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Abstract  

Air pollution is a serious problem today, both from an environmental and from a health point 

of view. Especially in cities, particles smaller than 10 µm in aerodynamic diameter (PM10) 

can reach high concentrations. These particles are dangerous, even at low concentrations, 

since they are small enough to enter the lungs. 

In order to estimate the concentration of air pollutants, different measurements and air 

pollution models can be used. A combination of model data and measurements allows for the 

assessment of air pollution concentration over larger areas with a lower degree of uncertainty. 

Statistical post-processing is one approach to combining model data and measurements.  

SIMAIR is a Swedish system of models that uses meteorological data, emission data and 

dispersion models on different geographical scales to calculate the concentration of air 

pollutants on regional, urban and local levels.   

The aim of this Master’s Thesis is to study different statistical post-processing methods and to 

examine their adequacy with regards to dealing with air quality models. One method, Support 

Vector Regression, is implemented and analysed based on the results from the SIMAIR 

model.  

The compound that is examined is PM10. 

The statistical post-processing method is developed based on data from Hornsgatan in 

Stockholm from the year 2007 to 2009. This method is then validated using data from Västra 

Esplanaden in Umeå and Gårda in Gothenburg. 

The results are promising for all three sites; improvements are seen for almost all statistical 

indicators used to examine model performance.  
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Populärvetenskaplig sammanfattning 

Luftföroreningar skapar många problem idag, framförallt i städerna. Små partiklar, PM10, 

orsakar folkhälsoproblem som hjärt-, kärl- och lungsjukdomar även vid låga koncentrationer. 

Huvudsakliga antropogena källor i Sverige är utsläpp från bränsleförbränning och vägslitage, 

framförallt på grund av dubbdäck.  

Vid SMHI används luftmiljömodeller och mätningar för att undersöka luftmiljön. SIMAIR är 

ett system av modeller som bland annat används för att modellera koncentrationer av olika 

föroreningar i gaturum. I det här examensarbetet görs ett försök att förbättra SIMAIR genom 

att använda statistisk efterbearbetning. Olika statistiska metoder undersöks och en, kallad 

stödvektorsregression (Support Vector Regression, SVR), implementeras och valideras.  

SVR är en kraftfull maskininlärningsmetod som är förhållandevis enkel att använda, tack vare 

tillgång till öppna källkodsprogram till exempel i Python. Enbart ett par parametrar behöver 

justeras i algoritmen. Metoden kan hantera olinjäriteter och är bra på att undvika 

överanpassning till träningsdata. För att SVR ska fungera så krävs träningsdata som är 

representativ för den data som ska predikteras. Ändras förhållanden mellan träningsdata och 

prediktionsdata – såsom dubbdäcksanvändning eller meteorologiska parametrar – så har inte 

metoden haft möjlighet att lära av de fallen och presterar därmed sämre.  

Tre platser undersöks – Hornsgatan i Stockholm används för att utveckla den statistiska 

modellen medan E6 vid Gårda i Göteborg och Västra Esplanaden i Umeå används för 

validering. Gemensamt för dessa tre är att det finns högkvalitativ data från flera års mätningar 

av PM10.  

Resultaten är lovande för alla tre platser, med förbättringar för i princip alla statistiska 

indikatorer som används vid modellutvärdering. Årsmedelvärdet korrigeras väl med SVR, och 

den linjära korrelationskoefficienten mellan modell och mätning för dygnsmedelvärden ökar 

till exempel från 0,6 till 0,76 för data från Gårda. 

Känsligheten i att använda observerad meteorologisk data jämfört med meteorologisk data i 

rutnät, interpolerad från modell och observationer, som inparametrar i SVR undersöks. 

Metoden visar sig vara okänslig för dessa skillnader.  

En intressant vidareutveckling av examensarbetet vore att försöka använda närliggande 

platser som träningsdata för att prediktera på platser där ingen mätning sker. Detta eftersom 

SIMAIR strävar efter att delvis vara ett komplement till mätningar.  
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1 Introduction 

Air pollution is a serious problem today, both from an environmental and a health point of 

view. In order to estimate the concentration of important pollutants in different surroundings 

both measurements and models are used.    

There are about 40 observation sites in streetscapes and urban backgrounds throughout 

Sweden. The sites in Stockholm, Gothenburg and Umeå provide measurements every hour 

whilst most other sites only measure daily mean concentrations.   

There are uncertainties in several components when modelling air pollution. For example 

there are approximations in the dispersion models, uncertainties in the meteorological data 

(both due to models and observations) as well as in the emission data, the traffic data and in 

the physical impact from, for example, streetscapes and land use.   

The Forum for Air Quality Modelling (FAIRMODE) was established in 2008 by the 

European Environment Agency (EEA) and the European Commission Joint Research Centre 

(JRC) (European Environment Agency 2011). The objective of the Forum is to increase the 

use of models in air quality assessment, and to examine and share information about 

modelling tools for policy purposes. Harmonizing the modelling practices in Europe will 

facilitate cooperation and decision making (Forum for Air Quality Modelling 2013). 

SIMAIR is a Swedish system of models that uses meteorological data, emission data and 

dispersion models on different geographical scales to calculate the concentration of air 

pollutants from the regional, urban and local levels. The urban concentrations are considered 

to be mean values above roofs in squares of 1 x 1 km (Andersson and Omstedt 2009, p. 34). To 

adjust model results so that they can be compared to measurements from arbitrary places, the 

use of statistical methods is required. The adjustment is motivated specially as European 

norms of air quality are based on pointwise measurements and the models aim to, partly, 

provide a substitute for measurements.   

 

1.1 Aim 

The aim of this Master’s Thesis is to study different statistical post-processing methods and 

their adequacy with regards to dealing with air pollution dispersion calculations. One method 

is implemented and analysed. The compounds that are examined are particles smaller than 10 

µm in aerodynamic diameter (PM10). 

The statistical post-processing method is developed based on data from Hornsgatan in 

Stockholm during the years 2007 to 2009. This method is then validated using data from 

Västra Esplanaden in Umeå and Gårda in Gothenburg. 

Another part of this project is to look at the sensitivity in using measured versus gridded 

meteorological data as input to a statistical model and to examine uncertainties in different 

components of the air pollution model.  

 

1.2 Outline of the report 

Initially a general description of PM10 and the air pollution model SIMAIR is accounted for in 

Section 2. Then a theory section follows, containing statistical learning, Support Vector 

Machines, validation and correlation. In Section 4 the implementation of the statistical post-
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processing model is described and in Section 5 indicators of model performance are 

presented. The data for Hornsgatan in Stockholm, which are used to implement the statistical 

model, are presented thoroughly in Section 6, together with short descriptions of the 

validation data for Västra Esplanaden in Umeå and Gårda in Gothenburg. In Section 7 the 

results are presented, both for Hornsgatan and for the validation data. A discussion and 

conclusions are given in Section 8. Finally some appendices are attached; they contain a 

theory section on optimization and additional results which are too detailed to be included in 

the results section.           
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2 Air pollutant PM10 

PM10 are particles with an aerodynamic diameter smaller than 10 µm. Particles with 

aerodynamic diameters smaller than 10 µm are defined as particles with settling speeds less 

than the speed of a spherical particle, 10 µm in diameter, with a density of 1g/cm
3 

(Raabe 

1976).  

A large part of the particles in Sweden comes from emissions of sulphates and nitrates from 

combustion of biofuels, oil and from wear on roadways, especially due to studded tires. In 

cities the concentration of PM10 can reach very high levels (Swedish Environmental 

Protection Agency 2011, p. 10). There are natural sources of PM10 as well, for example 

volcanoes, sea spray and windborne dust (Seinfeld and Pandis 2006, p. 55).   

There are serious health aspects related to exposure to PM10, even at low concentrations, since 

the particles are small enough to enter the lungs. Particles smaller than 2.5 µm can, due to 

their small mass, be transported far and are more dangerous since they enter further into the 

lungs than larger particles. Cardiovascular and pulmonary diseases increase with exposure 

and according to Swedish studies 3000-5000 people die prematurely due to particles in 

Sweden every year (Naturvårdsverket 2013a).    

 

2.1 Clean air – an environmental objective 

The Swedish Parliament has chosen 16 environmental objectives that should be met by 2020. 

One of these objectives is Clean air, which states that “The air must be clean enough not to 

represent a risk to human health or to animals, plants or cultural assets” (Swedish 

Environmental Protection Agency 2011, p. 10). 

For PM10 the proposed maximum yearly and daily mean concentrations are 15 µg/m
3
 and 30 

µg/m
3
, respectively. The proposed maximum concentrations of PM10 are generally exceeded 

in streetscapes and sometimes even in urban backgrounds in southern Sweden 

(Naturvårdsverket 2012). 

 

2.2 Air quality standards 

There are current standards of maximum levels of PM10 supported by the Swedish 

Environmental Code. The maximum daily mean concentration of 50 µg/m
3 
is not to be 

exceeded more than 35 times per year. The maximum yearly mean is 40 µg/m
3
 (Svensk 

författningssamling 2010, p. 4). Note that these standards are legislated as opposed to the 

environmental objectives in Section 2.1 above. The municipalities and authorities are mainly 

responsible for assuring that the standards are met. If they are not met, a program of measures 

is drafted (Naturvårdsverket 2013b).   

 

2.3 Air pollution models at SMHI 

SIMAIR is a system of models using meteorological data, traffic data, emission data and 

dispersion models for air pollutants on different geographical scales. SIMAIR calculates the 

concentration of different pollutants at different scales and adds together the regional, urban 

and local contributions to a single estimate.  
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SIMAIR is used by municipalities to assess air quality in cities and villages, and compare 

concentrations of pollutants to current air quality standards (SMHI 2012). SIMAIR plays an 

important role in testing different scenarios, for example how future concentrations of air 

pollutants in Swedish cities are affected by different actions (Omstedt et al. 2012). 

Epidemiological studies concerning health effects of long term particle exposure is another 

use of SIMAIR (Gidhagen et al. 2013).         

The regional concentration contribution in SIMAIR is computed using the regional 

background dispersion model MATCH, emission data from EMEP (European Monitoring and 

Evaluation Programme) and meteorological data from HIRLAM. The estimated urban 

background concentrations are calculated by the urban dispersion model BUM. The local 

additions are modelled using, for example, road and traffic information, chimney emissions 

and meteorological data. The components of SIMAIR are shown in Figure 1 below 

(Andersson and Omstedt 2012, p. 7). 

 

 

Figure 1. Data and dispersion models used in SIMAIR. Below the dotted line is where the local concentration 

contributions are calculated. 

 

2.3.1 Regional concentrations 

The regional dispersion model MATCH was developed in the 1980’s, after the nuclear 

accident at Tjernobyl, to model the spread of radioactivity (Langner et al. 1998). The model is 

used in many areas dealing with air pollution, for example problems concerning acidification, 

eutrophication and low level ozone.  

The resolution in the model is dependent of the weather model resolution. For Europe the 

model is run at a resolution of 44 km x 44 km x 100 m and in Sweden 11 km x 11 km x 100 

m. Using discrete time steps (every third minute) the concentration in each gridbox is updated 

by calculating deposition, chemical transformation and mixing. 3-dimensional meteorological 

data together with emission data are used as input in MATCH (Robertson, Langner and 

Engardt 1999). It is an off-line model and there is no feed-back in the relation between air 
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pollution and weather. For example the effect of high particle concentrations on weather is 

ignored here.   

Validation of the model is difficult, since the gridboxes are very large and the model 

concentrations are mean values, whilst measurements are pointwise and the concentrations 

can differ significantly within each gridbox. 

EMEP collects emission data on 50 x 50 km resolution. It measures air quality and models the 

atmospheric transport and deposition of air pollutants. The database is updated every year 

with a two year delay, e.g. the emission database for 2008 was completed in 2010 (EMEP 

2013).  

HIRLAM (High Resolution Limited Area Model) is a regionally scaled weather forecasting 

model. Every six hours predictions are made for two days ahead. The spatial resolution differs 

depending of area of application, but for the MATCH model used in this application the 

resolution is 11 x 11 km (Andersson and Omstedt 2012, p. 8). The forecasts in HIRLAM 

include among others temperature, wind speed and relative humidity. The model was 

developed jointly by the weather services in Sweden, Norway, Finland, Denmark, Iceland, 

Ireland, the Netherlands and Spain (Unden et al. 2002).  

 

2.3.2 Urban concentrations 

The urban model BUM estimates the concentration of air pollution as the mean concentration 

in squares of 1 x 1 km above roofs. Emission data originate from SMED (Svenska 

MiljöEmissionsData), and are updated every year (SMED 2013). SMED is a Swedish 

database with higher resolution than EMEP. Meteorological data come from MESAN and 

STRÅNG and are used as input to BUM. In the model calculations BUM distinguishes 

between emission sources from ground level and from higher levels.  

MESAN (meso-scale analysis) is a meteorological analysis model that updates every hour 

(every third hour when it is used in SIMAIR, and data are then interpolated to hourly values 

inside the SIMAIR model) and has a spatial resolution of 11 x 11 km. Meteorological 

observations are made in several places, however as the number of observation stations are 

limited, MESAN is used in order to combine meteorological models and observations using 

optimal interpolation techniques. The physical properties of the weather parameters are 

handled by models similar to those in HIRLAM. No forecasting is done here (Häggmark et al. 

2000). 

STRÅNG is a mesoscale model for solar radiation (Landelius, Josefsson and Persson 2001) 

that calculates for example Global Irradiance (GI).   

 

2.3.3 Local concentrations 

There are two different models for the local scale dispersion, depending on if a street has 

buildings on one or both sides (streetscape), or if the surroundings are more open. In 

streetscapes the dispersion model OSPM (Operational Street Pollution Model) is used, 

otherwise OpenRoad is chosen.  

Local emission factors are collected from HBEFA (Hand Book Emission Factors for Road 

transport) using traffic information from NVDB (Nationell VägDataBas). Both NVDB and 

HBEFA are updated every year to adjust for changes in the amount of traffic and the 

composition of the vehicle fleet. In streets where traffic measurements are done, the traffic 
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model can be improved by specifying for example the values of yearly daily mean traffic, the 

proportion of heavy traffic and the use of studded tires. 

There is also an emission model for road dust, as well as a model for chimney and local wood 

heating emissions in SIMAIR (Andersson and Omstedt 2012, p. 8).   
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3 Theory 

In this section statistical learning is described, with focus on Support Vector Machines. First 

the classification case is introduced, and then Support Vector Regression is presented. Finally 

there are two subsections containing validation and correlation theory. 

 

3.1 Combined use of models and monitoring data 

For a long time monitoring data has been used to examine air quality. An obvious drawback 

of this approach is that it is difficult to estimate the air quality where there are no 

measurements. By implementing air quality models one can assess the concentration of air 

pollution over a much larger area, though the uncertainty can be high. A combination of 

model data and measurements provides a way of estimating air pollution that combines the 

benefits from both types of data. This can be done in many ways, and two main categories are 

data assimilation and data fusion. Several methods can be applied for both categories, such as 

Kalman filters and residual kriging (Denby and Spangl 2011).  

 

3.1.1 Data assimilation 

In data assimilation observation data are used as guidance for the models, by incorporating 

the observations into the computer model in order to get model states as correct as possible. 

The physical and chemical characters of the air pollutants described in the dispersion models 

are retained (Denby and Spangl 2011). Ensemble Kalman filters are examples of data 

assimilation methods, where an ensemble of model runs is made to estimate the covariance 

matrix by sample covariance. Another method, used by SMHI, is variational assimilation, for 

example 2D- and 3D-Var. It can be used to find initial conditions in forecasting by 

minimizing a cost function and finding a state that fits both model and observations in an 

optimal way (SMHI 2008). The data assimilation approach is interesting in many ways, 

however as this thesis treats statistical post-processing, the focus will be on data fusion.   

 

3.1.2 Data fusion 

Data fusion methods in air quality modelling are completely statistical, so they do not take 

physical or chemical laws into account. An advantage is that only the model output is needed, 

no knowledge regarding the model is required. Examples of methods are regression methods 

and residual interpolation using either geometric methods such as radial basis functions or 

geostatistical methods such as kriging (Denby and Spangl 2011).  

 

3.2 Statistical learning 

In statistical learning, when predicting an output given inputs, two important cases can be 

distinguished. If the output is quantitative the prediction is a regression problem and, 

secondly, if the output is qualitative one has a classification problem. These two types can be 

considered function approximation tasks and are related (Hastie, Tibshirani and Friedman 

2009, p. 10).  
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The first learning machine (system that can learn from data), the perceptron, was developed in 

the 1960’s by Rosenblatt. It consisted, in its simplest form, of neurons which each has   

inputs                 and one output         . The design of a perceptron is 

visualized in Figure 2. Each neuron defines two regions of input space  , separated by the 

hyperplane        . During learning the parameters   and   are chosen, however how 

to choose the parameters to achieve generality is the crucial question. In learning theory the 

connection between training errors and generalization ability is central. If the training errors 

are too small the model might generalize badly due to overfitting, and if the training errors are 

too large the model might lose important structure in the data and become too general. 

 

Figure 2. The design of a perceptron.  

In the 1980’s back-propagation, a technique to find weights of several neurons 

simultaneously, was developed and enabled training of feed-forward multilayer Neural 

Networks. The learning theory progressed greatly during the 1970’s and 1980’s, mostly 

developed by Vladimir Vapnik and Alexey Chervonenkis. This resulted in a new era of 

learning machines, including methods focusing on radial basis functions (Vapnik 1999, p. 1-

8). The following concepts are central in learning theory.  

Let the training data      and the output data     be generated independently from a 

joint distribution        . Then a function      is sought after, which predicts  . In order to 

penalize errors in training a loss function is defined as  (      )            

(sometimes it is not squared). The expected (squared) prediction error, also called the risk, is 

defined as  

                             ∫(      )
 
          

and can be used in order to choose  . By conditioning on   the following expression is 

obtained: 

            (      )
 
  

The function      is minimized by              , which is called the regression 

function. The best approximation under squared errors, of   at     is thus the conditional 

expectation          (Hastie, Tibshirani and Friedman 2009, p. 18). 

Often the distribution         is unknown, so the risk is approximated by averaging the loss 

function on the training set, called empirical risk: 

     
 

 
∑           
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A problem is that a function   that performs very well on the training data might generalize 

badly to unseen data. So only minimizing the empirical risk does not imply an optimal 

performance for test data (unseen data from        ). Statistical learning theory states that it 

is necessary to restrict the set of functions from which   is chosen, to a set that has capacity 

appropriate for the amount of training data provided. The VC (Vapnik-Chervonenkis) 

dimension is a measure of the capacity of function sets, defined as the cardinality of the 

largest set of points a function set can shatter. The VC theory gives bounds on the test error 

(the risk), which can be minimized. The minimization, called structural risk minimization, 

depends on empirical risk and the capacity of the function class. More on capacity and 

structural risk minimization is found for example in Learning with Kernels (Schölkopf and 

Smola 2002, p. 8-10).  

Support Vector Machines (SVMs) are designed to relate to the structural risk minimization 

when finding an optimal hyperplane for classification and regression. SVMs were originally 

utilized to classify data into categories, and the powerful method is a form of supervised 

machine learning. Training data is used to find a hyperplane that separates two classes in an 

optimal way, see Figure 3. If it is not possible to linearly separate the two classes, the input 

data is mapped to a higher dimension, called a feature space. The transformation uses kernels, 

as according to the “kernel trick” any scalar products that need to be calculated can be 

performed in input space instead of in feature space. This is computationally more efficient. 

An optimization is done in order to find the best hyperplane, based on minimizing complexity 

and misclassification. The model can then be used to classify new, unseen data. Commonly 

used kernels are radial basis functions (RBFs) and polynomials. 

The SVMs in their present form were designed by Vladimir Vapnik and Corinna Cortes in 

1995. The SVMs have had great success for example in classifying images, handwritten 

letters and proteins (Christianini and Shawe-Taylor 2012, p. 149-160). 

Comparable results can be achieved with Neural Networks, but only if many parameters are 

optimally tuned by hand. The performance of SVMs depends critically on a few parameters, 

so qualitative results can be accomplished with less effort, which is a great advantage (Smola 

and Schölkopf 2004, p. 15).   

Support Vector Regression (SVR) uses SVMs for regression analysis. SVR uses 

transformation into a higher dimensional space in order to find a hyperplane for regression. 

The optimization minimizes complexity and distance between the hyperplane and training 

data. Advantages are that SVR is a very general, non-linear, computationally efficient 

method; it is relatively good at avoiding overfitting as the optimization minimizes model 

complexity, and the method is easily available since the algorithm is implemented in several 

open source packages (Marsland 2009, p. 120-129).  

 

3.3 Support Vector Machines 

In the following sections Support Vector Machines and Support Vector Regression are 

described. The basic idea is to find an optimal hyperplane for classification of a linearly 

separable set. The method is then extended to deal with sets that are not linearly separable, 

and to solve regression problems.  

In order to understand how the optimization problem is solved using the dual problem 

formulation, a summary of relevant optimization theory is given in Appendix A.  

 



10 

 

3.3.1 Support Vector Classification 

The simplest form of a Support Vector Machine is a maximal margin classifier. It requires 

linearly separable data in the feature space, and is formulated as a quadratic and convex 

optimization problem with affine constraints. The problem can thus be solved using the dual 

formulation, since the duality gap is zero (Appendix A, Proposition 16).  

Suppose we have a training set                             
 , where    indicates 

which class    belongs to. Any hyperplane can be written as        , where   is the 

normal vector to the plane and   denotes the scalar product. If the data are linearly separable 

two hyperplanes can be found to separate the two sets, and the optimal hyperplane is located 

right in between (see Figure 3). The distance between the two planes divided by two is called 

the functional margin. This margin, a region in which no points are located, can be maximized 

and the two hyperplanes can be formulated as 

          

           

where    and    indicate the points that belong to the positive and negative class, closest to 

the optimal hyperplane. Here the functional margin (the margin of the function output) is 
       

 
   and the geometric margin is  

   
 

 
(

 

      
     

 

      
   )   

 

      
. 

The following result holds (Christianini and Shawe-Taylor 2012, p. 95): 

Proposition 1. 

                                            

  (                  ) 

                                                                

                 

                         

           

                                                                
 

      
  

The inequality constraints above describe the two separating hyperplanes (at equality) and are 

affine. The optimal, maximal margin hyperplane      solves the optimization problem above 

and the hyperplane is used to classify points    by the decision rule           .  

 

Figure 3 (Wikipedia 2008) illustrates a separating hyperplane, together with its margin.  
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Figure 3. Points of two classes, together with a separating hyperplane and its margin. 

 

 

3.3.1.1 Dual formulation 

To solve the optimization problem the corresponding dual is found. See the section about 

duality in Appendix A for more theory. Later on (when using kernels for mapping input data 

which are not linearly separable in input space) solving the dual problem will be simpler than 

solving the primal. The primal Lagrangian is 

          
 

 
       ∑                

 

   

                 

where      are the Lagrange multipliers. The dual is found by differentiating          

with respect to   and   and setting the derivatives to 0. 

         

  
  ∑      

 

   

 

         

  
    ∑        

 

   

 

By substituting    ∑       
 
     and ∑        

    in the primal (1),          can be 

stated as 

         ∑  

 

   

  
 

 
∑                

 

     

  

The dual problem is formulated below (Christianini and Shawe-Taylor 2012, p. 96).  

Proposition 2. 

                                            

  (                  ) 

                                                                    

              ∑  

 

   

  
 

 
∑                
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          ∑      

 

   

   

               

                          ∑    
   

 

   

                             

                                   

   
 

       
   

 

The value of    is calculated from the primal constraints as 

     
        

               
       

 
  

According to the Karush-Kuhn-Tucker (KKT) complementary conditions the optimal solution 

must satisfy  

  
      

                             

For the points that are situated exactly on the margin the   
  solutions are non-zero. Note that 

for these points equality hold for the inequality constraints stated in Proposition 1. For all 

other points the multipliers   
  are zero. This implies that only points closest to the margin 

influence the weight vector. These points are therefore called support vectors (Christianini 

and Shawe-Taylor 2012, p. 94-97).   

The solution for the optimal hyperplane   in its dual form is: 

            ∑    
           

 

   

 ∑     
            

    

 

 

where sv stands for support vectors. The KKT condition also results in: 

      ∑   
 

    

   

This implies that the optimal hyperplane has the following geometric margin in its dual 

formulation: 

  
 

      
 (∑   

 

    

)

 
 

 

  

The fact that the input    in its dual form is inside an inner product both in its objective 

function      and in its decision function            allows for the use of kernels in the 

transformation of data from input space to a feature space in order to find an appropriate 

hyperplane when data are not linearly separable in input space (Christianini and Shawe-

Taylor 2012, p. 97-98).  
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3.3.1.2 Transformation using kernels 

The idea is to transform data that are not linearly separable in input space to a feature space in 

order to achieve a linear separation. This is done by mapping the training samples    by a map 

      into a feature space  . The trick is that the scalar product           never needs 

to be computed explicitly if   is a kernel. Instead a kernel matrix                  is 

found, allowing each dot product to be replaced by a kernel function. The dot product is thus 

computed in input space instead of computing dot products for the extended basis vectors 

(Smola and Schölkopf 2004, p. 3).  

The kernel trick is the fundament of Support Vector Machines, without it the calculations 

would become computationally too expensive. According to Mercer’s theorem any 

symmetric, positive definite function can be used as a kernel. The dot products of the 

extended basis vectors are substituted by a kernel matrix (a Gram matrix)  .  

Common types of kernels are seen in Table 1. It can be noted that sigmoid functions are 

conditionally positive definite in certain parameters, and are valid kernels for those 

parameters (Lin and Lin 2003, p. 1).  

 

Table 1. Commonly used kernels in Support Vector Machines. 

Polynomials (inhomogeneous or 

homogeneous) 
                or               

Sigmoid functions                     

Radial basis functions 
            

      

   
  

 

There is no objective way of choosing which kernel to use; the present technique is trial and 

error (Marsland 2009, p. 126-127). 

 

Example: A simple kernel: 

Consider the map         with             
  √        

  . The dot product can be 

calculated based on the dot product in input space:              
    

          . Thus, it 

suffices to know                       
    

  , and we do not need to know      

explicitly (Smola and Schölkopf 2004, p. 3).  

 

The use of kernels in the maximal margin optimization problem is visualized in Proposition 3 

(Christianini and Shawe-Taylor 2012, p. 98-99). 

Proposition 3. 

                              

  (                  ) 
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              ∑  

 

   

  
 

 
∑                 

 

     

   

          ∑      

 

   

   

               

                                   (    )            ∑    
            

 

   

  

                                                                                        

                                                               

   
 

      
 (∑   

 

    

)

 
 

 

  

 

 

3.3.1.3 Soft margin optimization 

Often linear separation is not possible, even after a transformation using kernels is performed, 

due to noisy data. This is handled by a soft margin optimization, where slack variables   , 

allow for some misclassified points. The optimization problem can be formulated as a 2-Norm 

Soft Margin: 

                   ∑  
 

 

   

 

                                       

 

where the parameter   is determined by (cross-)validation. When   is varied the norm        

also varies, so    is minimized based on the choice of  . The parameter   balances 

misclassification errors against complexity.   

The primal Lagrangian, connected to the 2-Norm Soft Margin problem, is  

            
 

 
     

 

 
∑  

 

 

   

 ∑                    

 

   

 

where      are the Lagrange multipliers. In order to find the dual, the Lagrangian 

           is differentiated and the derivatives are set to 0: 

           

  
    ∑        
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  ∑       

 

   

 

and by resubstitution,            is formulated as: 

            ∑    
 

 
∑               

 

     

  
 

  
     

 

   

  

The dual problem (with a general kernel) is stated below (Christianini and Shawe-Taylor 

2012, p.106): 

Proposition 4. 

                                       

  (                 )  

                                                                                  

                                                                  

               ∑   
 

 
∑         ( (     )  

 

 
   )  

 

     

 

   

 

           ∑    

 

   

     

               

          ∑    
            

 

   

                                      
  

 

 
  

                 
      

                                   (    )                                                 

                                                                                            

                                                                  

  (∑   
  

 

 
       

    

)

 
 

 

   

This follows from the KKT condition                                and the 

relation       . This problem is closely related to the optimization problem for the maximal 

margin; it can actually be seen as a change of kernel                
 

 
     .  

There is a 1-Norm Soft Margin as well. The corresponding primal Lagrangian is expressed as: 

             
 

 
      ∑  

 

   

  ∑                     ∑    

 

   

    

 

   

 

where       and     . The same procedure as for the 2-Norm Soft Margin is done in 

order to find the corresponding dual, stated in Proposition 5 (Christianini and Shawe-Taylor 

2012, p.108). 
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Proposition 5. 

                               

   (                  ) 

                                                                                         

                                                                                            

              ∑  

 

   

  
 

 
∑                 

 

     

    

          ∑      

 

   

                  

          ∑    
            

 

   

                                       

                    
      

                                   (    )                                                 

                                                                                            

                                                                 

  ( ∑                 

      

)

 
 

 

   

The KKT conditions state that if     
    then   

    and     
             

   , 

which is used above. The points with   
    are margin errors as their geometric margin is 

less than 
 

      
, and they can only occur when   

   . These results correspond exactly to the 

Maximal Margin problem, with the difference that all    are bounded from above by  . This 

constrains the influence of outliers, as they otherwise would have large Lagrange multipliers. 

The 1-Norm Soft Margin thus has the name Box Constraint.  

Both the 1- and 2-Norm Soft Margins are used today. Which margin that gives the best result 

depends on the data, and the type and amount of noise (Christianini and Shawe-Taylor 2012, 

p.105-110).  

 

3.3.2 Support Vector Regression 

The idea of Support Vector Regression is to find a function            that has at most 

deviation   from the actual targets   , for all training data   . If not possible linearly, the input 

data can be transformed into a higher dimension to find a hyperplane that has at most ε 

deviation from each transformed point. The optimal hyperplane is found by minimizing the 

flatness (norm of  ) of the hyperplane and the deviations larger than  .  

The simplest case is the linear problem, formulated as follows: 
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where input data is on the form   (                 )      , where for example 

    . Often there is no function            that approximates         with a 

maximum deviation of ε. Similar to the 1-Norm Soft Margin in the classification case, slack 

variables can be introduced, allowing a few points to deviate more than ε from the 

hyperplane. The problem is then formulated as: 
 

              
 

 
      ∑      

  

 

   

 

                                    

                 
    

     
      

The parameter   decides the compromise between flatness of      and the penalty of 

deviations larger than ε. This penalty is called the ε-insensitive loss function      and can be 

stated as: 

     {
                      

                  
 

The same method as for Support Vector Classification is used – state the primal Lagrangian, 

derive and set derivatives to zero, resubstitute and state the dual. The primal Lagrangian is, in 

this case: 

             
 

 
     ∑      

   ∑         
   

  
 

   

 

   

 

 ∑                  

 

   

 

 ∑  
      

            

 

   

  

with constraints      
       

   .   

The derivatives, imposing a stationary point, are: 

           

  
 ∑   

       

 

   

 

           

  
   ∑      

      

 

   

 

           

   
   

     
      

        

where   
   

denotes    and   
   

The resulting dual problem can be formulated as: 
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∑       

  (     
 )(     )

 

     

 

  ∑      
  

 

   

 ∑        
  

 

   

 

           ∑      
  

 

   

     
    [   ]  

The function      ∑       
   

            describes the hyperplane, but   needs to be 

computed. The KKT conditions: 

                                  

  
      

                            

                        

     
    

                 

give useful information. Only points with a deviation larger than   have   
   

  . Also 

    
   , so if      then      and            . One way of finding   is through 

the following inequalities: 

                          
                                 

    . 

If any    
   

      , the inequalities become equalities.  

For                all    
   

 have to be zeros in order to fulfil the first two KKT conditions. 

Therefore only a part of the inputs    are used in order to describe the hyperplane, and these 

are called the support vectors. The support vectors are the points that have a deviation larger 

than   from the hyperplane (Smola and Schölkopf 2004, p. 1-3).  

Support Vector Regression can be generalized to handle nonlinearities by using kernels, just 

like for classification. The dual problem can be reformulated as follows (Christianini and 

Shawe-Taylor 2012, p. 117-118): 

Proposition 6. 

                                                             

   (                  ) 

                                                                 

                             ̂  ̂       ̂                                                        

               
 

 
∑       

  (     
 ) (     )

 

     

 

  ∑      
  

 

   

 ∑        
  

 

   

 

           ∑      
  

 

   

     
    [   ]  
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         ∑   ̂    
 ̂ 

 

   

         ̂        ̂                                

                   
                                                                

                                                                            

                                

It can be noted that      contains a kernel function, however   is no longer known explicitly. 

The parameter  ̂ is found using the KKT conditions (1) and (2) stated above.  

When performing a Support Vector Regression on new input data, the points are projected to 

the hyperplane determined in training.  

 

3.3.3 Validation 

In order to evaluate a learning algorithm a common statistical method divides the known data 

set into a training set and a validation set, and test the performance gained from the training 

set on the validation set. This method is called validation, and reduces the problems with 

overfitting when predicting on an unknown set. 

The data set is often divided into three sets: a training set for the learning algorithm, a 

validation set on which the algorithm is tested in order to avoid overfitting, and finally a test 

set, which is a set on which prediction is to be made. 

There are different types of validation. For example the k-fold cross validation divides the 

data set into   equally large subsets and rotates so that each subset is used for validation while 

the other     subsets are used for training. For example the average of the   results can be 

used for comparison. Drawbacks are that training data and validation data overlap and are 

dependent, and for large datasets this method can become very computationally expensive.   

The hold-out validation is another type of validation. Here the data set is divided into a 

training set and a validation set, which do not overlap. The disadvantage is that the data in the 

validation set is never used for training, so important information may be lost, which could 

lead to higher variance. When having a small data set this type of validation is probably 

unwise (Refaeilzadeh, Tang and Liu 2008).  

For all choices of kernel the parameter   has to be set in Support Vector Machines. This 

parameter decides the trade-off between the complexity of the hyperplane and the penalty of 

samples which are far from the hyperplane. A smaller   results in a flatter hyperplane and a 

higher   aims at finding a hyperplane that fits all samples well.  

When using Radial Basis Functions (RBFs) the parameter γ also needs to be set. The kernel is 

formulated as  

          ( 
      

   
)               , 

so   
 

  
, where   denotes the standard deviation. The parameter γ decides how much 

influence each training example has. A large γ results in a low standard deviation so only 

examples very close to the training point are influenced, and vice versa.  

Selection of these parameters is not trivial. The most common way is to do a grid search with 

the selected parameters evaluated using a validation set (Marsland 2009, p. 127). In Section 

4.3 the implemented grid search on a log scale is described. A hold-out validation is done in 
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order to find the optimal combination. The error tolerance   is another parameter in the SVR 

that can be tuned with validation.  

 

3.4 Correlation – Pearson’s r and Spearman’s rank 

There are many ways to measure dependence between two data sets   and  . Pearson’s 

product-moment correlation coefficient, or Pearson’s r, is a linear correlation measure 

calculated as: 

      
 

   

    ̅     ̅ 

√∑      ̅  
   √∑      ̅  

   

  

The correlation coefficient is in the interval [-1, 1], where 1 implies complete positive linear 

dependence and -1 complete negative linear dependence.  

Spearman’s rank correlation coefficient also measures dependence between two data sets, 

based on how well their dependence can be described by a monotone function. A monotone 

function is either a non-decreasing or a non-increasing function. This correlation coefficient 

can thus measure non-linear dependencies following a monotone function. In other words it 

measures if the ordering is the same, e.g. if the fifth element is the largest in both datasets. 

Spearman’s rank is defined as the Pearson’s correlation coefficient between the ranked 

variables in the data sets. When there are no duplicates within each set, Spearman’s rank can 

be computed as: 

       
 ∑ (           )

  
   

       
  

where   is the number of elements in each set and        and       are the ranks for    and 

  . The correlation coefficient is in the interval [-1, 1] where 1 denotes complete positive 

monotone dependence and -1 complete negative monotone dependence (Blom et al. 2005, p. 

232-235).  

 

  



21 

 

4 Implementation 

This section describes the implementation of the Support Vector Regression. The algorithms 

used in this thesis are implemented in an open source library called Scikit learn.  

One part of the model design is to choose relevant explanatory variables as input to the SVR. 

In Section 6.1.1 the characteristics of Hornsgatan data are described. Based on this analysis 

the explanatory variables used in the SVR are chosen. Another part of the model design is to 

select values of the   and   parameters. This selection, together with how data are adjusted to 

the algorithm, is described below.  

 

4.1 Scikit learn – Machine learning in Python 

Scikit learn is an open source Python module that includes several methods of machine 

learning, both supervised and unsupervised. The input data are structured as Numpy arrays, 

where Numpy is an open source library that extends the Python programming language to 

easily deal with arrays, matrices and mathematical operations (Pedregosa et al. 2011).  

The development of Scikit learn is funded mostly by INRIA – the French Institute for 

Research in Computer Science and Control and by Google. It started in 2007 as a Google 

Summer of Code project by David Cournapeau and in 2010 INRIA started to lead the project 

and released the first public version (Scikit learn 2013a).    

Scikit learn provides implementations of Support Vector Machine methods, including Support 

Vector Regression. Scikit learn uses the C library libSVM. One can specify which kernel to 

use out of linear, polynomial, RBF and sigmoid kernels. If desired one can also define own 

kernels. The module solves a 1-Norm Soft Margin optimization problem (Scikit learn 2013b).  

 

4.2 Exponential moving average filter 

An exponential moving average (EMA) filter is used on the precipitation data in order to 

obtain a better idea of when streets are wet. After discussions with meteorologists at SMHI, 

the number of lags was chosen to be 18 hours. This implies that the filtered rain  ̅ , which 

indicates wetness of the street, is influenced by precipitation during the past 18 hours. An 

EMA filter places more emphasis on recent rainfall by discounting older values exponentially. 

This can be expressed mathematically: 

 ̅    ̅             [  ̅             ]          

    ̅                        

and this can be further expanded by expanding  ̅ terms. The parameter         is calculated 

as   
    

      
. A larger   gives a larger degree of filtering and a smaller   expresses less filter 

influence (Tham 2009).    

 

4.3 Grid search and hold-out validation 

In this thesis a Radial Basis Function kernel is used, since it is one of the most common 

kernel choices. This selection implies that both the values of   (required for all kernels) and   

need to be set. As described in section 3.3.3 a grid search is done together with a hold-out 
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validation. Originally the grid search was done on the interval                   and 

                  , but after some testing the intervals can be decreased, as one 

intuitionally knows which parameter values that are reasonable for the problem in question. 

The choice of error tolerance ε is not sensitive in this implementation. The default value of 

      is used as maximum allowed deviation. 

When doing Support Vector Regression in this thesis, three years of data are available – year 

2007 to 2009. In order to prepare for the validation, two evaluation years, 2007 and 2008, are 

divided into a training set and a validation set. The validation set is constructed by randomly 

picking 25% of the two years, with the remaining 75 % becoming the training set. When 

doing grid search for C and γ each combination of the two parameters is used for prediction 

on the validation set. The parameters that result in the smallest MAE for the validation set are 

then used, and training is redone on the entire evaluation set. The final prediction is made on 

the test set, the data from 2009.  

 

4.4 Scaling of input vectors 

As Support Vector Machines are not scale invariant it is a good idea to scale the input vectors. 

The scaling performed on the vectors (those that are not indicators) is the following: calculate 

the mean and the standard deviation of the vectors in the training set, then scale both the 

training set and the validation set by subtracting the computed mean and dividing by the 

standard deviation. For the test set, scaling is based on the mean and standard deviation of the 

entire evaluation set (the training set and validation set put together). 

   

4.5 Three regressions 

Data are divided into three intervals based on the model values from SIMAIR in streetscapes. 

The intervals are decided by dividing the data into large enough parts and by testing different 

intervals. The final choice fell on the intervals < 25, 25-50 and  >50 µg/m
3
.  Thereafter three 

regressions are executed, one in each interval. The advantage of implementing several 

regressions is that each regression will fit the data in its interval better than one regression 

covering all the concentration values would.   
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5 Model performance 

Air pollution models are increasingly used for policy support, and there is a need for standard 

methods to evaluate the models. One way to evaluate the quality is to compare model results 

with measurements; this is called operational model evaluation or statistical performance 

analysis. Several statistical performance indicators should be used, for example indicators that 

describe the bias, the correlation, the standard deviation and the root mean square error 

(RMSE), as they provide information about general model performance. In order to have a 

quality evaluation of the models for policy use, Model Performance Criteria (MPC) should be 

defined and fixed. This work is currently in progress (Thunis, Pederzoli and Pernigotti 2012).   

 

5.1 Model Performance Criteria 

The European Air Quality Directive, adopted by the European Commission, defines the 

uncertainty of the models as the largest deviation between calculated and measured 

concentration for 90 % of the observations, closest to the limit value, over the period in 

question. This is computed by sorting both the model values and the measurements in 

increasing order, remove the top 10 %, and compare the measured value closest to the limit 

value to the model value with the same index. No consideration is thus given the temporal 

order of the data.  

Currently there is only a model quality objective for the yearly mean value of PM10, which is 

an uncertainty of maximum 50 % for the modelled concentration. The objective for daily 

concentration has not been decided yet (EU 2008, p. 14). Within FAIRMODE (see Section 1) 

two statistical indicators were developed to describe model performance; the Relative 

Percentile Error (RPE) and Relative Directive Error (RDE).  

There are several statistical performance indicators used to evaluate air pollution models. 

Some of the most important are listed below. 

 Mean concentration over a certain time period:  ̅   
 

 
∑   

 
    

 Standard deviation:   √
 

   
∑      ̅   

    

 Root Mean Square Error:       √
 

 
∑         

 
    

 Correlation coefficient:    
∑      ̅  

        ̅ 

√∑      ̅   
        ̅  

 

 Relative Percentile Error:     |
     

  
| 

 Relative Directive Error:      |
       

  
| 

Here    is any concentration,    is observed concentration,    is modelled concentration,    

is observed concentration for the percentile in question and    is modelled concentration for 

the same percentile. For example the 98 percentile is the concentration which 98 % of the 

values fall below and 2 % exceed.     is the observed concentration and     is the modelled 

concentration closest to the limit value   . 

Which of the indicators     and     that is used for evaluation of model quality depends on 

whether the concentrations are close to the maximum limit. For low hourly and daily mean 

concentrations the     is preferred, but the opposite applies for yearly mean values. So for 
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high yearly mean concentrations the use of     is preferred and for low yearly mean values 

    is better (Andersson S. and Omstedt G. 2012, p. 13-15). 

 

5.1.1 Model performance criteria based on observational uncertainty 

FAIRMODE suggests using model performance criteria based on observational uncertainty. 

The observational uncertainty is defined as    √
 

 
∑             

 
   , 

where    is the relative uncertainty for a given concentration and pollutant. In the article by 

Thunis, Pederzoli and Pernigotti (2012)    is assumed to be independent of concentration and 

is set to 25 % for PM10, according to the data quality objective in the European Air Quality 

Directive.  

Statistical indicators suggested by FAIRMODE are: 

 Normalized RMSE:       
    

  
 

 Centred RMSE: CRMSE = √
 

 
∑       ̅       ̅    

    

 Normalized Mean Bias:     
 ̅  ̅

 ̅
 

 Normalized Mean Standard Deviation:       
     

  
, 

and recommended Model Performance Criteria are: 

         

       
  

 ̅
 

        
  

  
. 

These criteria can be reformulated as criteria for bias, correlation and standard deviation in the 

following manner: 

 for bias: 
 ̅  ̅

  
   

 for correlation: 
(      )

 
 
  

 
    ,  

 and for standard deviation: 
       

  
  .   

In order to visualize the model performance a Target diagram is used (Thunis, Pederzoli and 

Pernigotti 2012). 

The Target is defined as: 

        
 

 

√
 

 
∑        

  
   

√
 

 
∑   

  
   

, 

where    is the observational uncertainty at each point (Andersson S. and Omstedt G. 2012, p. 

13). In the Target diagram the y-axis is 
    

  
 and the x-axis is the centred RMSEU. Because the 

centred RMSE (CRMSE) is always positive the negative x-axis can be used to provide more 

information in the plot. The ratio of two CRMSEs, one obtained by assuming perfect 

correlation (      ) and the other assuming perfect standard deviation (     ), is 

calculated and used to decide which side of the Target diagram the point will be placed on:  
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√         
{
                      
                           

 

The relation          
    

            is used above (Thunis, Pederzoli and 

Pernigotti 2012).  

The closer the points in the Target diagram are to the origin, the better the model result is. If 

the points are within a radius of 0.5 (          ) the RMSE is smaller than the 

uncertainties of the measurement, so no improvement is possible. If             , then 

RMSE is larger than the observational uncertainty, but the model may still be better than the 

observations since observational and model uncertainty intervals overlap. If the points are 

further away than 1 from the origin, then the model describes the concentrations worse than 

the measurements do, according to the assumption of an observational uncertainty of 25 % 

(Andersson S. and Omstedt G. 2012, p. 16).  

 

5.2 Delta tool 

The DELTA tool is software developed by FAIRMODE with the purpose of evaluating air 

pollution models according to the standards in the European Air Quality Directive. The 

DELTA tool uses paired data – modelled and measured data for the same place and time 

period – and does model diagnostics based on certain model performance criteria. The results 

are presented in different plots, tables and diagrams in order to get a good overview of the 

model performance (European Commission JRC 2013). 
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6 Data 

The data used to develop statistical post-processing methods in this study consist of three 

years of observations and model values from Hornsgatan in Stockholm. In order to evaluate 

how general the derived model is, data from Västra Esplanaden in Umeå and Gårda in 

Gothenburg are used for validation. The characteristics of the data from Hornsgatan are thus 

examined thoroughly in the report, while the data sets from Umeå and Gothenburg are only 

used for validation.  

 

6.1 Stockholm 

There are two observation sites at Hornsgatan in Stockholm, both under the care of the 

Environmental Department in Stockholm. The sites are used for validation of SIMAIR in 

streetscapes, and measure concentrations of different pollutants, including PM10. The site used 

in this thesis is situated on the north side of the street, about three meters above ground, and it 

measures hourly concentrations. The street is 24 meters wide and the buildings on each side 

are about 24 meters high. There is heavy traffic on this street, with a yearly daily average of 

28 000 vehicles of which about 3 % are heavy vehicles. The maximum velocity allowed is 50 

km/h and salt is used when lanes are slippery. The percentage of vehicles with studded tires 

was 73 % in 2007, 69 % in 2008 and 68 % in 2009 (Andersson and Omstedt 2012, p. 4). The 

time series used stretch from 2007 to 2009. A ban on studded tires was introduced after 2009, 

and does not affect the examined years. 

There is another observation site at Torkel Knutssonsgatan, situated on a roof 20 meters 

above ground. This site is 100 meters away from Hornsgatan and measures the urban 

background concentration of pollutants. This observation site also measures temperature, 

wind speed, wind direction and humidity.  

In Figure 4 the observation site at Hornsgatan is marked with a blue dot, and the station at 

Torkel Knutssongatan is marked with a red dot. 
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Figure 4. The observation site at Hornsgatan (streetscape) is marked in blue and the station at Torkel Knutssonsgatan 

(urban background) in red. Source: OpenStreetMap. 

 

There are meteorological parameters from MESAN available (gridded in 11x11 km squares). 

Table 2 shows available parameters from the observation site at Torkel Knutssonsgatan and 

Observatoriekullen, and from the two models MESAN and STRÅNG. There are more 

meteorological parameters than GI (global irradiance) available for Observatoriekullen, but 

these are not used in this study. 

 

Table 2. Meteorological parameters used as observations and from MESAN and STRÅNG. 

MESAN Temperature 

(K) 

Wind 

speed 

(m/s) 

Wind 

direction 

(degrees 

0-360) 

Precipitation 

(mm) 

Humidity 

(%) 

 

STRÅNG      GI 

(W/m
2
) 

Torkel 

Knutssonsgatan 

Temperature 

(K) 

Wind 

speed 

(m/s) 

Wind 

direction 

(degrees 

0-360) 

Precipitation 

(mm) 

Humidity 

(%) 

 

Observatoriekullen      GI 

(W/m
2
) 
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There is modelled traffic data for Hornsgatan, based on measurements from SLB (Stockholm 

och Uppsala Luftvårdsförbund); hourly data on number of vehicles, including number of light 

and heavy vehicles, are also available. These values are based on a traffic model for which 

input parameters consist of yearly daily mean traffic, proportion of heavy traffic, use of 

studded tires, allowed velocity and information regarding the type of street. The input 

parameters are based on high quality yearly measurements. An example of how these 

measurements are carried out is given in an SLB report by Burman and Johansson (2010). 

There is also modelled data of emission, both from exhaust gases and in total, based on the 

modelled traffic data.  

Modelled concentrations of PM10 are given from SIMAIR, and are divided into regional, 

urban, and local contributions. When summed up they can be compared to the measured 

concentration at Hornsgatan. The sum of the modelled regional and urban parts corresponds 

to the concentration in urban background, measured at Torkel Knutssonsgatan.  

 

6.1.1 Characteristics of evaluation data 

The time series is divided into an evaluation set and a validation set. The evaluation set is 

chosen as the data from 2007 and 2008, whilst the validation set consists of year 2009. Below 

are some characteristics of the evaluation set. No examination of the data from year 2009 is 

done, in order to not influence model choices. 

Figure 5 shows a plot of the modelled and measured concentration of PM10 at Hornsgatan in 

2007 and 2008.  

 

Figure 5. Concentration of PM10 at Hornsgatan in 2007 and 2008. Observations are seen in blue and the SIMAIR 

model is in red.  

 

The concentration of PM10 is much higher during winter and early spring than during the rest 

of the year. One explanation is resuspended road dust, mainly caused by the use of studded 

tires during this period. The concentration peaks around March when the streets are drier and 

snow free, but studded tires are still in use. When these peeks occur, the model severely 

underestimates the concentration, while the model follows the observations well during the 

summer and early autumn.  
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The modelled and observed concentration of PM10 in urban background at the roof of Torkel 

Knutssonsgatan is illustrated in Figure 6. 

 

Figure 6. The concentration of PM10 in urban background at Torkel Knutssonsgatan. Observations are seen in blue 

and the SIMAIR model is in red. 

 

There is a remarkable decrease in the concentration of PM10 20 meters above ground 

compared to the streetscapes at Hornsgatan. Except for some false peaks the SIMAIR model 

performs very well for Torkel Knutssonsgatan.  

Figure 7 shows the model error at Hornsgatan in 2007 and 2008, together with the model 

error mean value of 7.6 µg/m
3
. The variance of the model error is higher during winter and 

early spring and lower during summer. 

 

Figure 7. Model error (obs-mod) at Hornsgatan in 2007 and 2008, together with a red line indicating the model error 

mean value of 7.6 µg/m3.  

 

The normal probability plots for the model error and the error of the log-transformed model 

and observation data are provided in Figure 8. The model error does not belong to a normal 
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distribution. The transformed model error is closer to being normal distributed, but has a too 

heavy lower tail. This implies that a log-transform is not sufficient to obtain normal 

distributed errors, as required for e.g. linear regression analysis.  

      

 

Figure 8. Normal probability plots for the model error on top and for the transformation                    

below. 

The SIMAIR model underestimates the concentration of PM10 for high measured values at 

Hornsgatan. The period of March 2007 and 2008 is examined more thoroughly, in order to 

see which properties that might be connected to high measurements. In Figure 9 the modelled 

and measured concentration of PM10 are seen for March 2007 and 2008. The model severely 

underestimates, but captures the daily variations. Around time point 600 very high 

concentrations are measured, and this time period will be examined more thoroughly later on.  

 

 

Figure 9. Hourly concentration of PM10 at Hornsgatan in March 2007 and 2008. Observations are seen in blue and the 

SIMAIR model is in red. The black line separates data from 2007 from 2008. 
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Some of the covariates are plotted for the same time period, in order to find potential 

relationships between covariates and increases in concentration. The subplots are shown in 

Figures 10 and 11.  

 

Figure 10. Hourly time series from top to bottom of measured (a) temperature in K, (b) global irradiance in W/m2, (c) 

precipitation in mm and (d) relative humidity during March 2007 and 2008 at Hornsgatan. 

 

Figure 11. Hourly time series from top to bottom of (e) total number of vehicles, (f) total emission, (g) measured and 

(h) modelled concentration in µg/m3 of PM10 in urban background during March 2007 and 2008 at Hornsgatan.  
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The first subplot (a) shows the measured temperature during March 2007 and 2008. Around 

time point 600 there are large variations in the daily minimum and maximum temperature. 

The second plot (b) shows the measured global irradiance, and the same pattern is seen here 

around time point 600. This implies a few sunny and warm days in a row. In the third plot (c) 

the measured precipitation is provided and the fourth plot (d) shows relative humidity. 

Around time point 600 there is no rain for several days. Plot number five (e) shows total 

number of vehicles; there is a clear weekly pattern with less traffic during weekends, and the 

days around time point 600 are week days. Plot six (f) shows modelled total emission. The 

factors outlined in plots (a) to (f) result in dry streets and many vehicles with studded tires 

around time point 600. This allows for high particle concentrations due to road wear dust, 

seen in Figure 9.  

The last two plots are (g) measured and (h) modelled concentration of PM10 in urban 

background at Torkel Knutssonsgatan. Urban background concentration peaks occur around 

time point 600 as well.  

One possible way of obtaining a better indication of when the streets are dry is to apply a 

weighted moving average filter for the time series of the precipitation. The exponentially 

weighted moving average used here has a time period of 18 hours. In Figure 12 the 

precipitation for March in 2007 and 2008 is shown without (a) and with (b) an exponentially 

weighted moving average. 

 

 

Figure 12. The hourly precipitation in March 2007 and 2008 at Hornsgatan, (a) without and (b) with an exponentially 

weighted moving average filter.  

 

The smoothed rain time series can be used to construct an indicator for wet road surface. If 

the smoothed rain time series is lower than say         (threshold found by testing), the 

road surface is presumed to be dry, otherwise the street is considered wet. The result of this 

very simplified indicator is seen in Figure 13. 
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Figure 13. Concentration of PM10 at Hornsgatan in March 2007 and 2008. Observations are seen in blue and the 

SIMAIR model in red. A step function in green illustrates conditions for wet (100) and dry (0) streets based on the 

exponentially smoothed precipitation time series. The black line separates data from 2007 from 2008. 

 

The step function in green gives an indication of conditions that are suitable for very high 

concentrations. It can be noted that the longer a dry period lasts, the higher the concentration 

of PM10 becomes. However, it is important to remember that there are many factors that affect 

how fast the street dries after a rainfall. 

An approach to investigating patterns related to high peaks is to choose a threshold of say 100 

µg/m
3
. All observations above this threshold are collected in a new dataset and evaluated, 

together with model values for the same indices. With the threshold set to 100 µg/m
3
 the 

following results were obtained. In Table 3 the mean absolute error (MAE) and root mean 

square error (RMSE) are calculated for all data, for peaks and for non-peaks. 

 

Table 3. Mean Absolute Error and Root Mean Square Error for the model error at Hornsgatan in 2007 and 2008, for 

all data, for peaks and for non-peaks. 

MAE of all 

data 

MAE of obs. 

points > 100 

MAE of obs. 

points < 100 

RMSE of all 

data 

RMSE of 

obs. points > 

100 

RMSE of 

obs. points < 

100 

21.21 107.23 14.70 41.27 127.76 24.42 

 

There are 1192 points above the threshold and 15748 points below in the evaluation set. It is 

clear that the model needs to be improved when it comes to dealing with high concentrations. 

In Figure 14 histograms of the measured concentration above the observation threshold and 

the modelled values for the same indices of PM10 are shown. There is a clear bias between the 

model and the observations. 
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Figure 14. Histograms of modelled (red) and measured (blue) concentration of PM10 for time points in 2007 and 2008 

where measurements exceed 100 µg/m3. 

 

In order to improve the model performance on concentration peaks it is important to know 

where and why the peaks occur. The indices of the top 1192 points for the observations are 

compared to the top indices for the model. Only 41 % of the model indices agree with the 

observation indices. This implies that more than half of the model maxima do not occur at the 

same time points as measurement maxima.   

In Figure 15 the number of peaks that occur during each hour of the day is plotted. The 

majority of the peaks occur during day time, probably primarily due to traffic intensity.  

 

 

Figure 15. The number of times per hour of the day that measurements of PM10 exceed 100 µg/m3 at Hornsgatan in 

2007 and 2008. 

Due to this tendency each day is divided into day (07.00 through 20.00 UTC) and night 

(21.00 through 06.00 UTC), where UTC stands for Coordinated Universal Time. The day/ 

night indicators are used as input to the SVR, since indicators for each hour of the day would 

increase the risk of overfitting.    
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In Table 4 the number of observed peaks above 100 µg/m
3
 during each month of the year in 

2007 and 2008 are listed.  

 

Table 4. Number of measurements above 100 µg/m3 in each month of the year of 2007 and 2008 at Hornsgatan. 

Month Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

Nbr of 

peaks 

117 206 424 299 18 1 0 7 0 7 44 69 

 

Based on the pattern in this table each year is divided into three seasons – winter (November, 

December and January), spring (February, March, April) and summer (May through October).  

The correlation between model error and different covariates provides a way of testing if a 

covariate contains useful information that can be used to correct the model. It is interesting to 

look at both linear correlation (Pearson’s r) and if the relation can be described as a monotone 

function (Spearman’s rank). The linear correlation between model error and each covariate in 

the test data from 2007 and 2008 are seen in Tables 5, 6 and 7. The data is divided into the 

seasons mentioned above. Where no value is given there is no significant correlation 

according to a significance test using the Student’s t-distribution in Matlab.  

 

Table 5. Significant linear correlation (Pearson’s r) between the model error and humidity, precipitation and GI, in 

2007 and 2008 at Hornsgatan. 

 Humidity 

obs. 

Humidity 

MESAN 

Precipitation 

obs. (exp. 

filtered) 

Precipitation 

MESAN (exp. 

filtered) 

GI 

obs. 

GI 

STRÅNG 

2007 -

2008 

winter 

period: 

-0.39 -0.41 - - 0.10 0.12 

2007 -

2008 

spring 

period: 

-0.18 -0.20 -0.06 -0.09 0.14 0.13 

2007 -

2008 

summer 

period: 

0.13 0.13 - 0.04 -0.07 - 

 



37 

 

Table 6. Significant linear correlation (Pearson’s r) between the model error and concentration in urban background, 

number of vehicles (in total, heavy and light) and total emission, in 2007 and 2008 at Hornsgatan. 

 PM10 urban 

background 

obs. 

PM10 urban 

background 

mod. 

Nbr of 

vehicles 

Nbr of 

heavy 

vehicles 

Nbr of 

light 

vehicles 

Total 

emission 

2007 -

2008 

winter 

period: 

0.33 -0.34 0.08 0.11 0.07 -0.22 

2007 -

2008 

spring 

period: 

0.54 -0.16 0.21 0.23 0.20 0.19 

2007 -

2008 

summer 

period: 

0.31 -0.24 - 0.14 - -0.20 

 

 

Table 7. Significant linear correlation (Pearson’s r) between the model error and temperature, u- and v-component of 

wind and wind direction, in 2007 and 2008 at Hornsgatan. 

 Temp. 

obs. 

Temp. 

MESAN 

u-

wind 

obs.  

u-wind 

MESAN 

v-

wind 

obs. 

v-wind 

MESAN 

Wind 

dir. 

Obs. 

Wind dir. 

MESAN 

2007 -

2008 

winter 

period: 

0.10 0.10 - - 0.09 0.09 - - 

2007 -

2008 

spring 

period: 

0.07 0.09 - - 0.16 0.16 0.15 0.13 

2007 -

2008 

summer 

period: 

-0.14 -0.14 -0.06 -0.11 0.09 0.08 0.08 0.05 

 

Several covariates display large differences in their correlation with model errors for the 

different seasons, some even change signs. It can be noted that the correlation between model 

error and meteorological parameters does not differ a lot between measurements and MESAN 

data. 



38 

 

 

The corresponding table for correlation using Spearman’s rank can be seen in Appendix B. 

For example the exponentially smoothed precipitation shows a higher correlation with the 

model error using Spearman’s rank instead of Pearson’s r.  

These tables of correlation function as guidance when deciding which parameters are to be 

used in the Support Vector Regression.  

 

6.2 Validation data 

Data from Umeå and Gothenburg during 2007 to 2009 are used for validation, in order to test 

the generality of the statistical model. The characteristics of the data are therefore not 

examined, and the available data are only briefly discussed.   

 

6.2.1 Umeå 

In Umeå there is an observation site at the east side of Västra Esplanaden, a part of the E4 

highway that goes through central parts of Umeå. Approximately 24 000 vehicles pass here 

every day, and 8 % are heavy vehicles. This streetscape site, under care of the Transport 

Administration, measures hourly concentrations of PM10 and NO2. The street is 28 meters 

wide and there are 15 meters high buildings on both sides. The speed limit is 50 km/h. Sand is 

used when lanes are slippery. During winter 88 % of the vehicles used studded tires in 2007, 

83 % in 2008 and 94 % in 2009.  

There is an observation site on the roof of the library in central Umeå that measures hourly 

concentrations of pollutants in urban background. This station is about 400 meters away from 

the station at Västra Esplanaden and measurements are carried out by Umeå municipality 

(Andersson S. and Omstedt G. 2012, p. 5-7). 

In Figure 16 the observation site at Västra Esplanaden is marked with a blue dot, and the 

station at the library is marked with a red dot. 
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Figure 16. The observation site at Västra Esplanaden (streetscape) is marked with a blue dot and the station at the 

library (urban background) is marked in red. Source: OpenStreetMap. 

 

6.2.2 Gothenburg 

There is an observation site at the E6 highway at Gårda in Gothenburg. There are three lanes 

in each direction and the yearly daily number of vehicles is around 90 000, of which about 7 

% is heavy traffic. On the west side of the highway there is a rock wall and some houses 

which are about 7 meters high. On the other side there are 10 meters high buildings, and the 

street is 64 meters wide in total. The observation site is situated on the west side and measures 

hourly pollutant concentrations. The speed limit is 70 km/h and salt is used in winter 

conditions. During winter 74 % of the vehicles used studded tires in 2007, 71 % in 2008 and 

68 % in 2009.   

There is another observation site at the roof of the Femman building in central Gothenburg. 

This station measures concentrations of PM10 and NO2 in urban background on an hourly 

basis. Both observation sites are handled by the Environmental Department at Gothenburg 

municipality (Andersson S. and Omstedt G. 2012, p. 2-3).  

 

In Figure 17 the observation site at Gårda is marked with a blue dot, and the Femman building 

is marked with a red dot. 
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Figure 17. The observation site at Gårda (streetscape) is marked in blue and the station at the Femman building 

(urban background) is marked with a red dot. Source: OpenStreetMap. 
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7 Results 

As described in Section 6 the data used to develop a statistical post-processing model are 

from Hornsgatan in Stockholm. To test generality, the resulting model is validated using data 

from Västra Esplanaden in Umeå and Gårda in Gothenburg.  

The results from the Support Vector Regression for the three places are presented, and for 

Hornsgatan the same method is also tested with meteorological observations as input. A 

comparison of relevant meteorological parameters measured in Stockholm, with data from 

MESAN and STRÅNG is also done.  

The resulting C and γ found by validation for each of the three regressions described in 

Section 4.5, for all sites, are given in Appendix C.   

 

7.1 Stockholm 

7.1.1 Support Vector Regression using MESAN and STRÅNG parameters 

The explanatory variables used in the Support Vector Regression for Hornsgatan data are 

given in Table 8. All meteorological parameters are from MESAN, except for global 

irradiance which has been taken from STRÅNG. In addition to these parameters there are also 

indicators for day or night and for winter, spring or summer.   

 

Table 8. The explanatory variables used in the Support Vector Regression of data from Hornsgatan. 

SIMAIR 

model 

SIMAIR 

urban 

background 

Nbr of 

heavy 

vehicles 

Precipitation 

(exp. 

filtered) 

Relative 

humidity 

Maximum 

temp. 

difference 

each day 

Acc. GI 

each day 

Wind 

direction 

 

These variables are chosen based on discussions with the SIMAIR researchers, by studying 

correlation tables and by testing different combinations of covariates. 

Table 9 gives an overview of the results of the Support Vector Regression compared to the 

SIMAIR model for Hornsgatan in 2009.  
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Table 9. A summary of the results of the Support Vector Regression compared to the SIMAIR model at Hornsgatan 

in 2009. 

  Observations SIMAIR model SVR 

Yearly mean 

(µg/m
3
) 

37.2 28.2 34.1 

90-percentile daily 

mean (µg/m
3
) 

81.9 59.3 67.0 

Days > 50 µg/m
3
 67 46 54 

RPE %   24 8.3 

RDE %   22 7.7 

r daily mean   0.73 0.80 

r hourly   0.63 0.68 

RMSE daily mean 

(µg/m
3
) 

  14.2 12.4 

RSME hourly 

(µg/m
3
) 

  36.0 33.1 

 

There are improvements in all comparisons.    

In Figures 18 and 19 the observations at Hornsgatan are plotted together with the SIMAIR 

values and the Support Vector Regression, on hourly and daily basis.  

 

 

Figure 18. Measurements of PM10 at Hornsgatan in 2009 are in blue, SIMAIR model values in red and SVR values in 

green. 
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Figure 19. Daily average of measurements of PM10 at Hornsgatan in 2009 in blue, of SIMAIR model values in red and 

of SVR values in green. 

 

Some improvements are seen, however the highest peaks are still difficult to correct.  

Figure 20 shows a log-log plot of the percentiles for the models and the observations. The red 

line compares the percentiles of SIMAIR and measurements, whilst the green line compares 

the percentiles of the SVR and measurements. The black line shows a perfect match.  

 

 

Figure 20. A log-log plot of the percentiles for the models and the observations at Hornsgatan in 2009. The red line 

compares the percentiles of SIMAIR and measurements and the green line compares the percentiles of the SVR and 

measurements. The black line shows a perfect match between model and measurement percentiles. 

 

For almost all percentiles the SVR-corrected SIMAIR outperforms the SIMAIR model. 
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7.1.2 Support Vector Regression using meteorological observations 

To see if any of the meteorological observations at Torkel Knutssonsgatan can better capture 

the changes in concentration of PM10 than the meteorological parameters from MESAN, the 

MESAN data is replaced by observations in the Support Vector Regression.  

After a lot of testing the only parameter that somewhat improves the SVR is the observed 

wind direction. The reason why the observed wind direction gives slightly more information 

is probably that the terrain affects wind a lot. The wind effect on PM10 concentration is 

captured better using measurements nearby than a more smoothed gridded data from 

MESAN. The fact that no larger deviations are found suggests that the method is insensitive 

to the use of MESAN or observational data. 

The table of results using the same method as described in Section 7.1.1 with the difference 

that MESAN wind direction is replaced by observed wind direction is seen in Appendix D. 

The results are very close to the results presented in Section 7.1.1, but with a minor decrease 

in both RMSE and (unfortunately) yearly mean value.  

 

7.1.2.1 Comparison between meteorological observations and MESAN/ STRÅNG 

As there is a slight improvement in the Support Vector Regression when using wind direction 

observations from Torkel Knutssonsgatan instead of data from MESAN, it is interesting to 

examine the wind direction residual (where the residual is the difference between measured 

wind direction and MESAN data). The histogram of the wind direction residual is plotted in 

Figure 21, and in Figure 22 a normal probability plot of the residual is given. 

 

 

Figure 21. A histogram of the wind direction residual at Hornsgatan in 2007 and 2008. 
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Figure 22. A normal probability plot of the wind direction residual at Hornsgatan in 2007 and 2008. A good fit to a 

normal distribution would lie close to the red line.  

 

The residual has a mean of 13.9 degrees. The residual is not normal distributed, which is seen 

in the normal probability plot. The residual has heavier tails and it is limited to the interval [-

180, 180]. 

  

7.2 Validation results 

The statistical post-processing model is validated using data from Västra Esplanaden in Umeå 

and Gårda in Gothenburg. The SVR model uses the same explanatory variables and 

methodology as for Hornsgatan, with the addition of wind speed at Gårda. Training and 

setting of parameters C and γ is done using data from the specific location. The results are 

promising for both sites, especially in correcting yearly mean value. This implies that the 

SVR model generalizes well.  

 

7.2.1 Umeå 

7.2.1.1 Support Vector Regression using MESAN and STRÅNG parameters 

Table 10 shows a summary of the results of the Support Vector Regression compared to the 

SIMAIR model for Västra Esplanaden in 2009.  
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Table 10. A summary of the results of the Support Vector Regression compared to the SIMAIR model for Västra 

Esplanaden in 2009. 

  Observations SIMAIR model SVR 

Yearly mean (µg/m
3
) 22.2 28.7 20.9 

90-percentile daily 

mean (µg/m
3
) 

45.8 55.4 36.4 

Days > 50 µg/m
3
 33 45 21 

RPE %   29 6.0 

RDE %   16 3.4 

r daily mean   0.45 0.54 

r hourly   0.36 0.40 

RMSE daily mean 

(µg/m
3
) 

  15.8 11.2 

RSME hourly 

(µg/m
3
) 

  35.5 32.4 

 

In Figures 23 and 24 the measurements of PM10, on hourly basis and as daily mean, are 

plotted together with SIMAIR and SVR values. 

 

 

Figure 23. Measurements of PM10 at Västra Esplanaden in 2009 in blue, SIMAIR model values in red and SVR values 

are plotted in green. 
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Figure 24. Daily average of measurements of PM10 at Västra Esplanaden in 2009 in blue, SIMAIR model values in red 

and SVR values are in green. 

 

Figure 25 shows a log-log plot of the percentiles for the models and the observations.  

 

Figure 25. A log-log plot of the percentiles for the models and the observations at Västra Esplanaden in 2009. The red 

line compares the percentiles of SIMAIR and measurements and the green line compares the percentiles of the SVR 

and measurements. The black line shows a perfect match between model and measurement percentiles. 

 

It can be noted that for almost all percentiles the regression performs better than the SIMAIR 

model. For some of the higher percentiles the SVR model underestimates while the SIMAIR 

model overestimates. The highest peaks are underestimated both by the SVR modified model 

and the raw SIMAIR model. 
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7.2.2 Gothenburg 

7.2.2.1 Support Vector Regression using MESAN and STRÅNG parameters 

The same explanatory variables and methodology as for Hornsgatan are used for Gårda, with 

the addition of wind speed. The reason for including wind speed is that the result improves a 

bit. Probably the wind speed contributes here but not at Hornsgatan or at Västra Esplanaden 

because the streetscape is much more open at Gårda and because wind speeds are generally 

higher in Gothenburg than in Stockholm and Umeå.  

In Table 11 the results for Gårda in 2009 are summarized.  

 

Table 11. A summary of the results of the Support Vector Regression compared to the SIMAIR model at Gårda in 

2009. 

  Observations SIMAIR model SVR 

Yearly mean (µg/m
3
) 23.7 37.0 24.8 

90-percentile daily 

mean (µg/m
3
) 

39.3 70.3 39.3 

Days > 50 µg/m
3
 15 68 15 

RPE %  56 5.6 

RDE %   33 3.0 

r daily mean   0.60 0.76 

r hourly   0.43 0.57 

RMSE daily mean 

(µg/m
3
) 

  15.0 6.49 

RSME hourly 

(µg/m
3
) 

  29.5 18.3 

 

In Figures 26 and 27 the measurements of PM10 are plotted, together with SIMAIR and SVR 

values, on hourly basis and as daily mean. There are missing data in October 2009. 
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Figure 26. Measurements of PM10 at Gårda in 2009 in blue, SIMAIR model values in red and SVR values are in 

green. 

 

Figure 27. Daily average of measurements of PM10 at Gårda in 2009 in blue, SIMAIR model values in red and SVR 

values are in green. 

 

Especially the daily mean concentration improve significantly, as the overestimation in the 

raw SIMAIR model is corrected by the SVR-modified model.  

A log-log plot of the percentiles for the models and the observations is provided in Figure 28.  
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Figure 28. A log-log plot of the percentiles for the models and the observations at Gårda in 2009. The red line 

compares the percentiles of SIMAIR and measurements and the green line compares the percentiles of the SVR and 

measurements. The black line shows a perfect match between model and measurement percentiles. 

 

The SVR percentiles correspond better to measurements for all but the highest few 

percentiles. The 90-percentile of the SVR-modified model is a perfect fit to measurements, 

which can also be seen in Table 11.  

 

7.3 Target diagram 

In Figure 29 the Target diagram, produced by Delta Tool, is given for the three sites in 2009 

with and without statistical post-processing. As the points are on the left hand side the errors 

are dominated by low correlation as opposed to large standard deviation errors. For all sites 

both bias (the deviation between modelled and measured yearly mean values) and centred 

RMSE decrease with SVR. For Gårda and Hornsgatan the Target decrease from >1 to <1, 

which indicates that the statistically post-processed model values might describe the 

concentration of PM10 better than the measurements.   
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Figure 29. A Target plot showing the performance of the SIMAIR model for Hornsgatan with blue diamonds, Gårda 

with red diamonds and Västra Esplanaden with orange diamonds. The squares visualize how the SVR-modified 

model influences the performance for the three sites. For Hornsgatan and Gårda the Target is decreased to be <1 with 

SVR. Target is also decreased for Västra Esplanaden but is still >1. 
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8 Discussion and conclusions 

Thanks to research and international cooperation, the area of combining monitoring data and 

air quality models is developing fast. Statistical methods can contribute substantially to air 

quality modelling by integrating information from measurements.  

At SMHI Support Vector Regression has been successfully implemented in some products 

and this thesis shows promising results within air quality applications. There are several 

advantages with this method. It is simple to implement, with only a few crucial parameters to 

tune. SVR can handle non-linarites well and does not suffer very much from overfitting. The 

method is computationally efficient since only part of the input data (the support vectors) are 

used to find the optimal hyperplane. However, it is important to remember that similar 

behaviour of the training data and test data is needed in for the SVR to perform well. For 

example the ban on studded tires at Hornsgatan in 2010 makes it unreasonable to use the SVR 

on data from 2010 based on previous years as training data. Another disadvantage of the SVR 

is the difficulty in interpreting how the input parameters affect the output, as the output (in 

this case) consists of a linear combination of Radial Basis Functions.  

Other statistical methods, such as Kalman based methods, may perform as well and provide 

an easier physical interpretation, but a lot more effort is needed to choose appropriate 

parameters.  

The explanatory parameters for the SVR need to be selected carefully to achieve a good 

performance. As in the case with other regressions the covariates should not be (too) 

correlated with each other. The covariates in this thesis were chosen by studying correlation 

tables, talking to the SIMAIR researchers Stefan Andersson and Gunnar Omstedt and by 

testing different combinations of inputs.  

The hold out-validation was implemented since it was computationally less expensive than a 

k-fold cross validation. The data set is quite large so by randomly picking 25% of the 

evaluation data as validation, hopefully not too much information is lost. However, a k-fold 

cross validation may be more appropriate for smaller data sets.  

The best parameters   and γ in the grid search are found based on smallest MAE of the 

validation set. Using the RMSE to decide the parameters instead, led to basically the same 

results for Stockholm and Gothenburg, but for Umeå   increased a lot and the final result was 

almost as bad as the original model. Probably this was due to the fact that RMSE penalizes 

large deviations more than MAE does, leading to overfitting. A higher   aims at finding a 

hyperplane that fits all training samples well.  

The choice of implementing three regressions, depending on the value of the SIMAIR model, 

was a way of easing the fitting of hyperplanes. At Hornsgatan the SIMAIR model severely 

underestimated the peaks, so by separating peak values, medium and low values better 

regression performance was hoped for. In a comparison with just one regression three 

regressions gave a slightly lower RMSE for Hornsgatan data. Future studies could examine if 

there are better ways to divide the data and what number of regressions would give superior 

results.  

The reason the test data were set to be a whole year, and not for example a randomly picked 

part of the three years of the available data, was that the SIMAIR model is run one year at a 

time in production mode. This structure will facilitate the integration of the program with the 

regular simulation. An interesting question is if a longer training period will improve results.  

The SVR performed well on all three sites, with improvements in basically all statistical 

indicators. The yearly mean value is an indicator that improved greatly, which resulted in 

large decreases in RPE and RDE. It was a bit unexpected that out of the three sites there was 
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least improvement (for certain indicators) on the Hornsgatan data, even though that data set 

was used to construct the statistical model. One possible explanation is that the emission 

model for road dust used in SIMAIR was adjusted to fit Hornsgatan data, and was then 

generalized to other places. Another reason could be that the concentration peaks at 

Hornsgatan were severely underestimated, but otherwise the SIMAIR model fitted the 

measurements well. The peaks were problematic to correct, maybe because they were difficult 

to predict due to lack of important data. Activities such as salting and gritting in winter 

conditions or cleaning of the streets have great impact on particle concentrations but there are 

no available data regarding these activities.  

The greatest improvements were seen in the SVR for Gårda data, where the SIMAIR model 

overestimated all percentiles. The structure of the streetscapes at Gårda is complicated with 

open surroundings on one side of the street. The air quality modelling researchers tried to use 

both the OSPM and OpenRoad dispersion models and decided on OSPM, though neither gave 

satisfying results. Gårda is heavily trafficked; more than three times more vehicles pass there 

compared to Hornsgatan and Västra Esplanaden on an average day. The percentage of 

studded tires was not estimated with the same certainty as at Hornsgatan and Västra 

Esplanaden, which also significantly affected the quality of the SIMAIR simulation. To 

summarize, the SVR model greatly improved results at a site difficult for SIMAIR to model. 

The SVR for Västra Esplanaden data underestimated the concentration somewhat, compared 

to the raw SIMAIR model which overestimated. One probable reason for the underestimation 

was the increase in the use of studded tires, from 88 % and 83 % in 2007 and 2008 to 94 % in 

2009. This information was not explicitly included in the SVR; however the SIMAIR model 

was affected by the percentage and was used as input in the SVR. When the conditions 

change without chance to learn from the new situation the SVR cannot perform optimally. 

Several years of data with different use of studded tires might help if the percentage is added 

explicitly, but those kinds of data were not available for this thesis.  

It is not easy to evaluate the uncertainties in the SIMAIR model, but it is important to use the 

best data available in order to minimize the uncertainty. For example the fact that SIMAIR 

uses MESAN data every third hour and interpolates it to hourly values is not optimal. This 

procedure is a remainder of when the quality of the three hour values was better than the 

quality of the one hour values, before 2006. Now there are high quality hourly values from 

MESAN available.  

When studying the sensitivity of using MESAN data compared to measurements at Torkel 

Knutssonsgatan in the SVR for Hornsgatan data, the conclusion was that the method was 

insensitive to if the meteorological data were gridded or came from measurements. A minor 

improvement was seen when using measured wind direction. The MESAN data were 

generally good enough at capturing important weather conditions. One needs to keep in mind 

that there are uncertainties in meteorological observations as well, primarily due to local 

effects. Wind conditions, for example, can differ a lot between a street surrounded by high 

buildings and a roof site a few blocks away.  

There are uncertainties in the concentration measurements, though the three sites in this thesis 

have equipment for hourly high quality measurements, located to function well as validation 

of SIMAIR.  

The emission databases are updated every year, but of course there are uncertainties here too. 

Some local emissions in SIMAIR are estimated using traffic data, and it is difficult to 

examine uncertainty in traffic data, since often there are no measurements during entire years. 

The traffic is modelled based on several input parameters, for example yearly daily mean 

traffic, proportion of heavy traffic and use of studded tires, so high quality traffic 

measurements improve the traffic model a lot. SLB has very detailed traffic data for 
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Hornsgatan, so using these time series instead of a general model with some specific inputs 

will probably give better results. However it is easier to validate the performance of SIMAIR 

when using a consistent methodology.  

A future development is to examine if it is possible to use SVR on sites with few 

measurements by training on adjacent places. This application is very interesting since air 

quality models aim at partially complementing measurements.  

Parts of this thesis will be submitted to a peer-reviewed scientific journal. The article is 

written together with the researchers Stefan Andersson and Gunnar Omstedt.  

In the coming year the method will be tested for current simulations and hopefully the SVR 

will then be used on a regular basis.  

The results of this Master’s Thesis have fulfilled the aims well. A summary of different post-

processing methods were discussed. A method using SVR was implemented and analysed for 

Hornsgatan in Stockholm and validated using data from Västra Esplanaden in Umeå and 

Gårda in Gothenburg. The SVR performed well for all three sites. The sensitivity in using 

measured versus gridded meteorological data as input in the SVR was examined and the 

uncertainties in other components of the air pollution model were discussed. 

In conclusion, the results look promising when using SVR as a statistical post-processing 

method in air pollution modelling. It is important to remember that when conditions change 

without chance to learn from the new situation the SVR will not perform optimally. 
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Appendix A 

Some optimization theory is given in this appendix. Important definitions and propositions are 

introduced as a help to understand the theory behind Support Vector Machines, including how 

to solve a convex optimization problem using duality.  

Optimization theory 

The definition of a convex function is seen in Definition 1 (Christianini and Shawe-Taylor 

2012, p. 81). 

Definition 1. 

                                                                    

                              

If there is a strict inequality in the expression above,   is called strictly convex.  

A convex set is defined in Definition 2, and can be interpreted geometrically as for any two 

points       belonging to the set  , the line segment between them also belongs to the set 

(Böiers 2010, p. 119).  

Definition 2. 

                                       

                                       

 

When   is a convex function defined on a convex set  , the optimization problem 

            is called a convex programming problem. 

In Figure 30 (Osherovich 2010) a convex function is exemplified. The region above the graph 

of a convex function is always a convex set, so a line between any two points in the region 

always belongs to the set.      

 

 

Figure 30. An example of a convex function     . The green region above the graph is a convex set. 

 

http://commons.wikimedia.org/w/index.php?title=User:Eli_Osherovich&action=edit&redlink=1
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Optimization with constraints 

A general constrained optimization problem, in its primal form, is stated in Definition 3 

(Christianini and Shawe-Taylor 2012, p. 80). 

Definition 3. 

                                                                     

                    

                             

                  

                                                                                

                                                                                  

                           

The inequality constraints can be transformed into equality constraints by adding slack 

variables   , so                              (Böiers 2010, p. 159).  

If     
     for the solution   , then the inequality constraint is called active and the slack 

variable    is equal to zero (Christianini and Shawe-Taylor 2012, p. 80).   

According to Proposition 7 any local optimum that solves the problem           
          , is a global optimal solution (Böiers 2010, p. 224). 

Proposition 7. 

                                                           

              

                            

                                   

                                                                             

                                                                          

The following proposition provides a way of dealing with constraints on the optimization 

problem (Böiers 2010, p. 241).  

Proposition 8. 

                                                                 

                                                           

      

                  

                 

                                  

        
                  

       

             ̅                                                   
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    ̅  ∑       ̅ 

 

   

 ∑       ̅ 

 

   

     

                                        ̅                                        

                

The proof of this statement uses Farkas’ theorem. The parameters    and    are called 

Lagrange multipliers. The Lagrange function, also called primal Lagrangian, is defined in 

Definition 4. 

Definition 4.  

                                                                    

                                                              

      

                  

                 

                                         

               ∑       

 

   

 ∑       

 

   

           

                                                                

Proposition 8 can also be formulated as: 

                           ̅                                                 

                           

     ̅           ̅         ̅   

The results are extended in order to deal with general constraints in the Karush-Kuhn-Tucker 

(KKT) theorem, here called Proposition 9 (Böiers 2010, p. 250-252). 

Proposition 9. 

                                                                 

                                                               

      

                  

                 

             ̅                                                  ̅                             

                                                                                        

                   ̅                              ̅                        
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    {
∑   

 

   

    ̅  ∑       ̅   

 

   

              

 {
              
               

 

                                             

     ̅                       

                                          

      ̅                      

It can be noted that the constraint qualifications only need to be fulfilled for constraints active 

at  ̅. The conditions implied by  ̅ are called feasibility conditions, while constraints (1) and 

sometimes (2) are called KKT conditions and constraints (3) are called complementary 

slackness conditions and imply that      for all non-active inequality constraints     ̅ .  

The points  ̅ that satisfy feasibility conditions and the constraints (1)-(3) are called KKT 

points. If there are any points that do not fulfil the constraint qualifications these are called 

CQ points. If a global minimum is known to exist (for example due to compactness) it is 

among the KKT or CQ points. So by checking the function values of all these points the 

minimum is found. Being a KKT point is a necessary condition for a local minimum, but not 

a sufficient condition (Böiers 2010, p. 252). 

Sufficient conditions for a minimum are stated in Proposition 10 (Böiers 2010, p. 264), where 

          ̅    .  

Proposition 10. 

             ̅                                                                    

                                                                              ̅   

                                   

                               ̅        

This result can be further strengthened in order to apply to global minima (Böiers 2010, p. 

265).   

Proposition 11. 

                                                                                           

                                                     

                                ̅   

When the conditions above are fulfilled, finding a KKT point is equivalent to finding a global 

minimum.  

 

Duality 

An introduction to the concept of duality is presented here. First a saddle point is defined in 

Definition 5 (Böiers 2010, p. 294).  

Definition 5. 

        ( ̅  ̅  ̅)                                             



65 

 

                                    

   ̅       ( ̅  ̅  ̅)   (   ̅  ̅)                     

In Proposition 12 the necessary conditions for a saddle point are stated (Böiers 2010, p. 294). 

Proposition 12. 

          ( ̅  ̅  ̅)                                                 

                                     

   ( ̅  ̅  ̅)     (   ̅  ̅)      

     ̅           ̅     

        ̅                

A saddle point is therefore a feasible point to the optimization problem stated in Definition 3 

and  ( ̅  ̅  ̅)     ̅ . The following interesting conclusions are presented in Proposition 13 

(Böiers 2010, p. 296). 

Proposition 13. 

            ( ̅  ̅  ̅)                               

     ̅                                  

     ̅  ̅  ̅                               

The parameters   ̅  ̅  that occur in the definition of a saddle point are exactly the same as the 

Lagrange multipliers in Proposition 8.  

The following proposition states sufficient conditions for a saddle point.  

Proposition 14. 

            

                       

                                                   

                                             

   ̅  ̅  ̅                                 ̅                                      

     ( ̅  ̅  ̅)                                               

Now the Lagrangian dual problem to the primal optimization problem stated in Definition 3 is 

defined below (Böiers 2010, p. 297). Note that the objective function        contains the 

equality and inequality constraints from the primal problem.  

Definition 6. 

                                                              

                
   

   
      ∑       

 

   

 ∑       
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The function     is defined as the largest real number that is smaller than or equal to every 

number in the set. The relation                      holds according to Definition 3 

and Definition 6. So if there are any feasible points the relation 

   
                

   
   

       

holds, and the difference between the two sides are called the duality gap. If the duality gap is 

equal to zero there is strong duality. If there are  ̅ and   ̅  ̅ , all feasible for both the primal 

and the dual problem, then    ̅   ( ̅  ̅)   ( ̅  ̅  ̅), as formulated in Proposition 15.  

Proposition 15. 

          ( ̅  ̅  ̅)                                             ̅             

                           

   ̅   ( ̅  ̅)   

A strong duality that assures that the primal and the dual problem have the same value is 

stated in Proposition 16 (Christianini and Shawe-Taylor 2012, p. 86).  

Proposition 16. 

                                                     

                   

                             

                 

                                              
              

       

                         

In conclusion, when having a convex optimization problem strong duality assures that solving 

the dual problem is equivalent to solving the primal problem. This is very useful in cases 

when the dual problem is more easily solved.   
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Appendix B 

In Tables B1, B2 and B3 the correlations between model error and different covariates from 

Hornsgatan data in 2007 and 2008, using Spearman’s rank, are provided. For example the 

exponentially filtered precipitation during winter has a lot higher correlation to the model 

error using Spearman’s rank compared to the correlation computed by Pearson’s r.  

 

Table B1. The significant correlations between model error and humidity, exponentially filtered precipitation and GI 

from Hornsgatan in 2007 and 2008, using Spearman’s rank. 

 Humidity 

obs. 

Humidity 

MESAN 

Precipitation 

obs. (exp. 

filtered) 

Precip-

itation 

MESAN 

(exp. 

filtered) 

GI obs. GI 

STRÅNG 

2007 -

2008 

winter 

period: 

-0.31 -0.37 0.34 0.28 0.03 - 

2007 -

2008 

spring 

period: 

-0.22 -0.23 0.05 0.04 0.12 0.09 

2007 -

2008 

summer 

period: 

0.09 0.09 0.13 0.21 - - 
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Table B2. The significant correlations between model error and concentration in urban background, total number of 

vehicles, heavy and light vehicles and total emission from Hornsgatan in 2007 and 2008, using Spearman’s rank. 

 PM10 

urban 

background 

obs. 

PM10 

urban 

background 

mod. 

Nbr of 

vehicles 

Nbr of 

heavy 

vehicles 

Nbr of 

light 

vehicles 

Total 

emission 

2007 -

2008 

winter 

period: 

0.28 -0.32 0.05 - 0.05 -0.15 

2007 -

2008 

spring 

period: 

0.51 -0.08 0.16 0.17 0.16 0.18 

2007 -

2008 

summer 

period: 

0.36 -0.07 0.04 0.14 - -0.10 

 

Table B3. The significant correlations between model error and temperature, u- and v-components of wind and wind 

direction from Hornsgatan in 2007 and 2008, using Spearman’s rank. 

 Temp. 

obs. 

Temp. 

MESAN 

u-

wind 

obs.  

u-wind 

MESAN 

v-

wind 

obs. 

v-wind 

MESAN 

Wind 

dir. 

obs. 

Wind dir. 

MESAN 

2007 -

2008 

winter 

period: 

0.12 0.13 -0.10 -0.08 0.06 0.05 -0.04 -0.04 

2007 -

2008 

spring 

period: 

0.13 0.13 -0.03 -0.07 0.16 0.16 0.13 0.10 

2007 -

2008 

summer 

period: 

-0.09 -0.10 -0.13 -0.18 0.12 0.10 0.08 0.03 
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Appendix C 

The resulting C and γ found by validation for each of the three regressions, for all sites are 

seen in Table C1. Each pair of parameters is used to find the optimal hyperplane, which is 

later used for prediction. It can be noted that the parameters do not differ that much 

(remember that they are found using a log-scale) between the sites, which may indicate that 

the method generalizes well. 

 

Table C1. The resulting C and γ found by validation for each of the three regressions. The first column shows results 

for Hornsgatan data with MESAN data. The second column shows results for Hornsgatan with measurements of wind 

direction instead of MESAN data. The third column presents results for Västra Esplanaden and the forth column for 

Gårda. Data are from 2007 and 2008. 

 Hornsgatan Hornsgatan (met. 

obs.) 

V. Esplanaden Gårda 

C γ C Γ C γ C γ 

Low 

interval 

(0-25 

µg/m
3
) 

128 2 128 2 32 2 32 2 

Medium 

(25-50 

µg/m
3
) 

128 2 128 2 32 2 32 2 

High 

(>50 

µg/m
3
) 

128 1/8 128 ½ 128 1/2 128 1/2 
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Appendix D 

Results from the Support Vector Regression, using observations of wind direction instead of 

MESAN data, are gathered in Table D1. The improvement is a slightly lower RMSE 

compared to using MESAN wind direction.  

 

Table D1. A summary of the results of the SVR compared to the SIMAIR model at Hornsgatan in 2009, with observed 

wind direction as input parameter instead of MESAN wind direction. 

  Observations SIMAIR model SVR 

Yearly mean (µg/m
3
) 37.2 28.2 33.8 

90-percentile daily 

mean (µg/m
3
) 

81.9 59.3 66.5 

Days > 50 µg/m
3
 67 46 54 

RPE %   24 9.1 

RDE %   22 8.4 

r daily mean   0.73 0.79 

r hourly   0.63 0.68 

RMSE daily mean 

(µg/m
3
) 

  14.2 12.4 

RSME hourly 

(µg/m
3
) 

  36.0 32.9 
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