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Abstract 
 

 Recent trends of permafrost thawing in the subarctic are expected to cause increased release 

of dissolved organic carbon (DOC) to inland waters, which might have cascading effects on 

downstream aquatic ecosystems and release of CO2 to the atmosphere. This study therefore aimed 

at evaluating the applicability of an empirical band ratio algorithm for estimating chromophoric 

dissolved organic matter (CDOM; a proxy for DOC) from the easily accessible satellite images 

Landsat TM-5, to counter the inaccessibility of the region in general. The study targeted 14 smaller 

lakes in the Stordalen catchment in northern Sweden where values of CDOM absorbance had been 

obtained from the summer of 2009 that could be used to evaluate algorithm suitability. The satellite 

image type and algorithm have been successfully applied to predict CDOM in previous studies of 

lakes with relatively high absorbance, but in this study no significant correlations were found 

between the in situ measured and the remote sensing estimates for the studied lakes (in situ aCDOM 

(440) = 0.29 - 1.22 m
-1

; R
2
 ≤ 0.21); except for when lakes with certain characteristics were tested 

separately (shallow lakes R
2
 = 0.86). It was concluded that Landsat TM-5 images are not generally 

suitable for estimating CDOM in the Stordalen area. However higher quality satellite products 

probably would; since with a higher ground-, spectral- and radiometric resolution some 

disturbances could be reduced, more lakes could be included in the study and they would be more 

accurately recorded. Nonetheless more in situ collected data is needed for supporting the discussed 

deductions and for adaptive algorithm modifications. 

 

 

 

 

Keywords: Chromophoric, colored dissolved organic matter, CDOM, dissolved organic carbon, 

DOC, remote sensing, landsat thematic mapper 5, subarctic lakes, Stordalen, Abisko, empirical 

algorithm. 

 



6 

 

 

Table of Contents 
 

1. Introduction .................................................................................................................................... 7 
1.1 Aim ............................................................................................................................................. 7 

2. Method ............................................................................................................................................ 8 
2.1. Site description .......................................................................................................................... 8 

2.2. In situ sampling and absorption coefficients  ............................................................................ 9 

2.3. Image acquisitions ..................................................................................................................... 9 

2.4. Atmospheric correction ........................................................................................................... 10 

2.5. The empirical algorithm .......................................................................................................... 11 

3. Results ........................................................................................................................................... 12 

4. Discussion ...................................................................................................................................... 15 

4.1.Radiometric and ground resolutions  ........................................................................................ 15 

4.2. Atmospheric correction ........................................................................................................... 15 

4.3. Algorithms ............................................................................................................................... 16 

4.4. Lake characteristics ................................................................................................................. 16 

4.5. Timing ..................................................................................................................................... 17 

4.6. Future studies .......................................................................................................................... 17 

5. Conclusions ................................................................................................................................... 18 

6. References ..................................................................................................................................... 19 

 

 



7 

 

1. Introduction 
 

 Lakes are dynamic sites of carbon transport, transformation, and storage. It has been shown 

that the net carbon emissions from inland waters can be of the same magnitude as global terrestrial 

net ecosystem production, and that burial rates of organic carbon in freshwater sediments exceed 

the corresponding rates at the ocean floor (Finlay et al. 2009; Tranvik et al 2009). Inland waters 

therefore have environmental effects disproportionally to their spatial extent but still they are often 

overlooked in carbon cycling models and climate scenarios (Regnier et al., 2013). 

 Most carbon released to inland waters is in dissolved or particulate organic form (DOC or 

POC respectively) (Regnier et al., 2013). For the last decades it has been shown that concentrations 

of DOC in inland waters of North America and Europe have been increasing (Monteith et al., 2007). 

This has great impact on ecosystem functionings by stimulating organic carbon processing and 

emissions of CO2 to the atmosphere (Lapierre et al., 2013). Increasing DOC concentrations are in 

part explained by decreased atmospheric anthropogenic sulfur deposition, and have recently become 

evident in the form of brownification of inland waters (Monteith et al., 2007; Roulet & Moore, 

2006; Ekström et al., 2011). 

 Currently, brownification is not a major issue in subarctic waters, but certain trends gives 

reason to expect an upcoming change. The subarctic is estimated to store approximately 43% of the 

global belowground organic carbon pool in permafrost (Tarnocai et al., 2009), and as permafrost 

regions have been found to be warming more rapidly (Romanovsky et al. 2010) previously 

unavailable parts of the global soil carbon pool are made available for leaching to aquatic systems 

where further microbial and photochemical transformations of the carbon are likely to occur (IPCC, 

2007; Tranvik et al. 1996; 2009). This is supported by findings of Laudon et al. (2012) showing that 

DOC concentrations are strongly related to mean annual temperatures, especially in the range of 0° 

to +3 °C, where regions that are currently below 0°C (mainly permafrost regions) are more likely to 

experience increasing concentrations of DOC than regions above (Laudon et al., 2012). However it 

is not only carbon derived from previously frozen soils that will be made available; as tree-limits 

are rising (Kullman, 2002) new organic soils will be built up and with increased terrestrially derived 

DOC in subarctic lakes, bacterial production and respiration is predicted to increase (Jansson et al. 

2008). The changes in DOC quantity and characteristics might thus, have cascading effects on 

downstream aquatic ecosystems and their food webs (Berggren et al. 2009). 

 The monitoring of DOC in the subarctic is currently quite sporadic, considering the 

difficulty to access these regions, but with a functioning remote sensing protocol it would be 

possible to monitor changes of DOC seasonal variability and response to climate change (Kutser et 

al. 2005; Miller et al. 2005). One might even be able to reconstruct DOC availabilities from 

previous decades. Although aquatic remote sensing for inland waters have been restricted by 

technical obstacles there are today several satellite sensors that could possibly be utilized (Kutser et 

al., 2004). The reason why remote sensing has not been widely used to estimate DOC in subarctic 

lakes despite the availability of potential sensors today could be that DOC observation through 

remote sensing it is usually done by estimating the light absorbing part of dissolved organic matter, 

i.e., chromophoric or coloured dissolved organic matter (CDOM), and subarctic lakes are usually 

quite clear, thus making any variations difficult to observe. The purpose of this study is therefore to 

evaluate the applicability of an algorithm for CDOM estimation with satellite images that would be 

easily obtainable and available for time-series studies of subarctic lakes.  

  

1.1. Aim 

 

The aim of this study is therefore to test the suitability of using Landsat TM-5 images with an 

empirical algorithm to estimate chromophoric dissolved organic matter (CDOM). The Landsat TM-

5 satellite images were chosen  because of the similar spectral properties to other satellite products 
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that have been successfully evaluated in previous studies made by Kutser et al (2004; 2005), Kallio 

et al (2008) and Hirtle & Rencz (2003). Images from the Landsat archive was also chosen because 

of the availability of global image acquisitions since 1984 (USGS Landsat Missions, 2013a) making 

reconstructions of past DOC concentrations possible depending on the outcome of this study. The 

algorithm was also chosen based on its previous success in the studies by Kutser et al (2004; 2005) 

although these previous studies were performed over relatively more absorbing lakes. 

 

 

 

2.  Method 
 

 Currently there are a number different types of algorithms developed for CDOM 

estimations. In this study an empirical algorithm was chosen because of successful evaluations in 

previous studies made by Kutser et al (2004; 2005), Kallio et al (2008) and Griffin et al (2011) for 

images with similar spectral properties as the ones acquired for this study. Other algorithm types 

available can generally be divided into four groups: semi-analytical, matrix inversion methods, 

spectral matching and artificial neural network (Zhu et al., 2014). However, these other algorithms 

are quite complex and require a lot of specific in situ data while the simpler empirical band ratio 

algorithm can produce just as good results (IOCCG, 2000; Zhu et al., 2014). 

 

2.1.  Site description 

 

 The lakes in the study are located within a peatland complex in northern Sweden in an area 

called Stordalen, in close vicinity of the village Abisko, just south of the lake Torneträsk (figure 1). 

The peatland types surrounding the lakes can be divided into fens, bogs and palsa with an 

Figure 1. Map showing the location of the study site and the locations of the lakes of interest. 
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increasing shift from palsa to fen and bog (Malmer et al., 2005) due accelerating thawing trends of 

peatmire permafrost with a mean annual ground temperature around 0 °C (Johansson et al., 2011). 

The vegetation of the catchment is mainly open canopy mountain birch forest (Betula pubescence) 

with alpine heath above the tree line (Olefeldt & Roulet, 2012). Previously the vegetation 

surrounding the lakes have been dry shrub-dominated ombrotrophic but are now predominantly 

grasses in wet, nutrient rich conditions (Malmer et al., 2005; Johansson et al., 2011). 

 The area receives 303 mm precipitation annually (1913-2006) and has a mean annual air 

temperature of -0.6 °C (1913-2006) which has increased by 2.5 °C since the beginning of the 

measurements (Callaghan et al., 2010). The snowmelt period is 4-8 weeks which in 2009 began in 

early to mid-April (Olefeldt & Roulet, 2012). 

 Initially 27 lakes were planned to be included in the study but many had to be omitted due to 

their small surface sizes in relation to the ground resolution of the satellite images (30 m). In the 

end only 14 lakes were large enough to completely enfold at least a couple of pixels to avoid some 

adjacency effect of pixels close to or on shorelines.  

 For more specific conclusions to be drawn the lakes were classified into some grouped 

characteristics. Depth of the lakes were estimated and divided into 'shallow' or 'deep' on how much 

of the bottom could be seen in satellite images, which could be affected by water clarity. The lakes 

were also sorted into orders ranging from 0 to 8, where 0 means that the lake is a headwater lake, 

with no visible in or outflows and 8 means it is in the 8
th

 level of tributaries. The relative surface 

area classification was based on if several or few pixels could be fitted into the area but if the shape 

was more oblong it was still classified as small due to similar risks of adjacency effects as a smaller 

lake. It is also noted if the lakes have a mire upstream. 

 

2.2.  In situ sampling and absorption coefficients 

 

 Absorption coefficients from the lakes were received along with a short summary written by 

the researchers from Umeå University that had collected the data in 2009. In this summary some 

lake characteristics had also been noted which were used for classification purposes. 

 Water samples were collected in late May 2009 from the lakes in Stordalen. The samples 

were first filtered for 0.45 μm to remove larger particles then run through a spectrophotometer with 

a 5 cm cuvette. Two different types of spectrophotometers were used, with no significant 

differences in results. The first one was a 5-wavelength Shimandzu, the second a CIRC Jasco, 

recording from 200 to 900 nm. 

 The absorbances were initially in cm
-1

 but were converted to m
-1

 for correlation with the 

values derived from the satellite images by subtracting the 740 nm absorbance value from the 440 

nm then correcting for the scale by multiplying by 100. 

 

2.3.  Image acquisitions 

 

 Images were obtained through the online service Saccess provided by the Swedish 

governmental Land Survey Department; Lantmäteriet, with help from the company Metria in 

finding images with the least amount of cloud cover over the area of interest. Furthermore the 

search was delimited by the year that the in situ absorbance water samples were collected which 

was in 2009. Two images were chosen from consecutive months, July and August, where the cloud 

cover was as minimal as possible over the target lakes.  
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Table1. Wavelength specifications for Landsat TM-5. 

Band Wavelengths (μm) 

1 0.45-0.52 

2 0.52-0.60 

3 0.63-0.69 

4 0.76-0.90 

5 1.55-1.75 

7 2.08-2.35 

 

2.4.  Atmospheric correction 

 

 For the atmospheric correction the software ENVI 5.0 was used because of the Fast Line-of-

sight Atmospheric Analysis of Hypercubes (FLAASH) module which is based on the classic 

MODTRAN model patented by the US Air Force (Spectral Sciences Inc., 2012). The module 

calculates an image specific removal of aerosols and radiation back-scatter which is of great 

importance for aquatic remote sensing (Kutser et al 2005). Settings were adjusted according to the 

guides provided by Exelis VIS (2014) and used directly on the Landsat TM-5 images. In other 

studies such as the ones by Kutser et al (2004; 2005) the FLAASH module is applied to a Hyperion 

image which is then in turn used through an empirical line method to correct the main image. As 

Hyperion images were not available for this study that step was bypassed motivated by the fact that 

the images had low-to none cloud cover and very good initial visibility, and good results after 

visually comparing results after a so called Dark-pixel-subtraction method in the ENVI 5.0 toolkit, 

which is based on the empirical line principle (Smith & Milton, 1999). 

 To be able to perform the FLAASH correction some additional information about the 

imagery, satellite and location is needed, such as FWHM, Gain, Offset (table 2), units, coordinates 

for image center, ground elevation (380 m), ground resolution (30 m), radiometric resolution (8 bit), 

sensor flight height (705 km); these were found on the USGS website for Landsat 4-5TM 

calibration notices (USGS Landsat Missions, 2013b). Other information needed was the exact date 

and time of the fly-over which could be found in the metadata files belonging to the images (2009-

July-03, 10:39:08 am; 2009-August-04, 10:39:09 am). 

 
Table 2. Landsat TM-5 FWHM, Gain and Offset used in the atmospheric correction. Due to the units of the 

Gain and Offset a scale factor of 10 was used to convert from Wm
-2

sr
-1

μm
-1

 into μW/(cm
2
*sr*nm) (Exelis VIS, 

2014). 

Band FWHM  (μm) Gain (Wm
-2

sr
-1

μm
-1

)  Offset (Wm
-2

sr
-1

μm
-1

) 

1 0.485 0.762824 -1.52 

2 0.560 1.442510 -2.84 

3 0.660 1.039880 -1.17 

4 0.830 0.872588 -1.51 

5 1.650 0.119882 -0.37 

7 2.215 0.065294 -0.15 

 

 The atmospheric correction began with converting the original imagery from TIFF to ENVI format 

(.dat) along with subsetting the images to the area of interest. Gain and Offset values were then 

used to create Radiance images. To prepare the radiance images for the atmospheric correction the 

header files were updated with applicable values and units. 
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 The radiance image was then used as input for the FLAASH module. Where further 

specifications about the satellite sensor and imagery were added such as which scale factor to use 

for converting the units of the radiance image and modify parameters such as atmospheric model, 

aerosol options and initial visibility based on prior knowledge of the area. Several combinations of 

options were tested but finally the atmospheric model Sub-Arctic Summer with maritime aerosol 

model and initial visibility >40km was decided to be the most suitable for both images. 

 In fairly recent studies it has also been shown that specifically Landsat images perform well, 

if not even better regarding water quality estimations if they are not atmospherically corrected due 

to the neutralizing effect of the ratio calculation (Kutser, 2012; Olmanson et al., 2008; 2011). 

Therefore a reference correlation with the same B2/B3 band ratio was performed for the July image. 

Although not for the August image as it at that stage was deemed uncontributive under the current 

data analysis time constraints. 

 

2.5.  The empirical algorithm 

 

 To extract values of absorbance a band ratio calculation was performed for Band 2 and Band 

3. These bands were chosen over a Band 1 to Band 3 ratio because of the atmospheric disturbances 

in Band 1, due to sensor inadequacy even if CDOM absorption theoretically would affect Band 1 

(0.45-0.52 μm ) more than Band 2 (0.52-0.60 μm) (Kutser et al. 2004). 

 A shapefile outlining the lakes of interest was used to extract the pixel values to be used for 

testing the model. 

 Two approaches to testing the extracted values were taken, one were to calculate the average 

of all pixels within the lake, the other were to use the most represented value within the lake, since 

those values varied on initial inspection. After a Shapiro-Wilk normality test in SPSS these values 

were then plotted for a regression model against the lake averages of the in situ measured CDOM 

absorbance. The power function regression is used to find the algorithm parameters which would be 

applied to band ratios of other images to estimate their absorption coefficients. 
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3.  Results 

 

 In table 3 the characteristics of the selected study lakes are shown. Absorption coefficients 

range from 0.290 to 1.220 m
-1

. 

 
Table 3. Lake characteristics. Lake ID with average in situ measurements of absorption coefficients from 0,5 

m sample depth. Estimated lake depth from viewing satellite images. Lake order meaning how many levels of 

contributor lakes the lake in question have, where 0 means the lake is isolated with no visible inlets or outlets 

and 8 means it is the 8
th
 lake in the flow network. Relative surface area and if the lake is downstream from a 

mire. 

Lake Average In Situ 

aCDOM(440) m
-1

 

Estimated depth 

classification 

Lake order Relative surface area 

classification 

Mire 

upstream? 

L1 1.001 Deep 8 Large Y 

L2 0.675 Deep 6 Large Y 

L3 1.220 Deep 7 Small Y 

L4 1.146 Shallow 5 Small Y 

L5 0.594 Shallow 4 Small  

L6 0.730 Deep 3 Large  

L7 0.392 Shallow 2 Large  

L8 0.930 Shallow 1 Small  

L9 0.290 Shallow 1 Small  

L13 0.992 Deep 1 Small  

L14 0.646 Shallow 1 Small  

L18 0.910 Deep 0 Small  

L20 0.783 Deep 1 Small  

L24 0.950 Shallow 1 Small  

 

 Regression models for atmospherically corrected B2/B3 band ratios from 2009-July-03 and 

2009-August-04, failed to correlate to be able to predict the average values of in situ aCDOM(440) 

absorption coefficient when all selected study lakes were analyzed together (Figure 2). 

Differentiating between using the most represented pixel values or the average pixel values did not 

change the levels of correlation either, as an R
2  

value of at least 0.28 would be needed for 14 values 

to show significance (table 4).   

 
Table 4. Overview of images with values used and corresponding algorithms and R

2
. It is also noted if the 

image was atmospherically corrected before. (APV = average pixel value, MRPV = most represented pixel 

value). 

Image Values Algorithm R
2
 Atmospheric correction 

2009-July-03 APV ACDOM(440) = 0.986(B2/B3)
-1.094

  0.192 Yes 

2009-July-03 MRPV ACDOM(440) = 1.063(B2/B3)
-1.231

  0.214 Yes 

2009-August-04 APV ACDOM(440) = 0.813(B2/B3)
-0.288

  0.055 Yes 

2009-August-04 MRPV ACDOM(440) = 0.832(B2/B3)
-0.323

 0.026 Yes 

2009-July-03 APV ACDOM(440) = 1.437(B2/B3)
-2.656

 0.092 No 
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 All values for both 2009-July-03 and 2009-August-04 atmospherically corrected imagery 

B2/B3 band ratios were tested for Pearson correlation against each other which returned significant 

on a 2-tailed 0,001 level and were therefore combined for a clearer regression model, or a pseudo-

time series, although no stronger correlation was found for either the most represented pixel values 

(R
2
 = 0.082) or average pixel values (R

2
 = 0.082)(figure 3). 

 

 

Figure 3. In situ measurements of CDOM absorbance, aCDOM(440), plotted against combined band ratios 

B2/B3 from atmospherically corrected Landsat TM-5 imagery from July and August 2009. (MRPV = most 

represented pixel value, APV = average pixel value) 

Figure 2. In situ measurements of CDOM absorbance, aCDOM(440), plotted against band ratios B2/B3 

from atmospherically corrected Landsat TM-5 imagery from July and August 2009.Different types of 

symbols show different pixel value selection types: (%) = most represented pixel value,(DN) = average pixel 

value. No significant correlation was found. 
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 The regression test for the non-atmospherically corrected image for 2009-07-03 band ratios 

B2/B3 with average pixel values against average values of in situ measurements of aCDOM(440) gave 

no strong correlation either ( R
2
 = 0.092) but when the 7 lakes that had been classified as 'Shallow' 

in table 3 were plotted separately stronger correlations were found (figure 4 and table 5). The lakes 

that had been classified as 'Deep' still had no correlation (R
2
 = 0.154) but the average pixel values 

for 'Shallow' lakes returned R
2
 = 0.722 for the non-atmospherically corrected July 2009 B2/B3 ratio 

and  R
2
 = 0.861 for the atmospherically corrected July 2009 B2/B3 ratio. The same level of 

correlation was not found for the August 2009 images or for 'small/large’ surface area 

classifications. 

 
Table 5. Overview of the specifications for the correlations shown in figure 4. Alla values based on average 

pixel values. 

Image Atmospheric 

correction 

Classification Algorithm ACDOM (420) m
-

1
 

R
2
  N 

2009-July-03 No Deep ACDOM(440) = 1.18(B2/B3)
-1.260

 0.646 – 1.140 0.15 7 

2009-July-03 No Shallow ACDOM(440) = 9.744(B2/B3)
-1.272

 0.252 – 0.937 0.72 7 

2009-July-03 Yes Shallow ACDOM(440) = 1.460(B2/B3)
-3.588

 0.252 – 0.937 0.86 7 

 

 

 
 

 

 

 

 

Figure 4. Correlation between in situ measurements of CDOM absorbance, aCDOM(440), and band ratios 

B2/B3 from the non-corrected Landsat TM-5 image from July 2009 with average pixel values and divided 

into deep/shallow characteristics. The shallow values for the atmospherically corrected July 2009 image is 

also plotted. 
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4.  Discussion 

 

 The results gave no strong correlation between in situ measured absorption values for 

CDOM and the estimations from the Landsat TM-5 images. Much of the reason for this seems to be 

of the same nature as for a similar study made by Kutser (2012) where “the possibility of using the 

Landsat image archive for monitoring long time trends in colored dissolved organic matter 

concentration in lake waters” was studied. The Landsat sensors were found to be unfit for those 

purposes. The reasons for this was mainly three points according to Kutser (2012); (1) a too low 

radiometric resolution of only 8 bit, (2) the lake sizes being too small thus leading to large 

adjacency effects, which is also mentioned by Hirtle and Rencz (2003) in their use of Landsat 

images to measure DOC in Nova Scotian lakes. The third (3) reason according to Kutser (2012) was 

the high concentration of CDOM which does not seem applicable in this case, due to the relatively 

low absorption values from the in situ measurements. 

 

4.1.  Radiometric and ground resolution 

 

 The radiometric resolution of a satellite sensor determines how detailed the observed 

measurements can be recorded and allocated a value on a discrete radiometric interval (Miller, 

2005). For example: 4 bit resolution means values from 0 to 15 is available, 8 bit resolution means 

values from 0 to 255 is available and 16 bit gives values from 0 to 65 536 (ESRI, 2014). These 

differences can be considered by visualizing the possibility of detail for a picture drawn with 15 

different colours compared to one with 65 536 different colours. In this case an unsatisfactory 

radiometric resolution would lead to either more congregated or sharply diverse pixel values, which 

could be seen in the histograms of the extracted lakes, thus affecting the distribution of values 

which eventually is displayed by the difference between the most represented pixel value and the 

average pixel value. As can be seen in Figure 2 and 3 there is a slight difference between APV and 

MRPV values but not quite enough for it to be the sole reason for the inadequacy of the Landsat 

images. 

 It is also likely that the results are affected by spatial inadequacies leading to predominance 

of adjacency effects. Adjacency effects mean that reflectances from nearby objects influence one 

another through scattering, creating a blurring or leaking effect to reflectance values, which is 

especially true for lakes with small surface sizes (Tanré, 1987). To counteract adjacency effect 

Hirtle and Rencz (2003) selected pixel values towards the center of their lake. That was not 

applicable in this study as the spatial extent of the lake surfaces compared to the ground resolution 

of the images (30 m) was too small. Most of the lakes didn't fit many pixels to begin with and the 

two lakes it might be applicable to select only a few pixels from are not enough to draw a valid 

correlation from. In that case a longer time-series study would have to be done. Kutser (2012) found 

that Landsat images might be used for rough estimations of CDOM changes over time for a lake 

with an area of about 1140 km
2 

which is quite a lot larger than the lakes in this study; therefore such 

a study would be risky but interesting for application to the subarctic lakes. 

 

4.2.  Atmospheric corrections 

 

 Another reason for the weak correlation could be argued to be the atmospheric correction, 

which possibly could reduce some of the adjacency effects, but since the R
2 

(=0.092) value of the 

atmospherically uncorrected image was of the same scale, or sometimes better, than the 

atmospherically corrected images (table 4) it does not appear to be the main issue with the Landsat 

TM-5 images. The results that Landsat images perform better when not atmospherically corrected 

have also been found by Kutser (2012), Kallio (2008), Hirtle & Rencz (2003) and Olmanson et al. 

(2008; 2011); which is explained by uneven reduction of values between the bands, that become 
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enhanced through ratio calculations. This was also found during test corrections of the images in 

this study, when trying to find the most suitable settings in the FLAASH module, where some 

settings produced large amounts of negative pixel values, thus explained by over-correction. 

 

4.3.  Algorithms 

 

 Fallacies in the method of only using the simple empirical ratio algorithm could also be 

argued. Landsat TM images have been successfully used by Hirtle and Rencz (2003) and Griffin et 

al. (2011) with more complicated empirical algorithms (table 6). Although the images used by 

Griffin et al (2011) were mainly of the Landsat ETM+ type which has overall better resolutions than 

the TM-5 and the Kolyma River also have a larger spatial surface than the lakes used in this study 

thus enabling more selectiveness in pixel values. To develop their algorithm, a more time-series like 

approach was employed. That method could be applied here but better results would probably be 

yielded if more bands were included in the algorithm. 

 
Table 6. An overview of Sensors, algorithms, in situ data ranges (DOC & CDOM), correlation and numbers 

of samples from different studies. 

Author (year) Sensor Algorithm DOC 

concentration 

(mg L
-1

) 

ACDOM (420) 

m
-1

 

R
2 
 N 

Samples 

Kutser et al. 

(2004) 

ALI ACDOM(420)=5.13(B2/B3)
-2.67

 - 0.68 – 11.13 0.83 22 

Kutser et al. 

(2005) 

ALI ACDOM(420)=5.20(B2/B3)
-2.76

 7.2 – 12.3 1.28 – 7.74 0.84 245 

Kutser et al 

(2012) 

Landsat - - 0,03 – 20,2 - 19 

Kallio et al 

(2008) 

Landsat 

ETM+ 

ACDOM(400) = 23.33exp(-0.970(B2/B3)) - 1.0 – 12.2 0.83 29 

Hirtle & 

Rencz (2003) 

Landsat TM Log(DOC) = 3,49-0,121(B2)+0,072(B4) 2.8 – 13.1 - 0.72 18 

Griffin et al. 

(2011) 

Landsat 

ETM+ & TM 

aCDOM(420) = exp(-

1.145+26.529(B3)+0.603(B2/B1) 

2.14 – 9.52 1.38 – 6.45 0.78 18 

 

4.4.  Lake characteristics 

 

 A significant correlation to the in situ CDOM absorption was found for lakes that had been 

classified as shallow, but not for any other of the characteristics such as 'deep', 'small', 'large', with a 

mire upstream or the lake order. It does therefore not seem as just an overall level of characteristic 

homogeneity that determines correlation but more specifically relates to depth; unless there is just a 

lack of data for other correlations.  

 Since the waters have such low CDOM absorption values it is quite likely that the bottom 

substrate is influencing reflection values. In this case the difference between a vegetated bottom and 

a rock bottom could affect both the optical classification of depth and band values. Where 

vegetation might affect band 3 but rock would not be apparent until in band 6 or 7; only rock 

bottom lakes would give accurate absorption values with the B2/B3 algorithm. This explains why 

the shallow lakes got a correlation but not a perfect correlation. Zhu et al (2014) found that the 

inclusion of longer wavelength bands (>600 nm) were effective to the performance of empirical 

models which could produce more successful results in a future study. 

 However, increased or varying effects of optical disturbances with depth could be a reason 

why the lakes classified as deep did not get any significant correlation. If the issue then was of 
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physical optic disturbances such as refraction and absorption (as pure water in itself absorbs longer 

wavelengths) the band ratio algorithm would be less effective or only applicable to lakes of the 

same depth. If the optical disturbances was with turbidity or particulate organic carbon (POC) the 

difference between the filtered water sample absorptions and what would be detected by a satellite 

could make the data unmatchable, although that scenario is quite unlikely for the clear waters in the 

subarctic lakes. 

 Another reason that the lakes classified as deep did not get the same correlation could be 

that there is not enough spread of absorption values for the lakes in the study. Thereby being unable 

to produce a fitting curve as the values available are too few and clustered in a too short range. 

Which also leads to speculations whether the fitted curves for ‘deep’ and ‘shallow’ might just be 

slightly offset for the overall results to give a significant correlation. 

 The conclusions drawn above is supported in the IOCCG (2000) publication but for stronger 

conclusions to be drawn more lakes and more data of the lakes characteristics would need to be 

analyzed. 

 

4.5. Timing 

 

 In a DOC study by Olefeldt & Roulet (2011) of the same target lakes, they find that the 

snowmelt period affect annual DOC export from palsa and bog catchments differently than the fens. 

Thus since the snowmelt is considered to be responsible for more than half of the annual DOC 

export (Finlay et al., 2006), which started in early to mid-April in 2009 (Olefeldt & Roulet, 2011); 

the CDOM concentration for in situ sampling in May and image acquisitions from July and August 

might be more temporally impacted than initially expected. This should be kept in mind for future 

studies, where sampling could be done with respect to satellite fly-overs and clear skies. 

Characteristics data of the draining peatland-type to the specific lake could also be of interest. 

Especially since Cardille et al. (2013) have found a successful method for Canadian lakes in 

utilizing legacy lake samples and newer, high quality, satellite images. Their method is relying on 

knowledge of the in-lake CDOM processes and variations but eliminates the need for exactly timed 

images, which could be the most appropriate for this region. 

 

4.6.  Future studies 

 

 For future studies images from a higher radiometric and ground resolution sensor would be 

needed since the aCDOM values are low and the lakes are small and sensitive to optical disturbances. 

Other suitable sensors are:  

 Enhanced Thematic Mapper (ETM), Landsat 7 satellite. Same ground resolution (30 m) and 

same band widths (7 + 1 bands, 0.45 – 2.35 μm) but with better radiometric resolution. 

 Advanced Land Imager (ALI), EO-1 satellite. Same ground resolution (30 m) but with better 

band width resolutions (7 + 1 bands, 0.433 – 2.35 μm). 

 Operational Land Imager (OLI), Landsat 8 satellite. Same ground resolution (30 m) but 

better band width resolutions (9 bands, 0.43 – 2.29 μm). 

 Compact High Resolution Imaging Spectrometer (CHRIS), PROBA-1 satellite. Better 

ground resolution (18 m) and better band width resolutions (18 bands, 0.438 – 1.035 μm). 

 

 Out of the sensors listed the CHRIS from the European Space Agency looks the most 

suitable because of both having better ground- and band width resolutions. With increased ground 

resolution more lakes could also be included in the study which would be preferable for the smaller 

subarctic lakes in connection to fens, palsas, bogs and mires; it might even be able to include some 

streams, but more interestingly the shifts of DOC concentrations through the aquatic network in the 

catchment could be mapped where hotspots or sinks could be monitored. The shorter band width 
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resolutions would also make it possible to customize the algorithm very specifically. However the 

satellite has for the last decade had some issues; making reconstruction of past DOC concentrations 

improbable and only usable if in situ measurements are updated. Although the in situ measurements 

are still recommended to be updated and to include more information about the lakes as it would aid 

in drawing stronger conclusions about lake characteristics effect on CDOM absorption and 

correlation to remote sensed values which would in turn be used for optimizing the estimation 

algorithm. During in situ surveys specific radiances could also be measured and used in a more 

thorough atmospheric correction, which would be needed for all of the sensors listed above due to 

their higher sensitivity. 

 

5.  Conclusions 

 

 The Landsat TM-5 images are not generally suitable for estimating chromophoric dissolved 

organic matter in the Stordalen area. However it appears as if better results could be yielded if the 

satellite sensor used were of higher spectral or radiometric resolution and had better ground 

resolution for small lakes to be adequately represented, and if the in situ sample data was extended 

and included more information on lake characteristics; stronger conclusions could be drawn and 

corrected for in the choice of appropriate algorithm. 
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