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Abstract

Electron-phonon interactions play a central role in the behaviour of matter in the con-

densed phase. Physicists’ interest in this subject can be traced back to the early days

of quantum mechanics, when key concepts like vibration quanta in the theory of spe-

cific heat or the Born-Oppenheimer approximation in molecular electronic structure,

to mention a few, were first introduced.

The controlled manufacturing of nanoscale systems has ushered a renewed interest

in the basic aspects of electron-phonon interactions since the spatial confinement

in nano-structures can enhance the effect of specific vibrational modes, leading to

concrete manifestations of interesting concepts such as, local temperature and heating.

It is also expected that in an another area of physics, namely ultracold-atoms, the

study of the interaction between itinerant fermions and phonon-like excitations can be

successfully undertaken due to the possibility of controlled and accurate manipulation

of experimental setups and selective inclusion of physical effects.

This thesis investigates some elementary aspects of the electron-phonon interac-

tions in small open and closed 1D chains. Using an exact numerical method, the

time-behaviour of 1) quantum rings in magnetic fields, and 2) parabolically trapped

systems has been addressed when electron-phonon and/or electron-electron interac-

tion are present.

A first outcome of this thesis is the implementation ex-novo of a computer code to

describe the non-equilibrium dynamics of these aforementioned model systems. Using

such numerical capability, we performed several numerical simulations. As a second

outcome of our work, we have obtained a set of results which illustrates the complex

interplay among fermion-fermion and fermion-phonon interactions in the presence of

magnetic time-varying fields, and how such interplay depends on the i) non/adiabatic

and ii) non/resonant character of the external perturbation.

Our work only touches the very superficial aspects of these very interesting topics,

and we hope it will provide inspiration for further investigations.
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Chapter 1

Introduction

Richard Feynman claimed in a famous quote that nobody can understand quantum

physics. The reason for his statement was probably the counterintuitive nature of

quantum mechanics, and depending on how you define understanding you could say

that Feynman was either right or wrong.

However what we can say most certainly is that we do have some knowledge of

what goes on behind the curtain, in the world of probability waves. At least this is

what experiments suggest.

Until the end of the 19th century, the world as we knew it could be satisfactory

described in the language of classical physics. Of course nobody knew at the time the

truly microscopic and probabilistic nature of the basic constituents of solid materials.

One could just state that the building blocks of a solid material were in themselves

solid, and at a very small scale, indivisible units existed, called atoms. Now we know

that, to be able to know what really goes on, it is necessary to “peek behind the

curtain”.

Without the knowledge of quantum mechanics, society would be very different.

Almost every piece of modern electronics has in it components that would have never

been realized if it was not for ground-breaking theoretical work in the field of quantum

mechanics.

With ever decreasing size of electrical components, quantum phenomena have

become a limiting factor and the study of electronic behaviour in small quantum

systems is nowadays a research topic of central importance. Important phenomena

in such systems are the effects of phonons on the dynamics of the electrons, as well

as the interaction amongst the electrons themselves.

This thesis investigates how the time evolution of one-dimensional quantum sys-

tems in presence of time varying electric and magnetic fields are affected by electron-

phonon (and, at the same time, by electron-electron) interactions.
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1.1 Electron-phonon and electron-electron inter-

actions

In solids, atoms are arranged in regular lattice structures. Of course, there can be

imperfections, vacancies, etc., since disordered or “defective” structures (e.g. amor-

phous solids) are a common occurrence in nature. However, the very existence of

regular patterns for the atom equilibrium positions and their displacement around

such positions, are at the origin of many physical and chemical properties exhibited

by materials.

This simple fact has been recognized for a long time by material scientist, chemists,

and physicists, with statistical or macroscopical theories for sound or heat or electrical

conduction (e.g. in terms of equations for wave propagation in continuous media, or

the Drude’s model for metals), but it was only with the introduction of quantum

mechanics and the quantization of lattice (or atomic) vibrations (e.g. Einstein’s and

Debye’s theories of specific heat [1] [2]), that quantitative agreement between theory

and experiment was possible in situations precluded to a classical description.

The key concept/entity in the quantum theory of lattice vibrations is the phonon

(this notion was introduced by Igor Tamm in 1932 [3]), the quantum of a vibration

mode, which corresponds to a coherent motion of atoms in a solid. Different types of

phonons exist, corresponding to vibrations of different frequency and wavelength, and

also to different patterns of relative motion of the atoms. In the following we assume

that the reader is familiar with the phonon concept, and defer to the literature [4] for

a simple introduction to the subject.

Phonons affect conductivity at high temperatures. This is simply because the

scattering rate of the electrons increases as the lattice is deformed by the vibrations.

But even at low temperatures, where the lattice vibrations are at a minimum, the

electron-phonon interaction can significantly affect the properties of quantum systems.

For example, at low temperatures electrons can form pairs through indirect inter-

action through lattice deformations i.e. electrons interact through electron-phonon

interaction. The bound electrons pairs, which are called Cooper pairs [5], are bosonic

and hence not a subject to the Pauli exclusion principle; this is the core aspect in the

explanation of superconductivity, one of the more spectacular examples of phenomena

caused by electron-phonon interactions, h.c. refers to the hermitian conjugate.

The systems considered in this thesis are strongly correlated one dimensional

systems. A simplified model for the description of these systems is the Hubbard
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model [6]. The corresponding Hamiltonian (the so-called Hubbard Hamiltonian),

written in the formalism of second quantization, reads as follows:

H = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ +
∑
i

εini (1.1)

The Hamiltonian is made up of three parts: a kinetic part, a part which accounts

for the electron-electron interaction and a part for the on-site energies. The creation

(annihilation) of and electron with spin σ at site i is described by the creation (an-

nihilation) operator c†i,σ (ci,σ), t is the hopping amplitude (taken to be t = 1 in our

simulations), U the electron-electron coupling, ni,σ = c†i,σci,σ the number operator for

electrons of spin σ on site i (the site occupation operator is ni = ni,↑ + ni,↓) and εi

the on-site energy of site i.

In the expression for the kinetic energy, 〈i, j〉 stands for the sites i, j that the

electrons are allowed to hop between. In most cases this would be the adjacent sites.

Approximations made in the model are that the electrons only can exist spatially

at given sites and that the Coulomb repulsion only affects electrons that occupy the

same site and that the electrons only are allowed to hop between adjacent sites.

It should be noted that the Hubbard model is just an extension of the tight binding

model with added electron-electron interaction, because of this the term U
∑

i(ni,↑ni,↓)

is referred to as the Hubbard term.

The Hubbard Hamiltonian does however not take phonons into account. A popular

model which is the analogous of the Hubbard model but with electron-phonon (instead

of electron-electron) interactions is the Holstein model [7], first introduced to describe

system where every “site” consisted of two atoms vibrating with respect to each other.

With the atoms closer to each other the overlap of the potentials would be larger and

thus the on site energy would lower.

In terms of energy operators the vibration between the atoms at one site i is

described by a quantum oscillator ω0b
†
ibi with b† (b) being the phonon creation (an-

nihilation) operator. The term ω 1
2

is left out since it just shifts the overall energy by

an amount and hence does not affect the dynamics. The shifting of the site energy is

accounted by the term λ(b†i + bi) which, multiplied by the electron density accounts

for the electron-phonon interaction.

When electron-phonon (electron-electron) interactions are introduced in the Hol-

stein (Hubbard) model, one then arrives to the so-called Hubbard-Holstein model.

This model is very popular and has proven successful in many situations involving

3



strongly correlated systems in the presence of phonons [8], and it will be the model

used in this thesis.

In more detail, the whole Hubbard Holstein Hamiltonian is a sum of a electronic

part, a phononic part and an electron-phonon part:

H = Hel + Hph + Hel−ph (1.2)

Hel = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ +
∑
i

εini (1.3)

Hph = ω0

∑
i

b†ibi (1.4)

Hel−ph = λ
∑
i

ni · (b†i + bi) (1.5)

The Holstein Hamiltonian is obtained from Eq.(1.2) when U = 0.

In another, equally important way to invoke the electron-lattice interaction, the

phonons, instead of being coupled to the density at one or more sites, can affect

the hopping between sites. The hopping amplitude would then change in time, which

could be seen as the distance between nearest neighbour sites is oscillating. i.e. almost

as if the lattice was “breathing”, see Eq. (1.6). With this type of coupling Eq. (1.5)

is removed and the kinetic energy term in the Hamiltonian changes into:

Hkin = −
(
t+ λ · (b† + b)

) ∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) (1.6)

In this thesis the effect of such a phonon mode is investigated for quantum-ring

systems.

1.2 Quantum rings

An interesting class of 1D systems is quantum rings. The study of quantum rings is a

very popular topic for research and the manufacturing of rings has gone through a vast

development and today it is at a stage where it is possible to create quantum rings

with only nanometres in circumference [9] and with only a few electrons. Furthermore,

cold atom experiments can be used to simulate ring systems with the advantage of

tuning the parameters with high precision.

One can also pierce a quantum ring with a magnetic flux and then the Lorenz

force will act upon all of the charged particles in the ring. This is also possible to do

with quantum rings.
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This is most often done by a magnetic flux that is zero at the perimeter of the

ring. This kind of flux is known as Aharonov-Bohm flux after the Aharonov-Bohm

effect which is a quantum phenomenon where charged particles are affected by a

electromagnetic field despite not being in the field. Using the Aharonov-Bohm flux

also means that one doesn’t have to account for on-site energy splitting due to the

Zeeman effect which would instead occur if the magnetic field was non-zero at the

perimeter of the ring. The Lorentz force will act upon the electrons in a uniform

manner, such that the force on every electron would be equal and in the same direction

in the ring (clockwise or counter clockwise). This force can be implemented as a

complex phase in the hopping terms of the Hamiltonian. [10]

Hkin = −t
∑
i,σ

(c†i+1,σci,σe
φ(t)/L + h.c.). (1.7)

Here L is the number of sites in the system.

By this kind of manipulation of the magnetic flux it is possible to create persistent

currents. This is one of the most studied subject related to quantum rings. It has

for example been proposed that this prescription could be used for memory bits in a

quantum computer (qubits). [11]

It has also been proposed that a quantum motor could be driven by an alternating

magnetic field [12]. The manufacturing of such a device is still in the future, but

thanks to the continuous advances in cold atom physics, it is expected that these

types of systems can be eventually simulated and evaluated.

For a non-interacting system without impurities a constant change of the magnetic

flux (φ̇(t) = c 6= 0) will result in an oscillating current with average zero, for this

reason most people study cases where the magnetic flux is changed from an initial

value φi to a final value φf . An example of this kind of investigations is offered by

the work of Mierzejewski et al. [13], where the focus is on how the persistent current

in a ring is influenced by the way the magnetic flux is ramped up.

In this thesis we reproduce and build on the results of Mierzejewski et al.: after

reproducing the results of Ref. [13], we then study the case where the ring is coupled

to a breathing phonon mode, and we look at how the current changes with different

strengths of the electron-electron interaction.

1.3 Cold atoms and optical potentials

Lasers have been a great asset in many areas of physics. Since the 90’s the use of

lasers to cool and trap atoms has gone through a vast improvement. Today it is
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possible to tune optical potentials for both bosonic and fermionic atoms to a very

high degree of precision. [14–16]

Using fermionic atoms it is possible to simulate systems with electrons in a way

that would be impossible otherwise. The ability to tune all of the parameters makes

cold atoms a great playground for testing new ideas and models.

In dealing with a many-particle problem (this is the typical situation one has to

face when working with condensed matter systems), both analytical and numerical

approaches are at a limit where the dynamics only can be calculated through severe

approximations. Here cold atom physics can play a role in simulating systems. By

directly comparing the experiments to simulations, the effect of the approximations

can be evaluated and thus the theoretical work can be pointed in the right direction.

In this work we investigate a one-dimensional system with a few electrons trapped

in a parabolic potential. The middle site, which is least affected by the parabola, has

a localized Holstein phonon attached. We examine the time evolution in this system

when the parabola is shaken.

To summarize, this thesis investigates one-dimensional quantum systems through

computer simulations, using the Hubbard and Hubbard-Holstein-like models. Our

work is limited to small systems with up to four electrons and one phonon mode at

most.

Since the models we have used in this study are based on simplifying approx-

imations, this will of course affect the results when compared to specific realistic

situations or materials. Therefore it should be stressed that all the results in this

thesis are purely theoretical and that they rest upon the assumption that the model

is applicable to the systems investigated (an assumption often justified in the case of

cold atoms). At the same time, it is hoped that some of the qualitative aspects of

our findings are relevant to the understanding of more realistic situations.

The aim of this thesis is to produce results that will be used in a future publication

and, through this, contribute to the scientific advancements in the field of condensed

matter physics.
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Chapter 2

Method

The results produced in this thesis are the output of several simulations done with

two distinct computer programs. While quite different in structure and range of

applicability, the two computer codes rest of the same basic methodology, namely the

exact diagonalization solution of the static and time-dependent Schrödinger equation

for a finite number of particle/orbital in a full configuration-interaction scheme. [17]

Input to the programs are parameters like the number of sites and electrons in

the system, on-site interaction etc. From the input parameters the Hamiltonian is

created. The Hamiltonian is diagonalized by a routine which returns the eigenvalues

and the eigenstates in a pre-assigned order. The lowest eigenvalue is the groundstate

energy and the corresponding eigenvector is the groundstate.

After this, the program calculates the time evolution, starting from the ground-

state. If nothing in the system is changed, the state will remain in the groundstate.

With the system disturbed, the state will change in time. The integration in time

will be made by discretizing the time-axis in terms of small “time-steps”.

For every time step the program will apply a number of operators which calculate

the expectation values of the respective physical quantities and save the data so that

they can be analysed at a later time.

The program used for the ring systems was coded from scratch as part of the

bachelor project. Thus, this chapter will be used to explain the theory and the

methodological principle behind building such a program.
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2.1 Creating the Hamiltonian.

2.1.1 Basis set and assembly

To create the Hamiltonian one has to decide which basis will be used throughout the

simulation. Furthermore, the system needs to be described within a finite Hilbert

space, so that it can be implemented in a computer with a finite memory.

Take the example of a system with two sites and one electron: a simple basis set

would be {|1〉 , |2〉} with |i〉 being the state with the electron being on site i. This

written in second quantization formalism would be
{
c†i |0〉 : i ∈ sites

}
with |0〉 being

the vacuum state.

The mathematical requirements for the basis is that it should be complete within

the Hilbert space and that the basis state vectors should be orthogonal. This means

that one could use any linear combination of the basis vectors above that fulfils

these mathematical requirements. However, for the construction of the Hamiltonian

another requirement one should add is that the basis set should be relevant for the

given Hamiltonian.

This is not only important for aesthetic reasons. If a good basis set is used

the Hamiltonian matrix will be sparse, i.e. it will have many zero elements, and

sparse matrices are in general easier to diagonalize. Some approximative methods of

diagonalization only work on sparse matrices. In our case we have a Hubbard model

(and extensions), where all the interactions are on-site or between adjacent sites and

therefore a basis like the one suggested for the two site system is advantageous in

most instances.

For one spin up and one spin down electron the Hilbert space becomes the product

space of two single electron subspaces and the space dimension is just L2, where L is

the number of orbitals. However for systems with electrons of the same spin it gets

a bit more complicated. Since the electrons aren’t allowed to occupy the site, the

Hilbert space dimension becomes
(
L
Nσ

)
where Nσ is the number of electrons in the

spin σ channel. With both spin up and spin down systems the Hilbert space will be

the product space of the spin up and the spin down subspaces.

To incorporate a phonon mode, the Hilbert space becomes the product space of

the phonon mode subspace and the electronic subspace. The only problem is that

the phonon mode which is described by a harmonic oscillator has an infinite number

of energy levels, i.e. an infinite number of phonons. But since the energy within

the system is finite, the amount of phonons that can be created is limited and thus

one sets a limit of how many phonons are practically allowed in the system. This
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is something that can cause trouble in some situations: to make sure this doesn’t

happen, one can do tests to see if the results are converged in terms of maximum

phonon number, (see the Ehrenfest’s theorem in section 2.4.5).

The basis set which was used during the bachelor project was in the most com-

plex case made of two spin up and two spin down electrons and one phonon mode

{|i < j; k < l, p〉} with i, j, k, l ∈ Sites and p ∈ {0, 1, 2, . . . , Pmax}. Here the basis

vector is labelled with five letters: i, j are the spin up electrons, and k, l are the spin

down electrons; p is the number of phonons in the phonon mode. The Hilbert space

dimension in this problem is
(
L
N↑

)(
L
N↓

)
· (Pmax + 1).

With the basis fixed one has to assemble the Hamiltonian matrix, i.e. the ma-

trix elements Hαβ = 〈α|H|β〉 have to be calculated. For the phononic part of the

Hamiltonian this becomes:

Hph−ij = 〈α|ω0b
†b|β〉 = ω0 · pβ · δα,β (2.1)

With pβ being the number of phonons in the state the basis vector |β〉, and δα,β

being the Kronecker delta. To assemble the Hamiltonian matrix all the parts of the

Hamiltonian should be expressed in a similar way. This is a bit harder for the kinetic

part in a many-electron systems, but the approach, while requiring tedious algebra,

remains completely straightforward.

2.2 Diagonalization and groundstates

To determine the groundstate of the system defined by a Hamiltonian matrix one has

to diagonalize the Hamiltonian. This can be done with many different specialized

routines. In our case, we used full-diagonalization techniques for the case of quantum

rings, and the Lanczos algorithm [18] for the system modelling ultracold fermion-

atoms in a 1D chain and a localized phonon at the middle site.

The diagonalization method can either be based on i) full diagonalization of the

Hamiltonian, or ii) the calculation of only the few lowest eigenvalues/eigenvectors

(including of course the ground state). With i), one can reach highly excited states,

but the method can only be used for relatively small matrices; with ii) much less

information is available, but considerably larger systems can be tackled than those

accessible with i). In any case, for the program build, it is expedient to use properties

such as hermiticity, spin and translational symmetries, fixed number of particles, etc.,

to reduce the numerical effort, since this permits to block-diagonalize the Hamiltonian

at the analytical level.
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The diagonalization method returns eigenvalues (the lowest of them is the ground-

state energy) with their respective eigenvectors. Trouble can arise if not all relevant

symmetries are taken into account, since undesired degeneracies may occur, which

may affect the expectation value of some observables. For example, this is something

that we expected and numerically experienced for 4 non-interacting electrons (2 up,

2 down) in a 6 site ring. By performing the calculation in a straightforward way

(no translational symmetry taken into account), the density was not uniform. This

is because of degeneracy. In the basis of Bloch states, states with wave number k

and −k have the same energy, and thus the resulting state will be an arbitrary linear

combination of these states. There are different ways to address this. The slightest

change in one parameter can make the groundstate non-degenerate, which solves the

issue. In our case this could be done by calculating the groundstate of a very weakly

interacting system. This sort of trick can affect the accuracy of the results and is most

certainly not always possible. The rigorous way is to enforce the required symmetry

in the basis set, or for the Lanczos technique, to start with a “seed” state which has

the symmetry in question. When U = 0, for the simple case at hand (a six sites ring,

four two up and two down electrons), we used a shortcut, since the ground state can

be easily determined analytically (here expressed in the basis of Bloch states):

|Ψin〉 = c†k0,↑c
†
k0,↓

c†k,↑c
†
−k,↓ + c†−k,↑c

†
k,↓√

2
|0〉 , k0 = 0, k =

π

3a
(2.2)

With a in the formula referring to the lattice constant.

This state has uniform spin-up/down densities, zero charge- and spin-currents,

and is a singlet (S = 0) state.

2.3 Time evolution

If the Hamiltonian used when doing the time evolution is the same as the one used to

calculate the ground state the system will not change in time, apart from an obvious

phase factor. Thus, to be able to see any non-equilibrium dynamics, the Hamiltonian

must be changed at at least once (for example, suddenly at some time t0).

It is of course possible to set by hand the initial state of the system. For example

if the system was consisting of six sites with one electron one could put the electron in

on the first site and then look at what happens when ”the clock starts”. Having the

possibility to do this via a computer program is a huge asset, as seeing the dynamics

in the simplest cases helps to understanding the more complex ones.
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2.3.1 Time-independent Hamiltonian

To do time evolution one has to solve the Schrödinger equation. According to the

discussion made earlier, one can express the solution of the Schrödinger equation in

the following way:

|Ψ(t)〉 = exp(−iHt) · |Ψ(0)〉 . (2.3)

By inserting the completeness relation in the basis of the eigenvectors one gets an

expression of the wave function without any operators.

|Ψ(t)〉 = exp(−iHt) ·
∑
i

|λi〉 〈λi| · |Ψ(0)〉 =
∑
i

exp(−iEit) · 〈λi|Ψ(0)〉 |λi〉 (2.4)

It is easy to see that if the initial state would be an eigenstate of the Hamiltonian,

the state would only change by a phase factor, i.e. the system would not change.

2.3.2 Time-dependent Hamiltonian

To be able to look at systems affected by time-changing external fields (which is the

purpose of this bachelor project) the Hamiltonian itself becomes time dependent and

Eq. (2.4) as it is does not work.

However, one can use Eq. (2.4) recursively [19]

|Ψ(t+ ∆t)〉 =
∑
i

exp(−iH(t+
∆t

2
) ·∆t) · 〈λi|Ψ(t)〉 . |λi〉 (2.5)

The downside of dealing with time-dependent Hamiltonians via Eq. (2.5) is that

for every time step one is calculating, the new altered Hamiltonian will need to be

diagonalized, and diagonalization time easily becomes the bottleneck of the program.

For larger systems, other methods (e.g. the Lanczos method) are the necessary choice.

For quantum rings, for which the code just described was developed and used, the

Hamiltonian is complex, and to diagonalize it will be even more expensive computation-

wise. To diagonalize a 1500 by 1500 complex matrix for 4000 time steps took about

one week using exact diagonalization. This time would have been reduced by orders

of magnitude using, for example, the Lanczos algorithm (this procedure is followed

in the code used for 1D chains in presence of localized phonons).

2.4 Operators

The state vectors contain all of the information about the system and it is useful to

look at them sometimes; however, in most cases, it is much better to directly deal with
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expectation values of physical observables using 〈Ψ|Ô|Ψ〉, where Ô is the operator for

the physical quantity of interest. If this is done for each time step, one can obtain

the temporal behaviour of 〈Ô〉 (t) = 〈Ψ(t)|Ô|Ψ(t)〉.

2.4.1 Energy

To get the total energy of the system, the operator needed is of course the Hamilto-

nian. It can however in many cases be interesting to see where the system deposits

its energy, for instance, looking at the electronic energy versus the phonon energy in

a Holstein system, or just looking at the kinetic energy. For all different cases one

just uses different parts of the Hamiltonian operator.

2.4.2 Density

The quantity that in most cases probably best explains what is going on in the system

is the density distribution of the electrons. It gives an intuitive picture of what is

happening. The density operator is calculated for each site and the results are most

often presented as the electron distribution over the sites.

In second quantization, the electron density on one site is described by the sum

of the number operators for spin up and spin down electrons:

ni = ni,↑ + ni,↓ = c†i,↑ci,↑ + c†i,↓ci,↓. (2.6)

In strongly correlated systems, electrons can pair together and bind to each other,

although their interaction is repulsive. This is one of the reasons why it sometimes is

relevant to look at the electron pair density (or “doublon” density). The operator is

just the product of the spin up and spin down densities:

nd,i = ni,↑ni,↓ = c†i,↑ci,↑c
†
i,↓ci,↓, (2.7)

and was used to monitor the degree of local correlations.

2.4.3 Current density

In general, the density current J is derived from the continuity equation:

∂ρ

∂t
+∇J = 0 (2.8)

Here ρ is the density and ∇J the flow of the current. On the lattice, the density is

defined only at the sites, and this simplifies the expression. The density change at
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site i is simply the amount of density that flows into the site, minus the amount of

density that flows out.
∂ni
∂t

= Ji − Ji+1 (2.9)

Using the Ehrenfest theorem on the left hand side gives us for the Hubbard Hamil-

tonian:

∂ni
∂t

= i [H,ni] = −it((c†ici−1 − h.c.)− (c†i+1ci − h.c.)) = Ji − Ji+1 (2.10)

Notice that the density operator commutes with all parts of the Hamiltonian except

for the kinetic energy term.

Identifying Ji and taking the average of all the sites we get an expression for the

mean current in the system.

J = −i t
L

∑
i,σ

(c†i+1,σci,σ − h.c.) (2.11)

To get the electrical current one just multiplies the density current with, in this case,

minus the elementary charge, which in our units is −e = −1.

When the ring is pierced by the magnetic flux and/or breathing phonons are

present, we can follow a similar strategy to determine J . This is possible because the

density operator commutes with all phonon operators, and the magnetic field is just

represented by a phase factor in the hopping amplitude. Thus, the expressions for

the charge current in the most general case of interest in this thesis becomes:

J = (t+ λ(b† + b))
1

L

∑
i,σ

(c†i+1,σci,σe
φ(t)/L − h.c.). (2.12)

2.4.4 Phonon operators

Even if one is only interested in the purely electrical quantities in a system, like charge

densities, doublon densities, etc., it is good to know what the phononic part of the

system does.

The simplest example is the number operator which gives the number of phonons

in the system. This is simply b†b and is found in the Hamiltonian in the expression

for the phonon energy which is ωb†b, with ω being the frequency of the phonon mode.

Other interesting operators are the position and the momentum operators:

x =

√
1

2ω
(b† + b), (2.13)
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p =

√
ω

2
(b† − b). (2.14)

These two operators can also be used as an asset in developing the program to test

if the phonon mode was correctly implemented and if the results are converged with

respect to the highest amount of phonons allowed Pmax (in the following, we will

occasionally refer to Pmax as the “phonon-roof” ). The computer program that was

built in this project uses the Ehrenfest theorem for the momentum operator to perform

these checks.

2.4.5 Ehrenfest’s test

The Ehrenfest theorem [20] states that

∂

∂t
〈A〉 = i 〈[H,A]〉+

〈
∂A

∂t

〉
. (2.15)

In our case we will apply Eq. (2.15) to the phonon momentum for two reasons: i) the

time-derivative of 〈p〉 is the force, which in itself could be an interesting quantity to

look at; ii) the theorem can be used to check the accuracy of the numerical calculation.

In more detail, the left and right hand side of Eq. (2.15) are calculated independently,

and their difference is monitored at all time steps. If the mean error is close to zero

then the calculations are correct and have converged, otherwise Pmax and/or the

time-step needs to be corrected.

To have a function that to some extent tests the results qualitatively is a huge asset

when developing the program. The phonon-roof convergence is here just a bonus.

2.5 Limitations

First of all, there are limitations in the physical model. The Hubbard model assumes

that the effects of density distributions between the sites, the tunnelling between

non-adjacent sites and Coulomb interactions between electrons outside the sites are

negligible. One can easily imagine situations where this is not the case.

Besides limitations in the model, we also have technical limitations related to the

numerical implementation of the model, for example effects related to the truncation

of the phonon subspace. With time dependent Hamiltonians, the time step also

becomes an issue. By making the time step small, one reduces the error that comes

with the making the time dimension discrete, but this means that the amount of time

it takes to do a simulation is increased.

14



We also have limitations in the kind of calculations that can be performed with

today’s computers. With full diagonalization, the limit in size of the viable matrices

is about ≈ 25000. With indirect methods such as Lanczos diagonalization, and using

parallel architectures, the dimension of the matrices can be increased up to hundreds

of millions, which may sound large; however, when considering many particles and

phonon modes one realizes that this is in fact quite small, especially when looking at

systems in higher spatial dimensions.
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Chapter 3

Simulations

In this chapter the results produced by the computer simulations will be presented

with relevant figures and analysis. The two kinds of systems we considered will be

discussed separately, in two sections. For every run the input parameters will be

specified and also a qualitative analysis of what causes the effects seen will be given.

3.1 Ring system

The program used to produce the results in this section was developed during the

bachelor project. Because of this, some previous results already published [13] were

reproduced to check the validity of the program, and they are presented here for the

sake of comparison to our results with rings in presence of a breathing mode (see

3.1.2). It should also be stated that the currents in the plots are relative currents, i.e.

the quantity presented as the current is equal to 〈J〉 /J0 with J0 = 2πt
LΦ0

(this is t
L

in

our units and the prefactor in the expression of the current operator, see Eq. (2.11))

with Φ0 = h/e being the flux quantum.

In all cases, the magnetic flux will be ramped up from zero to Φ0 in a finite time T ,

as seen in figure 3.1. By looking at different ramping times we observe the difference

in the charge density current.

3.1.1 Four electrons in systems with different electron-electron
interactions

L = 6
N↑ = 2
N↓ = 2
U ∈ {0, 1, 4, 16}
T ∈ {1, 25}

In the four-electron case without phonons we reproduce

the results of M. Mierzejewski, J. Dajka and J. Luczka

[13]. Although we use a smoother ramping shape, the

differences in the results are very small. The results are
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Figure 3.1: In this figure we see the shape of ramping up the magnetic flux. For the
parameters used, see main text.

presented in figure 3.2. (When we use the exact same ramping as M. Mierzejewski et

al. the differences are indistinguishable in the way the results are presented.)

We can see that the final value of the current does not depend on the ramping

when the electron-electron interaction is 0 and when it tends to infinity. For U = 0

the current is much larger than for U = 16: in fact, this is is a general trend, i.e.

the DC component of the final current decreases with U . The decrease in current,

even for intermediate electron-electron interaction, can be seen as increased viscosity

in the electrons as the effect of collisions increases.

For the intermediate electron-electron interactions, the effect of different ramping

speeds becomes apparent. The oscillation amplitude of the final current is larger

when the magnetic field is ramped up fast, and the DC component of the current

becomes larger for longer ramping times.
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Figure 3.2: Ring, 6 sites, 4 electrons, ramping from 0 up to Φ0 in T unit times.
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3.1.2 Two electrons in presence of a breathing mode

L = 6
n↑ = 1
n↓ = 1
U ∈ {0, 1, 4}
T ∈ {5, 25}
ω0 = 0.5
λ = 0.2

In the presence of phonons, we again ramp up the mag-

netic flux at different speeds and consider the current

for different strengths of the electron-electron interaction.

This time, we choose a system with two spin-compensated

electrons instead of four, to reduce the computational ef-

fort in the presence of phonons. The results are shown in

Fig. 3.3. As an aid to the discussion, we also include the case of two electrons with

opposite spins and no electron-phonon coupling.

Looking at Fig. 3.3, we can see a superficial similarity with the case of four particles

without phonons (namely, the current carries in general both DC and AC compo-

nents).

However, a closer look reveals a crucial difference: in the presence of the phonon

mode (red curves), the oscillations are exclusively due to the phonon mode (they in

fact always have the same frequency, the phonon frequency). Conversely, oscillations

induced from the interactions are visible in the absence of phonons (blue curves), at

frequencies other than ω0. However, these are much weaker than in Fig. 3.2. Thus, it

appears that one simple reason why we see strongly reduced (or no-) oscillations re-

lated to the electron-electron interaction is that there are fewer particles (two instead

of four) in the ring, and they produce less AC and DC currents.

A second and less obvious reason (for a reduction of the oscillations when phonons

are present) is the increased effective hopping due to the presence of the phonon

mode, which contributes to an increased delocalization of the electrons (i.e. the

system is effectively less correlated): for the ground state with phonons, the average

displacement 〈b† + b〉 = 3.2, meaning that the the module of the effective hopping

parameter has increased. This makes the system less correlated, and at the same

time increases the prefactor for the current operator. We are currently performing a

systematic scan of the parameters to test a broader validity of these conjectures.

Turning to the oscillations induced by the phonon mode (these are the only os-

cillations visible in the red curves of Fig. 3.3), we observe a smaller DC component

with higher U , and the oscillations of the AC component are larger for the faster

ramping times. Comparing the plots with equal T and different U , the differences in

the shapes of the current are now much smaller than in the no-phonon case, and only

the magnitude of the DC component appears to be affected.

By changing the magnetic field slowly the amplitude of the oscillations tends

to zero, but this appears to require a much slower rate of change of the magnetic
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field than for the four-electron case without phonons. Most likely, this behaviour is

strongly dependent on the frequency of the phonon and the number of particles in

the system, and it deserves further scrutiny (additional simulations are under way).

As a conclusion to this section, electron-phonon interactions and their competition

with electron-electron interactions can affect in a non-trivial way the currents in

a quantum ring threaded by a magnetic flux. We have just begun to grasp few

simple aspects of the dynamics, and additional investigations, currently under way,

are expected to provide additional features and more comprehensive scenario for the

behaviour of ring currents.
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Figure 3.3: Ring coupled to a breathing phonon mode, 6 sites, 2 electrons, ramping
from 0 up to Φ0 in T unit times.
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3.2 A 1D chain in an oscillating trapping potential

One of the most used experimental set-up in ultracold-atom physics consists in trap-

ping an atomic cloud in a confining (usually parabolic) potential, and then release the

trap (usually suddenly), to observe the cloud expansion, and to infer characteristic

features (correlation functions, entanglement, ballistic vs diffusive behaviour) of the

cloud. This setup has been also used for ultracold atoms loaded into optical lattices,

providing the motivation for our investigation here. The novel element in our analysis

is the presence of phonon-like vibrations in the optical lattice.

More specifically, we will present our results for a system consisting of a one di-

mensional chain of 11 sites. The middle site is interacting with a Holstein phonon

mode. The whole system is disturbed (and at the same time trapped) by an external

potential in the form of a parabola. The parabola strength, whose strength is oscil-

lating in time, is introduced as a change in the on-site energies of the system. We

label the sites i with i ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} and 0 being the middle

site. The parabola potential is then

εi(t) =
i2

2
· (1 +

sinωpart

4
) (3.1)

We look at fermion density, total energy and energy deposited in the phonon mode

and we observe the differences in the dynamical behaviour of the system when varying

the oscillation frequency ωpar.

3.2.1 Two fermions

L = 11
n↑ = 1
n↓ = 1
U = 10
λ = 0.1
ω0 = 0.5
ωpar ∈
{0.1, 0.5, 0.6, 2.5}

To start with, we look at the results for two fermions

and with interaction strength of U = 10 (figure 3.4). In

the first case (leftmost column) we consider, the parabola

frequency is ωpar = 0.1, which is very slow compared to

the electronic time-scale. Because of this we see almost

perfect periodic behaviour of the fermion densities. The

phonon has very little energy, but one can see that it cre-

ates overtones on the densities, especially prominent at site 0.

Looking at the energy temporal profile, one can see quite big oscillations in the

total energy. These oscillations coincide with the oscillations of the parabola and thus

should be interpreted as an effect of the change in on-site-energy (of course, in reality

some energy is also deposited as kinetic energy and interaction energy (for example,

the particles tend to pile on top of each other when the parabola is narrowed.)
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The case with ωpar = ω0 is probably the most interesting one among those con-

sidered. Starting with the energy curves, we see a great deal of difference from the

previous case (note however that the amplitude of the oscillations in the total energy

is the same as for ωpar = 0.1. On the other hand, and as expected, the frequency of

the oscillations is changed as the latter now are in sync with the parabola oscillation.

What is especially interesting in this case is that the phonon energy and the total

energy both increase in time. This suggests that the change in fermion density at the

phonon site gives the phonon an energy boost and excites the phonon mode, but the

latter does not have time to de-excite completely before the next pulse of energy. In

this way the parabola increases the total energy of the system by pumping energy

into the phonon mode. .

In the third case we have ωpar = 0.6, which is slightly off the resonance condition

ωpar = ω0. For this value of ωpar, we obtain a picture similar to the ωpar = 0.1 case.

However, here we don’t see the same smoothness in the particle densities. We also

note some oscillations in the phonon energy. In fact, there is a beating frequency

in the phonon energy (see figure 3.4), useful to estimate how far are we from the

resonance condition.

0.000
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0.020

0.030

0 50 100 150 200

E
n
e
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time

Figure 3.4: In this figure we see the phonon energy for the case with two fermions,
U = 10 and ωpar = 0.6.
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For two sinusoidal waves with similar but not equal frequencies (here, ωpar = 0.6

and ω0 = 0.5 ), we get a beating frequency ωbeat:

ωbeat = |ωpar − ω0|/2. (3.2)

Changing ωpar in an experiment, and observing the beats in the phonon energy, would

permit to establish the resonant frequency, and thus determine ω0.

In the fourth case of Fig. 3.5, we have ωpar = 2.5, which is much larger than the

phonon frequency. We see that the energy of the system has oscillations induced by

the parabola movement, but we also note big irregular changes in the energy curves.

Qualitatively, this is understood by observing that the speed of the parabola is well

into the nonadiabatic regime. Consequently, the fermions are knocked around a lot.

Sometimes the parabola speeds them up, and sometimes slows them down. The

change in density at the phonon site is too fast, and the phonon mode cannot keep

up; therefore, it never goes into a highly excited state.
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3.2.2 The ωpar = ω0 resonance at different fermion-fermion
interactions: the two-particle case

L = 11
N↑ = 1
N↓ = 1
U ∈ {0, 1, 4, 10}
λ = 0.1
ω0 = 0.5
ωpar = 0.5

In this case we look at what happens when the resonance

condition is fulfilled in systems with different strengths of

the fermion-fermion interaction.

Looking at general trends Fig. 3.6, the oscillation am-

plitude of the total energy increases with U , while the

phonon energy oscillations decreases in amplitude. This

change of the amplitudes can be attributed to the increased fermion-fermion interac-

tion, which forces the particles to be closer to the parabola edges, where the on-site

energy is larger, see Eq. (3.1). This is easily seen in the plots of the particle density,

where site 1 and 2 and even site 3 are increased substantially in density.

At the same time, when U increases, the amplitude of the density oscillations at

site 0 decreases, since a larger inter-particle interaction enhances the viscosity of the

fermion system. This also reflects in a smaller oscillation of the phonon energy, i.e.

the energy exchange between the phonon and the fermion density is reduced (at least

at the time scales we are looking at).

This decrease in energy exchange affects the rate at which energy is pumped into

the phonon (seen, in figure 3.6, as a decrease in the steepness of the average phonon

energy for higher values of U ).
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3.2.3 Four fermions when ωpar = ω0.

L = 11
n↑ = 2
n↓ = 2
U ∈ {1, 4, 10}
λ = 0.1
ω0 = 0.5
ωpar = 0.5

With four particles, Fig. (3.7), and for increasing interac-

tion strength U , the system exhibits the same qualitative

behaviour in terms of total energy, phonon energy and

fermion density as we have illustrated in the two-particle

case. Some specific trends, though, are more easily seen

with four particles, for instance the change in fermion den-

sities at the outer sites.

One new feature, absent in the two-fermion cases we examined, is that, on in-

creasing U and in the long-time limit, the oscillations in densities for site 0 and site

1 seem to tend to very regular, smooth shapes, with very little of the overtones we

observe in the case of two fermions (see figure (3.6)).

It seems almost that this is happening for the other sites as well. The effect

is prominent with higher U . On speculative grounds, this behaviour could depend

on the oscillator being able to slow down the speed at which the particles are re-

leased/accepted from/into the center when the parabola is opened/closed. The slow-

ing down of the fermionic dynamics is greater at higher U , and it makes the fermions

behave more adiabatically relative to the parabola oscillations.

To briefly summarize our discussion, the system considered in this Section exhibits

a rich and very structured behaviour, quite sensitive to the parameter values, and we

have just given a superficial glance at its dynamical properties. We plan to perform

more investigations to put our findings on a firmer ground.
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Chapter 4

Conclusion and outlook

In this thesis we have investigated the role of the fermion-phonon interaction in simple

finite systems such as nanorings or parabolically confined fermions. Both types of

systems were studied in- and out-of equilibrium, and the the effect of fermion-fermion

interactions was also considered.

To perform this task, and as part of the learning process, we have built a computer

program from scratch, which has been successfully benchmarked against a pre-existing

code, and that has subsequently been applied to the system(s) of interest.

In more detail, the first system we looked at was a ring with six sites and four

electrons (two spin up, two spin down) which was pierced by a magnetic flux. We

saw that, when the electron-electron interaction is zero or very large, the final current

induced by the change in the magnetic field is independent of the speed at which the

magnetic flux is ramped up. Conversely, in the intermediate coupling regimes we saw

that the value of the current after the ramping had both a DC and AC part. With

slower ramping, the DC component is bigger and the oscillations in the current have

smaller amplitudes; the opposite is true for faster ramping.

We finally looked at a ring system in the presence of breathing phonons. We

showed that the oscillations in the final current were dependent on the speed at

which the magnetic field is ramped up.

The second system we looked at is a one-dimensional open-ended chain where the

fermion particles are in a parabolic potential. The parabolic field oscillates (and thus

it is at the same time responsible for the trapping of the particles and for their non-

equilibrium dynamics), and the middle site in the chain is coupled to a local phonon

mode. We have investigated the dynamical behaviour of this system for different

ratios of the frequency of the parabola oscillations to the phonon frequency, i. e. for

on- and off-resonance regimes.
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We have found that if the parabola frequency is equal to the frequency of the

phonon, more phonons are excited than de-excited, i.e. energy is injected in the

phonon mode at faster rate than it can be released. For parabola frequencies close

to the phonon frequency, we observed a beating pattern in the phonon energy which

might be practically used to “zoom in” on the correct phonon frequency. Far away

from resonance, the phonon mode is hardly excited, and practically decoupled from

the electronic system.

As possible future work, it would certainly be interesting to see how the dynam-

ical behaviour of these nanoring and chain systems changes when more particles are

present. Additionally,

i) For the ring system, it would be interesting to see what would happen when

the fermions in the ring are coupled to a distinct mode at each site.

ii ) For the parabola system, one could see what happens with the pumped up

phonon mode if the parabola frequency is changed slightly or if the oscillation com-

pletely stops. Another direction would be to go into higher dimension and see if the

dynamics changes.
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Chapter 5

Self-reflection

In the months that I have spent working on my bachelor project, I have learned a

great deal about how scientific work is carried out. I have also learned a lot in terms

of physics in general, and gained some detailed knowledge in the field of strongly

correlated systems which I have studied in detail.

As part of the project, I have built a computer program from scratch. Through

this process, I have not only increased my programming ability, but also learnt how

to solve and work around countless obstacles in varying sizes.

During the time spent producing and analysing results, I have learnt the amount

of patience and stubbornness that is needed to go through all of the “bad” results,

before finding anything of interest.

Perhaps due to somewhat failing to stick with the time plan, I have learnt the

importance of good time estimates. In future work I will be aware of the amount

of time that can go into solving unexpected problems, and I will be less of a time

optimist when it comes to planning ahead.

Furthermore, I have learnt a great deal about writing scientific text, how to present

results in a convincing manner without jumping to conclusions, etc.

To summarize, this project has been a great experience and there is a lot more

that I will take with me from it than I can fit into this page.
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