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Abstract

In this thesis we investigate the properties of a specific two Higgs Dou-
blet Model (2HDM) that can be used to explain the data on B → Dτν and
B → D∗τν, which deviate from the Standard Model (SM) by 3.4σ. The
2HDM is the simplest extension of the Standard model scalar sector. Phe-
nomenologically it is very rich with 4 new Higgs bosons: 2 neutral and an
electromagnetic charged pair. The 2HDMs exhibits tree-level flavor changing
neutral currents (FCNC) which are constrained by experiments and therefore
need to be suppressed in the model. These FCNC depends on the masses of
the Higgs bosons and the couplings in the Yukawa sector. We investigate the
possible mass spectrum of the model by requiring vacuum stability, tree-level
unitarity and perturbativity, as well as making sure the model is within limits
of the experimental electroweak precision tests. Then we use renormalization
group equations (RGEs) to evolve the Yukawa couplings to see when they
reach the limits set by FCNC.
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Abbreviations
2HDM

Two Higgs Doublet model
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Beyond Standard Model
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Charge-Parity
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Flavor Changing Neutral Currents
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1 Populärvetenskaplig
introduktion

Vår värld beskrivs idag på den mest fundamentala ni-
vån av kvantfältteori. Den förenar två av fysikens fan-
tastiska upptäckter, kvantmekaniken och den speciel-
la relativitetsteorin. Efter hårt arbete av fysiker under
1900-talet kom det fram att allting runt omkring oss
kan beskrivas som fält, vars excitationer motsvarar
partiklar. Alla partiklar har sitt eget fält och vibra-
tioner i ett fält kan orsaka vibrationer i ett annat.
Partikelfysiker försöker beskriva dessa interaktioner
så fullkomligt som bara går.

Experimentellt har man funnit att det finns fyra
sorters fundamental växelverkan i naturen. Elektro-
magnetism och gravitation är krafter som vi upplever
i vår vardag medan den svaga samt starka växelverkan
är lite mindre kända. Den svaga orsakar flera fenomen
så som vissa atomsönderfall och den starka är kraften
som håller ihop alla atomkärnor.

Under åren som gått har en modell växt fram som
beskriver elektromagnetism och den svaga samt star-
ka växelverkan: Standardmodellen. Den har passerat
många experimentella krävande tester genom åren
med oerhörd precision i vissa områden. Men trots sin
succé så är det klart att den inte är fullkomlig. För
det första så saknas en kvantbeskrivning av gravita-
tionen. Det finns även andra bevis för så kallad fysik
bortom Standardmodellen t.ex. mörk materia/energi
och varifrån neutrinos får sin massa.

2012 upptäcktes en av Standardmodellens vikti-
gaste byggstenar: Higgsbosonen. Denna partikel är
en excitation av dess underliggande Higgsfält vilket
spelar en stor roll i Standardmodellen. Genom in-
teraktioner med detta fält får nämligen alla partik-
lar(utom neutrinos) sin massa genom något som kal-
las Higgsmekanismen. Denna mekanism är något av
en grund för Standardmodellen som förenar elektro-
magnetism och den svaga växelverkan till ett gemen-
samt fenomen.

Men upptäckten av en Higgsboson skulle kunna
vara bara början vad gäller Higgspartiklar. Det finns
nämligen argument för att utöka Standardmodellens
Higgsmekanism till att innehålla flera Higgsfält. Ett
av dessa argument kommer från Supersymmetri som
är en populär teori för att lösa vissa av Standard-
modellens problem. Supersymmetri kräver nämligen
minst två Higgsfält.

När man introducerar ett extra Higgsfält i Stan-
dardmodellen får man många nya fenomen så som
fyra nya Higgspartiklar varav två är elektriskt lad-
dade. Dessa partiklar är intressanta fenomenologiskt
genom att de kan ge bidrag till processer som i sådana
fall inte borde stämma överens med Standardmodel-
len. Därmed skulle nya Higgspartiklar vara ett klart
tecken på fysik bortom Standardmodellen.

Inom partikelfysiken används ofta statistiska
verktyg när man ska analysera stora mängder data.
Partiklar kan sönderfalla på många olika sätt och i
studier av B mesonen1 så skiljer sig de experimentel-
la resultaten mot beräkningar med Standardmodel-
len. Man fann att den sönderföll till en D meson, en
tau och en neutrino fler gånger än väntat2.

En förklaring till detta som föreslagits är en mo-
dell med två Higgsfält vilket skulle innebära att en B
meson kan sönderfalla genom en laddad Higgsparti-
kel och således förklara experimenten. Denna kandi-
datuppsats undersöker en sådan Dubbelhiggsmodell
för att se hur den beter sig vid högre energier och i
förhållande till andra experiment.

Parameterområdet är stort för Dubbelhiggsmo-
deller men det finns många begränsningar som man
kan göra. Vi undersöker bland annat huruvida mo-
dellens grundtillstånd är stabilt och om modellen är
inom ramarna för experimentella värden på fenomen
så som mesonmixningar3. Att ta hänsyn till detta re-
sulterar i gränser för de nya Higgsbosonernas massor.

I kvantfältteorin så är parametrarna beroende av
vid vilken energi experimenten utförs. Detta gör så att
modeller kan utvecklas och bete sig vitt skilt åt vid
olika energier. Till exempel så blir den elektromagne-
tiska kraften starkare vid högre energier medan den
starka växelverkan blir svagare. Så man måste defi-
niera sin modell vid en specifik energi vilket kallas
Renormering och med så kallade renormeringsgrup-
pekvationer(RGE) kan man sedan se hur paramet-
rarna beror på energin.

Vi undersöker Dubbelhiggsmodellens RGE-
utveckling för att undersöka hur modellen klarar av
de gränser vi funnit. En attraktiv modell skulle åt-
minstone klara sig fint vid alla energier som är aktu-
ella experimentellt. Om modellen skulle vara ostabil
vid högre energier skulle det kunna tyda på att den
inte är den kompletta bilden eller att parametrarna
är finjusterade så att modellen endast är meningsfull
vid låga energier.

1En B meson är en partikel som består utav två kvarkar vilket kan jämföras med protoner och neutroner
som består utav tre kvarkar.

2D är också en meson medan tau är en tyngre kusin till elektronen och neutrinon är en väldigt lätt elektriskt
neutral partikel.

3Ett kvantmekaniskt fenomen som innebär att de elektriskt oladdade mesonerna är i en superposition av
två olika tillstånd. De kan därmed oscillera till deras motsvarande antipartikel.

4



2 Introduction
In 2012 the first fundamental scalar particle was discovered at the Large Hardon
Collider (LHC) [1] [2]. So far it is all in agreement with predictions according
to the Standard Model (SM). In the SM there is a single Higgs Doublet field that
gives rise to mass terms for all of the fermions4. To increase this sector of the SM
can seem unnecessary, but the Standard model has some problems which can be
solved by a theory called Supersymmetry, and introducing Supersymmetry requires
at least one extra Higgs field to account for all the fermion masses. Supersymmetry
has been around for a long time and many people hoped that it will be discovered
at the LHC. A rigorous experimental investigation of the Higgs sector can thus give
the first clues of supersymmetrical theories.

However the general two Higgs Doublet Model (2HDM) exhibits tree-level flavor
changing neutral currents (FCNC) which are constrained by experiments. One way
to avoid these FCNC is to impose a Z2 symmetry on the model which can be done
in four different ways. In this thesis we investigate the specific 2HDM type III which
is 2HDM type II with a broken Z2 symmetry. It has been shown recently [3] that
this specific model could be used to explain the latest data on the decays B → Dτν
and B → D∗τν. This is an interesting case since this data is in disagreement with
the SM by 3.4σ and could therefore be evidence of new physics beyond the SM [4].

The FCNC currents of the 2HDMs are depending on the mass spectrum of
the Higgs particles and the couplings in the Yukawa sector. To see what masses
are possible for the Higgs bosons we consider other experimental constraints from
requiring vacuum stability, unitarity and perturbativity. We also take into account
constraints from electroweak precision tests. This results in different mass spectrum
scenarios. The FCNC are mostly constrained by neutral meson mixing and we
calculate the precise limits on the Yukawa couplings in three mass scenarios.

We use renormalization group equations (RGEs) to investigate how stable the
2HDM type III is under evolution of the Yukawa couplings in the mentioned three
scenarios. A large sensitivity in the parameter space could be a sign of fine tuning
or instability of the model.

The structure of this thesis is as follows.
First of in section 3 we give a quick review of the SM Higgs model. This is

not treated in detail and is mostly a reminder of how the process of spontaneous
symmetry breaking gives rise to the masses of gauge bosons and fermions. This can
easily be skipped by anyone familiar with the subject.

Next in section 4 we review the general theory of 2HDM. We also discuss the
relevant B meson decays that is in a disagreement with the SM and how 2HDM
type III can explain this.

In section 5 we investigate in more detail what kind of constraints can be set on
the parameters in 2HDM. We discuss the vacuum stability, unitarity and perturba-
tivity of the model as well as how it affect the electroweak precision parameters S
and T. The limits on the masses of the H and A boson are presented.

4Except neutrinos. Even though they have small masses, they are treated like massless particles
in the SM.
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Section 6 explains how we evolve the Yukawa couplings with RGE to see how
the model behaves at higher energies and the results are presented in sextion 7

The details about the computations done in the thesis can be found in the
appendices. A goes through the steps of how the 2HDM type III contributes to the
taunic B decays. We also explain what software we used to do the RGE evolution
and list all the input that was used in B and C.

3 Spontaneous Symmetry Breaking
There are several good books about QFT and particle physics that explains spon-
taneous symmetry breaking and the Higgs mechanism. A few favorites ranging in
difficulty are [5], [6] and [7]. One should not forget though that the subject of
symmetry breaking is a widely used concept that exists in many areas of physics.

Symmetry is very important and spontaneous symmetry breaking occurs in
many places in nature5. Whenever the laws of a physical system are invariant
under a transformation that transformation corresponds to a symmetry. However
that symmetry may be lost if the system undergoes a spontaneous process where it
ends up in an asymmetrical state. For example the Lagrangian can have a certain
symmetry but, depending on the potential, the fields ground state may not exhibit
the same symmetry. Hence the term spontaneously broken symmetry.

To see this phenomenon in quantum field theory we can consider the linear
sigma model. Though being very simple it shows the mechanism of spontaneous
symmetry breaking. It is basically a field that acquires a Vacuum Expectaion Value
(VEV) by being in the ground state of the potential. So one can expand the model
around the VEV instead of the origin.

The model consists of N real scalar fields φi(x) with the Lagrangian(implicit
sum over the is)

L =
1

2
∂µφi∂

µφi +
1

2
µ2φiφ

i − λ

4

(
φiφ

i
)2
. (1)

Where we take λ and µ to be real.
The φi fields are gathered in a vector and since this Lagrangian only contains

scalar products of that vector one can see that the model exhibits a O(N) symme-
try(rotations of the φ vector). However this symmetry will be broken because the
potential

V (φi) = −1

2
µ2φiφ

i +
λ

4

(
φiφ

i
)2 (2)

is minimized when

φiφ
i =

µ2

λ
= v2. (3)

5A widely spread explanation is the example of a ferromagnet. If the temperature is high enough
the magnetic moments in the material is disorganized and the system is therefore rotationally
invariant. But if the magnet is cooled down below the Curie temperature the spins becomes
spontaneously aligned. The system is then magnetic and is no longer rotationally invariant.
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This sets the length of the vector φ. So the possible VEV of the model is the
surface of an N dimensional sphere. In the case of two fields this can easily be
visualized by the so called Mexican hat or Wine bottle potential, see fig. 1.

Figure 1: A visualization of the Higgs potential in two dimensions. One can clearly
see how the ground state is not as symmetrical as the top of the hat. At the top
one can move the field along any direction and expect the same behavior but in the
bottom of the slope one can move the field along a circle and still be in the minima.
It turns out that exciting the field in the radial direction will correspond to Higgs
bosons. Picture taken from [8].

Since the surface of a N dimensional sphere is N-1 dimensional the vacuum
configuration of the field, i.e. a point on the N dim sphere, is not invariant under
O(N) transformations anymore. To see the consequences of breaking the symmetry
we pick an arbitrary point on the N dim sphere and expand the field around that
point. This can be done by setting the minimal configuration to be a constant value
in the Nth direction, φ0 = (0, . . . , 0, v). This breaks the O(N) symmetry down to
O(N − 1)(rotation of all zero value components). So now we can expand around
this minima like φ = (π(x), v + σ(x)), where π is a N − 1 dimensional vector. With
these new fields we can rewrite the Lagrangian6.

L =
1

2

(
∂µπ

k
)2

+
1

2
(∂µσ)2 − 1

2
(2µ)2σ2 −

√
λµσ3 − λ

4
σ4

+
√
λµ
(
πk
)2
σ − λ

2

(
πk
)2
σ2 − λ

4

[(
πk
)2
]

(4)

Notice the non existing mass terms for the πk. The VEV broke the continuous
O(N) symmetry and N − 1 massless scalar fields appeared. This can all be stated
exactly with Goldstone’s theorem. It says that for every spontaneously broken
continuous symmetry, the theory must contain a massless particle which is called
a Goldstone boson. In the case of the linear sigma model, O(N) has a continuous
symmetry for a rotation in every plane and there are N(N − 1)/2 of them. So the

6We throw away any constant terms since they have no effect on the equations of motion.
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VEV breaks N − 1 of them(the difference of independent continuous symmetries in
O(N) and O(N − 1)).

3.1 The Higgs Mechanism

The SM is built up by three symmetries, SU(3)C × SU(2)L × U(1)Y . These are
so called gauge symmetries or local symmetries. They are local in the sense that
the Lagrangian of the SM is invariant under any transformation of the gauge group
which can be different for every point in spacetime. When one impose these local
symmetries on the theory one is also forced to introduce new fields to make the
Lagrangian invariant. These fields are called gauge fields and their particles are
what we associate with forces in nature.

This works great for the strong and electromagnetic forces. One can build a
SU(3)×U(1) invariant model which would introduce two gauge fields whose parti-
cles would correspond to the gluon and photon. However the weak force exists and
the particles associated with it are massive. The process of creating massive gauge
bosons is governed by the Higgs mechanism. It uses both spontaneous symmetry
breaking and local symmetries to create the massive W and Z bosons. The massless
photon is also incorporated in the process as well as all the fermion masses.

The Higgs mechanism is built around the Higgs field(a scalar field), which ac-
quires a VEV because of its potential. The Higgs mechanism in the SM uses one
Higgs field that transforms as a SU(2)L doublet and is in a sense the most minimal
Higgs sector possible. The most general renormalizable potential that gives a VEV
to the field is

V (Φ) = −µ2Φ†Φ + λ
(
Φ†Φ

)2
. (5)

Where the minimum of the potential occurs at Φ†Φ = 1
2

√
µ2

λ
.

The Φ field has also got an U(1) symmetry so its complete gauge transformation
can be written as

Φ→ eiα
aτaeiβΦ. (6)

Where τa = σa

2
are the generators of SU(2). The αa and β are just some arbi-

trary real parameters that are dependent on spacetime and hence the term local
symmetry.

This transformation is composed of 4 continuous symmetries, one for each gen-
erator of the group. The field is conventionally expanded around the minimum
as

Φ =
1

2

(
0

v + h(x)

)
(7)

The trained eye can see that the actual minimum where h(x) = 0 is invariant
under the specific choice of gauge transformation α1 = α2 = 0, α3 = 2β. This is a
set of invariant transformations that are still present after the electroweak symmetry
breaking. Hence one continuous symmetry remains but the other 3 symmetries are
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broken and one therefore get 3 Goldstone bosons. However this time they do not
correspond to any physical particles. Because one can always rotate the Φ field to
only have a real component as in eq. 7. Instead the Goldstone bosons gets “eaten”
by the gauge bosons which become massive7.

So the SM Higgs mechanism breaks the initial SU(2)L×U(1)Y to one remaining
symmetry U(1)γ which gives one massless gauge boson (photon) and the three
massive particles corresponds to the weak force carriers W± and Z. The remaining
degree of freedom in the Higgs field is the Higgs boson, h(x).

However the fact that the charged weak current only couples to left handed
particles can be achieved by letting the left handed and right handed fermions be
in different representations of the SU(2)L gauge group. The left handed fermions
are in SU(2) doublets while the right handed ones are SU(2) singlets.This is at first
sight pretty troublesome since it makes terms like

mēLeR

in the Lagrangian forbidden since it is not gauge invariant. However this is solved
elegantly by making the fermions acquire mass from the VEV of the Higgs field
with terms like

gL̄L · ΦeR.

Where LL =

(
νe
eL

)
is a doublet with the left handed leptons in it and g is a

Yukawa coupling. The details works the same way as in the 2HDM which is treated
more in detail in the next section.

This minimal Higgs model was implemented in the late 60s by Glashow, Wein-
berg and Salam8. It unites electromagnetism and the weak force into one beautiful
electroweak theory. But, as will be discussed in the next section, it may not be the
complete picture of the scalar sector.

7A massless spin 1 particle has two degrees of freedom corresponding to its two possible he-
licities. But a massive spin 1 particle has three degrees of freedom. So the gauge bosons gets an
extra degree of freedom when it eats the Goldstone bosons. That the Goldstone bosons completely
disappear is a consequence of how the Lagrangian is gauge fixed. They are still there in other
gauge choices to cancel out effects of other unphysical particles.

8Even in the absence of the discovery of any Higgs boson they were jointly awarded the Nobel
prize in 1979 because of the description of the electroweak interactions that was in agreement with
experiments and also the prediction of the neutral current.
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4 2HDM
The reason to extend the scalar sector of the SM may not be clear immediately.
The SM Higgs mechanism is simple in the way that given all the fermion masses the
only free parameter is the Higgs mass. But when a second scalar field is introduced
the number of parameters is increased substantially. The main motivation for doing
this comes from Supersymmetry. In supersymmetric theories a single Higgs doublet
can not account for the masses of both the charge -1/3 and +2/3 quarks. So you
need at least one more Higgs doublet. The model we are investigating in this thesis
contains two Higgs doublets and is used in the so called minimal supersymmetric
standard model (MSSM).

The Higgs sector is very interesting now when the LHC is up and running. The
discovery of a Higgs particle at 126 GeV may only be the beginning. After the
LHC has been upgraded new energy scales can be probed and new particles can
be found. Phenomenologically 2HDM is very rich compared to the SM Higgs with
charged Higgs bosons, pseudo scalars, different decay modes and branching ratios.
The parameter space of 2HDM is also bigger and it will take some time to search
through all the possible scenarios, if it is at all possible.

Since it is a hot area of research there is a much written about 2HDMs in recent
years. A good review that covers the most popular 2HDMs is [9]. As the name
suggest the scalar sector of 2HDMs consists of two SU(2) doublet scalar fields Φ1,2

with hypercharge +1. The most general renormalizable potential can be written

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − (m2
12Φ†1Φ2 + h.c.)

+
1

2
λ1

(
Φ†1Φ1

)2

+
1

2
λ2

(
Φ†2Φ2

)2

+
1

2
λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+

1

2
λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)

+

{
1

2
λ5

(
Φ†1Φ2

)2

+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

}
. (8)

Here the parameters m11,m22 and λ1,2,3,4 are real while m12 and λ5,6,7 are com-
plex in general. So this potential has 14 degrees of freedom from the 6 real and 4
complex parameters. However note that this number can be decreased by assuming
certain symmetries and requiring absence of CP violation. For example we can im-
pose a Z2 symmetry on the Φ fields, making one odd and one even. That would get
rid of m2

12 and λ6,7. However one usually keep m2
12 non-zero because compared to

λ6,7 it only breaks the Z2 symmetry softly. If we require no CP violation it is suffi-
cient, although not necessary, for the parameters to be real which would result in 8
degrees of freedom. One can note though that certain degrees of freedom disappear
since the VEV and one Higgs boson mass are fixed by experiments.

The Φ1,2 are SU(2) doublets and the minimization of eq. 8, i.e. the vacuum
expectation values of the fields, are

〈Φ1〉 =
1√
2
eiθ1
(

0
v1

)
, 〈Φ2〉 =

1√
2
eiθ2
(

0
v2

)
. (9)

Where we from here on out set θ1 = θ2 = 0 to avoid spontaneous CP violation.
The Φ1,2 fields in the general setup are indistinguishable so it is always possible

to define a orthonormal linear combination of the fields without modifying the
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physics. One useful basis is the Higgs basis where only one of the fields get a VEV.
This is done in section 4.1 when we investigate the Yukawa sector.

A useful and important definition is an angle β from

tan β ≡ v2

v1

(10)

which measures the rotation from the general basis to the Higgs basis. In the
general 2HDM this is however not a physical parameter since the Φ1,2 fields are
indistinguishable. But if there are any symmetries that distinguishes the two fields
tan β becomes a physical parameter.

The Φ fields consists of 8 real fields. After electroweak symmetry breaking 3 of
these corresponds to the Goldstone bosons that gets “eaten” by the familiar gauge
bosonsW± and Z0. But now there are also 5 new scalar fields which can be divided
into two CP even scalars h and H, one CP odd pseudo-scalar A and a pair of
charged scalars H±. To diagonalize the CP eigenstates we introduce an angle α so
that the expansion of the fields can be written

Φ1 =

( −sβH+

1√
2
(cβv − sαh+ cαH − isβA)

)
,

Φ2 =

(
cβH

+

1√
2
(sβv − cαh+ sαH + icβA).

)
(11)

Where we have used the short notation sinα ≡ sα and cosα ≡ cα and similarly for
β.

As already mentioned these are defined to have weak hyper charge +1. To
couple these to both up and down quarks we need doublets with weak hyper charge
-1 which can be created out of the complex conjugate fields.

Φ̃i = iσ2Φ∗i (12)

The angles α and β are very important in phenomenology. For a detailed study
of the subject one can look in [10]. Some of the most important points can quickly
be pointed out though. Many vertices that couple the Higgs bosons to gauge bosons
are proportional to cos(β−α) and sin(β−α). A list of the angle dependent vertices
can be seen in table 1. Assuming that the 126 GeV Higgs is the lightest scalar
particle requires roughly sin(β − α) > 0.9, which suppresses a lot of processes for
example HWW and HZZ couplings. This can make it very hard to discover the
neutral H boson. The decoupling limit sin(β−α) = 1 makes the h couplings to SM
particles the same as in the SM.

4.1 The Yukawa Sector

The Yukawa sector is the part of the Lagrangian which describes how the scalar fields
are being coupled to the fermion fields. Just as in the SM the left handed and right
handed fermions are in different representation of the gauge group and therefore
can not couple together to create gauge invariant mass terms. But with a SU(2)

11



cos(β − α) sin(β − α)
W+W−H W+W−h
ZZH ZZh
ZAh ZAH

W±H∓h W±H∓H
ZW±H∓h ZW±H∓H
γW±H∓h γW±H∓H

Table 1: A list of vertices that couple Higgs particles and gauge bosons. The
left ones are proportional to cos(β − α) while the right ones are proportional to
sin(β − α).

doublet scalar field one can create gauge invariant terms which after electroweak
symmetry breaking creates mass terms for the fermions in the same way as in the
SM.

The fermions in SM can be written as:

QL =

(
UL
DL

)
UR, DR

LL =

(
νL
EL

)
ER (13)

The most general Yukawa interactions is one where both Higgs fields couple
to every fermion field. To make the equations visually appealing we leave the
generation index implicit on the fermions and Yukawa couplings ηF1,2. All fermions
are vectors in 3 dimensional generation space and the Yukawa couplings are 3 × 3
matrices in the same space. So the Yukawa sector Lagrangian can be written as9

LY = −Q̄L · Φ̃1η
U
1 UR − Q̄L · Φ1η

D
1 DR − L̄L · Φ1η

L
1ER

−Q̄L · Φ̃2η
U
2 UR − Q̄L · Φ2η

D
2 DR − L̄L · Φ2η

L
2ER + h.c. (14)

It can be convenient to write the general Yukawa sector in the Higgs basis where
only one Higgs field has a VEV. This makes it easy to see the diagonal terms in
the Lagrangian since there is only one VEV that can create mass terms. The Higgs
basis are related to the general basis by a rotation of the Higgs fields

H1 = cos βΦ1 + sin βΦ2

H2 = − sin βΦ1 + cos βΦ2. (15)

Now only H1 has a VEV, 〈H1〉 = 1√
2

(
0
v

)
where v2 = v2

1 + v2
2. Then the

Yukawa interaction becomes

LY = −Q̄L · H̃1κ
U
0 UR − Q̄L ·H1κ

D
0 DR − L̄L ·H1κ

L
0ER

−Q̄L · H̃2ρ
U
0 UR − Q̄L ·H2ρ

D
0 DR − L̄L ·H2ρ

L
0ER + h.c. (16)

9We treat neutrinos as massless so they do not couple to the Higgs field.
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The mass terms should arise from the H1 terms and we can therefore go over
to a fermion mass basis where the κF Yukawa coupling matrices are diagonal. This
can always be done with some unitary matrices V F

L , V
F
R acting on the fermion

vectors. But in general we can not diagonalize both the κF and the ρF matrices
simultaneously. This can be a big problem since it can give rise to FCNC at tree
level. The new matrices are

κF = V F
L κ

F
0 V

F
R

†
=

√
2

v
MF

ii , (17)

ρF = V F
L ρ

F
0 V

F
R

†
. (18)

Where the matrix MF has the physical fermion masses along its diagonal. We also
define the CKM matrix

VCKM ≡ V U
L V

D
L

†
. (19)

If we expand the Higgs fields in the physical fields we can write down the La-
grangians Yukawa sector where we can read of the interactions directly.

LY =− 1√
2
Ū
[
κUsβ−α + (ρUPR + ρU

†
PL)cβ−α

]
Uh

− 1√
2
Ū
[
κUcβ−α − (ρUPR + ρU

†
PL)sβ−α

]
UH +

i√
2
Ū
(
ρUPR − ρU †PL

)
UA

− 1√
2
D̄
[
κDsβ−α + (ρDPR + ρD

†
PL)cβ−α

]
Dh

− 1√
2
D̄
[
κDcβ−α − (ρDPR + ρD

†
PL)sβ−α

]
DH − i√

2
D̄
(
ρDPR − ρD†PL

)
DA

− 1√
2
L̄
[
κLsβ−α + (ρLPR + ρL

†
PL)cβ−α

]
Lh

− 1√
2
L̄
[
κLcβ−α − (ρLPR + ρL

†
PL)sβ−α

]
LH − i√

2
L̄
(
ρLPR − ρL†PL

)
LA

−
{
Ū
[
VCKMρ

DPR − ρU †VCKMPL
]
DH+ + ν̄ρLPRLH

+ + h.c.
}

(20)

Where PR and PL are the projection operators, (1± γ5)/2. Here the U,D and L
are Dirac spinors which carry a generation index as before.

In eq. 20 it is clear that non-diagonal ρF can induce tree-level FCNC. This is a
problem phenomenologically because it would contribute to various processes such
as decays of particles that are otherwise in agreement with the SM. Later on we
will compute the limits on these non-diagonal elements by considering F 0 − F̄ 010

mixing and it turns out that there are strict constraints on some of these elements.
The tree-level FCNC therefore need to be avoided or suppressed somehow.

One fix to these FCNC is to impose a Z2 symmetry on the theory [11]. That
would get rid of several terms in the general Yukawa Lagrangian, eq. 14, so that the
up/down quarks couple to different Higgs fields. After diagonalization to the mass

10F 0 − F̄ 0 meaning neutral meson mixing, where F is K,D,Bd or Bs.
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Type UR DR LR ρU ρD ρL

I + + + κU cot β κD cot β κL cot β
II + − − κU cot β −κD tan β −κL tan β
Y + − + κU cot β −κD tan β κL cot β
X + + − κU cot β κD cot β −κL tan β

Table 2: A table of Z2 symmetries that can be imposed on the 2HDM. Φ1 is odd or
−1 and Φ2 is even or +1. For every type of Z2 symmetry the ρF matrices become
proportional to the κF matrices hence diagonal.

eigenstates the ρF matrices becomes proportional to the diagonal κF matrices thus
making them diagonal as well.

There exists four possibilities of Z2 symmetries that can be imposed on a 2HDM.
These are listed in table 2. In this thesis we investigate the consequences of breaking
the Z2 symmetry of 2HDM type II which is the one used in MSSM. Just as stated
previously this introduces FCNC at tree-level which from experiments are shown
to be very small.

Cheng and Sher introduce an ansatz to naturally suppress the FCNC of 2HDM [12].
Since the diagonal couplings in κF have a hierarchy to them it is natural to assume
this for the ρF as well. This can be done by relating the coupling to the masses of
the associated fermions like

ρFij = λFij

√
2mimj

v2
. (21)

Where the λFij should be of order one. It is now known as the Cheng-Sher
ansatz and naturally suppresses the non-diagonal couplings. The limits from meson
mixings on some of the non-diagonal λFij are computed in section 5.2.

4.2 B meson decays explained with 2HDM

Searches at so called B meson factories where rare decays involving flavor observ-
ables are probes of new physics. The 2HDMs can have serious effects on some
of these decays since they give rise to new particles. Recently the BABAR col-
laboration has done studies on the data on semileptonic B decays B → Dτν and
B → D∗τν [4]. For the ratios

R(D) =
B(B → Dτν)

B(B → Dlν)
, (22)

they found the results in table 3. Both of the ratios disagree with the SM and
combining them gives a 3.4σ deviation from the SM predictions [4].

These decays are both tree level processes in the SM. This makes it difficult to
invent new physics to explain the experimental results. Because if the new physics
should have size-able contributions one in general need a tree level process, i.e.
a new charged particle. But introducing a new particle can have severe effects
phenomenologically.
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R(D) R(D∗)
Experiment(BABAR [4]) 0.440± 0.058± 0.042 0.332± 0.024± 0.018
Theory(SM [4, 13, 14]) 0.297± 0.017 0.252± 0.003

Table 3: Comparison between theory and experiment for the decays B → Dτν
and B → D∗τν. For the experiment the first error is statistical and the second
one is systematic. Combining both ratios gives a 3.4σ deviation between SM and
experiment [4].

This is where the 2HDMs come into play. They introduce new charged scalar
particles, H±, that contribute to the decay of B mesons, see fig. 2 for an example of
a tree-level process. But their couplings to fermions are proportional to the fermions
mass which explains why they would only contribute to the taunic decays.

c̄

u

b̄

u
B+

D̄/D̄∗

ντ τ+

H+

Figure 2: Example of B decay involving a charged scalar particle. In the SM there
is a similar process where the b quark decays through a W+.

The well studied 2HDM Type II has been favored a long time among the 2HDMs.
It avoids unwanted FCNC but is unsatisfactory when it comes to the B decays. It
cannot explain both R(D) and R(D∗) simultaneously [4] for any value of tan β and
mH+ , see fig. 3 [15].

But another 2HDM could be used to explain these decays. A breaking of the
Z2 symmetry would result in a 2HDM type III. Although such a model exhibits
tree-level FCNC they can still be candidates if those currents are suppressed i.e. if
the symmetry breaking is soft enough. The non-diagonal elements would contribute
constructively to the B decays in question as we will show in the next section.

4.3 2HDM Type III

If the 2HDM is created without any discrete symmetries it is simply the most general
2HDM which ones Lagrangian we have already written down. However since the
models without tree-level FCNC have been favored for such a long time and been
given the names type I and type II, the most general model is now known as 2HDM
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Figure 3: Constraints on 2HDM type II in the tan β-mH parameter space. Allowed
regions from experiments are: b → γs (yellow), B → Dτν (green), B → τν (red),
Bs → µ+µ− (orange), K → µν/π → µν (blue) and B → D∗τν (black). Note that
no region of the parameter space is compatible with all the decays. Plot taken from
[15].

type III.11

As mentioned before the problem of this model is that it has dangerous FCNC
but that can be fixed by making the neutral scalar masses heavy or assuming that
the Yukawa couplings obey the Cheng-Sher ansatz. This requirement to suppress
the FCNC to within experimental limits forces the non-diagonal elements of the
Yukawa couplings to be small hence making the model resemble 2HDM type II a
lot.

To explain both R(D) and R(D∗) a 2HDM of type III has been considered [3]
where the authors parametrized a breaking of the Z2 symmetry of 2HDM type II
with the couplings εF . The quark Yukawa sector can then be written

LY =− Q̄LY
U Φ̃UUR − Q̄LY

DΦDDR

− Q̄Lε
U Φ̃DUR − Q̄Lε

DΦUDR + h.c. (23)

where the 2HDM type II is recovered in the limit εU,D → 0 where there are separate
Higgs field that couples to the up/down quarks.

The Lagrangian in eq. 23 can be expanded in the mass eigenstates of ΦU,D as
11The 2HDM type Y and X are sometimes also named type III and IV. But to avoid confusion

that is avoided in this thesis.
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before which results in the Feynman rule in fig. 4 with

ΓH
±LR

ufdi
=

3∑

j=1

sβVfj

[
mdi

cβv
δji − (tan β + cot β)εDji

]
, (24)

ΓH
±LR

dfui
=

3∑

j=1

cβV
∗
jf

[
mui

sβv
δji − (tan β + cot β)εUji

]
(25)

and ΓH
±LR

qf qi
= ΓH

±RL
qiqf

∗
.

qi qf

H±

= i
(
ΓH±LR
qf qi

PR + ΓH±RL
qfqi

PL

)

Figure 4: Feynman rule for the coupling of quarks to H±.

In a possible B decay through a H+, like in fig. 2, one integrates out the heavy
scalar particle in an effective field theory since the B decays occur on a energy scale
way below the electroweak scale. The procedure is a subject in itself and will not be
treated in detail here. But the interested reader can find a sketch of the calculation
of 2HDM contributions to the relevant B decays in Appendix A.

There is however some important points that should be pointed out about fitting
the 2HDM type III to R(D) and R(D∗). The contributions are calculated with the
vertices given by eq. 24-25 which of course depends on the εU and εD. But in the
effective vertices the mass of the virtual H+ particle is included as well. In the
end the fit in [3] uses fixed values of mH± = 500 GeV and tan β = 50. While all
the other parameters of the model can be adjusted. The allowed regions in the
parameter space of εU32 obtained in [3] can be seen in fig. 5.

The Yukawa couplings in eqs. (24 - 25) can be related to the basis used in eq. 20
which shows the breaking of the Z2 symmetry more explicitly.

ΓH
±LR

ufdi
= tan βVCKM

[
κD − (tan β + cot β)εD

]
= −VCKMρD, (26)

ΓH
±RL

ufdi
= cot β

[
κU − (tan β + cot β)εU

]
VCKM = ρU

†
VCKM , (27)

or

ρD = − tan β
[
κD − (tan β + cot β)εD

]
, (28)

ρU = cot β
[
κU − (tan β + cot β)εU

†
]
. (29)

Here it is very clear that in the limit εU,D → 0 the ρ matrices become proportional
to the κ matrices just like in table 2.
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Figure 5: The allowed regions for the parameter εU32 fitting it to the data on R(D)
(blue) and R(D∗) (yellow) using eqs. (47 - 48), mH± = 500 GeV and tan β = 50.
Plot taken from [3].

5 Constraints on 2HDM
Before evolving the εF with the RGEs we need to consider experimental constraints.
To compute the limits on the non-diagonal elements of εF we need to know what
masses we might expect for the Higgs bosons. To find that out, we consider other
phenomenons that can put constraints on how light or heavy the H and A particles
can be.

5.1 Stability, Unitarity, Perturbativity and Oblique Param-
eters

The 2HDM introduce a lot of new parameters to the scalar sector compared to the
SM. By analyzing the limits on the λi one can find the possible mass-spectrum of
the Higgs particles. Different constraints can be found in a recent review of 2HDMs
[9] and constraints specifically for 2HDM type III in [15]. We list here a short
summary of some of these constraints.

Stability of the vacuum

A general requirement for any field theory is that the potential should be bounded
from below. Meaning that it does not go to −∞ in any direction in the field space,
thus making sure that the VEV of the field is stable. For the SM Higgs model this
is easily satisfied because of the positive φ4 term in the potential12. It gets a little
bit more complex in the 2HDM model since there are a lot more parameters in

12The φ4 term can actually turn negative at high energies through RGE evolution. However
the vacuum is at least meta-stable [16].
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the potential. But it turns out that sufficient conditions for stability can be found.
Given that the hard Z2 breaking terms λ6,7 = 0, the potential is bounded from
below if the following conditions are satisfied [17]:

λ1 > 0,

λ2 > 0,

λ3 > −
√
λ1λ2,

λ3 + λ4 − |λ5| > −
√
λ1λ2. (30)

So the λ parameters are bounded below, and above for the λ5. The λ parameters
are responsible for the masses of the Higgs bosons. Their masses are in the general
basis given by

m2
A =

m2
12

sin β cos β
− λ5v

2, (31)

m2
H± = m2

A +
1

2
v2(λ5 − λ4), (32)

m2
H,h =

1

2

(
M2

11 +M2
22 ±

√
(M2

11 −M2
22)

2
+ 4 (M2

12)
2

)
. (33)

Where the M2 is an orthogonal matrix given by

M2 =

(
m2
As

2
β + v2(λ1c

2
β + λ5s

2
β) sβcβ [−m2

A + v2(λ3 + λ4)]

sβcβ [−m2
A + v2(λ3 + λ4)] m2

Ac
2
β + v2(λ2s

2
β + λ5c

2
β)

)
. (34)

So by requiring stability for the potential we get different possible scenarios for
the mass spectrum of the Higgs bosons. Note again that the parameter m2

12 is a
soft Z2 breaking term which we will keep non-zero. We specify the values of mh,
mH , mA, mH± and m2

12 to get the values of the λi’s. In the limit tan β → ∞ one
gets the relation m2

12 = sβcβm
2
H which we use as an approximation for m2

12. The
value of m2

12 does not matter that much, in the end we want the model to satisfy
all our conditions and we can adjust m2

12 freely to get the best fit. However this is
never necessary with our approximation of m2

12.
For compatibility with [3] we will set m2

H± = 500 GeV and tan β = 50. Note
however that the precise value of the λ parameters are heavily dependent on the
tan β parameter. The λi are very sensitive with high values of tan β for which small
alterations of other parameters makes them blow up. The choice of tan β = 50 will
turn out to constrain the masses of the Higgs bosons severely.

Unitarity and Perturbativity

Another constraint on the λ parameters comes from perturbativity. If the couplings
in the potential were to become too big, perturbation theory would no longer be
possible. Assuming perturbativity thus sets an upper bound on λi and to remain
in the weakly coupled domain we will use the limit

|λi| < 4π. (35)
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W+

H+

h

Z

H+

H−

Figure 6: Examples of contributions of the Higgs bosons to the gauge bosons self-
energies.

To maintain tree-level unitarity in perturbation theory in vector boson scattering
one need to set limits on the eigenvalues of the S-matrix as well. This will further
increase the constraints by lowering the upper bounds on the λi. A summary of
these limits can be found in [9].

Oblique Parameters

Since the 2HDMs introduce new particles that couple to the gauge bosons these
can give contributions to electroweak observables. Through loops, the Higgs bosons
have to be included in the gauge bosons self-energies, see fig. 6. These contributions
can be described by three parameters S,T and U [18]. The experimental bounds
on these parameters sets limits on new physics that could affect the electroweak
observables. These loop corrections are termed oblique since they do not couple to
the external fermions directly but only through the weak interaction indirectly i.e.
the propagators.

The details in the calculation of the S, T and U parameters can be found in [19].
Assuming that U=0, both S and T need to be small and the exact limits can be
seen in fig. 7.

Since tan β and mH± is fixed for the 2HDM type III of interest we have scanned
the parameter space of mA −mH to see where the model satisfies the constraints
from stability, unitarity and perturbativity. We also made sure that the oblique
parameters S and T were within limits. For this we have used the 2HDM calcula-
tor [20].

The high value of tan β = 50 is needed to fit the 2HDM type III to the B decay
data but it also makes the model very unstable with respect to sin(β − α). We
assume that the 126 GeV Higgs is the lightest one which means the sin(β − α)
parameter has to be close to one. But the allowed regions in the parameter space
decrease in size rapidly when choosing any value of sin(β−α) different from 1. The
allowed regions of mH and mA can be seen in fig. 8 for sin(β − α) = 1 and in fig. 9
for sin(β − α) = 0.999.

As can be seen from these plots the sin(β − α) has to be very close to 1. We
include the scenario sin(β − α) = 0.85 in fig. 10 to see how it affects the oblique
parameters but with that choice stability, unitarity and perturbativity are not sat-
isfied.
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Figure 7: Constraints from experiment on the oblique parameters S and T. The red
assumes mh = 124.8 GeV and the violet mh = 600 GeV. Plot taken from [18].

How the stability, unitarity and perturbativity depends on tan β and sin(β−α)
can be seen in fig. 11. There the allowed values of sin(β − α) is plotted against the
mass of the H and A boson in the case mH = mA.
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Figure 8: Allowed regions in the parameter spacemH−mA satisfying the constraints
from (a): Oblique parameters S and T (b): Stability (c): Perturbativity (d): All
of the above. Unitarity is satisfied for the entire parameter space. Here we assume
mH ,mA > mh = 126 GeV. Note how the requirement that the potential should
be bounded restricts a high mass for the mH . Other parameters that are fixed:
sin(β − α) = 1, m2

12 = sin β cos βm2
H , tan β = 50 and mH± = 500 GeV.
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Figure 9: Allowed regions in the parameter spacemH−mA satisfying the constraints
from (a): Oblique parameters S and T (b): Stability (c): Perturbativity (d): All of
the above. Unitarity is satisfied for the entire parameter space. There are severe
restrictions compared to fig. 8. Here we assume mH ,mA > mh = 126 GeV. sin(β −
α) = 0.999, m2

12 = sin β cos βm2
H , tan β = 50 and mH± = 500 GeV.
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Figure 10: Allowed regions in the mH − mA space with respect to the oblique
parameters with sin(β−α) = 0.85. A heavier H boson is favored. However stability,
unitarity and perturbativity are not satisfied. Other parameters that are fixed:
m2

12 = sin β cos βm2
H , tan β = 50 and mH± = 500 GeV.
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Figure 11: The region above the curves are allowed by stability, unitarity and
perturbativity. The x-axis is the mass scale of mH = mA. Plot done with m2

12 =
sin β cos βm2

H , tan β = 50 and mH± = 500 GeV.
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5.2 FCNC in neutral meson mixing

h/H/A

b̄

d d̄

b
d

b̄

W W

b

d̄

(a) (b)

Figure 12: Example of FCNC contributing to B0
d − B̄0

d : (a) 2HDM and (b) SM.
Note how the FCNC are at tree level in 2HDM but one loop level in SM.

As mentioned several times before the 2HDM type III exhibits FCNC, these
have to be within the allowed limits. The most stringent limits are coming from
meson mixing that sets boundaries on how large some of the non-diagonal elements
of quark mixing can be. Because F 0 − F̄ 0 mixing is in agreement with the SM this
puts severe constraints on the potential tree-level FCNC in 2HDMs, see fig. 12.

The constraints for a general 2HDM from neutral meson mixing can be found
in [21],[9]. The mass difference between meson and anti meson can be expressed as:

∆MF =
|ρFij|2
MF

[
SF

(
c2
β−α

m2
h

+
s2
β−α

m2
H

)
+
PF
m2
A

]
(36)

SF =
1

6
BFf

2
FM

2
F

[
1 +

M2
F

(mi +mj)2

]
(37)

PF =
1

6
BFf

2
FM

2
F

[
1 +

11M2
F

(mi +mj)2

]
(38)

WhereMF and mi is the mass of the meson respectively quarks in question. The fF
is the corresponding decay constant and BF is the mixing matrix element. These
constants are computed using lattice QCD [22], [23] and their numerical values can
be found in table 4.

In the following calculation of the limits for ρF we require that the 2HDM
contributions does not exceed the experimental values by more than 2 standard
deviations.

∆MSM
F + ∆M2HDM

F ≤ ∆M expt
F + 2

√
σ2
SM + σ2

expt (39)

Meson MF (GeV) BF fF (GeV)
K0(ds̄) 0.4976 [24] 0.73± 0.026 [22] 0.1558± 0.0017 [22]
D0(ūc) 1.8648 [24] 0.82± 0.01 [23] 0.165 [23]
B0
d(db̄) 5.2795 [24] 1.26± 0.11 [22] 0.1928± 0.0099 [22]

B0
s (sb̄) 5.3663 [24] 1.33± 0.06 [22] 0.2388± 0.0095 [22]

Table 4: Parameters for the neutral mesons.
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F 0 − F̄ 0 ∆M expt
F (GeV) ∆MSM

F (GeV)
K0 − K̄0 (3.483± 0.006) · 10−15 [24] 0
D0 − D̄0 1.57+0.39

−0.415 · 10−14 [24] 0
B0
d − B̄0

d (3.344± 0.0197) · 10−13 [24] 3.653+0.48
−0.30 · 10−13 [25]

B0
s − B̄0

s (116.668± 0.270) · 10−13 [26] 110.6+17.1
−9.9 · 10−13 [25]

Table 5: Experimental and theoretical values for the neutral meson mixing.

The masses of the quarks in eq. 36 are the low energy ones defined around 2
GeV. They are listed in table 6. What makes a big difference for the constraints
are the masses of the Higgs bosons. Their uncertainty is troublesome and makes
the limits vary a lot depending on what the Higgs mass spectrum looks like.

Quark(Energy scale) Mass(GeV)
mu(2 GeV) 2.2 · 10−3

md(2 GeV) 5 · 10−3

ms(2 GeV) 9.5 · 10−2

mc(mc) 1.25
mb(mb) 4.2

Table 6: Quark masses defined at 2 GeV or at their own mass scale [27].

There are many different scenarios one can imagine for the mass spectrum of
the Higgs bosons. We will set sin(β−α) = 1 when calculating the constraints. This
will get rid of mh from the calculation and left are the parameters mH and mA.

The interesting scenarios for the masses of the heavy neutral Higgs bosons can
be seen in fig. 8. We picked three points in the allowed regions in the mH − mA

space: the two extreme points along the “arms” and one in the middle where mH =
mA = 500 GeV. Increasing the H and A masses also increases the limits on the λFij
parameters. Shown below are the limits calculated in these three different scenarios
with the Cheng-Sher ansatz. From the K0, D0, B0

d and B0
s mixing we get limits on

four of the non-diagonal elements. We put no limits on the other elements which
are denoted by −.

Scenario 1:

mH = 126 GeV mA = 500 GeV

∣∣λU
∣∣ ≤




- 0.35 -
- -

-


 ∣∣λD

∣∣ ≤




- 0.23 0.10
- 0.14

-


 (40)

Scenario 2:

mH = mA = 500 GeV

∣∣λU
∣∣ ≤




- 0.57 -
- -

-


 ∣∣λD

∣∣ ≤




- 0.35 0.17
- 0.23

-


 (41)
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Scenario 3:

mH = 500 GeV mA = 780 GeV

∣∣λU
∣∣ ≤




- 0.83 -
- -

-


 ∣∣λD

∣∣ ≤




- 0.52 0.24
- 0.34

-


 (42)

6 RGE evolution
The constraints from the neutral meson mixing does not affect the initial value of εU32

since there is no limit on λU32. However if the Yukawa couplings are not protected by
symmetry, quantum corrections can generate non-diagonal elements in ρF . Thus in
the RGE evolution of the Yukawa couplings large non-diagonal elements can affect
other non-diagonal elements which may be highly constrained.

In [21] the authors calculated the RGEs for the Yukawa couplings in the 2HDMs
and investigated their properties. The equations can be found in Appendix B. Note
how the Yukawa couplings are all connected which is the point of worry.

We have used the software in [21] to evolve the Yukawa couplings of the 2HDM
type III to see if and when the model breaks the constraints from F 0 − F̄ 0 mixing.
Even though the entire parameter space of εU32 is allowed, it can be very sensitive
when it comes to generate non-zero elements in the other Yukawa couplings. The
down sector (λD) is especially sensitive since it has limits on all its non-diagonal
elements. Even though these constraints on the Yukawa couplings are set at the
electroweak scale, it is troublesome if the model breaks them at an energy scale a
few orders of magnitude above. To explain that one would need to introduce some
extra degrees of freedom making the model incomplete. A large sensitivity in the
parameter space of εF can be a sign of fine-tuning making the 2HDM type III an
unattractive explanation to the tauonic B meson decays.

More details about the software which was used for the RGE evolution and the
input at the electroweak scale can be found in Appendix C.

27



7 Results
From the constraints on the parameters in the potential, we have investigated the
three different mass scenarios, defined in section 5.2. We have used the high value
of tan β = 50 which makes the model very unstable with respect to sin(β−α) when
it comes to bounded potential, unitarity and perturbativity. It practically forces
sin(β − α) to be very close to 1. However the value of sin(β − α) does not affect
the RGE evolution, only the constraints.

A contour plot of the εU32 parameter space can be seen in fig. 13. It shows at
what energy scale the non-diagonal λF elements become too large with respect to
the limits from F 0− F̄ 0 mixing. The plots are symmetrical around origin while the
fit of εU32 to the R(D(∗)) data in fig. 5 is not. This makes it possible to choose a
complex εU32 in the parameter space that is closest to the origin. Then the models
FCNC could be within limits all the way up to the grand unification scale(∼ 1018

GeV) assuming a heavy A boson. The region is however very sensitive and imposing
a real εU32 restricts the model by several orders of magnitude.

The FCNC constraints are more severe for lightweight H and A. Scenario 1 with
mH = 126 GeV breaks the FCNC limit already at around 1-100 TeV. This clearly
favors heavier H and A as expected since that suppresses the tree-level FCNC that
were a problem in the first place. One can note that for sin(β − α) ≈ 0.999, i.e.
close but not equal to 1, scenario 1 is the only possible one.

Scenario 2 and 3 are better with a few orders of magnitude and the radius of
the contours are expanded as well making it changes less sensitive.

We have used the smallest possible choice of a real value εU32 = −0.65 to see
how the individual non-diagonal elements evolve. This choice satisfies the fit to
R(D) and R(D∗) see fig. 5. One can clearly see that under RGE evolution other
non-diagonal elements become sizable. It is mainly the down sector elements that
become large. This can be seen if one studies the equations 62 and 63. The non-
diagonality spreads in the model to increase the down sector while εU32 decreases.
So the large initial value of εU32 does not make itself blow up.
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Figure 13: The energy scale in GeV where non-diagonal elements in ρU,D becomes
bigger than the constraints from F 0 − F̄ 0 mixing. The three plots are the three
different choices of the masses of mH and mA. (a): mH = 126 GeV and mA = 500
GeV (b): mH = mA = 500 GeV (c): mH = 500GeV and mA = 780 GeV. Compare
with fig. 5 and note that the allowed region in the parameter space is sensitive to
RGE evolution. Parameters used are tan β = 50, sin(β − α) = 1 and mH± = 500
GeV.
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8 Conclusion
In this thesis we have given a review of how the Higgs mechanism gives masses to
the fermions in the SM and the consequences of extending the SM scalar sector to
two Higgs doublets instead of one. We discussed the different 2HDMs that could
be possible candidates for BSM physics and how to avoid the tree-level FCNC with
discrete symmetries.

We have also explained how the data on the decays B → Dτν and B → D∗τν
does not agree with the SM and how it can be explained with the 2HDM type III.

To investigate the parameter space of the 2HDM type III we looked at the
stability of the vacuum, unitarity and perturbativity of the model. We also looked
at the contributions of the 2HDM to the oblique Parameters S and T. It turns out
that the value of tan β = 50 that is used in [3] makes the model very sensitive
with respect to the parameter sin(β − α) which one is almost forced to set to 1.
This corresponds to the decoupling limit where the lightest Higgs resembles the SM
Higgs. With the choice of sin(β − α) = 1 we presented the possible choices of the
H and A boson masses.

We calculated the constraints on the FCNC from F 0−F̄ 0 mixing in three choices
of the H and A boson masses.

And finally we did a RGE evolution of the Yukawa couplings of the model to
see whether the model was within limits at higher energies.

To avoid the unwanted FCNC of the 2HDM type III one is forced to suppress
the non-diagonal elements of the Yukawa couplings. The constraints from meson
mixings are very severe unless the neutral Higgs bosons are very heavy. But the
stability, unitarity, perturbativity and limits on the oblique parameters restricts
the freedom in choosing mH and mA freely. The best case scenario could allow
RGE evolution up to ∼ 1018 GeV if mH , mA are above 500 GeV and εU32 takes on
the value closest possible to the origin. However that scenario is only possible if
sin(β − α) > 0.9999. If sin(β − α) is less than that, then both mH and mA need to
be below 200 GeV. In that case the Yukawa couplings reach their limits already at
1-10 TeV.

Even though the case with only εU32 being non-zero among the non-diagonal
elements at the electroweak works out, the RGE evolution show that more concern
is justified since the non-diagonality of the Yukawa couplings spreads throughout
the flavors. Thus setting sizeable elements in the up sector causes the couplings in
the down sector to increase as well. This is probably a big problem if one wants
small but non zero elements throughout the sector since then the couplings would
increase faster and break the FCNC limits at lower energies. One should note as
well that the non-diagonal element that is required to explain the B → D(∗)τν data
with the 2HDM type III is an order of magnitude larger than the limits on the other
non-diagonal elements from F 0 − F̄ 0 mixing.

It is worth mentioning a few words about the stability of the allowed regions
in the mH −mA space in fig. 8-10 as well. The masses are highly constrained and
the allowed region is very narrow. This could likely be a problem if one would do
a RGE evolution of the λi parameters in the potential. If they are sensitive under
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RGE evolution one can easily break stability, unitarity and perturbativity.
In short one could say that the fit of 2HDM type III to the B → D(∗)τν data

requires a high value of tan β and masses of the H and A to be larger than 500
GeV. The choice of parameters seem to be unnatural since there would only be one
big non-diagonal element in the Yukawa couplings, without any motivation except
explaining the data. This forces sin(β−α) to be close to 1 and the model therefore
reaches the decoupling limit where the lightest Higgs boson resembles the SM one.
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Appendices

A Effective field theory for 2HDM type III
To calculate the contributions of the charged Higgs to B decays one needs to inte-
grate out the heavy degrees of freedom. This can be done with a operator product
expansion. Following the lines of [3] the effective Hamiltonian can be divided into
a SM term and the new contributions

Heff = Ccb
SMO

cb
SM + Ccb

RO
cb
R + Ccb

L O
cb
L (43)

where

Ocb
SM = c̄γµPLbτ̄γ

µPLντ

Ocb
R = c̄PRbτ̄PLντ

Ocb
SM = c̄PLbτ̄PLντ

and the C functions are the Wilson coefficients:

Ccb
SM =

4GFVcb√
2

, (44)

Ccb
R = − 1

m2
H±

ΓH
±LR

cb

mτ

v
tan β, (45)

Ccb
L = − 1

m2
H±

ΓH
±RL

cb

mτ

v
tan β, (46)

where Γ
H±LR/RL
cb are the couplings in eq. 24.

The contribution from the charged Higgs is contained in the Wilson coefficients
CR and CL and one can fit them to the data on B decay. This has been done in [3]
where they have found the contribution to the SM results to be

R(D) = RSM(D)

(
1 + 1.5 · Re

[
Ccb
R + Ccb

L

Ccb
SM

]
+ 1.0

∣∣∣∣
Ccb
R + Ccb

L

Ccb
SM

∣∣∣∣
2
)
, (47)

R(D∗) = RSM(D∗)

(
1 + 0.12 · Re

[
Ccb
R − Ccb

L

Ccb
SM

]
+ 0.05

∣∣∣∣
Ccb
R − Ccb

L

Ccb
SM

∣∣∣∣
2
)
. (48)

The Ccb
R,L depends on the non-diagonal elements εU,D so with these equations

the 2HDM type III can be fitted to the data on R(D) and R(D∗).

B RGEs for 2HDM
The renormalization group equations for the Yukawa couplings in 2HDM can be
found in [21]. Using the notationD ≡ 16π2 d

d(lnµ)
the RGEs for the Yukawa couplings
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in the general basis(the one used in eq. 14) are:

DηUk = −AUηUk +
2∑

l=1

{
Tr
[
Nc

(
ηUk η

U
l

†
+ ηDl η

D
k

†
)

+ ηLk
†
ηLl

]
ηUl

+
1

2

[
ηUl η

U
l

†
+ ηDl η

D
l

†
]
ηUk + ηUk η

U
l

†
ηUl − 2ηDl η

D
k

†
ηUl

}
, (49)

DηDk = −ADηDk +
2∑

l=1

{
Tr
[
Nc

(
ηDk η

D
l

†
+ ηUl η

U
k

†
)

+ ηLk
†
ηLl

]
ηDl

+
1

2

[
ηUl η

U
l

†
+ ηDl η

D
l

†
]
ηDk + ηDk η

D
l

†
ηDl − 2ηUl η

U
k

†
ηDl

}
, (50)

DηLk = −ALηLk +
2∑

l=1

{
Tr
[
Nc

(
ηUk
†
ηUl + ηDk η

D
l

†
)

+ ηLk η
L
l

†
]
ηLl

+
1

2
ηLl η

L
l

†
ηLk + ηLk η

L
l

†
ηLl

}
, (51)

where the AF are given by the gauge couplings g1, g2 and g3:

AU = 3
(N2

c − 1)

Nc

g2
3 +

9

4
g2

2 +
17

12
g2

1, (52)

AD = AU − g2
1, (53)

AL =
15

4
g2

1 +
9

4
g2

2. (54)

where Nc is the number of colors.
With sin θW being the weak mixing angle we have g1 = e/ cos θW , g2 = e/ sin θW

and g3 = gs and their RGEs are

D(g1) =

(
1

3
+

10

9
nq

)
g3

1 (55)

D(g2) = −
(

7− 2

3
nq

)
g3

2 (56)

D(g3) = −1

3
(11Nc − 2nq)g

3
3 (57)

where nq is the number of active quarks which is set to 6 in the RGE evolution.
The RGEs for the vacuum expectation values are

D(eiθkvk) = −
2∑

l=1

Tr
[
Nc

(
ηUk η

U
l

†
+ ηDl η

D
k

†
)

+ ηLl η
L
k

†
]
eiθlvl

+

(
3

4
g2

1 +
9

4
g2

2

)
eiθkvk (58)
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And finally the RGEs of the Yukawa matrices in the Higgs Basis:

D(κU0 ) =− AUκU0 + Tr
[
Nc

(
κU0 κ

U
0

†
+ κD0 κ

D
0

†
)

+ κL0
†
κL0

]
κU0

− 1

2
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U
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†
)
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U
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†
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(
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†
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D
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D
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†
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D(κD0 ) =− ADκD0 + Tr
[
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κU0 κ

U
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†
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D
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†
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†
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D(κL0 ) =− ALκL0 + Tr
[
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†
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D(ρU0 ) =− AUρU0 + 2Tr
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D(ρL0 ) =− ALρL0 + 2Tr
[
Nc

(
κU0 ρ

U
0

†
+ ρD0 κ

D
0

†
)

+ ρL0 κ
L
0

†
]
κL0

+ Tr
[
Nc

(
ρU0 ρ

U
0

†
+ ρD0 ρ

U
0

†
)

+ ρL0 ρ
L
0

†
]
ρL0

+
1

2
cot βTr

[
Nc

(
κU0 ρ

U
0

†
+ ρU0 κ

U
0

†
)
−Nc

(
κD0 ρ

D
0

† − ρD0 κD0
†
)
−
(
κL0 ρ

L
0

† − ρL0 κL0
†
)]
ρL0

+
1

2

(
ρL0 ρ

L
0

†
+ κL0 κ

L
0

†
)
ρL0 + ρL0

(
ρL0
†
ρL0 + κL0

†
κL0

)
(64)

C Input for RGE evolution
The RGE evolution was performed with a software used in [21]. By discretization it
solves the RGE equations and evolve all the parameters to higher energies. In each
step of the evolution, it diagonalize the κF matrices to keep the masses on the diag-
onal. The program uses C++ libraries Eigen and GSL to solve matrix operations
and ordinary differential equations with the Runge-Kutta-Fehlberg method.

The evolution starts at the electroweak scale µ = 91.186 GeV and thus needs
the appropriate input. The fermion masses are taken from [27] and are in GeV:

mu = 1.29 · 10−3 mc = 0.619 mt = 171.7

md = 2.93 · 10−3 ms = 0.055 mb = 2.89

me = 0.487 · 10−3 mµ = 0.103 mτ = 1.746

In diagonalizing the Yukawa couplings (κF matrices) the PDG phase convention
was used for the VCKM matrix.

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




Where

s12 = λ s23 = Aλ2 s13e
iδ =

Aλ3(ρ̄+ iη̄)
√

1− A2λ4

√
1− λ2 [1− A2λ4(ρ̄+ iη̄)]

λ = 0.2253 A = 0.808 ρ̄ = 0.132 η̄ = 0.341

And other parameters used are

v2 =
1√
2GF

GF = 1.16637 · 10−5 GeV−2

α ≡ e2

4π
=

1

127.91

αs ≡
g2

3

4π
= 0.118

sin2 θW = 0.2233
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