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High-Order Harmonic generation (HHG) is an alternative and much more compact way of

generating x-ray radiation compared to producing it in a synchrotron. In this report a two

color inline interferometer is designed to superimpose electrical �elds generated by a frequency

doubling crystal, for the purpose of reshaping the pulse train generated in the HHG process.

The challenges of this design is that the light is composed of very short pulses, hence the

light is very broadband. As the light is broadband the interferometer must to some extent

be achromatic enough to treat two separate wavelength regimes chromatically whilst treating

the entire broadband span of these pulses achromatically. Another challenge is that the

interferometer should be constructed so that the temporal o�set of the two pulses should be

tunable with sub cycle precision. The interferometer has been assembled but only partially

tested.
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Abbrevations

1. BBO Beta-Barium Borate.

2. SH(G) Second Harmonic (Generation).

3. HHG High-order Harmonic Generation

4. FS Fused Silica

5. XUV Extreme Ultra Violet radiation
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1 Introduction

High-order Harmonic generation (HHG) is one of the most popular disciplines in today's

atomic physics as it provides the possibility to produce integer frequencies of a fundamental

laser beam with the addition of XUV pulses with attosecond duration. With this one can

construct a pulse train of very short pulses having excellent temporal resolution for studying

movements on an atomic scale [1]. HHG can conceptionally be understood using a semiclas-

sical three step model. First the atom is ionized by an intense laser �eld, after ionization the

electron is driven by the combined �eld of the laser and the ion. Under certain circumstances

the electron may be driven back to it's parent ion, where it can scatter, recombine, knock

out another electron, or simply pass. If the electron and the ion recombine an XUV photon

with the excess energy is emitted. The emission of this a XUV photon is what is known as

HHG [2]. If the E-�eld has elliptical polarization, it is more probable that the electron will

miss the atom and not recombine. This report focuses on a setup that provides the possibility

to superimpose two electric �elds and thus control the pulse train. When the two �elds are

superimposed the peak amplitude of the generated driving �eld is modulated. By tuning the

delay between the �elds it is possible to increase the amplitude in one part of the light cycle

and decrease it in another part, thereby having the ionization step of the HHG only once per

cycle instead of twice. This is easiest if the frequency of the wave that is used for modulating

has twice the frequency of the fundamental wave. To achieve this a collinear interferometer for

frequency doubling was designed. A second harmonic is generated and the fundamental beam

is transmitted, the alignment of the polarization is corrected so that both �elds are parallel

and delay plates are introduced providing sub-cycle delay tunability between the pulses. This

device is called an inline two-color interferometer. The collinear setup provides a compact

assembly as opposed to having beams separated in two arms and treated individually, but

requires more e�ort in determining suitable optical materials for the assembly. The inter-

ferometer is designed for light centred at 1300nm with 300nm wavelength bandwidth. The

second harmonic is centred at 650nm and has a 75nm bandwidth. This wavelength region is

not standard when conducting experiments of this kind. The bandwidths are very large and

contribute to a higher ellipticity than normally when aligning the polarization. The collinear

setup is at the moment of writing not fully experimentally tested, and this report treats the

theory of creating such an assembly. Given that the interferometer is functional it will mainly

be used for generating high-order harmonics, to be used for di�erent kinds of spectroscopy e.g.

for VMIS (Velocity Mapping Imaging Spectrometer) and/or PEEM (Photo Electron Emission

Microscopy).
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2 Theory

2.1 Nonlinear media

To produce an overtone, a nonlinear medium is used. Two popular nonlinear media are beta

barium borate (BBO) and potassium dihydrogen phosphate (KDP). The application of these

crystals in the setup of this report is mainly the Second Harmonic Generation (SHG). In

B.E.A Saleh [3] it is stated that the relation between the electric �eld and polarization for a

homogeneous, linear and isotropic medium is denoted by:

P = ε0χE. (1)

Since the crystals are not linear media, the susceptibility (χ) may be Taylor expanded around

E = 0 in order to obtain the �rst order nonlinear terms:

P = a1E + a2
1

2
E2 + a3

1

6
E3 + ..., (2)

with higher orders assumed to be negligible when studying SHG, even the third order term

is assumed to be much smaller than the second order term. Convention is to write eq(2) in

following form:

P = ε0χ
(1)E + 4ε0dE

2 + 4χ(3)E3 + ..., (3)

where d = 1
4
a2 and χ(3) = 1

24
a3 which provide a measure of the strength of the second and

third order nonlinear e�ects. It is convenient to address the nonlinear e�ects as PNL so that:

PNL = 4dε0E
2 + 4χ(3)E3 + ..., (4)

which sums the e�ects of the second and third order nonlinear e�ects.

2.2 Second harmonic generation

2.2.1 Nonlinear wave equation

Second harmonic generation is a form of sum frequency generation where the sum is composed

of two identical frequencies. In order to calculate physical quantities such as electric ampli-

tudes and intensities a wave equation is needed. Since SHG is a nonlinear e�ect it cannot be

described by a linear wave equation and a nonlinear wave equation is needed.

Maxwell's equations in matter are the following:
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∇ · D̃ = ρ, (5)

∇ · B̃ = 0, (6)

∇× Ẽ = −dB
dt
, (7)

∇× H̃ =
dD

dt
+ j. (8)

The charge density ρ is set to zero since the optical crystals do not have a net charge; this

also applies for the free current density j. We chose then to take the curl of eq. (7).

∇× (∇× Ẽ) = ∇× (−dB̃
dt

) = − d

dt
(∇× B̃), (9)

B̃ = µ0H̃⇒ ∇× (∇× Ẽ) = − d

dt
(∇× µ0H̃) = −µ0

d2D̃

dt2
. (10)

Introduced above is the vacuum permeability µ0, which holds the following relation to the

vacuum permittivity, ε0, and the speed of light in vacuum, c,

µ0 =
1

ε0c2
. (11)

The left term in eq.(9) can be rewritten as:

∇× (∇× Ẽ) = ∇(∇ · Ẽ)−∇2Ẽ, (12)

where the left term on the right side vanishes, since ∇ · D̃ is zero and directly proportional

to ∇ · Ẽ. Using eq. (12) and eq. (11) we can now rewrite eq. (10) as.

−∇2Ẽ =
1

ε0c2

d2D̃

dt2
. (13)

We now choose to split up the displacement �eld D̃ into a linear part and a nonlinear part,

D̃ = D̃(1) + P̃NL = ε0εr(ω)Ẽ + P̃NL, (14)

where εr is the frequency dependent relative permittivity of the medium, and insert the

following expression into eq. (13):

−∇2Ẽ =
εr(ω)

c2

d2Ẽ

dt2
+

1

ε0c2

d2P̃NL

dt2
, (15)

which is our nonlinear wave equation.
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2.2.2 Intensity of the second harmonic

The nonlinear wave equation, eq. (15), can be expanded into components of di�erent fre-

quencies, or rather the electric �eld Ẽ along with the nonlinear polarization �eld P̃NL can be

expressed as [4]

Ẽ =
∑
n

Ẽn(r, t) (16)

P̃NL =
∑
n

P̃NL
n (r, t), (17)

where c.c. is the complex conjugate of the preceding term. Each component of the Ẽ and

P̃NL can be represented as the complex amplitudes

Ẽn = Ene
−iωnt + c.c., (18)

P̃NL
n = PNL

n e−iωnt + c.c. (19)

Using eq. (16) and eq. (17) the wave equation (15) can be rewritten for a speci�c frequency

component as

−∇2Ẽn =
εr(ω)

c2

d2Ẽn

dt2
+

1

ε0c2

d2P̃NL
n

dt2
. (20)

The wave equation is now valid for n components, we are interested in the SH and denote

the sum frequency component as Ẽ3, which is the product of the components Ẽ1 and Ẽ2. We

conclude that with a small contribution from the nonlinear polarization the solution of eq.

(20) for a wave propagating on the z direction will still be in the form of

~E3(z, t) = A3e
k3z−ω3t + c.c.. (21)

The nonlinear polarization is

P̃NL
3 = PNL

3 e−iω3t, (22)

where PNL
3 can be rewritten using eq. (4) as

PNL
3 = 4ε0dE1E2. (23)

Using eqs. (21), (22), (23) and inserting them into the wave equation (20) we can di�erentiate

with respect to time and space. ∇2 can be replaced with d2

dz2
since we only have de�ned a
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�eld in the z-axis. The expression obtained is thus

[
d2A3

dz2
+ 2ik3

dA3

dz
− k2

3A3 +
εr(ω3)ω2

3

c2
A3

]
e−i(k3z−ω3t) + c.c. (24)

= −4ε0dA1A2ω
2
3

ε0c2
e−i((k1+k2)z−ω3t) + c.c.

Where A1 and A2 are the amplitudes of the two waves producing the second harmonic. They

are de�ned in a similar fashion as seen in eq. (21). The complex conjugates in eq. (24) can

be dropped without introducing an inequality [4]. Furthermore the third and fourth term can

be rewritten using

k3 =
n3ω3

c
, εr(ω3) = n2

3 (25)

so it becomes apparent that they are equal and thus cancel each other. The �rst term of

eq. 24 can be assumed negligible due to the slowly varying envelope approximation [5] and

ultimately the exponential frequency term can be removed from both sides. Rearranging the

exponential phase terms to the same side yields following simpli�cation of eq. 24:

2ik3
dA3

dz
= −4dA1A2ω

2
3

c2
ei(k1+k2−k3)z, (26)

and the quantity

∆k = k1 + k2 − k3 (27)

is assigned, where ∆k is called the phase mismatch. To ease calculation we assume that A1

and A2 are not dependent on z and thereafter integrate eq. (26) over the length of the medium

L in order to obtain an expression for the amplitude of the second harmonic.

A3 =
2idA1A2ω

2
3

k3c2

∫ L

0

ei∆kzdz =
2idA1A2ω

2
3

k3c2

(
ei∆kL − 1

i∆k

)
. (28)

The intensity is proportional to the square of the amplitude. Besides, from the amplitudes of

the fundamental waves it is also proportional to the phase di�erence ∆k as follows:

I3 ∝
(
ei∆kL − 1

i∆k

)2

=
2− 2 cos ∆kL

∆k2
= 4L2 sin2 ∆kL

(∆kL)2
= L2sinc2∆k/2 (29)
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3 Design

Figure 1: A schematic presentation of the assembly. The materials that are labelled in the
�gure are of course speci�c for the desired wavelength, both in dimensions and material type.
Not included in the �gure are polarisers for cleaning ellipticity, which normally is important.
An explanation for the "two-stage" delay compensation is provided in Sec.3.3

The collinear design implies that both colors co-propagate in the interferometer. This means

that materials have to be chosen with respect to both the 1300nm and 650nm pulse. Seen

in Fig. 1 are the essential components for the setup. The input is a 300nm broad pulse

centred at 1300nm, the �rst material that it is transmitted through is a BBO crystal with

a cut axis for best possible phase matching for frequency doubling of this wavelength. As it

is transmitted through the BBO crystal it will produce a second harmonic that propagates

together with the fundamental beam, although oscillating orthogonally to it and being slightly

delayed in time (appearing exaggerated Fig. 1). The calcite crystal is used to control the

delay between the two pulses. As Calcite is highly birefrigent, i.e., there is a large di�erence

in the refractive indices of the fast and the slow axis of propagation, it can be placed in such a

manner that the shorter wavelengths travel faster than the longer wavelengths. Preferably it

should overcompensate at this stage, since both pulses have more material to travel through,

and most materials have normal dispersion; "red" is faster, "blue" is slower (where red and

blue imply, short and long wavelength respectively). The placement of the calcite delay plate

is important, it must precede the waveplate since the pulse is very linearly polarized before

its polarization is rotated, as opposed where it is slightly elliptical after the waveplate. It is

also at this stage that the two �eld components are orthogonal and can be delayed separately.

The light enters the waveplate at an angle. The waveplate, being birefringent, delays the

phase of the projections on the fast and slow axis of the pulse as it propagates through

it, and as such it "rotates" its state of polarization. The waveplate is designed so that it

rotates the fundamental pulse by a quarter of a revolution and the SH by half a revolution,

e�ectively aligning the polarization of the pulses parallel. During the passage a small amount

of ellipticity may be introduced, which if too large has to be �ltered by polarisers. The last

component pictured in Fig. 1 are two fused silica wedges (although it is drawn as a single

rectangle) that provide a possibility of �ne tuning the delay between the pulses. Fused silica
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is not birefringent and can therefore be placed after the waveplate.

3.1 Phase matching

A good starting point in order to determine a suitable crystal for frequency doubling is to �nd

a material with a large second order susceptibility d. The SHG depends strongly on the phase

mismatch as seen in eq. (29), meaning that it is important to have good phase matching.

The phase matching condition is given by:

k1 + k2 = k3, (30)

which can be rewritten as:

ω1no(ω) + ω2no(ω) = ω3ne(ω, θ). (31)

Since the input light is linearly polarized, the two waves that mix will be of the same type of

rays (ordinary or extraordinary), a form of self interaction, whose mixing will result in a ray

with orthogonal polarization. This is called ooe mixing or Type 1 mixing.

Since the pulse is not monochromatic one must consider the three wave mixing to result from

many possible combinations of the di�erent wavelengths in the bandwidth. A way to perform

this is to use MatLab and combine all possible outcomes of mixing. First the refractive indices

for all the wavelengths are calculated. Then calculate the phase matching in accordance with

eq. (31). In MatLab one can also rotate the crystal axis in order to see which incoming angle

provides best phase match. It is possible to express the refractive index as a function of the

cut angle with:

1

n(ω, θ)2
=

sin2 θ

no(ω)2
+

cos2 θ

ne(ω)2
, (32)

where ne and no are the refractive indices of the extraordinary and ordinary refractive indices

of the crystal. The refractive indices can be calculated using Sellmeier equation which for a

non speci�ed material is

n(λ) =

√
1 +

∑
j

Ajλ2

λ2 −Bj

, (33)

where Aj and Bj are constants that are experimentally determined for a material. The

data for di�erent materials were retrieved from refractiveindex.info [6] in order to make the

calculations in this report.

The tuning curve is produced by calculating the phase mismatch for a certain wavelength

according to eq. (12), and extracting for which angle this phase mismatch is as small as
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Figure 2: The tuning curve for BBO

possible. The tuning curve provides a good overview regarding the behavior of the crystal.

For instance seen in Fig.2. it is clear that the wavelength 1300nm and a decent bandwidth

would be well ful�lled, due to the steep shape of the line in the plot. The tuning curves

provide an indication of the best cut angle for phase matching in a crystal. The optimal cut

angle calculated for 1300nm±150nm in a BBO crystal is 20.93◦. BBO is chosen mainly since

it has a large optical transparency, large nonlinear coe�cient and is highly birefringent. When

the crystal cut angle is determined, the dimensions of the crystal must be determined. In

order to have an upper limit on the crystal thickness one can use the wave mixing coherence

length formula (using eq. 27 & 29):

Lc · |∆k| ≤
π

2
(34)

where Lc, known as the coherence length, is the largest length for a given phase mismatch

in order to have e�cient wave mixing. The value of the coherence length will set the upper

limit of the crystals length. The coherence length calculated was 1.09mm. A BBO of length

0.3mm that was in stock was ultimately used in the design.
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3.2 Polarization alignment

3.2.1 General principle

The second harmonic will be orthogonally polarized to the incoming light, meaning that unless

rotated it will remain so when transmitted through the interferometer. Both of the waves

have to be rotated so that they have the same direction of polarization. This can be done by

using a medium that acts as a half-wave plate for one of the waves and as a full-wave plate

for the other. The rotation per unit length is given by [7]:

β

d
=

π

dλ
(ne − no) (35)

which is denoted as the speci�c rotary power. β is the angle of rotation that the polarization

makes for a given wavelength λ, which is analogous with a phase delay between the two

spatial components of the oscillating light. d is the distance traversed in a medium with

a given β. If the material is very birefringent, the light will make revolutions even when

transmitted through a thin piece of the medium. For instance, coming in at an angle 30◦

from the ordinary axis into a 1mm thick piece of calcite, the light centred at 1300nm will have

rotated more than 10 times before it exits. For the broadband pulse this will also mean that

one side of the broadband spectrum rotates two full revolutions more than the other, which

produces a lot of ellipticity. In the setup, only the waveplate will rotate the light, all the other

components will transmit the light along one of their axes. When the light has been rotated

to the correct state of polarization the pulse will almost inevitable be elliptical. To calculate

the amount of ellipticity introduced by the designed interferometer one can use ray transfer

matrices, also called Jones matrices[
x′

y′

]
= Mn ·Mn−1 ·Mn−2 · ... ·M2 ·M1 ·

[
x

y

]
(36)

where, x and y provide the state of polarization of the light prior to the waveplate and x′ and

y′ is the polarization state after transmission through the waveplate. TheMn terms represent

the matrices of the material. For the sake of calculating the ellipticity, the media will be

treated as a wave plate when using the ray transfer matrices. The matrix for a wave plate is

given by:

1√
2

[
eiβ 0

0 e−iβ

]
(37)

where β is the phase delay, the same one as given in eq. (34). When the light passes through

the system, the polarization will rotate if the material is birefringent and the polarization
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(a) 650nm pulse ellipticity. (b) 650nm transmission.

Figure 3: The ellipticity of the 650nm pulse when it passes 73µm quartz. If all unwanted
polarization is cleaned afterwards, then the pulse would had been transmitted according to
the right panel.

state of the �eld is not aligned along the ordinary or extraordinary axis, this information will

be contained on the left side of eq. (35). The values of x′ and y′ are complex quantities. To

calculate the ellipticity one can use:

sin2 2χ =
2R

1 +R2
sinφ, (38)

where R is the ratio between the magnitudes of the x′ and y′ and φ is the phase di�erence

between the waves. χ is the angle between the orthogonal components of the elliptically

polarized light, hence the arctangent of χ is a measure of the ellipticity.

12 NI



(a) 1300nm pulse ellipticity. (b) 1300nm transmission.

Figure 4: Same set of pictures as in Fig. 3 but with the central frequency of the pulse being
1260nm.

Figures 3 and 4 represent the ellipticity introduced when the fundamental wave passes through

quartz with thickness to rotate it a quarter of a revolution and simultaneously rotate the

second harmonic a half revolution (conventionally referred to as a λ-half and a λ plate respec-

tively). Since both the pulses are not monochromatic, the di�erent wavelengths of the pulses

are rotated di�erently. This leads to the quartz acting as an "almost" λ-half and λ waveplate

for some regions of the pulses. As it appears from �gures 3 and 4 the transmission does not

undergo a dramatic loss. The polarization may then be cleaned of its ellipticity before the

pulses are transmitted to be used for HHG. However that would require quite some Brewster

windows, which themselves add to dispersion. For instance, to reduce the ellipticity of the

upper and lower endpoints of the wavelength spectrum in �gure 4a to 0.05 would require 8

plates of BK7 glass at Brewster angle. The plates induce additional dispersion which could be

problematic. Elliptic polarization of the light reduces the e�ciency of the HHG. An ellipticity

of 0.2 (as is the case of Fig. 4a) would halve the signal strength of the 17th harmonic order,

and consecutively weaken the higher orders for 800nm [8]. The e�ect is less destructive for

1300nm as the signal strength reduction scales with the inverse of the wavelength[9]. Quartz

was not the only material tested for a waveplate; calcite, sapphire, BBO and MgF2 (magne-

sium �uoride)were also calculated, but quartz introduced the least ellipticity. This means that

it is inadequate to use conventional birefringent crystals given our desired ellipticity tolerance

and another solution is required to overcome this problem.
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3.2.2 Achromatic dual wave plate

A custom wave plate was produced by the company Bernard Halle Nachfolger GmbH that

introduced minimal ellipticity by simulatenously acting as an achromatic half-waveplate for

650 nm and an achromatic fullwaveplate for 1300 nm. The crystal is thus an achromatic dual

wave plate. Note that the SH is rotated more than the fundamental, and that the �nal state

of the polarization for both waves is orthogonal to that of the incoming light. The wave plate

consists of three di�erent birefringent crystals. Two rather "thick" crystals which are placed

with crossed optical axes and a thin zero order waveplate between them at an speci�c angle.

All of them placed together to form a dual wave achromatic plate.

Figure 5: Transmission of polarized light through the achromatic dual wave plate for the
SH. The plate is placed between two parallel plane polarisers and then rotated.

The dual wave plate was tested using a simple experimental setup. Two parallel plane polaris-

ers were placed with the wave plate between them. An incandescent lamp was used as a white

light source, and the transmission through the polarisers and the wave plate was measured.

In �gure 5 we see the spectrum of the white light source as it has passed the setup. The

�gure consists of 90 spectra of the white light source that are rotated 2◦ in each step; each of

the readings are normalised with a spectrum where only the polarisers are between the white

light source and the detector. The �gure shows that the wave plate works as a full wave-plate

14 NI



for 650 nm at any angle, in some regions the crystal works as a full wave-plate for a broad

part of the spectrum, for instance near 120◦. The project of measuring the entire intended

spectrum and the dispersion for the achromatic dual wave plate is planned to be performed

in the future, as it is of high interest for both the Department of Atomic Physics in Lund and

Bernard Halle Nachfolger GmbH.

3.3 Delay compensation

Since the materials are dispersive they will displace the two pulses of di�erent color in time

with respect to each other. This is the same e�ect that makes the pulse broader, but the central

frequencies are more spaced in frequency than the endpoints of the frequency broadbands,

hence generating a greater temporal displacement. Since the propagation of the pulses is the

group velocity it is possible to derive the di�erence in time it takes for two pulses to traverse

through the material of length L:

τ1 =
L

vg1
τ2 =

L

vg2
(39)

τGVM = τ1 − τ2 =

(
L

vg1
− L

vg2

)
(40)

where τ1 and τ2 denote the time for the pulses to travel through the material. τGVM is the

di�erence of the times, the delay between the two pulses. vg is the group velocity, which is

given by:

vg =
c

n− λ0
dn
dλ0

(41)

for light with wavelength λ0 through a material with refractive index n. Hence vg1 and vg2 in

eq. (40) are the group velocities for the di�erent pulses as they propagate through a material

with length L. It is possible to calculate these velocities by using the aforementioned Sellmeier

equations (see Sec.3.1).

Calcite was chosen as a delay plate, since calcite is very birefringent. As demonstrated in

Fig. 6, the group velocity is faster in the fast axis than in the slow for any given wavelength

in the regime for which the setup is designed for. The speed di�erence of light the ordinary

and extraordinary axis in calcite is much larger than in any other components, meaning that

the temporal tuning with calcite is very e�ective. Besides from reducing the delay between

the pulses, a method to control the delay was desired. Originally the option of having two

calcite wedges with crossed axis proved to be optimal when it comes to having a large range

of tuning, but proved to be problematic since the beam is quite large, and using such wedges
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Figure 6: The group velocity for light of di�erent wavelengths when traveling through calcite.

Material BBO FS Waveplate air
Thickness [mm] 0.3 4.33 2 1000
τGVM [fs] -71.64 138.8 62.8 9.31
Total τGVM [fs] 139.27

Table 1: Group delay between the pulses introduced by the components. In this particular
table calcite is excluded, since it is determined by the delay from the other components.

would result in parts of the beams projection having di�erent thick paths of ordinary and

extraordinary calcite to cross. This is undesired since it would induce spatial deformation

of the pulses. Another option was to have wedges of calcite with parallel axes, but such

wedges have to be very thin because of the high birefringence of calcite,thereby brittle, and

also costly. Ultimately the solution of having a regular plate of calcite proved to be most

e�cient, durable, and cost e�cient solution, and the tuning would be provided from fused

silica wedges. A calculation could then be performed for what the thickness of the calcite

plate would be, provided that all other materials were accounted for.

In Table.1 a list of the components and the corresponding delays they introduce is provided.

The calcite crystal was chosen to slightly overcompensate the total delay despite the fact that

all delays are accounted for. The reason for this is that it is easier to add more glass as

opposed to ordering another calcite crystal, given the scenario that it undercompensates the

delay.

Seen in Fig.7 it is possible to have a close to zero temporal o�set of the central frequencies
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(a) The delays between a 1300nm pulse and a 650nm

pulse. The components are of the thickness that is

intended to be used for delay compensation.
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(b) Time delays between a 1300nm pulse and a

650nm pulse where all but calcite is fused as "com-

ponents".

Figure 7: The delay introduced by the components is plotted in matlab. The plot is done not
only the central frequency, but a span of wavelengths close to the central frequency intended
to be used. In the right �gure, the components are added together and the thickness of the
calcite can be changed in order for the total delay to be as small as possible.

of the pulses. The wavelength regime rendered in the plots is purely esthetic since the delays

of the central frequencies are of the essence. Given that most compenents inherit an error in

dimensions when they are manufactured the tuning device becomes important to reduce the

delay between the pulses. The wedged fused silica pieces provide approximately 4mm range

tunability. This in turn corresponds to 130fs in terms of delay. The wedges are connected to

a translation stage for increased precision.

3.4 Dispersion

The components in the construction will disperse the light (much like any medium tends to).

The dispersion will result in a delay in time for the di�erent pulses, but also a stretching of

the pulse duration. Two e�ects will have to be corrected before transmitting the light. Group

delay dispersion (GDD) is the phenomenon of the phase stretching due to dispersion. The

group delay dispersion is mathematically the derivate of the phase with respect to the angular

frequency, but it can be rewritten in the form of:

GDD =
λ3

0

2πc2

d2

dλ2
0

n = β′ (42)

i.e. as the second derivative of the Sellmeier equations for a medium with respect to the

central wavelength of the pulse (normally given in the scale of fs2). Additionally there is
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"third" order dispersion of the medium (TOD [fs3]), which is the third derivative of the

phase with respect to the angular frequency, or as implemented in the code used as:

TOD =
d

dω
β′ = − λ2

0

2πc0

d

dλ0

β′ = β′′ (43)

and yet, a fourth order dispersion is also calculated (FOD [fs4]) in the very similar fashion

as above [10]. Higher order dispersions are assumed to be low compared to the four �rst

dispersions. In order to correct the dispersion it is preferable to introduce dispersive media

which have opposite dispersive properties than due to the ones used to make the device

function, for instance calcite plates.
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Figure 8: Dispersion introduced from the materials in the interferometer
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Material BBO Calcite FS
Thickness [mm] 0.3 0.32 4
GDD 1300nm [fs2] 7.0520 -21.6090 -21.7324
GDD 650nm [fs2] 46.6692 68.7822 402.1321
Broadening 1300nm 1.0000 1.0002 1.0017
Broadening 650nm 1.0009 1.0019 1.0618
Total broadening 1300nm 1.0026
Total broadening 650nm 1.1004

Table 2: The broadening of the pulse when traversing through the setup.

In �gure 8 the dispersions introduced by the components as a function of wavelength are

presented. Note that there are 15 orders of magnitude that separates one order of dispersion

from a consecutive higher one. To reduce the dispersion a material with an opposite sign of

dispersion is usually placed in the beam trajectory. Unfortunately such materials do not exist

for the near infrared region [11], let alone for the visible region (where the SH is centred),

as most of the dispersions change sign near 1.2-1.3µm. In the moment of writing there is no

greater need for reducing the dispersion, neither was an appropriate solution found. The main

issue is that no material was found to reduce the dispersion for both waves simultaneously

(calcite has opposite sign of dispersion near the 1300nm regime, but not for the second

harmonic of that regime). The dispersion does not seem to be too large.

One can calculate the in�uence of the dispersion on the pulses. The easiest and most intuitive

way is to look at the pulse broadening through the components, although this is just "half"

the story since only the GDD is taken into consideration, it does pose the main issue. The

pulse broadening is given by[12]:

τ = τ0

√
1 +

D2
2

τ0
4

(44)

where τ is the pulse duration after transmission of a beam with duration τ0 through a material

with GDD D2.

The pulse duration used in table 2 was 40fs. The broadening of the fundamental pulse is

0.26% and the broadening of the SH is 10%. The broadening will become larger if the pulse

duration is shortened, but 40fs is assumed to be short enough.
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4 Outlook

The collinear setup has to be tested with the pulses that it is designed for. The most relevant

way of testing it is to infact generate high-order harmonics, because in the end that is what

it is designed for. Possible impediments for the functionality of the interferometer is the

ellipticity of the light after passing the waveplate not being low enough and the pulse delay

not being compensateable with before mentioned materials. Both issues can be solved. The

ellipticity can be �ltered using brewster windows and the delay can be tuned by adding more

glass. The delay is overcompensated as it is by the calcite crystal and even in the event of the

ellipticity being small enough one could additionally reduce it by recplacing the glass with

brewster windows.
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