy, shows up the same phenomenon occurs again.
The process where a rare mutant strategy creates a new monomorphic popu-
lation by dominating the old resident strategy is known as an invasion. The
transition of resident strategies in AD is a discrete step from one strategy
to another, while in QG the transition is continuous. Since the transitions
happens on an evolutionary time scale, the populations are assumed to be
at their equilibrium densities during the transitions.
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To see if a mutant strategy can invade or not, the mutant's initial growth
rate is calculated. The initial growth rate of a rare mutant will in the next
section be given the name invasion �tness. If the resident strategy is so good
that no mutants can invade (i.e. all other strategies than the residents' own
will result in a lower �tness), the resident strategy is uninvadable, which in
next section is known as an evolutionary stable strategy. The direction of
the evolution is decided by the derivative of the invasion �tness, the selec-

tion gradient. A positive gradient will select for higher trait value while a
negative gradient selects for a lower dito.

1.5 The Fitness Concept in AD

1.5.1 Stable dynamics

The �tness, G, is used as a of measure of how well adapted individuals are
to their environment. An individual that has a high likelihood to survive
and reproduce will have high �tness, while an individual which has lower
dito likelihoods will have lower �tness[5]. Here, the environment is de�ned
by the residents and the strategy they play. The individuals which �tness
we are interested in calculating are the possible mutants. In the previous
section it was stated that it was the invasion �tness (initial growth rate) of
the mutants that had to be calculated to see if there could be any possible
invasions. This invasion �tness will be a function that describes how the
�tness landscape looks like for invading mutants given a certain resident
strategy. The �tness is de�ned as the per capita growth rate, and here will
the resident prey population with trait value C∗ have the invasion �tness

G(C∗, C∗) =
Ṅ(C∗)

N(C∗)
= 1 + qC∗ −N∗(C∗)− C∗P ∗(C∗)

1 + hC∗N∗(C∗)
. (1.5)

Here we evaluated the populations at their steady state values as we now
look at the evolutionary time scale and can assume constant population sizes.
(The equations for the steady state populations, Eqn. 2.1a, is given in section
2.1.) However, the expression of the residents' �tness in Equation 1.5 must
be equal zero for all C∗'s as the population otherwise would grow in�nitely.
This is not the case with a rare mutant, as the frequency of which the
mutant's strategy is played is negligible compared to the frequency of the
resident strategy. The predators should still be satiated by the residents,
while the mutant's own strategy (trait value) should be used to calculate its
intrinsic growth rate and risk of predation. The invasion �tness of a rare
mutant with trait value C will therefore be

G(C,C∗) = 1 + qC −N∗(C∗)− CP ∗(C∗)

1 + hC∗N∗(C∗)
. (1.6)

So the invasion �tness of the rare mutant is here a linear function of the
mutant's own trait value. The steady state populations are calculated using
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the residents' trait value. Using the graph of G(C,C∗) we can �nd out which
strategies that can invade depending on which strategy the residents use. If
G(C,C∗) has positive slope at C = C∗, mutants with trait values C > C∗

are able to invade, while a negative slope at the resident trait value selects for
mutants with C < C∗. As the slope at G(C = C∗, C∗) is just the derivative
of G(C,C∗) with respect to C at C∗, we can get an analytical expression
that tells us the current direction of the evolution. The derivative ∂G/∂C is
called the selection gradient, g, and will after some simpli�cations3 be

g(C) =
d− C(1− dh)

C2(1− dh)
. (1.7)

The C-value where g(C) vanishes is called a singular strategy (SS). Solving
Equation 1.7 for the intersection with the x-axis results in

CSS =
d

1− dh
, (1.8)

where the superscript SS emphasizes that this trait value represents a sin-
gular strategy. To tell whether the singular strategy lays on a maximum or
minimum in the �tness landscape we have to check the sign of the second
derivative of G(C,C∗) with respect to the mutant's trait value, evaluated at
CSS. If the second derivative is negative, the trait value lays on a maximum
in trait space. A trait value laying on a maximum will result in an unbeatable
strategy, an evolutionary stable strategy (ESS). An ESS is a strategy, that
if played by the residents, there is no better strategy to play which makes
it an uninvadable strategy, as previously mentioned. The expression for the
ESS criterion is

∂2G

∂C2

∣∣∣∣
C∗=CSS

< 0. (Evolutionary stability criterion) (1.9)

In our case, Equation 1.9 cannot be used to verify that the singular strategy
is an ESS, as G(C,C∗) is linear in C, hence the second derivative in C is
zero. One can use a second order method to check that this value actually is
an ESS, but as the mathematical procedure would be very cumbersome such
method is not used here. Instead we use a criterion that checks if the SS is
able to attract populations that plays strategies close to it. If the SS is such
an �evolutionary attractor�, then we can argue that the SS also should be an
ESS. In other words, populations with slightly lower/higher trait value than
the SS should increase/decrease their trait value as the evolution goes by
until they reach the SS. This means that the selection gradient must point
towards the SS. This can only happen if the selection gradient is a decreasing
function in the neighborhood of the SS. If the SS ful�lls this criterion it is

3Using the equations for the steady state populations in Equation 2.1a.
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said to be convergent stable. The criterion is put mathematically as

dg

dC

∣∣∣∣
C=CSS

< 0. (Convergence stability criterion) (1.10)

When a singular strategy is convergent stable it means that this is the end
point of evolution of that strategy. If we calculate the convergent stability
criterion we end up with

dg

dC

∣∣∣∣
C=CSS

= −
(

1− dh
d

)2

, (1.11)

which clearly satisfy Equation 1.10. But how can knowing that the SS is
convergent stable be used as an argument for that it should also be an ESS?
Well, when the prey population have reached the SS the �tness landscape
becomes �at which means that we will have neutral selection, i.e. every
mutant (regardless of its trait value) will have equal �tness to the residents.
However, if a mutant group with trait value C ′ will increase their size we can
no longer use Eqn. 1.6 to calculate their �tness since that equation assumes
that mutants are rare. Instead we could use the mean value of the traits
C∗ and C ′ to calculate the selection gradient. Since C∗ is convergent stable,
the selection gradient will once again point towards C∗ and C ′-mutants will
have negative �tness compared to those with C∗.

There are still times when the SS is not an ESS but still attracts nearby
strategies. Then the SS is said be a branching point. The populations will
evolve towards it, increasing their �tness until they �nally reach it. Then
any di�erent strategy will have greater �tness than the resident and the
population will be going through disruptive selection. This kind of selec-
tion might split the former population into two new �morphs�, whereof one
evolves towards lower trait values and the other towards higher. Typically
this happens when the SS lay on a convergent stable minimum in the �tness
landscape. This is theoretically interesting e.g. when studying the formation
of species pairs [Geritz et al. 1998].

In Figure 1.2, a hypothetical invasion �tness function is illustrated when
evaluated at two di�erent resident trait values; C∗ < CESS in 1.2(a) and
C∗ = CESS in 1.2(b). As the direction of the evolution is determined by the
selection gradient, mutants with a trait values C > C∗ will be able to invade
as long as g(C) > 0. In the illustrated case we can only see that the SS in
an ESS.

1.5.2 Unstable dynamics

When C generates a stable system, the calculation of Equations 1.6 and 1.7
are easy as we simply need the equilibrium densities of the populations,
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Figure 1.2: A hypothetical �tness function evaluated at two di�erent resident
vulnerabilities.
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which are constant. However, we are also interested in knowing how these
functions behave for C ≥ Ci. Knowing that when the system gets unstable,
the population densities are no longer constant in time and cannot be used
as predictions. Using data from real simulations is the only way to see how
these functions will behave in the unstable region[2]. To calculate G and g
outside the stable region we must therefore simulate the system over a long
period of time and then calculate the mean of these functions. This will give
us the mean invasion �tness as

Ḡ = 1 + qC −N(t)− CP (t)

1 + hC∗N(t)
(1.12)

and the mean selection gradient as

ḡ = q − P (t)

1 + hCN(t)
. (1.13)

The notation N(t) and P (t) indicates that these entities now are vectors
from the result of a simulation. When the system is stable, Equations 1.12
and 1.13 are exactly equal 1.6 respectively 1.7, but the computing time for
the latter equations are tremendously faster as they do not require any actual
computer simulations.

1.6 The Mean Predation Pressure

The predation pressure or the risk of predation is determined by the current
density of the predators, P (t), and their search time, 1/(1 + hCN(t)). The
total search time itself also contains the current density of prey, which means
that the MPP will vary over time if the populations themselves do this.
Therefore, what is interesting is the mean predation pressure, (MPP) which
is the predation pressure the prey experience over long time. When the
MPP for C ≥ Ci we take the same approch as with the invasion �tness
and selection gradient in the previous section. The actual MPP is therefore
decided by simulating the system and taking the mean value of the predation
pressure for every unstable C-value, i.e.

MPP =
P (t)

1 + hCN(t)
. (1.14)

The MPP is strongly connected to the selection gradient and in this system
almost completely decides what it will look like, i.e. compare with Eqn. 1.13.
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Chapter 2

Methods

2.1 General Stability Analysis

The �rst step in the analysis of system 1.4 is to �nd its steady states (N∗i , P
∗
i ),

which are

(N∗1 , P
∗
1 ) =

(
d

C(1− dh)
,
1 + hCN∗1

C
(1 + qC −N∗1 )

)
, (2.1a)

(N∗2 , P
∗
2 ) = (1 + qC, 0) (2.1b)

and

(N∗3 , P
∗
3 ) = (0, 0). (2.1c)

Here we assume that the condition dh < 1 is ful�lled, as 2.1a otherwise
will have a negative stable prey population. As a positive stable predator
population is also desired, we further assume that 1 + qC > N∗1 holds. This
last condition can be formulated as a condition on the predator death rate
d as

d <
C(1 + qC)

1 + hC + hqC2
, (2.2)

which tells us that the predator death rate cannot be too high if the system
should be stable. Since it is only 2.1a that gives non zero population sizes
in both N and P , this is the steady state that the forthcoming analysis is
concentrated on. For simplicity will this steady state therefore only be re-
ferred to as (N∗, P ∗). The steady states in Equations 2.1 are equivalent to
the systems �xed points, but future reference to the ��xed point� will only
refer to the steady state 2.1a unless stated else.

21



22 METHODS

The next step in the analysis is to bring forth the Jacobian matrix J of
the system, which is

J(N,P ) =

 1 + qC − 2N − CP

(1 + hCN)2
− CN

1 + hCN
CP

(1 + hCN)2
CN

1 + hCN
− d

 . (2.3)

Evaluating J at the steady state (N∗, P ∗) gives the sought after Jacobian1.
One thing worth noting is that the term J22 will be equal zero at the steady
state.

In order for the �xed point to be stable, the trace of J has to be strictly
less than zero and its determinant strictly positive[4][7]. As all the ingoing
parameters are greater than zero, it is straight forward to show that the
latter condition will be ful�lled. The �rst condition can either be rewritten
as a restriction of the growth rate of the prey, or more elegant, be solved for
the vulnerability. By setting the trace equal zero and solve for C we arrive
at an expression for the vulnerability that makes the system go through a
Hopf bifurcation and become unstable2. This value is here called Ci and is
de�ned as

Ci =
1

2q

(√
1 +

4q

h

(
1 + dh

1− dh

)
− 1

)
. (2.4)

When C ≥ Ci the system is no longer attracted to the �xed point (N∗, P ∗),
but instead to a limit cycle. This means that the population densities are
now cycling in time. Making the same analysis on the two other �xed points
tells us that 2.1c will always be unstable with saddle node dynamics, while
the stability of 2.1b is unknown as the determinant of the Jacobian matrix
is equal to zero.

For a �xed point to be stable, both eigenvalues, λ1 and λ2, of the Jaco-
bian at that point have to have negative real part[7]. In Figure 2.1(a) the
eigenvalues of J are illustrated as functions of the vulnerability on a large
interval. We see that it is only in a small region of C-space that we have
stability in the system. Figure 2.1(b) show a close up view of this speci�c
parameter interval. It is within this region that we assume that our initial
system will be. Similar eigenvalue analysis are also done for the parameter
regions Cd, Ch and Cq and is presented in the Results part.

1Since the analytical expression of J(N∗, P ∗) becomes very cumbersome I decide not
to write it out explicitly as further analysis was done numerically.

2The calculation ends up with a second degree polynomial and we choose the root
which is positive.
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(b) A close-up view on the parameter region where the system is stable.

Figure 2.1: As C increases from zero, Re{λ2} will change sign from + to
- at ' 1.05 and the system will become stable. Further increase of C will
destabilize the system, as the eigenvalues real parts will become positive
one again at C = Ci. In other words, we start of the biological interesting
parameter interval �rst when C > 1.05 and the system is stable. When
1.05 < C / 1.35, the eigenvalues are real and negative. In the region
1.35 < C<Ci we have a pair of complex conjugated eigenvalues which we
also have in the unstable region Ci ≤ C / 9.45. Simulations suggest that
when C > 9.45 Re{λ1} increases in a linear manner. Other parameter values
for this simulation was d = 1.0, h = 0.5 and q = 0.85.
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2.2 Introducing Stochasticity

Consider a stochastic process w(t), where

∆w = w(t+ ∆t)− w(t) (2.5)

is independent of both w and t. Further assume that the expectation of
∆w is zero and the variance is σ2∆t. The process w(t) is a so called random

walk or white noise and is introduced in the equation for the prey population
density (Eqn. 1.4a) in order to model environmental �uctuations. If we let
∆t → 0 in Equation 2.5 we will be left with the di�erential of the random
walk, dw, which has expectation zero and a variance equal σ2dt, where dt is
the di�erential of t. To have realistic �uctuations, dw should have a density
dependence and is therefore chosen as

dw = AΓN∗, (2.6)

with 0 < A ≤ 0.2 and Γ a normal distributed variable with expectation value
zero and variance dt. N∗ is the steady state value of the prey population. To
introduce dw in system 1.4, this system is also di�erentiated and will then
look like

dN = fNdt+ dw (2.7a)

dP = fPdt. (2.7b)

Now we are interested in �nding out how this disturbed system will deviate
from the system in 1.4 and what the e�ects will be on the selection gradient.
Let x1 and x2 be the deviations the white noise causes from the steady
state 2.1a. These deviations will then be given as

x1 = N −N∗

and
x2 = P − P ∗.

Using matrix notation, the linearization of system 2.7 can be written as

dx = Jxdt+ dw (2.8)

which can be regarded as a two dimensional Ornstein-Uhlenbeck process with
x = [x1 x2]

T and dw = [dw 0]T . The goal now is to make a complete second
order Taylor approximation of the selection gradient and then calculate its
mean value. The second order Taylor approximation of the selection gradient
will be

g̃ = g0 + g′Nx1 + g′Px2 +
1

2
g′′N,Nx

2
1 + g′′N,Px1x2 +

1

2
g′′P,Px

2
2. (2.9)
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The subscript indices indicates the variable which g has been di�erentiated
with respect to. Calculating the mean value of Equation 2.9 will require the
mean deviations from the steady state and their variances since

ḡ = g0 + g′N x̄1 + g′P x̄2 +
1

2
g′′N,NV (x1)

+ g′′N,PC(x1, x2) +
1

2
g′′P,PV (x2). (2.10)

The calculation of Equation 2.10 is here performed in two steps. In Step
1 the variances are obtained by making a �rst order approximation of the
population dynamics. In Step 2 the mean deviations from the steady state
are calculated by �rst making a second order expansion of the expectation of
dx1 and dx2, then calculating their mean values. Using that their mean val-
ues are equal zero and our expressions for the variances, the mean deviations
can be calculated. Then we can �nally calculate Eqn. 2.10.

Step 1

Making a �rst order Taylor expansion of the population growth functions
and using that the expectation of dx and therefore also the expectation of x
is zero, leads to the equation

VJ+ JTV+ Σ = 0. (2.11)

Here is V is the covariance matrix, containing the elements V11 = V (x1),
V22 = V (x2) and V12 = V21 = C(x1, x2), i.e. the variance of the prey and
predator population densities and their covariance. J is still the regular
Jacobian matrix and Σ is the covariance matrix of the white noise, thus
containing only one non zero element σ211 which is the variance of dw. Solving
Equation 2.11 component wise gives the elements of V as

V (x1) = − σ211
2J11

, (2.12a)

V (x2) = −J21
J12

V (x1) (2.12b)

and
C(x1, x2) = 0. (2.12c)

Looking at the expression of V (x1) we recognize J11 as the only term mak-
ing up the trace of the Jacobian. However division with this component
will make the variance go towards in�nity as the system approaches the bor-
der of instability, reminding us that the linearized system is only a valid
approximation close to the �xed point.

2
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Step 2

Making a second order Taylor expansion of the deviation di�erentials and
taking their mean results in the equations

0 = J11x̄1 + J12x̄2 +
1

2
(fN )′′N,NV (x1)+

+ (fN )′′N,PC(x1, x2) +
1

2
(fN )′′P,PV (x2)

and

0 = J21x̄1 + J22x̄2 +
1

2
(fP )′′N,NV (x1)+

+ (fP )′′N,PC(x1, x2) +
1

2
(fP )′′P,PV (x2).

Identifying that J22 = (fN )′′P,P = (fP )′′P,P = 0, the equations are simpli�ed
to

J11x̄1 + J12x̄2 +

(
hC2P ∗

(1 + hCN∗)3
− 1

)
V (x1) = 0

respectively

J21x̄1 −
hC2P ∗

(1 + hCN∗)3
V (x1) = 0.

Solving this system of equations is straight forward and will give the mean
deviations as

x̄1 =
C2hP ∗

(1 + hCN∗)3
V (x1)

J21
(2.13a)

and

x̄2 =
1

J12

((
1− hC2P ∗

(1 + hCN∗)3

)
V (x1)− J11x̄1

)
. (2.13b)

2

Now we have got everything to successfully calculate the mean of the
Taylor expanded selection gradient,

g = q − P ∗

1 + hCN∗
+

hCP ∗

(1 + hCN∗)2
x̄1−

− 1

1 + hCN∗
x̄2 −

2h2C2P ∗

(1 + hCN∗)3
V (x1). (2.14)

This analytical expression is correct to the order of x21, x
2
2 and x1x2. Equa-

tion 2.14 is compared with the selection gradient that can be calculated
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directly from the numerical simulations. The numerical simulations of sys-
tem 2.7 are performed using a basic forward Euler method, i.e.

Ni+1 = Ni +Ni

(
1 + qC −Ni −

CPi

1 + hCNi

)
dt+ dwi (2.15a)

Pi+1 = Pi + Pi

(
CNi

1 + hCNi
− d
)
dt. (2.15b)

The resulting vectors N(t) and P (t) are now used in the calculation of the
mean selection gradient gj for every vulnerability Cj ,

gj = q − P (t)

1 + hCjN(t)
. (2.16)

However, the undisturbed system 1.4 should also be simulated for the same
C-interval in order for us to have anything to compare the disturbed system
with. The numerical simulations of system 1.4 are made using Matlab's
own built-in ode solver called ode23t. The calculations of the system's mean
selection gradients are done using Equation 1.13.
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Chapter 3

Results

In all simulations, unless stated else, the values of the dimensionless constants
have been: d = 1.0, h = 0.5, q = 0.85 and dt = 10−3.

3.1 Basic Simulations

Simulating system 1.4, there are basically three di�erent outcomes depend-
ing on the value of C. In the �rst and second, the system is stable but
have either real or imaginary eigenvalues. In the third case the system is
unstable and have gone through a Hopf bifurcation. In Figures 3.1(a), 3.2(a)
and 3.3(a) the prey and predator densities in the di�erent cases are shown
as functions of the time and in Figures 3.1(b), 3.2(b) and 3.3(b) are their
corresponding phase portraits. In the phase portraits the steady state 2.1a
have been marked in each �gure by a circle.

The numerical value on C where the system gets unstable was found via
Equation 2.4 to be Ci = 2.1329, using �ve signi�cant digits and the default
parameter values. To get a qualitative idea of how the instability a�ects the
system, the population densities predicted by the steady state values was
compared with the mean densities from actual simulations, see Figure 3.4.
It shows clearly that while the system is stable, the steady state predictions
and mean values gives the same population densities, while for C ≥ Ci they
di�er quite dramatically. One sees that the prey population bene�ts from
the now oscillating dynamics while the opposite is true for the predators,
speaking in terms of their mean population densities.

29
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Figure 3.1: Stable system with real eigenvalues at C = 1.2.
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Figure 3.2: Stable system with imaginary eigenvalues at C = 1.9.
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Figure 3.3: Unstable system with imaginary eigenvalues at C = 2.4.
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Figure 3.4: The population densities as mean values from simulations and
as predicted from the steady state as functions of the vulnerability. The C-
interval for the simulation was [1.055, 6.4]. Note that N∗ and P ∗ are partially
covered by N(t) respectively P (t).
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Figure 3.5: The mean predation pressure predicted by the steady state den-
sities is equal to the actual risk of predation as long as the system is stable.
When C ≥ Ci the actual risk of predation is reduced as the vulnerability
increases.
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3.2 The Mean Predation Pressure

Comparing the MPP predicted by the steady state populations with the
MPP from the actual risk of predation reveals that when the system has be-
come unstable, the actual risk of predation is reduced as the prey increases
their vulnerability, see Figure 3.5. When C just has passed 4 the actual
MPP starts to increase a little bit again. Between 5�6 the system are ex-
tremely unstable which leads to much inaccuracy in the numerical methods.
Simulations suggests that the accuracy is greatly decreased when C > 5.92
as it no longer predicts stable oscillations. However, already at C = 2.70 the
prey population reaches 2 % of its steady state value during the oscillations
and studying C-values that generates population densities that reaches this
low are not of any real biological interest. Therefore an upper �realistic�
limit is set to Cmax = 2.3. This value on C generates variations in the prey
population between 53 % to 167 % of N∗ and between 70 % to 126 % of P ∗

in the predator population.

3.3 The Invasion Fitness and Selection Gradient

To illustrate the invasion �tness (Eqn. 1.6), we simply select an arbitrary
stable value on C∗ and plot the invasion �tness as a function of C. As the
resulting function is linear in C, a positive slope indicates that mutants with
C∗ < C will have a higher �tness than the resident prey population and
thereby be able to invade. When the slope is zero, the ESS has been reached
and we have �zero selection�. Finally, a negative slope will give mutants with
C < C∗ ability to invade. In Figure 3.6, these linear functions has been
generated for a number of di�erent stable C∗-values and plotted on top of
each other. The red and blue lines represents selection for higher respectively
lower vulnerability. As C∗ increases, the selection gradient decreases, until
C∗ = CESS and it vanishes. Increasing C∗ further will then change the sign
of the selection gradient as the slope of G(C,C∗) becomes negative. The
horizontal black line indicates where the slope of the invasion �tness is zero
and the black dot represents CESS, which becomes the center of rotation
once the invasion �tness function �hits� it.

Figure 3.7 is a so-called pairwise-invasibility plot which shows how the inva-
sion �tness looks in C∗C-space. The whole stable, and some of the unstable,
region is illustrated. The regions indicated with a + sign are regions in trait
space where a rare mutant with trait value C has positive initial growth rate,
while the � signs indicates regions where the mutant has negative dito. As
when C∗ = CESS generates a completely vertical line means that when the
population has reached the ESS, an invading mutant with any other vulner-
ability will have the same �tness as the residents. However, as our model is
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Figure 3.8: The selection gradient illustrated as a function of the vulnerabil-
ity using two di�erent methods of calculation, Equation 1.7 (red) respectively
1.13 (blue).

frequency dependent, a mutant that becomes �common� among the resident
ESS-population will soon get negative growth rate and decrease in number
(as argued in section 1.5.1).

Plotting the selection gradient as a function of the vulnerability gives us, in
the stable region, a graph with negative slope which intersects the x-axis at
C = CESS. Exploring the system outside its stable region is done easiest by
looking at the selection gradient since it is depending only on C. In Figure 3.8
the selection gradient is presented both and as the average (Eqn. 1.13) and
as predicted by the steady states (Eqn. 1.7). It is obvious that Equation 1.7
fails when C ≥ Ci, which was suspected since that prediction is based on the
steady state populations rather that the actual ones. Since g(C) is positive
for C < CESS and C > Ci the prey population will evolve towards higher

vulnerability in these regions. Between these regions is an interval where the
selection gradient is negative. This means that populations with resident
vulnerabilities in this area will evolve towards lower vulnerability. Therefore
will populations with vulnerabilities close to the ESS evolve towards it. This
illustrates the convergence stability of the ESS, which was expected from
Equation 1.11. The second time g(C) crosses the x-axis C has entered the
unstable region. This point is thus also a singular strategy, but neither an
ESS nor convergent stable. Since we have negative selection to the left of
this point and positive on the right, resident populations with vulnerabilities
in these nearby regions will evolve away from this point, making it �unstable�.
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Figure 3.9: Stability areas of the parameter spaces Cd, Ch and Cq. The
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h = 0.5.

From Figures 3.6 and 3.7 it is obvious that the selection gradient changes
sign at C = 2 and thereby is CESS = 2. However, this can also be shown by
inserting the values of the constants in Equation 1.8.

3.4 Parameter Choices E�ect on the Stability

The upper boundary of the stable C-region was earlier told to be equal
2.1329. To estimate the lower limit, Figure 2.1(b) was used to see where
Re{λ2} = 0 which was at C = 1.0546. Biologically relevant C-values are
therefore C > 1.0546. To calculate the stability region of the parameter d,
both h and q was �xed to their default values while d and C varied during
an eigenvalue analysis. Repeating this procedure with h and q, and plotting
the stability boundaries in Cd-, Ch- and Cq-space resulted in Figure 3.9.

Increasing the death rate of the predators require that the vulnerability of
the prey is increased in order to maintain stability. The opposite goes for
q which if increased demands a decrease in prey vulnerability. Perhaps the
strangest result is how the stability of the system is e�ected by variations in
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the predators' handling time. As C increases beyond roughly 2, the predators
will either need a high or a low handling time if the system should maintain
its stability, see Fig. 3.9. If the predators have an intermediate handling
time, the populations will start oscillating as the result of the instability.
The parameter q has an interesting feature since it is only e�ecting Ci and
not CESS. With the default parameter values we have CESS < Ci, but in-
creasing q enough will turn the inequality sign and the system will naturally
evolve into the unstable region of C-space. The critical value qi for which
CESS = Ci is

qi =
1− dh
d2h

, (3.1)

and is equal to 1.000, using the default parameter values. Changes in the
parameters d and h have a more complex impact on the system as both
CESS and Ci depend on these parameters. Decreases in either d or h will
generate a smaller CESS and Ci, but since there is stronger dependence of d
and h in CESS than in Ci, the ESS value will decrease proportionally more.
This causes the selection gradient over the whole C-interval to decrease. The
stronger parameter dependence in CESS also has noticeable e�ect when in-
creases are made in these parameters. The ESS will increase faster than Ci

and create an over all increase in g until CESS = Ci. From here we now have
the same phenomenon as with the increase in q.

3.5 The E�ects of a Variable Environment

The �rst noticeable e�ect of the introduction of the variable environment is
an over all decrease in the MPP felt by the prey population, which results
in an over all increase in the selection gradient. How much the selection
gradient increases depends on the parameter A. Figure 3.10 shows how the
selection gradient increases with A, calculated using Equation 2.16. The
lower values on A do not increase the selection gradient signi�cantly and it
still changes sign two times, which means that the system is still evolution-
ary stable. As A increases, the population dynamics will experience stronger
�uctuations, which inevitably will crash the populations earlier and earlier
as both A and C increases. To get an intuitive grip on the realistic upper
limit of A we de�ne the �crash risk� for a speci�c A-value as the number of
population crashes in a simulation1, independent on the value on C, divided
by the total number of simulations. In Table 3.1 the crash risk before and
after reaching the unstable value on C is presented. The system was simu-
lated for even numbers of A and the crash risk for the odd values was found
by linear interpolation. At 0.0 ≤ A ≤ 0.12 there is not a single population

1Using 0 ≤ t ≤ 103 with steps ∆t = 10−3.
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crash before reaching Ci and at 0.0 ≤ A ≤ 0.10 also very low crash risk af-
terwards. The crash risk in the stable region is regarded as acceptable while
A ≤ 0.16 and for A ≥ 0.17 the crash risk is unrealistically high. At A = 0.12
it seems possible that the prey population naturally could evolve into the
unstable region, as in Figure 3.10 the selection gradient is positive at the
majority of the points nearby Ci and there is zero crash risk in the stable
region. Worth noting is that it is always the prey population that causes
the crashes, as it is here we have the primary disturbance. Table 3.1 further
shows two columns with the average drop in the MPP between the disturbed
and undisturbed system at two di�erent values on the vulnerability param-
eter, simulated for twenty-two values of A. The drop in the MPP is higher
at Ci than at CESS and as Equation 1.14 is very similar Equation 1.13, one
can look at Figure 3.10 to con�rm that also the selection gradient increases
proportionally more at Ci than at CESS.

At A = 0.12 there is a 1.83 % drop in the MPP at the ESS, but is still
where it seems possible for unstable evolution. Over all, the stability of
the system is very sensitive to drops in the MPP. Since two di�erent nu-
merical methods was used, ode23t to calculate the undisturbed system and
the explicit Euler method to calculate the disturbed, simulations with the
latter was also done with no disturbance at all. The absolute value of the
di�erence between the two methods at CESS was 0.555 · 10−5 and at Ci it
was 2.257 · 10−5. With the chosen accuracy, this resulted in no measurable
uncertainty either at CESS nor at Ci.

Comparing the Taylor expansion of g with the simulated result (Equa-
tion 2.14 and 2.16) showed that the maximum di�erence was about 1.0 %
in the stable region of C, exept when C / Ci. Close to the unstable region,
the Taylor expansion breakes down as the variances 2.12a and 2.12b goes
towards in�nity as a result of the trace of the Jacobian going towards zero.
Looking at the ingoing quantities of the expansion individually, it was ob-
vious that within the stable region, the largest negative contribution came
from g′P followed by g′′N,N . The largest positive contribution came from g′N
followed by g′′N,P .



38 RESULTS

Crash risk (%) Drop in MPP (%) at
A C < Ci C ≥ Ci CESS / Ci

0.00 � � 0.0004 0.0034

0.01 0 0 0.01 0.20
0.02 0 0 0.05 0.42
0.03 0 0 0.11 0.65

V
er
y
lo
w

0.04 0 0 0.20 0.90
0.05 0 0 0.32 1.13
0.06 0 0 0.43 1.37
0.07 0 0.300� 0.61 1.71
0.08 0 0.600 0.79 2.00

L
ow

0.09 0 3.870� 1.04 2.28
0.10 0 7.140 1.24 2.63
0.11 0 22.62� 1.49 3.04
0.12 0 38.10 1.83 3.48
0.13 0.900� 48.81� 2.05 3.85

M
ed
iu
m

0.14 1.800 59.52 2.42 4.45
0.15 6.600� 71.43� 2.72 4.84
0.16 11.41 83.33 3.07 5.40

H
ig
h

0.17 21.32� 90.18� 3.58 6.09
0.18 31.23 97.02 4.13 6.35
0.19 43.85� 98.21� 4.66 6.78
0.20 56.46 99.40 5.16 7.60
0.21 65.02� 99.70� 5.73 8.08

V
er
y
hi
gh

0.22 73.57 100.00 6.35 8.57

Table 3.1: A table showing the crash risk within the prey population as a
result of the introduction of the white noise in the prey population. 501
simulations was done on the interval 1.8 ≤ C ≤ 2.3, each with time interval
0 ≤ t ≤ 103 and time step ∆t = 10−3. 333 of the simulations was in the
stable region and while 168 was in the unstable region. A 0 (zero) means
that there wasn't a single crash during the whole simulation. Further,
the table shows the mean relative drop in MPP between the disturbed
and undisturbed system, calculated both at the ESS and when it is very
close to Ci on the stable side†. 100 simulations for each A-value was done
in order to calculate the mean drop in the MPP. Same time interval as before.

� Linear interpolated value.
4 Simulations to estimate the di�erence between the explicit Euler method
and ode23t.
† The simulated value was Ci − 10−5.
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Chapter 4

Discussion

4.1 The MPP

The mean predation pressure drop in the deterministic system is a direct
result of the e�ect that cyclic dynamics have on the mean predator and
prey populations. Once the system gets unstable, increasing C will lead
to a decreased mean predator density while the prey density will increase.
A decreased MPP is equivalent to a increased selection gradient (compare
Figs. 3.5 and 3.8). Therefore will prey populations with positive selection
gradient on the right hand side of Ci go on a never ending journey of evo-
lution towards higher vulnerability. Still there are no environmental �uctu-
ations and therefore will the completely deterministic system never crash,
even though the population densities will reach extremely small values dur-
ing the oscillations.

Introducing white noise in the prey population while the system was stable
also resulted in a decreased MPP. The reason why the MPP drops was again
that cycling dynamics, altough stochastic in stable C-space, had the same
e�ect on the mean population densities as with the deterministic unstable
system.

4.2 Parameter Choices E�ect on the Stability

The stability region in Ch-space is quite interesting, as at high prey vulner-
abilities the predators have to have either very high or low handling time
in order to have stable dynamics. Looking at the equilibrium value of the
predator population (Eqn. 2.1a), we can conclude that this is a function
which actually is increasing with h.

Making two simulations with one extremely low respectively high value on
h reveals that the lower value generates very much oscillations before reach-
ing its steady state, indicating that the eigenvalues have a small (negative)

41
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real part. On the other hand, a high handling time gives almost no oscilla-
tions at all, indicating that the eigenvalues now have a large (negative) real
part. Biologically this result tells us that if a predator population can catch
and digest prey quickly, the mean predation pressure the prey population
are experiencing will be high and their population size will thereby reduce
quickly. The opposite happens when the predators take long time between
their catches, even though the prey vulnerability still is very high. Contin-
uing on the biological perspective, one could imagine an ecological system
containing two predator types that coexists, preying on the same prey, but
having completely di�erent handling times and still might be close to their
respectively equilibrium density. For example one could think of a forest
where both snakes (high h) and small felines (low h) prey on the same bird
species. However, a realistic model of this scenario would probably also re-
quire changing the other parameters. Another result from the same analysis
is that if a predator population has co-evolved with the prey, decreasing the
handling time as the prey increases their vulnerability, the stable dynam-
ics are remained. Any invading predator phenotype with higher handling
time will have higher �tness than the residents, but if the predators were
to evolve towards higher handling times, the system itself will become un-
stable if not the prey population decreases their vulnerability to maintain
the system within the stable region of Ch-space. Stable dynamics are also
remained if the predators respond with increasing the handling time as the
prey vulnerability increases. This seems however less biologically likely too
me, as this means that when the prey becomes more and more easy to catch,
the predators starts to catch fewer and fewer of them.

4.3 The E�ect of a Variable Environment

Looking at the stable region of C-space in Figure 2.1(b), we see that a large
interval here generates imaginary eigenvalues and particularly at the ESS-
value. This means that if the system would get disturbed while at its ESS,
the population densities will start cycle. If the amplitude of the disturbance
is not that high that the populations immediately crashes, the oscillations
will be damped. However if the system gets disturbed constantly, there will
always be small �uctuations in the populations. When these �uctuations are
very small their only e�ect is an insigni�cant increase of the selection gradi-
ent at the ESS, which still is the trait value that stable prey populations will
evolve towards. In a real ecological system there could be numerous di�erent
sources that disturbs the prey (and predator) population(s). High amplitude
disturbance could for example be habitat destruction, forest �res or releases
of chemical toxins e.g. oil spill, which can cause the whole system to break
down, even if it is stable. There are also very many sources that could create
low amplitude disturbance themselves e.g. parasites, diseases or injuries and
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adding them up together with the �ckle weather and varying availability of
food for the prey, it should be safe to assume that medium amplitude distur-
bances should be very common in ecological systems. Of course one can not
directly translate the vague terms low, medium and high amplitude distur-
bance to the speci�c A-values that I choose to simulate the system for. But
I do believe that making a connection where 0.01 ≤ A ≤ 0.05 corresponds
to very low amplitude disturbances, 0.06 ≤ A ≤ 0.10 low, 0.11 ≤ A ≤ 0.14
medium, 0.15 ≤ A ≤ 0.18 high and 0.19 ≤ A ≤ 0.22 very high, is not com-
pletely unrealistic. Speci�cally as the �ndings in table 3.1 showed that up to
medium amplitude disturbances had very little chance, if any, to crash the
populations when their dynamics are stable. And we certainly do not expect
any real ecological system to break down completely because of bad weather
like pouring rain, thunderstorms or drought. Because as long as there has
been life on earth there have also been di�erent types of weather and the
organisms have still managed to evolve to this day. Major environmental
changes, like the ice age, should be corresponding to the higher A-values.
What is not quite realistic with the model is that it is only the prey popu-
lation that causes the crashes. In a real ecological system one might would
expect that the prey density might get so low that all the predators died out,
causing an accelerated increase in the prey population[9]. Perhaps this type
of dynamical behavior could be incorporated in the model if the �uctuations
had higher density dependence which and/or was correlated to the popula-
tion density at a speci�c point in time. In the simulations presented here the
�uctuations was only correlated with the steady state population of the prey,
completely disregarding the current population size. This caused situations
where the cycling prey population could get very small disturbances when
there is high density while get big disturbances when low density, where the
latter causes a crash. Still it is not an unrealistic white noise parameter.

A negative selection gradient indicates that lower trait values are evolution-
ary favorable. In Figure 3.10 we see that for A < 0.12 there exists a negative
selection gradient and these systems are thereby evolutionary stable as they
evolve towards the CSS. We also see (Figs. 3.8 and 3.10) that there exists
trait values C ′ which ful�lls both C ′ ≥ Ci and g(C ′) < 0. This means that
just because the deterministic system is unstable on the ecological time scale
does not mean that the system is evolutionary unstable with run-away evo-
lution. However, for this scenario to be interesting we must assume that a
population �starts� with a trait value such as C ′ which then should decrease
on the evolutionary time scale. Contrary to the initial assumption, that a
population starts with a low dynamically stable trait value which increases.
Or perhaps this region could be reached if the system �rst is experiencing
high �uctuations and thereby run-away evolution, but when C > Ci the
�uctuations in the environment decreases and making g(C) < 0. Wich ever
the case, I do believe that it is possible that a real ecological system, with
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proven limit cycles, could exist within such a region. But for the system to
maintain in this region for a long time (evolutionary speaking), there must
be some other parameters that changes simultaneously, preventing the sys-
tem from reaching ecological stability, or, again having di�erent strength of
the �uctuations on the evolutionary time scale.

Many ecological systems in nature already have oscillating dynamics, which
indicates dynamical instability. They also have �uctuations, and not just
on one trophic level as here, but rather on all. Although the �uctuations'
strength surely di�er between trophic levels, the predator population is also
e�ected by diseases and various environmental changes and according to the
results, systems with high environmental �uctuations should be expected to
have unstable dynamics. It should therefore not be surprising if an ecological
system shows high variations in the population densities.

Since the mathematical model is very simple, the results from it can suf-
fer from certain remoteness of nature[10]. Therefore it is not anticipated
that natural systems should have this �run-away evolution� that my results
suggest. In reality this certainly does not happen to all species, as many have
already lived and evolved for billions of years without going extinct. Still,
populations that have evolved to extinction could have occurred in reality.
I think however that it is probable that the predator population co-evolves
with the prey, changing the evolutionary outcome by putting an upper limit
on C. The interesting result is that populations could evolve from a stable
ecological system into an unstable one, naturally. In a predator-prey model
as the one I have investigated, one would probably expect an upper limit on
the vulnerability for which the evolution stops. Perhaps my upper realistic
limit of Cmax = 2.3 is not enough and the prey should actually be able to
evolve towards even greater vulnerabilities?

4.4 Closing Comments

One of the downsides with using the vulnerability as evolutionary parameter
was brie�y mentioned in 1.1, p.9. This was that the vulnerability of the prey
might have natural cycles, which in that case would demand the vulnerability
to be a function depending on the time, e.g. some sinusoidal function. This
would complicate the analytical analysis, but should be straight forward to
implement and simulate. Another interesting study would be to estimate
the vulnerability parameter with statistical methods using real data, then
compare the �ndings with the results from this report.



Bibliography

[1] Abrams P. A. and Matsuda H. 1997. Prey adaptation as a cause of
predator-prey cycles. Evolution 51:1742-1750.

[2] Abrams P. A. and Roth J. 1994. The responses of unstable food chains
to enrichment. Evolutionary Ecology 8:150-171.

[3] Brännström Å. and Festenberg N. V. 2013. The hitchhiker's guide to
Adaptive Dynamics. GNU Free Documentation License.

[4] Edelstein-Keshet L. 2005. Mathematical models in biology. SIAM.

[5] Metz J.A.J, Nisbet R.M. and Geritz S.A.H. 1992. How should we de�ne
'�tness' for general ecological scenarios?. Tree vol. 7, no.6.

[6] McGill B.J. and Brown J.S. 1992. Evolutionary game theory and adap-
tive dynamics of continuous traits. Annu. Rev. Ecol. Evol. Syst. 2007.
38:403�35.

[7] Natiello M. and J Schmeling 2010. Non linear dynamics. Lecture notes
for FMA140.

[8] Nisbet R.M. and Gurney W.C.S. 2003. Modelling �uctuating popula-
tions. The Blackburn Press.

[9] Rosenzweig M. L. 1973. Evolution of the predator isocline. Evolution
27:84-94.

[10] Yodzis P. and Innes S. 1992. Body size and consumer-resource dynamics.
The American Naturalist vol. 139, no.6.

45


