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Abstract 

Investigating climate model ability to simulate ecosystem seasonality, for instance causes and 

dynamics of phytoplankton blooms in the North Atlantic, is of major importance, because 

interannual and seasonal variations in bloom timing, duration and intensity caused by 

anthropogenic induced global climate change, can lead to species shifts and alterations in the 

trophic food web and biogeochemical cycles, which otherwise may remain undetected on an 

annual scale. 

The seasonal variability of the North Atlantic spring bloom is highly related to surface pCO2 

(Takahashi et al., 2002; Corbiere et al., 2007; Signorini et al., 2012) and bloom dynamics 

have a substantial role in carbon sequestration (Watson et al., 1991; Townsend et al., 1994). 

Hence it is necessary to improve predictions of seasonal variability in ecosystem models in 

order to simulate future global warming more precisely. 

To evaluate the accuracy of the University of Victoria Earth System climate model (UVic 

model) simulations of timing, forcing factors and limitations (e.g. mixed layer depth, 

temperature, irradiance, nutrients, zooplankton grazing pressure) to the North Atlantic spring 

bloom, model output has been compared to observations from MODIS satellite images, 

WOA09 data, IFREMER records and PAP measurements. 

The results showed that the UVic model simulated phytoplankton growth rates inaccurately 

and estimated the spring bloom start approximately one month too late. The model 

consistently underestimated actual temperature values, but temperature changes were 

significantly correlated between observations and predictions. The mixed layer shallowed 

earlier, more and patchier in practice than in the model. The simulated bloom is limited by 

solar radiance in early spring, while nutrient limitations are pivotal during summer. At 

specific study sites temperature was detected as driving factor for bloom formation. The role 

of the mixed layer depth on bloom dynamics was not simulated adequately by UVic. 

Therefore especially simulations of the mixed layer depth and associated shoaling processes 

need to be optimized, maybe by improved parameterization of eddies and wind stress, to 

achieve accurate predictions of bloom dynamics and related forcing factors. This is important 

to provide precise simulations of phytoplankton bloom dynamics in the North Atlantic region 

for solid predictions about CO2 sequestration, biological pump magnitude and other biological 

and physical interaction processes with respect to seasonal variability. 
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1. Introduction 

Earth System Climate Models are mathematical representations of global biogeochemical 

cycles and climate systems. They are used to investigate physical, biological and chemical 

interactions and have been developed to enable improved understanding of Earth’s climate 

system and to explore anthropogenic induced alterations in future climate scenarios 

(Bagniewski et al., 2011). 

In this study the ability of the University of Victoria Earth System Climate Model (UVic 

model) (Weaver et al., 2001; Eby et al., 2009; Keller et al., 2012) to reproduce satellite and 

field observations is evaluated. The incorporated ecosystem model was recently improved by 

Keller et al. (2012). One major modification is the optimized simulation of marine ecosystem 

seasonality at temperate and high latitudes and their influence on biogeochemical cycles. 

Whether the model predicts the causes of the simulated spring phytoplankton bloom in the 

North Atlantic region correctly has not been thoroughly assessed yet. It is also still unknown 

if ecosystem seasonality is important for simulating climate change and seasonal variations 

particularly in CO2-sequestration more accurately. 

  

1.1. Phytoplankton bloom biology and seasonality 

The oceans and marine ecosystems play a major role in the biogeochemical cycles of e.g. the 

key nutrients nitrogen and phosphorus. Both control phytoplankton growth, their reproduction 

as well as the magnitude of primary production and are thereby associated to the global 

carbon cycle, which is considered to be a major driver of climate change (Keller et al., 2012). 

One contributor to carbon sequestration is the biological pump (Longhurst and Harrison, 

1989), exporting carbon from the ocean´s surface to the depth. Phytoplankton cells take up 

carbon biologically via photosynthesis in the sunlit layer and transfer the organic material 

mainly by sinking processes downwards to the bottom (Anderson, 2005; Keller et al., 2012). 

This process is influencing Earth´s climate by decreasing atmospheric CO2 levels and thereby 

reducing global warming effects (Longhurst and Harrison, 1989). 

The effectiveness of the carbon pump depends on the ratio of particulate organic carbon 

(POC) to particulate inorganic carbon (PIC) in the transported material and thus controls the 

air-sea CO2 flux (Signorini et al., 2012). The export of organic carbon is furthermore affected 
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by the particle´s sinking rate, which in turn is determined by their buoyancy and shape 

(Bagniewski et al., 2011). It is estimated that this mechanism transports 5 – 20 Gt carbon per 

year from the sunlit layer into deeper zones (Henson et al., 2011).  

Half of the global primary production stems from phytoplankton photosynthesis (Longhurst et 

al., 1995). This primary production is a major contributor to the oceanic uptake of CO2 and its 

interannual and seasonal variability is highly related to surface pCO2 (Corbiere et al., 2007; 

Signorini et al., 2012). CO2 sequestration is particularly large at higher latitudes (< 30°N), like 

in the North Atlantic, where 25 % of global oceanic uptake of anthropogenic carbon is 

presumed (Takahashi et al., 2009), with the spring bloom being a key component of this 

uptake (Bagniewski et al., 2011). 

Thus, phytoplankton populations have a considerable impact on carbon sequestration at a 

regional and global scale (Longhurst and Harrison, 1989), especially the seasonally occurring 

phytoplankton spring bloom (Martinez et al., 2011). The distribution of blooms has also been 

linked to the concentration of inorganic carbon, sea surface temperature and the partial 

pressure of CO2 in the water column (Watson et al., 1991; Lochte et al., 1993).  

Nonetheless main contributor to carbon uptake is the so called solubility pump and the deep 

water formation in the North Atlantic region, together leading to a net CO2 uptake of 20% 

(Takahashi et al., 2002; Sabine et al., 2004).  

In addition to their biogeochemical influence, phytoplankton blooms are also prominent 

components of pelagic food webs and propagate bottom-up controls to higher trophic levels 

(Richardson and Schoeman, 2004). The development of phytoplankton blooms is correlated 

with life cycles of larval fish and zooplankton (Platt et al., 2003). Their survival rates are 

highly dependent on phytoplankton bloom dynamics, since in the marine realm they are the 

food basis for other trophic levels, i.e. from grazers to top predators (Cushing, 1990). The 

onset of a bloom formation could be affected by a changing climate, which may lead to a 

temporal mismatch of phytoplankton bloom and larval hatching (Cushing, 1990). The reduced 

life cycle synchrony may lead to a higher larval mortality rate, and can, next to other factors, 

substantially influence recruitment processes in fish population dynamics (Edwards and 

Richardson, 2004). Therefore it is of major importance to study causes and consequences of 

phytoplankton blooms and their interannual and seasonal variation in coincidence with 

anthropogenic induced climate alterations (Brody et al., 2013). 
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A phytoplankton bloom is characterized by large abundances of phytoplankton cells in the 

surface layers of the ocean, resulting from a period of high population growth rates (Martinez 

et al., 2011). The increase of phytoplankton biomass is referred to as spring or vernal bloom, 

when it occurs in temperate regions during spring (Mann and Lazier, 2006).   

At higher latitudes phytoplankton blooms are seasonal events and their development is 

controlled by special abiotic factors like solar radiation and temperature which contribute to 

the stratification of the water column. In the transition zone, between the subpolar and 

subtropical gyre, the first and main phytoplankton peak arises during spring, and the second 

smaller one in fall (D’Ortenzio et al., 2012), determined by the interplay of nutrients and light 

conditions (Henson et al., 2009). Further north, light increasingly becomes the limiting factor, 

resulting in one main bloom in spring or summer (Henson et al., 2009; Brody et al., 2013). 

This study focuses on the initiation of the phytoplankton bloom during spring in the North 

Atlantic region 30°-70°N 60°-10° W. 

 

1.1.1. Initiation of phytoplankton blooms 

To assess the various abiotic and biotic factors, like for instance light availability, nutrient 

accessibility, zooplankton grazing pressure, deep turbulent mixing in winter and the 

subsequent spring stratification (Nanninga and Tyrrell, 1996), is important when analyzing 

the causes of phytoplankton bloom formations. Previous studies proposed different 

hypotheses to explain this context. 

First, the rise in irradiance during spring was thought to trigger the spring bloom (Atkins, 

1928), since phytoplankton cells need sufficient light conditions to perform photosynthesis 

and increase their growth rates. The photosynthetic rate decreases with depth, proportional to 

the intensity of radiation. So the ocean layer offering a proper level of solar radiation to 

enable photosynthesis by phytoplankton cells is called the euphotic zone.  

In the study area wind stress and the consequent convection of cold water at the ocean´s 

surface are reasons for a nearly complete mixing of the water column in late winter (Mann 

and Lazier, 2006). This deep mixing as well as the low solar radiation during winter caused 

by low sun angles, limit phytoplankton population growth rates. 
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1.1.2. Sverdrup Hypothesis 

The most cited theory about spring bloom development is the Critical-Depth-Hypothesis of 

Sverdrup (1953). He assumed phytoplankton cells to be circulated and homogenously 

distributed in the water column due to turbulence induced vertical mixing, down to the 

maximum depth of the mixed layer.  

The mixed layer depth is the depth, where the water density difference to the surface is 0.01ρ 

and more (Bagniewski et al., 2011) or else where the temperature difference to 10m depth is 

0.2°C (Martinez et al., 2011). The mixed layer depth varies diurnally and seasonally 

depending on the solar radiation budget and thereby on the air-sea heat fluxes (Wolf and 

Woods, 1988; Lochte et al., 1993).  

Concomitantly with depth the production rate of phytoplankton decreases logarithmically. 

The respiration rate exceeds the photosynthetic rate near the bottom (Mann and Lazier, 2006), 

while the opposite is true for surface waters. The depth, where the rates of photosynthesis and 

respiration equal is called compensation depth (Dc). A rise in phytoplankton biomass occurs 

when integrated respiration levels are lower than integrated production levels. The depth, 

where integrated respiration is balanced by integrated production is called the critical depth of 

the mixed layer (Brody et al., 2013). The extent of the mixed layer in relation to the critical 

depth determines the overall in- or decrease of phytoplankton biomass. 

The shallower the depth of the mixed layer is in relation to the critical depth the higher is the 

planktonic growth rate (Mann and Lazier, 2006). Phytoplankton populations grow within the 

surface mixed layer when the mixed layer is shallow and their overall net primary production 

is positive (Bagniewski et al., 2011). 

Gran and Braarud (1935) stated that a major factor influencing the growth of phytoplankton 

and their primary production is the “stabilization of the water column by thermal 

stratification”. The surface warming of the water by absorbing incoming short-wave radiation 

causes stratification (Mann and Lazier, 2006), which is a process that establishes separated 

water layers with distinct characteristics. 

Due to sharp gradients in temperature or density, the vertical mixing from the lighter upper 

layer to the denser lower layer is suppressed, because this thermocline or pycnocline is a 

natural barrier between both water masses (Mann and Lazier, 2006).  
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Sverdrup (1953) assumed stratification as well as sufficient light and nutrients to be the 

factors initiating a spring bloom. Stratification and a shallower mixing depth cause 

phytoplankton to stay longer in the upper layer under favorable conditions, since more light 

and nutrients are available here in the beginning of spring. Thus phytoplankton cells have 

higher photosynthetic rates, so that the net primary production exceeds respiration and 

consequently stimulating their growth leading to a phytoplankton bloom (Sverdrup, 1953; 

Bagniewski et al., 2011; Brody et al., 2013).  

 

The presence of a spring bloom is, however, not only controlled by light, temperature and 

mixed layer conditions, but also by ambient nutrient levels. The aforementioned mechanism 

brings nutrients from great depths to the surface.  

The nitrate concentration in the upper layer rises during winter deep mixing (Mann and 

Lazier, 2006), mainly due to the entrainment of waters with a high remineralized nutrient 

content and lower consumption rates because phytoplankton populations are light-limited and 

do not use up the available nutrients. The shoaling of the mixed layer due to warming leads to 

a bloom during spring in the North Atlantic region. The increase in phytoplankton population 

size causes a fast depletion of nitrate in the surface ocean, which in turn restricts the 

population growth. Since the pycnocline limits the diffusion, virtually no new nutrients are 

entrained to the surface layer during summer, except what is regenerated by bacteria of the 

planktonic community. The process when phytoplankton cells use recycled nitrogen is called 

regenerated production. The ratio of total primary production of phytoplankton cells to new 

production, performed with nitrate entrained from below, is important for the global carbon 

cycle (Mann and Lazier, 2006). 

In fall the cooling of the surface water and the limitation of solar irradiance, at higher latitudes 

due to shorter days, as well as convection processes and alternated wind stress deepen the 

mixed layer. During these turbulences nitrate and other nutrients are replenished to the surface 

waters from further down (Mann and Lazier, 2006). 

The first bloom in early spring is usually formed by diatoms. Lampitt (1985) discovered that 

diatoms form large fast-sinking chain aggregates when the bloom phase declines which makes 

them to a key vector in exporting carbon to the deep ocean. Mesocosm experiments (Egge and 

Aksnes, 1992) and culture competition experiments (Sommer, 1994) discovered that diatoms 
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are dependent on a high silicate to nitrate ratio. Because silicate is, in contrast to nitrate, not 

regenerated in the shallow mixed layer during spring and cannot be renewed from deeper 

down, as vertical diffusion is missing due to the pycnocline, diatom bloom ends with silicate 

exhaustion.  

At the end of spring the phytoplankton bloom can be terminated by different factors, such as 

grazing pressure by heterotrophs or exhaustion of nutrients (Banse, 1992, 2002; Signorini et 

al., 2012), which is affected among others by species competition (Ross and Sharples, 2011). 

Also viral infection can cause the lysis of phytoplankton cells (Baudoux et al., 2006) and 

other environmental factors can have an influence on phytoplankton survival and species 

composition as well.  

The consumption by zooplankton and their excretion leads to a fast nitrogen reduction in the 

sunlit layer (Mann and Lazier, 2006). The consequence is a change in phytoplankton 

community composition. Subsequent blooms are mainly composed of dinoflagellates and 

coccolithophores (Signorini et al., 2012). Under low silicate to nitrate conditions sundry 

flagellates exhibit enhanced growth rates as they are able to migrate on a small scale to 

locations with higher nutrient concentrations (Mann and Lazier, 2006; Signorini et al., 2012). 

Coccolithophore blooms form, under advantageous solar irradiance, in late summer and by 

their production of calcite they alternate the amount of particulate organic carbon in the water 

column (Holligan et al., 1993a; Holligan et al., 1993b). At the end of summer, when the 

mixed layer depth increases and solar radiation budgets are reduced, chlorophyll a 

concentrations decrease significantly (Signorini et al., 2012).  

This explanation of a bloom formation following the Critical-Depth-Hypothesis probably 

applies for light-limited sites at middle and high latitudes, located in the North Atlantic or 

western North Pacific (Mann and Lazier, 2006; Brody et al., 2013). However, regions of the 

North Pacific or the Southern Ocean do not show the development of a phytoplankton bloom 

in spring, although the water column is well stratified. 

Doubts to Sverdrup´s hypothesis do moreover exist because phytoplankton populations have 

been observed to start growing and developing a significant bloom before or even without an 

apparent vertical stratification of the surface layer (Townsend et al., 1992; Backhaus et al., 

1999; Behrenfeld, 2010).  
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1.1.3. Dilution-Recoupling Hypothesis 

Although maximum phytoplankton abundances correlate with shallow mixed layers and prior 

increases are linked to solar radiation, evidence that net growth rates act similarly is lacking. 

Therefore Behrenfeld (2010) formulated the Dilution-Recoupling-Hypothesis, which takes the 

interaction of phytoplankton growth and zooplankton grazing pressure as well as the seasonal 

changing of environmental conditions more into account. He claimed that the initiation of 

phytoplankton blooms takes place during winter, when the mixed layer depth is at the 

maximum and phytoplankton is diluted by vertical mixing. This dilution yields lower 

zooplankton grazing pressure and therefore enhances phytoplankton growth. The recoupling 

of algae growth and zooplankton grazing increases during spring. Behrenfelds study also 

argues that the growth increase starts though the depth of mixing still rise and before 

enhanced solar radiation is available. The hypothesis is based on the assumption that the 

annual bloom results from a decoupling of algae growth and losses (Banse, 2002).  

 

The interactions between grazers and phytoplankton, however still need supplementary 

investigations to understand their annual cycle. Furthermore, the mechanism hypothesized by 

Behrenfeld has not been observed during the North Atlantic Bloom Experiment (NABE), 

because it was undertaken during a shallow mixed layer depth (Mahadevan et al., 2012). The 

NABE has been carried out at 47°N and 20°W in the years 1989 and 2008 as part of the Joint 

Global Ocean Flux Study (JGOFS) to observe phytoplankton dynamics, bloom development 

and related biogeochemical cycles in the North Atlantic (Ducklow, 1989; Dam et al., 1993; 

Lochte et al., 1993). During the experiment, the enhancement of chlorophyll began in spite of 

negative heat fluxes (Mahadevan et al., 2012), indicating that not solar heating, but eddy-

driven restratification due to changes in the mixed layer depth and horizontal density 

gradients caused the bloom.  

 

1.1.4. The Role of Ocean Fronts and Eddies 

Eddies are formed by instabilities in the range of 1 to 10km that originate from horizontal 

density differences. Cyclonic eddies promote a bloom by yielding a vertical stratification of 

the water column by transporting denser water downwards from the north to south and in turn 

shifting lighter seawater northwards and up in the water column (Fig. 1). During this process a 
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spring bloom can occur prior to blooms caused by surface water warming, as described by 

model simulations (Mahadevan et al., 2012). This mechanism is counteracted by a cooling of 

the upper layer due to wind stress and convective mixing of the water column. Both processes 

determine the depth of the mixed layer and influence the bloom initiation and properties at 

middle to high latitudes of the North Atlantic. Without eddy formation shallowing of the 

mixed layer and bloom formation may occur 20-30 days later (Mahadevan et al., 2012). 

Satellite data of chlorophyll a as well as model simulations imply that the patchy distribution 

of the spring blooms is caused by eddies (Watson et al., 1991). 

In addition to eddies, recent studies discovered a possible impact of ocean fronts on 

phytoplankton growth dynamics. The research of Taylor and Ferrari (2011) deals with ocean 

fronts, which are formed due to a gradient in temperature at horizontal scale. At 

oceanographic fronts stratification of the surface layer prevails, even if wind stress and 

consequent surface heat loss occurs (Fox-Kemper et al., 2008; Thomas and Taylor, 2010), 

thus phytoplankton cells are entrained in the euphotic zone (Taylor and Ferrari, 2011). Using 

MODIS Aqua satellite data, fronts could be identified as extremely productive areas. 

Chlorophyll a concentrations are highest at the front, indicating that local processes are likely 

the reason for enhanced phytoplankton growth. The authors theorize that a dynamic front, 

possibly including eddies, is a biological hotspot and promotes the development of patchy 

phytoplankton blooms. Especially at higher latitudes these processes can have an influence on 

the magnitude of the biological pump and future climate change, because of enhanced 

productivity by phytoplankton blooms (Lévy, 2005; Taylor and Ferrari, 2011). In subpolar 

regions this will contribute to stronger CO2 sequestration, when vertical mixing at fronts 

diminishes and phytoplankton growth rates hence increase earlier. Therefore it is important to 

parameterize these processes in climate ecosystem models. 

 

Figure 1: Resulting from winter deep mixing, upper 

ocean layers are denser to the north in spring. Eddies 

generate shallow mixed layer patches by moving 

lighter water upward and north and heavier water 

downward and south. By this process phytoplankton 

cells remain in the upper water layer and from the 

spring bloom. (Graphic by K. Mahadevan, 2012) 
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1.2. Modeling the phytoplankton spring bloom 

To simulate the North Atlantic spring bloom properly, the related variables and forcing 

factors, as described in previous sections, have to be parameterized accurate to reproduce 

observations correctly. If this is the case in the UVic model is the subject of this study. 

The UVic model is a model of intermediate complexity (EMIC). Model types like this are 

used to investigate climate dynamics over long time periods. The more complex a model is 

the greater is the calculation effort and the needed processing power (Yool et al., 2011). 

Therefore EMIC´s include climatic processes and mechanisms in a parameterized form, so 

that they are simple and feasible enough to conduct also long-term simulations (Claussen et 

al., 2002), which are important to ascertain future changes in Earth´s climate. 

In this examination phytoplankton is simulated in a simple nutrient – phytoplankton – 

zooplankton – detritus model, called NPZD model. The use of these four variables facilitates 

to keep model complexity simple but offering at the same time a required relation to reality 

(Heinle and Slawig, 2013). But recent approaches exist to develop NPZD models with higher 

complexity, by including e.g. different plant functional types or plankton size as well as 

biogeochemical cycles of iron and silicon (Yool et al., 2011). This could be important for 

better predicting algae bloom dynamics, as the timing, duration or development of spring 

phytoplankton blooms. 

To identify when the bloom starts, it is pivotal to discover factors that force phytoplankton 

populations to grow and to form a bloom. The initiation of the bloom can either be identified 

as time where phytoplankton biomass crosses a set threshold or when population growth rates 

are highest (Brody et al., 2013). The method used will have influence on the defined bloom 

timing and on the analysis of potential drivers. Concerning the modeling of phytoplankton 

blooms, it is important how phytoplankton life cycles and variations of related variables are 

parameterized in models.  
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2. Aims of the Project 

The aim of this project is to evaluate the ability of the University of Victoria Earth System 

climate model (UVic) to simulate timing and forcing factors of the North Atlantic spring 

bloom. The major questions of this thesis are:  

Does the model correctly predict the timing of the bloom and what determines and sets off the 

bloom? What are the roles of temperature, mixed layer depth, irradiance, nutrients and 

zooplankton in controlling the simulated spring bloom? Does the model simulate the spring 

bloom at the right time, but for the wrong reasons?  

Here it is hypothesized that the model correctly predicts the timing and location of the spring 

bloom and the related factors that have been identified as potential initiators or terminators 

(i.e. temperature, mixed layer depth, irradiance, nutrients, zooplankton grazing) of the bloom 

(e.g. Sverdrup, 1953; Martinez et al., 2011; Taylor and Ferrari, 2011). In this work the drivers 

that control the simulated spring bloom are analyzed, although there is still a controversial 

discussion in the scientific community (e.g. Behrenfeld, 2010; Mahadevan et al., 2012) about 

the environmental factors that initiate a spring bloom. 

 

Answering the above questions may be important for a better understanding if simulating 

ecosystem seasonality, especially the North Atlantic spring bloom, is essential, because its 

seasonal variability is highly related to surface pCO2 (Corbiere et al., 2007; Signorini et al., 

2012). In this context, the questions of whether future models should include seasonality and 

phytoplankton blooms in their climate simulations and connections of spring bloom 

seasonality and climate change are discussed.  
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3. Methods 

 

3.1. Study area: North Atlantic 

The examined region in this study is the northern part of the North Atlantic (30°-70°N 60°-

10°W) (Fig. 2), because the phytoplankton spring bloom is most pronounced here (Yoder et 

al., 1993) and has a crucial influence on the atmospheric carbon budget. The relatively 

heterogeneous region has been object to many studies on phytoplankton bloom development. 

Several research cruises and mooring stations have collected water samples and observations 

by satellite data are common.  

The North Atlantic plays an important role in the global thermohaline circulation, which is 

also referred to as meridional overturning circulation. Driven by density differences, due to 

temperature and salinity gradients, the North Atlantic basin is mainly influenced by the Gulf 

Stream. Warm water masses, entering from the south, stream northwards and experience a 

cooling at the surface. The Labrador Sea as well as the region between Iceland, Greenland and 

Norway are areas of convection. In these regions ocean water sinks downwards to flow as 

North Atlantic Deep Water (NADW) to the south again (Rahmstorf, 1996) and they are 

important CO2 sink locations. Approximately 5 to 10%, at high latitudes (>42°N) 0.2 – 0.5 Gt, 

of annual anthropogenic CO2 emissions are sequestered to the deep ocean by the meridional 

overturning circulation (Takahashi et al., 1995) and thereby playing a major role in oceanic 

biogeochemical cycles and future climate change. The region is furthermore affected by 

varying sea ice cover on Greenland’s eastern coast (Signorini et al., 2012), which also 

influences CO2 uptake rates and the formation of phytoplankton blooms. 

 

Figure 2:  Phytoplankton biomass (mg C/m
3
) in the North Atlantic study region (30°-70°N 60°-10°W) during 

spring (April-May) simulated by the UVic model. 



Methods   16 

 

 

 

3.2. The UVic model 

The evaluated model is the University of Victoria Earth System Climate model (UVic) of 

intermediate complexity (Eby et al., 2009) version 2.9 with modifications to the 

biogeochemical model by Keller et al. (2012). It is made up of three main components 

(Weaver et al., 2001) with 3.6° longitude × 1.8° latitude horizontal resolution, respectively. 

The first component contains a dynamic sea-ice model, the marine biogeochemical ecosystem 

model and a 3-D ocean circulation model (Modular Ocean Model 2) with parameterizations 

for tracer advection (Gent and Mc Williams, 1990), diffusive mixing across and along 

isopycnals, and diapycnal mixing tidally generated over rough countryside (Simmons et al., 

2004). The second component is a modified terrestrial vegetation and carbon cycle model 

(Meissner et al., 2003) based on the Hadley Center model TRIFFID, which includes 

continental ice sheets that are held constant in the simulation. The third component is a one 

layer atmospheric energy-moisture balance model (Weaver et al., 2001).  

The UVic model is forced by prescribed monthly climatological wind fields and historical 

CO2 emissions. UVic does not simulate any interannual variability or eddies neither in the 

ocean nor in the atmosphere. The model is run for the year 2005. 

The biogeochemical ecosystem model (Fig. 3) is a NPZD model (Schmittner et al., 2008) and 

modified by Keller et al. (2012). It consists of seven parameters including phosphate (PO4), 

nitrogen (NO3), oxygen (O2), nitrogen fixing phytoplankton (PD) and other phytoplankton 

(PO) as well as zooplankton (Z) and particulate detritus (D).  

The non-diazotrophic phytoplankton growth rate (JO) is controlled by nitrogen and phosphate 

concentrations as well as by irradiance (I) according to the following equations (Eq. 1, 2). 

 

(1)  

 

 

(2)  
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The growth rate of phytoplankton is dependent on temperature in the UVic model. At 0°C a 

maximum growth rate of 0.6 per day is used, according to previous studies about algae growth 

rates (Le Quéré et al., 2005; Keller et al., 2012). 

 

Figure 3: Schematic illustration of UVic ecosystem model visualizing model parameters (squares) and related 

material fluxes (arrows). (Keller et al., 2012) 

 

3.3. Defining the bloom start date (BSD) 

Two different methods are used to determine the bloom start date (BSD) (Brody et al., 2013) 

of the chlorophyll a data at the Porcupine Abyssal Plain-Eurosite station (PAP) (49°N 

16.5°W; http://www.eurosites.info) averaged over the years 2003-2012 as well as of 

phytoplankton biomass at the UVic grid cell (49.5°N 16.2°W) nearest to this site.  

In this study measured chlorophyll a concentrations are not converted to phytoplankton 

biomass, since the purpose of this study is to compare the timing and progression, not the 

actual magnitude in the context of displaying phytoplankton bloom development.  

The first method investigates bloom commencement by analyzing when phytoplankton 

biomass or chlorophyll a concentration crosses a certain threshold (Siegel et al., 2002a; 

Henson et al., 2009; Cole et al., 2012; Brody et al., 2013). The so called threshold method 

describes the bloom start as date when chlorophyll a concentration or phytoplankton biomass 
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excesses the set threshold, defined as the median plus 5%, like in former studies (Henson et 

al., 2009; Cole et al., 2012; Brody et al., 2013). This method has been used in several studies 

to detect the timing of a phytoplankton bloom at basin and global scale in combination with 

ocean color data (Brody et al., 2013).  

The second method defines bloom initiation as the date where the relative increase of 

chlorophyll a concentration or phytoplankton biomass is most rapid (Sharples et al., 2006; 

Brody et al., 2013). The bloom start date is therefore the first maximum of         before the 

bloom peaks. This rate of change method is valuable for investigating seasonal biological or 

physical mechanisms that generate an environment which causes a spring bloom (Behrenfeld, 

2010; Brody et al., 2013). 

 

3.4. Comparing UVic simulations with observations 

For evaluating the model skill to simulate observations, monthly averaged measurements of 

chlorophyll a concentration, sea temperature and sea salinity at the PAP station, are compared 

to the UVic output.  

To analyze if the model predicts timing and development of the North Atlantic spring bloom 

correctly, the model parameter phytoplankton biomass is compared with NASA´s Moderate 

Resolution Imaging Spectroradiometer (MODIS) monthly climatology satellite data of 

chlorophyll a concentration averaged over the years 2002-2013 (http://modis.gsfc.nasa.gov). 

Additionally ocean temperature data of World Ocean Atlas 2009 (WOA09) 

(http://www.nodc.noaa.gov/OC5/WOA09/netcdf_data.html), which represents in situ 

parameters of 1° grid climatology fields, and their difference between prediction and 

observation, called misfit (Evans, 2003), has been analyzed to investigate the ability of the 

model to reproduce these data. Also data about the mixed layer depth ascertained by 

IFREMER, the French Research Institute for Exploration of the Sea 

(http://www.ifremer.fr/cerweb/deboyer/mld/Data.php) has been compared to the modeled 

mixed layer depth.  

Chlorophyll a concentrations of MODIS are picturing the ocean´s surface, while 

phytoplankton biomass of UVic is averaged over the first 50 meters. Here attention is drawn 

at the timing and development of the bloom, not the actual magnitude of it. Therefore only 
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timing differences in the development are detected in this examination and chlorophyll a data 

has not been converted to phytoplankton biomass. 

Nonetheless the phytoplankton biomass has been converted from mol N/m
3
 to mg C/m

3
 using 

the Redfield ratio C:N 106:16=6,625 as to be consistent with previous studies (Redfield, 

1934).  

To statistically and graphically compare differences between the UVic simulation and 

observations the data sets are regridded onto the model grid in the Ferret software via linear 

interpolation (@FLN), except the measured data of the PAP station, which are compared to 

the named UVic grid cell. Also Matlab and Excel software are utilized for this examination. 

In order to assess model skill the quantitative metrics described by Stow et al. (2003, 2009) 

are used. In the following equations n = number of observations, Pi = the ith of n predictions, 

  = prediction averages, Oi = the ith of n observations and   = observation averages. 

For examining if the value of model predictions and observation data varies together the 

correlation coefficient r is used (Eq. 3).  

(3)  

 

 

The correctness of the model simulations is investigated with the indices root mean squared 

error RMSE, average error AE and average absolute error AAE (Eq. 4-6).  

(4)  

 

 

(5)  

 

 

(6)  
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The reliability index RI (Leggett and Williams, 1981) is used to calculate the factor by which 

predicted and observed values differ (Eq. 7).  

(7)  

 

To evaluate how accurate model simulations can display observations the modeling efficiency 

MEF (Nash and Sutcliffe, 1970; Loague and Green, 1991) is calculated (Eq. 8). 

(8)  

 

 

 

3.5. Analyzing potential factors causing the simulated spring bloom  

To discover what is triggering the spring bloom in the UVic Earth System Climate Model 

correlations between phytoplankton biomass and the related parameters, such as temperature, 

mixed layer depth, nutrient concentrations, and zooplankton grazing pressure were done. 

Additionally potential limiting factors, as irradiance, nitrogen and phosphate, which could 

suppress phytoplankton growth rates, are analyzed. Furthermore the correlation coefficient r 

and the standard deviation σ for each parameter by averaging the simulated data points of 

every month at 49°N 16°W has been assessed using the Ferret correlation computation.  



Results   21 

 

 

 

4. Results 

4.1. Defining the bloom start date (BSD) 

The bloom peak is defined as the date where phytoplankton or chlorophyll a concentrations 

reach a maximum value (Cole et al., 2012). The UVic model simulation displayed the first 

bloom peak to occur on May 23
th

 at 49°N 16°W, with a value of 274.74 mg C/m
3
, 25 days 

later than observed by the PAP station, where the chlorophyll a concentration reached a 

maximum of 1.22 µg/L on April 28
th

 (Fig. 4). 

According to the threshold method the simulated UVic bloom began at 8
th

 May with a 

phytoplankton biomass of 45.35 mg C/m
3
 (threshold: 14.53 mg C/m

3
),  while the observed 

bloom started 35 days earlier at April 3
rd

 with a chlorophyll a concentration of 0.84 µg/L 

(threshold: 0.697 µg/L). 

In contrast, the rate of change method defined the predicted bloom start date in the UVic 

model to be between May 13
th

 and 18
th

 with a rate of change of 101.77 mg C/m
3
 per five 

days, but the observations at the PAP site postulated the bloom initiation to be at March 29
th

 

to April 3
rd

 with a rate of change of 0.158 µg/L per five days, so 45 days earlier. 
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Figure 4: Chlorophyll a concentration (µg/L) measured by PAP Eurosite averaged (blue diamonds) and for the 

years 2004, 2005 and 2011 as well as the UVic ocean phytoplankton biomass (mg C/m
3
) prediction (red squares) 

over time (days), at 49°N 16°W in the North Atlantic with  data points every 5
th

 day. 

 

 

4.2. Comparison of UVic simulations and observations 

To evaluate the UVic model skill to simulate properties such as phytoplankton biomass, 

temperature, sea water salinity and the mixed layer depth, in a specific region of the North 

Atlantic (30°-70°N 60°-10°W) and at a certain site (49°N 16°W), the mentioned quantitative 

metrics and graphical comparisons are analyzed in this section (described in section: 3. 

Methods).  
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4.2.1. Comparison of PAP Chlorophyll a and UVic Phytoplankton biomass 

By comparing PAP chlorophyll a measurements with UVic phytoplankton estimations the 

variation of both values had been analyzed (Fig. 5). The chlorophyll a concentration in the 

water column consistently increased on average from month to month. Nonetheless 

chlorophyll a concentrations are highly variable in every month and between every year (Fig. 

4). The simulated phytoplankton biomass was predicted to be very low during February, 

March and April while a steep increase from April to May was expected, with high values in 

May and June whereas the content in July was decreasing. From April to May the simulated 

phytoplankton biomass increased by about 5643%, whereas the observed chlorophyll a 

concentration rose by about 18%. 

 

 

Figure 5: Chlorophyll a concentration (µg/L) measured by PAP Eurosite (blue diamonds) and UVic ocean 

phytoplankton biomass (mg C/m
3
) simulation (red squares) over time (months), at 49°N 16°W in the North 

Atlantic averaged over the years 2003-2012.  
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4.2.2. Comparison of MODIS Chlorophyll a and UVic Phytoplankton 

biomass 

Regarding the analyzed region of the North Atlantic (30°-70°N 60°-10°W) the chlorophyll a 

concentration, observed by MODIS, increased slightly in the south developing northwards in 

February, with higher values north of 50°N (Fig. 6). In general they remained low, however, 

between 0 and 1 mg/m
3
. The model simulated low phytoplankton biomass values everywhere, 

except in the region 40°-60°N and 60°-40°W. A higher concentration of chlorophyll a at this 

region was not detected in the MODIS satellite image. 

The chlorophyll a concentration remained low in March according to the MODIS satellite 

image, but an increase south of St. John´s, Canada was visible (Fig. 6). At the same location 

the UVic phytoplankton biomass raised in March. In contrast to the MODIS data the highest 

phytoplankton biomass was predicted south of Greenland at 60°N. 

The observed chlorophyll a content increased in April in the whole study area, especially near 

the coastlines and broadens further east (Fig. 6), while the UVic model simulated only a 

minor rise of phytoplankton biomass between Greenland and Canada as well as south of St. 

John´s. 

The MODIS data displayed great chlorophyll a concentrations from April on continuing until 

May, especially at 60°N around the Greenland coastline (Fig. 6). The UVic model simulated 

high phytoplankton biomass in the region between Canada and Greenland during April, which 

had a slightly different distribution in May. Additionally, high chlorophyll a values west of 

Canada at 50°N was shown by the satellite data in May, whereas the UVic model simulated 

high values of phytoplankton east and west of Greenland at 60°N and in the area around 50°N 

15°W. 

A clear decrease in chlorophyll a concentration over the whole study region was detected by 

the MODIS satellite during June. On the contrary, the UVic model simulated further 

increasing values of phytoplankton biomass north of 50°N (Fig. 6). 

Further decline in chlorophyll a concentration was observed by the satellite in July. At that 

time also the UVic model forecasted lower values of phytoplankton, but with a great 

mismatch southeast of Iceland, caused by still rising phytoplankton biomass (Fig. 6). 
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Figure 6: UVic phytoplankton biomass (mg C/m
3
) and MODIS chlorophyll a concentration (mg/m

3
) from 

February till July in the North Atlantic (30°-70°N 60°-10°W)
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4.2.3. Comparison of PAP and UVic Ocean Temperature 

The simulated ocean potential temperature from the UVic model is generally lower than the 

CTD measured sea temperature at the PAP station (Fig. 7). 

 

Figure 7: Seawater temperature measured by PAP Eurosite (blue diamonds) and UVic ocean temperature 

prediction (red squares) in °Celsius versus time (months), at 49°N 16°W averaged over the years 2003-2012. 

 

To quantify these differences and to expose a more comprehensive evaluation, metrics, as 

defined by Stow et al. (2003, 2009), were calculated (Tab. 1). 

Table 1: Quantitative metrics for model skill assessment of seasonal results at 49°N 16°W 

Quantitative metric Abbreviation Temperature Salinity 

Root mean squared error RMSE 3.44 0.28 

Reliability index RI 1.19 1.03 

Average error AE -3.41 -0.28 

Average absolute error AAE 3.41 0.28 

Modeling efficiency MEF -9.77 -577.62 

Correlation coefficient R 1.00 0.37 
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As seen in the temperature profile (Fig. 7) and also indicated by the correlation coefficient r 

(Tab. 1), the model prediction about observed temperature changes over time was significant 

(r=1). In both cases the seawater temperature slowly increased from April on. To determine 

the multiplicative factor by which observed and predicted values differ, the reliability index 

RI (Leggett and Williams, 1981) was calculated and showed a value of 1.19. The RMSE, AE 

and AAE had values around ~ 3.4, concerning the comparison of observed and simulated 

temperature. They measure the size of discrepancy between observed and expected values. 

Values near zero indicate a close match. The modeling efficiency MEF (Nash and Sutcliffe, 

1970; Loague and Green, 1991) was calculated to discover the accuracy of model simulations 

to display observations. This value was less than zero (MEF=-9.77), therefore the observation 

mean would predict the actual data better than the model simulation.  

 

4.2.4. Comparison of WOA09 and UVic Ocean Temperature 

The temperature values of WOA09 data and UVic simulation output, considering the whole 

study region, showed similar patterns in February (Fig. 8). The misfit between both illustrates, 

that the observed ocean temperature differed for about 1-3°C in the open ocean, while the 

difference at the east coast of Greenland and Canada were up to 7°C. 

The same pattern was visible for March (Fig. 8). The temperature rose from February to 

March along the latitude gradient from south to north, causing a zonal temperature increase. 

The misfit slightly grew. 

In April the misfit between the observed WOA09 data and the simulated temperature 

decreased in the open ocean slowly with the UVic model data generally underestimating the 

temperature of the measured data (Fig. 8). 

This misfit grew because the temperature rise in the observed data happened much more 

rapidly than predicted by the model. The underestimation of temperature by the UVic model 

decreased further, as seen in data for May, and increased in June and July. The observed 

temperature zones reached further north and developed faster than simulated by the UVic 

model. 
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Figure 8: UVic ocean temperature (°C) and WOA09 ocean temperature (°C) from February till July in the North 

Atlantic (30°-70°N 60°-10°W). 

 



Comparison of UVic simulations and observations   29 

 

 

 

4.2.5. Comparison of PAP and UVic Ocean Salinity 

The model derived sea water salinity varied on a scale of ~ 0.16 – 0.3 PSU over the months 

compared with the salinity measurements at the PAP station (Fig. 9). 

 

Figure 9: Seawater salinity measured by PAP Eurosite (blue diamonds) and UVic ocean salinity simulation (red 

squares) versus time (months), at 49°N 16°W.  

But also here the model generally underestimated the measured values. The calculated metrics 

showed a close match between observations and simulations (RI near 1; RMSE, AE, AAE near 

0; Tab. 1). The correlation coefficient is rather low (r = 0.3), because the variation of the 

detected and predicted data over time showed a different pattern. The mean of observed data 

would predict values better than the UVic simulation, since the modeling efficiency was 

extremely high (MEF = -577.62). 
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4.2.6. Comparison of IFREMER and UVic Mixed layer depth 

By comparing simulations about the mixed layer depth in the North Atlantic study region with 

IFREMER observations a general shallowing of the mixing depth, starting in spring, was 

detected (Fig. 10). The observed data showed deep vertical mixing in February and March, in 

particular between Greenland and Canada as well as south of Iceland. East of St. John´s was 

the only region where mixing depth shallower than 50m have been noticed (Fig. 10). A 

similar pattern was simulated by the UVic model. In April a slight decrease in the depth of the 

mixed layer in the southern part of the study region was measured and also predicted by the 

UVic model, although the observed shallowing of the mixed layer happened a lot faster than 

in the simulation. During May, June and July a shallow mixed layer depth was observed and 

also simulated by the model (Fig. 10), although the extent of the depth differed as IFREMER 

mixed layer depth was shallower than predicted. The UVic simulation also displayed deep 

mixing south of Iceland until June, while no deep mixing from May on had been observed.  
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Figure 10: UVic mixed layer depth (m) and IFREMER mixed layer depth (m) from February till July in the 

North Atlantic (30°-70°N 60°-10°W). 
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4.3. Analyzing potential initiators of the simulated spring 

bloom  

To investigate the triggering factors of the North Atlantic spring bloom in the UVic model 

correlations between the phytoplankton biomass and several parameters have been analyzed 

in this section. 

 

4.3.1. UVic Correlation of Phytoplankton and Ocean temperature 

In the UVic model ocean temperature showed a high correlation with phytoplankton biomass 

in a broad area around Iceland in February, whereas south of Canada temperature and 

phytoplankton biomass seemed to correlate inversely (Fig. 11). 

In March correlation of phytoplankton and temperature could only be observed in patches, but 

in April and May great areas in the study location showed a positive correlation between 

phytoplankton biomass and ocean temperature simulated by the UVic model. In June and July 

both parameters are significantly negative correlated for the most parts of the studied region. 

At the PAP site (49°N 16°W) no significant correlation between phytoplankton biomass and 

ocean temperature could be detected (Tab.  2). 

 

Table 2: Correlation of Phytoplankton biomass and Ocean temperature at 49°N 16°W 

simulated by the UVic model 

 Correlation coefficient r  

mean value (unweighted average) 

Standard deviation σ 

February 0.09 0.94 

March -0.42 0.82 

April 0.11 1.00 

May -0.17 0.93 

June -0.37 0.94 

July -0.39 0.83 
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4.3.2. UVic Correlation of Phytoplankton and the Mixed layer depth 

The mixed layer depth, as simulated by the UVic model, was significantly correlated with the 

phytoplankton biomass in the western part of the studied area during February, while in the 

eastern part a negative relationship was visible (Fig. 11). In March the correlation of both 

parameters had a patchy distribution and became negative during April in most parts. Positive 

correlations of mixed layer depth and phytoplankton biomass have been simulated in the 

western part during May, developing further northwards during June and July. 

Phytoplankton biomass and the mixed layer depth did not correlate significantly at 49°N 

16°W in the UVic simulation (Tab. 3). 

  

Table 3: Correlation of phytoplankton biomass and Mixed layer depth at 49°N 16°W 

simulated by the UVic model 

 Correlation coefficient r  

mean value (unweighted average) 

Standard deviation σ 

February 0.03 0.97 

March 0.74 0.53 

April -0.32 0.85 

May 0.19 0.88 

June 0.68 0.68 

July 0.45 0.84 
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Figure 11: Correlation of UVic phytoplankton biomass with UVic ocean temperature and UVic mixed layer 

depth from February till July in the North Atlantic (30°-70°N 60°-10°W). 
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4.3.3. Phytoplankton growth limitations by the UVic model 

In this section phytoplankton growth limitations, in terms of solar radiation and nutrients, in 

the UVic model were analyzed (Fig. 12). In February most of the studied region was limited 

by irradiance, except for regions southward of 35°/40°N and eastward of St. John´s, Canada, 

where nitrate was the limiting factor. The situation in March appeared similar, with a small 

additional nitrate-limited area south of Greenland. In April all stated nitrate-limited areas were 

enlarged. During May a huge part of the study region was limited by nitrate. The only light-

limited region was northeast in the study region (45°-70°N 10°-35°W). This area shrank 

during June and in July, only the southern part of Iceland was still light-limited. The major 

part of the study area was at this time limited by nitrate. Phosphate never became the limiting 

factor in the study area. 

 

4.3.4. UVic Correlation of Phytoplankton and Nutrient content  

During the first months of the modeling period phytoplankton biomass and nitrogen 

concentration showed a patchy correlation in the examined region (Fig. 12). Only from June 

on a significant positive correlation was found over a huge part of the region. The correlation 

of PO4 concentration to phytoplankton biomass viewed similar (Fig. 13). 

At 49°N 16°W no correlation between phytoplankton biomass and nitrate concentration could 

be found (Tab. 4). 

 

Table 4: Correlation of Phytoplankton biomass and Nitrate concentration at 49°N 16°W 

simulated by the UVic model 

 Correlation coefficient r  

mean value (unweighted average) 

Standard deviation σ 

February -0.64 0.70 

March -0.27 0.96 

April -0.17 0.78 

May -0.53 0.75 

June -0.55 0.82 

July -0.79 0.34 
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4.3.5. UVic Correlation of Phytoplankton and Zooplankton biomass and 

grazing rate 

Zooplankton biomass and phytoplankton biomass were highly correlated in most of the 

studied area over all examined months (Fig. 13). Only in March a negligible negative 

correlation was visible in small patchy parts of the North Atlantic region.   

The grazing pressure on phytoplankton was highly correlated with the biomass of 

phytoplankton during all months in the examined region. Only negligible small patches 

showed other patterns. The only exception found, was in July, where an approximately 10 nm 

in diameter big patch southeast of Iceland displayed no significant correlation between 

grazing pressure and the content of phytoplankton. 

 

Phytoplankton biomass and zooplankton biomass did not display any significant correlation at 

49°N 16°W over the study period (Tab. 5). In contrast phytoplankton biomass and the grazing 

pressure on phytoplankton showed a significant positive correlation in February, April, June 

and July (Tab. 5). In March no correlation between both parameters were detected. 

 

Table 5: Correlation of Phytoplankton biomass and Zooplankton biomass and Grazing 

pressure on Phytoplankton at 49°N 16°W simulated by the UVic model 

 

 

 

 Correlation coefficient r  

mean value (unweighted average)  

Zooplankton  Grazing pressure 

Standard deviation σ 

 

Zooplankton  Grazing pressure 

February 0.28 1.00 0.93 0.00 

March -0.49 0.04 0.84 0.73 

April 0.43 0.98 0.77 0.05 

May 0.29 0.90 0.80 0.13 

June -0.53 0.98 0.83 0.01 

July -0.23 0.99 0.89 0.02 
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Figure 12: Limiting factors in UVic simulations on phytoplankton growth and correlation of UVic phytoplankton 

biomass with UVic nutrient concentration from February till July in the North Atlantic (30°-70°N 60°-10°W). 
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Figure 13: Correlation of UVic phytoplankton biomass with UVic PO4 concentration, UVic zooplankton 

biomass and UVic grazing pressure on phytoplankton from February till July in the North Atlantic (30°-70°N 

60°-10°W). 
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5. Discussion 

Model simulations about Earth´s climate system are a relevant tool to explore mechanisms 

and processes of biogeochemical cycling on a global and local scale and to investigate future 

changes in climate, especially those induced by anthropogenic activities.  

To analyze the accuracy of model simulations, forcing factors and limitations (e.g. mixed 

layer depth, temperature, irradiance, nutrients, zooplankton grazing pressure) to the North 

Atlantic spring bloom, as predicted by the UVic model, were evaluated in this study.  

 

5.1. Spring bloom timing and development 

A clear discrepancy between observations and predictions has been detected by comparing the 

simulated phytoplankton biomass of UVic with observed chlorophyll a concentrations. 

Analyzes at the PAP site and from MODIS satellite data demonstrated that the North Atlantic 

spring bloom initiation occurred in the beginning of April, approximately one month earlier 

(35-45 days) than simulated by the UVic model, as well as the bloom peak (25 days).  

Not only the timing, but also the pace of bloom development was predicted inaccurately by 

UVic. While the measured chlorophyll a concentration increased on average of about 18% 

from April to May at 49°N 16°W, the UVic model simulated an immensely higher increase of 

about 5643% for the same timeframe. Observed blooms displayed for single years showed a 

steep increase at a specific time, nonetheless not as sharp as in UVic simulations. Furthermore 

the observed bloom was much patchier in the whole study region than simulated by UVic. 

Additionally the observed high values of chlorophyll a concentration persisted longer at the 

PAP station than in the simulation, where a rapid decrease was detectable shortly after the 

blooms´ peak. Further north UVic simulated a bloom in summer which had not been noticed 

by the MODIS satellite data. 

In observations of previous studies, the North Atlantic chlorophyll a concentration in the 

middle of May was seven times higher than ~23 days before in the end of April (Bagniewski 

et al., 2011). A rough trend in the bloom development is the occurrence of highest chlorophyll 

a concentrations two weeks later for each 5° northward (Siegel et al., 2002a; Henson et al., 

2008; Behrenfeld, 2010).  
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5.2. Ocean temperature 

Both, observations and UVic predictions, showed an increase in temperature from May on. 

Simulations about monthly changes in temperature were significantly correlated to the 

measured seawater temperature. But the UVic model consistently underestimated the detected 

temperature in most parts of the study region, at the PAP site by 3,41°C, proved by the 

calculated RMSE, AE and AAE. The MEF revealed that the observation mean would better 

predict the actual ocean temperature than the UVic simulation.  

The high correlation of phytoplankton biomass and temperature in some parts of the North 

Atlantic region, often near the coast, resulted from the temperature dependent growth 

formulation of simulated phytoplankton populations. Negative correlations in June and July 

could be attributed to decreasing phytoplankton biomass while temperature was still 

increasing.  

At the PAP site no correlation between simulated phytoplankton biomass and simulated ocean 

temperature had been detected. This leads to the assumption that other factors than the 

warming of the upper water layer were controlling the phytoplankton bloom at this specific 

site.  

The results are reconfirmed by previous observations as a temperature increase of the upper 

water layer had been observed during mid-May at the NABE site (47°N 20°W) (Lochte et al., 

1993). The initiation of a bloom, which developed due to the warming of the upper water 

column, depends on the timing of a positive air-sea heat flux (Mahadevan et al., 2012). The 

heat loss of the North Atlantic at 40°N 40°W is usually due to long-wave reflection and 

evaporation. These processes are mainly influenced by cloud cover and wind stress. Short-

wave radiation from the sun is the main heat source (Mann and Lazier, 2006). 

But also phytoplankton blooms themselves can influence the North Atlantic water 

temperature by warming the surface layer of about 0.2°C, thereby causing a stabilization of 

the thermocline and further shallowing of the mixed layer depth (Mann and Lazier, 2006). 

This process is not parameterized in the model and thereby is not taken into account in the 

bloom simulation.  
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5.3. Mixed layer depth 

Another crucial factor to the development of phytoplankton blooms is the depth of the mixed 

layer. Starting in April and strengthening during May, the mixed layer shallowed in 

observations and one month later in UVic simulations. This pattern had been detected also by 

previous examinations (Lochte et al., 1993; Bagniewski et al., 2011; Mahadevan et al., 2012). 

In NABE 1998 at the study site 47°N 20°W, and thereby close to the here studied location at 

49°N 16°W, the mixed layer shoaled to a depth of 20-30m from previously >100m in late 

April, like in this examination, and decreased further by 10-20m in May (Lochte et al., 1993). 

This process caused an increase of phytoplankton biomass and thereby initiated the spring 

bloom (Lochte et al., 1993).  

The UVic model simulated the shallowing of the mixed layer more uniform, but observations 

showed that the mixed layer depth shoaled inconsistently with heterogeneously distributed 

deep patches in the study region. These inaccurate estimations of the UVic model concerning 

the mixed layer depth can have an influence on the accuracy of the simulated spring bloom.  

The salinity values, which are related to the mixed layer depth, showed a close match between 

observations and simulations, since RMSE, AE and AAE were near 0. But MEF and r revealed 

an inaccurate simulation of salinity changes over time. 

Phytoplankton biomass and the mixed layer depth showed a positive correlation over major 

parts of the study area, except some patches and bands, which displayed opposite relations. 

Noticeable is, that April was the only month where a clear negative correlation between both 

variables in nearly the whole region was visible. In April the mixed layer was still deep. 

Phytoplankton biomass levels in contrary started to increase, so the magnitude still remained 

low. Shallow mixing depths can promote phytoplankton populations growth. The correlation 

analysis at the location 49°N 16°W showed no significant correlation during the study period.  
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5.4. Light and nutrient limitations to the spring bloom 

By analyzing the controlling factors on phytoplankton growth, a general northward trend of 

nitrate limitation substituting the previously predominating light limitation was detected. The 

correlation of nitrate and phosphate to phytoplankton biomass was patchy in the first months 

and results then in a high correlation during summer in huge parts of the study area. 

Decreasing phytoplankton biomass in the southern regions was associated with declining 

nitrate concentrations there. Also at the PAP station site a contrary trend of phytoplankton 

biomass and nutrients had been detected, although no significant correlation can be named.  

Nitrate and phosphate are important nutrients for phytoplankton, their growth, reproduction 

and productivity. Due to the thermocline, vertical mixing is diminished and virtually no new 

nutrients are entrained from below. Consequently nutrients, in particular nitrate, are depleted 

by phytoplankton consumption during periods of a stratified water column. 

Irradiance is steadily increasing in the North Atlantic from spring on. But the UVic model 

simulation of irradiance takes diurnal cycles and cloud cover not into account. Furthermore 

the role of light as a limiting factor is questionable, because Marshall and Orr (1928) 

discovered that also in winter enough solar radiation is accessible for phytoplankton to 

increase their biomass in particular subpolar regions.  

Because phosphate did not play a limiting role for algae growth in the region of interest, 

according to the UVic simulation, and correlations with phytoplankton have the same 

distribution like nitrate, phosphate is not further considered in this study. 

 

5.5. Zooplankton biomass and grazing rates 

Spring blooms are also affected by the grazing pressure of heterotrophs. Since phytoplankton 

biomass was already increasing while zooplankton biomass remained low in some areas, the 

correlation of both parameters was relatively patchy until May. In June and July most of the 

study region showed a positive correlation between both parameters in MODIS satellite 

images. In contrast no clear trend was visible at the PAP station.  

Zooplankton growth is dependent on the species and their adaptation to temperature changes. 

The UVic version used here allowed the growth rate to change with temperature (Keller et al., 

2012). Therefore the population may still have negative growth rates in early spring due to the 
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cold environment. Their phenological cycles are significantly dependent on phytoplankton, as 

they present a main source of zooplankton diet, depending on the species (Calbet and Landry, 

2004; Keller et al., 2012). 

As phytoplankton biomass was estimated considerably wrong by the UVic model also 

zooplankton biomass simulations could be wrong and further investigation is necessary to 

discover the ability of the UVic model to simulate zooplankton population dynamics. Diel 

vertical migration may additionally cause inaccurate estimates of zooplankton biomass in 

general. 

Phytoplankton biomass and the grazing rate on them are significantly correlated, except in 

March, where no clear relationship of both parameters was shown. The grazing rate is a main 

regulatory process of phytoplankton abundances during summer in the North Atlantic 

(Behrenfeld, 2010), but the magnitude of its impact is still under debate, because estimates are 

mostly based on improper in situ studies without regard to water column turbulences (Mann 

and Lazier, 2006).  

 

5.6. Other potential factors and influences 

The here demonstrated irregular distribution of phytoplankton spring blooms was observed 

previously. Phytoplankton primary production is not homogenously distributed, but patchy in 

space with temporary peaks over several weeks as revealed by satellite data (Dutkiewicz et 

al., 2001; Taylor and Ferrari, 2011; Signorini et al., 2012). Lochte et al. (1993) already 

postulated a spring bloom to be “a patchwork developing northwards”, which applies also for 

the North Atlantic region (Watson et al., 1991; Mahadevan et al., 2012). 

This can be caused by different environmental events or conditions, like internal waves, 

mesoscale fronts or eddies (Fasham, 1976; Mann and Lazier, 2006), and is related to the 

stratified conditions of the water column, as both, observational studies and model 

simulations, showed (Mann and Lazier, 2006; Mahadevan et al., 2012). Small and mesoscale 

eddies with an extent of <100km have been detected in the Northeast Atlantic regularly in 

former studies (Krauss et al., 1990; Lochte et al., 1993). In the North Atlantic eddies are 

significantly correlated with patchy phytoplankton assemblages and stratified areas with high 

primary production (Savidge et al., 1992; Townsend et al., 1994). The UVic model cannot 
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simulate these physical features and does not include brief transient drivers, which could be 

one reason for the incorrect simulated timing. 

Also meteorological circumstances during the development of a bloom are pivotal if the water 

column is subject to a transient stratification (Stramska et al., 1995; Waniek, 2003). When 

warming winds and storms occur, the phytoplankton biomass and production rates are 

suppressed although nutrients are re-introduced to the surface layer.  

Areas with a positive correlation between phytoplankton biomass and ocean temperature often 

existed near the coast. A factor causing elevated phytoplankton values could be the input of 

trace elements and the freshwater runoff from land (Mann and Lazier, 2006), since introduced 

low salinity waters stabilize the water column. This is supported by IFREMER observed 

mixed layer depth values. Examining this object will provide further understanding of 

environmental conditions triggering a phytoplankton bloom. 

 

5.7. Spring bloom formation 

The formation of a bloom happens differently depending on the forcing processes. A patchier 

distribution is expected by blooms evolved from eddy restratification, in contrast to blooms 

formed by the warming of the upper water layer (Mahadevan et al., 2012). The latter process 

is more homogenous, since it acts over a larger scale, while eddies are a local event.  

This examination showed that the observed bloom developed patchier than the simulated 

UVic bloom, which leads to the assumption that different driving factors act on the simulated 

blooms then actual in the ocean. In observations mixing depths were already shallowing, 

while temperature started to raise in May according to both, WOA09 and IFREMER data. 

Hence blooms occurring in April are not caused by enhanced temperature in observations. 

The UVic model simulated temperature rise and mixed layer shoaling to happen both in May. 

Noticeable is the higher phytoplankton biomass and chlorophyll a concentration at the 

southeast coast of St. John´s, Canada, in this study. The mixed layer depth first and most 

shallowed at this location, in observations slightly more and considerably earlier than in the 

UVic simulation. The model overestimated the temperature around St. John´s. It may be that 

the simulated spring bloom, displayed at this study site, is caused by the higher temperature 
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estimates, and not due to shallower mixing depths, as it is the case according to the satellite 

images.  

The observations support the Critical-Depth-Theory by Sverdrup (1953), while the simulation 

did not follow this hypothesis, concerning the mixed layer depth. The water column 

stratification seems to play only a minor role in initiating the simulated bloom.  

In this examination the simulated nitrate availability was limiting the bloom development in 

the UVic model throughout the summer. This result is consistent with assumptions made by 

the Critical-Depth-Theory (Sverdrup, 1953).  

Another determining factor for the simulated bloom was the zooplankton grazing pressure. In 

the ocean eddies and turbulences, for example, can prevent the merging of phytoplankton and 

zooplankton populations. This can influence their growth rates and also the timing of bloom 

formation according to the Dilution-Recoupling-Hypothesis. But it is questionable if the 

model simulates this de- and recoupling according to Behrenfeld (2010) due to the actual 

factors, as deep mixing. It is more probable that simulated temperature differences cause the 

temporal decoupling of phytoplankton and zooplankton populations, because their growth is 

connected to temperature in the UVic model. 

These findings state the importance of analyzing the contribution of the mixed layer depth and 

other related parameters to the initiation and timing of phytoplankton bloom development, as 

they affect population size and growth rates in spring.  
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6. Conclusion 

6.1. Suggestions for modeling improvements  

There has been a fast development of ecosystem models simulating physical, chemical and 

biological processes of the upper water column in the oceans (e.g., Oschlies and Garcon, 

1998; Moore et al., 2004; Doney et al., 2009), investigating climate variability seasonally and 

interannually (e.g., McKinley et al., 2004; Le Quéré et al., 2007), with respect to future 

climate scenarios (e.g., Bopp et al., 2003). 

Increasing complexity of ecosystem models may improve the correctness of their predictions 

in comparison with simpler models. But this also produces the need of taking more 

parameters into account, which are not well understood yet. The rising number of parameters 

makes optimization attempts more complex and problematic (Bagniewski et al., 2011).  

Future climate change and interannual variability can influence vertical mixing events in the 

upper ocean water column during spring, whereas stratifying processes in coastal regions are 

controlled by tidal mixing (Pingree et al., 1976; Townsend, 1994). The stabilization of the 

water column is often induced by vertical forces in simulations, but horizontal gradients 

should also be better parameterized, due to their role in eddy stratification (Fox-Kemper et al., 

2008; Mahadevan et al., 2012). Their contribution in the initiation of the spring bloom and the 

related phytoplankton primary production, requires the parameterization of lateral processes 

(Fox-Kemper et al., 2008; Taylor and Ferrari, 2011; Mahadevan et al., 2012).  

This study showed that the North Atlantic spring bloom is initiated prior to the simulated 

UVic bloom. Previous studies already discovered that models often simulate the bloom start 

date and development later than the observed phytoplankton spring bloom in temperate 

regions (Townsend et al., 1994). The development of a bloom is governed by cloud cover, the 

associated solar radiation budget as well as atmosphere-ocean heat flux, the shallowing of the 

mixed layer and wind stress (Townsend et al., 1994). But the initiation of the North Atlantic 

spring bloom regulated by eddies is often undetected by existing ocean ecosystem models, 

and also in the UVic simulation, since the influence of eddy restratification on bloom 

formation has not been parameterized in the model. Further investigation is needed to analyze 

at which locations phytoplankton blooms are caused by eddies to improve model skills. 

Therefore analyses are necessary to discover how eddy induced blooms can be simulated by 

climate models.  
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Since wind stress is a major driver of the seasonal and interannual variability in water column 

stratification, with respect to mixed layer depth and phytoplankton blooms (Martinez et al., 

2011), this variable should be the object of further studies. Additional attention should be 

drawn on the upwelling of nutrients and the influence of freshwater runoff and trace elements. 

Models, predicting conditions and processes in the upper ocean precisely, may fail to simulate 

the environment of the deep ocean and associated export rates (Bagniewski et al., 2011). Due 

to the importance of biological export of carbon for future climate alterations, model 

simulations ability concerning the deep sea environment and the twilight zone should be 

improved (Bagniewski et al., 2011). Further investigations are needed to evaluate the ability 

of the UVic model to simulate these processes and the accuracy of CO2 sequestration to the 

deep ocean. 

Simulating the formation of diatom aggregates and their sinking velocity can be an important 

parameter to estimate the atmosphere-ocean carbon flux as well as the development and 

termination of spring blooms more accurately (Bagniewski et al., 2011). Also 

coccolithophores contribute substantially to the export of carbon (Signorini et al., 2012). To 

improve future simulations of the North Atlantic spring bloom and their contribution to 

carbon sequestration in general, future climate models should contain the main phytoplankton 

groups (Signorini et al., 2012). But since UVic is a model of intermediate complexity it is 

questionable if the rise in complexity is that essential and doable. Further analyzes are 

necessary to investigate if models including this parameterization will lead to significant 

better simulations about phytoplankton population development than the UVic model. Useful 

tools to optimize biogeochemical models are field observations of “high-resolution 

interdisciplinary data from autonomous platforms” (Bagniewski et al., 2011).  

Oceanic conditions and processes are, despite plenty research effort, still uncertain. To 

develop adequate equipment to ascertain their values and variability is challenging (Waniek, 

2003). Especially phytoplankton loss rates due to “grazing, respiration and remineralisation, 

are problematic to detect” (Waniek, 2003). Optimized ecosystem models are needed to better 

predict distributions of phytoplankton blooms and the related physiological, chemical, 

physical and biological circumstances initiating their development and causing their 

termination. 
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6.2. The impact of climate change  

The temperature of Earth´s upper ocean layer has increased 0.5 to 0.7 degrees on average 

during the last century (IPCC, 2007). This warming affects marine ecosystems and their 

biogeochemical cycles as well as phytoplankton primary production (Taucher and Oschlies, 

2011). The upper water column is assumed to stratify earlier and longer with further 

greenhouse warming (Sarmiento et al., 2004; Cole et al., 2012). On the one hand this will 

advance the solar radiation budget in the stratified water column at higher latitudes, leading to 

a longer growth period for light-limited phytoplankton populations (Bopp et al., 2001). On the 

other hand the nutrient content in the upper water layer is a limiting factor, particularly with 

elongated stratification. The thermocline acts as barrier, hindering the vertical re-supply of 

nutrients, which will diminish the bloom formation at mid and low latitudes (Behrenfeld et al., 

2006; Cole et al., 2012). Thereby phytoplankton bloom dynamics in certain areas may be 

changed in terms of bloom start date, intensity and duration (Townsend et al., 1994).   

This will also influence the trophic chain, since the seasonally-dependent timing of 

phenological cycles of phytoplankton and higher trophic levels control their survival and 

reproduction rates (Cushing, 1990; Platt et al., 2003; Cole et al., 2012).  

Consequences for the trophic chain, including zooplankton, invertebrates and fish, could be 

that the pelagic community will benefit much more of increased production rates, linked to 

longer stratification periods, because of decreased export of organic material to the benthos 

(Frank et al., 1990; Townsend et al., 1994).   

Following Sverdrup´s theory, the North Atlantic bloom is expected to occur earlier in spring 

and have enhanced chlorophyll a concentrations. In contrast to the prior the Dilution-

Recoupling Hypothesis of Behrenfeld (2010) claims that less deep mixing in winter will cause 

lower phytoplankton growth rates, which is supported by satellite data, displaying a negative 

correlation of chlorophyll a concentration to sea surface temperature in the subpolar region 

(Behrenfeld et al., 2008, 2009, 2010).  

Since the simulated phytoplankton bloom may be controlled by temperature near St. John´s in 

the UVic model and temperature is expected to increase, a more homogeneous bloom 

development could be formed. The predicted bloom start date will occur earlier, due to higher 

temperature estimates. Observations in contrast assume patchier blooms with higher regional 

heterogeneity caused by mixed layer eddies (Mahadevan et al., 2012). 
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Still uncertain are the possible influences of an anthropogenic altered climate system on the 

oceanic environment and the effects of recently postulated climate engineering technologies 

on the biological pump (Frank et al., 1990; Townsend et al., 1994; Keller et al., 2012). 

 

6.3. The impact of methods and missing data 

To investigate the initiation, structure and development of the North Atlantic spring bloom 

and related parameters different techniques are available. Although they are useful tools their 

deficits should be taken into account. 

According to Platt et al. (2010), the investigation of phytoplankton life cycles over a large 

study area during a long time period by remotely sensing of ocean color is a valuable tool, 

which is used in this study in form of MODIS images of chlorophyll a concentrations. Even 

though satellite data can only examine the ocean’s surface and a small number of features, 

they have a high spatio-temporal resolution and are therefore able to discover short-lived 

blooms of phytoplankton (Doney et al., 2009; Mann and Lazier, 2006). Seasonal or 

interannual variations like this may remain undetected by ship-based investigations. The 

sampling by mooring stations and research cruises is necessary to identify the vertical 

alteration of biogeochemical features, but they are limited in number (Doney et al., 2009) and 

can only give a snap shot of certain phytoplankton bloom patches and their development 

(Bagniewski et al., 2011). This is the case for the PAP station data, where different parameters 

over different depths were examined, but at a fixed station.  

When analyzing the importance of climate seasonality and phytoplankton blooms the impact 

of missing data has to be considered. Data gaps make approximations uncertain and the 

unnoticing of interannual and seasonal variations in phytoplankton blooms, their timing and 

duration trends is a challenging issue (Cole et al., 2012).  

Especially at higher latitudes, like the North Atlantic region studied here, persistent cloud and 

ice cover, winter low sun angles and aerosols in the atmosphere, are problematic phenomena 

causing massive data gaps (Cole et al., 2012). Seasonal variability especially regular 

occurring events and their timing of initiation and collapse can be difficult to determine with 

missing data.  
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These factors could therefore affect the accuracy of observed data about phytoplankton bloom 

development and the bloom start date as well as other examined parameters in this study. 

Additionally the data were averaged over time. Although this method reduces the effect of 

missing data, it also “smoothes out high-frequency variability” (Winder and Cloern, 2010; 

Cole et al., 2012). Unnoticing of seasonal variations of parameters or extreme events can be 

the consequence. Therefore a penetrating analysis is necessary in further studies to investigate 

the influence of data gaps on phytoplankton bloom examinations.  

Former studies found that regions highly affected by data gaps show timing errors up to 30 

days to early for the bloom start date and vary around 15 days when predicting the bloom 

peak date. But predictions were also found to be wrong for up to 50-60 days in the spring 

bloom start date north of 40°N in the western part of the North Atlantic (Cole et al., 2012). In 

general averaging data with plenty gaps causes predicted bloom initiation dates to be later 

than in reality. This is typical at high latitudes, which are greatly affected (Dandonneau et al., 

2004), although only minor cloud cover in summer is assumed to influence the data (Cole et 

al., 2012).  

The study period to examine the phytoplankton spring bloom has been from February till July, 

but references exist that propose the onset of increased phytoplankton growth rates to be in 

winter and thus assuming a three to five fold greater  biomass then so far suggested during 

this time period (Behrenfeld, 2010; Waniek, 2003). An extension of the study time period 

over the whole year could validate this hypothesis. On the other hand chlorophyll a 

concentrations estimated by satellite data seem to be lowest in January (Banse, 2002; 

Backhaus et al., 2003; Ward and Waniek, 2007; Behrenfeld, 2010).  

Furthermore the UVic model does not differentiate between the first 50 meter of the ocean, so 

important and sensible processes and mechanisms related to specific mixing depths stay 

undetected. A more detailed separation of the upper water column is necessary to discover the 

bloom formation more precise. 

Improving the quality of examination methods to optimize forecasts in these areas is pivotal, 

due to their high productivity rates and high variability in seasonal cycles (Cole et al., 2012).  
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7. Summary 

It is of major importance to put more effort in examining simulated ecosystem seasonality 

because the changes in climate will have a major effect on the timing, intensity and duration 

of the phytoplankton spring bloom and these processes can lead to species shifts and 

alterations in biogeochemical cycles, which will not be detected on an annual scale. 

This study showed, that the occurrence of the North Atlantic phytoplankton bloom is not 

predicted accurately enough by the UVic model for solid predictions about CO2 sequestration, 

biological pump magnitude and other biological and physical interaction processes.   

As shown before, the UVic model simulated the North Atlantic spring bloom approximately 

one month too late. Also the predicted phytoplankton population growth rates differ to 

observations. Temperature changes are correlated significantly, but the actual temperature has 

been underestimated by the model.  

The model does not correctly predict the timing and causes of the North Atlantic spring 

bloom. Temperature, not mixed layer depth, most probably controlled the simulated bloom at 

a specific study site. At other locations of the study region no distinct driving factor could be 

identified. The shoaling of the mixed layer depth has to be better parameterized in the UVic 

model to achieve an optimized simulation and to discover the influence of this process to the 

phytoplankton bloom. While the UVic bloom in the North Atlantic was first limited by light, 

nutrient limitations were pivotal in summer. The UVic simulation showed a more uniform 

shallowing of the mixed layer depth then observed. 

At summer time also zooplankton grazing may act as a main regulatory process terminating a 

phytoplankton bloom. But estimates about population size and dynamic of both, 

phytoplankton and zooplankton, is based on measurements that are too inaccurate for 

displaying population dynamics in marine ecosystems adequate, especially water column 

turbulences and eddies are not taken into account properly.  

More effort has to be made to analyze causes and consequences of the North Atlantic spring 

bloom and more study effort for making UVic simulations more precise in simulating 

phytoplankton blooms is necessary. Since irradiance also have a huge impact on bloom 

development, also researches analyzing if irradiance measured by satellite data and simulated 

irradiances are correlated has to be done, but cloud cover and other factors causing data gaps, 
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should be taken into account properly. Also weather phenomena on a weekly base are highly 

influencing timing and duration of bloom patches, a closer look on this subject should be 

taken. Investigating the role and importance of wind velocities and eddies, as positions of 

local upwelling, on the phytoplankton growth formulation in earth system climate models 

seems to be a necessary project. Since UVic is a model of intermediate complexity, at least 

some of these topics have to be examined with other climate models.  

To conclude: A lot more work has to be done to analyze and improve simulations of 

phytoplankton blooms in the North Atlantic by the UVic model. Although there are many 

influences that play a role in phytoplankton life cycles and bloom development, to keep the 

simulation feasible the suggestion is to correct predicted temperature values and to improve 

the simulations of the mixed layer depth and bloom development by taking eddies and wind 

stress more into account first of all, by better parameterizing these variables without adding 

too much additional complexity. 
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