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Abstract

This bachelor thesis on entanglement in nano systems includes a short presen-
tation of the history of quantum mechanics before entanglement takes the spot
light. A definition of entanglement will be stated as well as a prescription to
quantify it for a pure system. The knowledge will then be used to quantify the
entanglement for the ground state of few particle systems containing 2, 3 and
4 particles. The model that will be used is chosen to be as simple as possible,
but it can still give a feeling of how the entropy behaves in these small systems.
The few-particle systems can be compared to atoms in a molecule or quantum
dots in a nano system.
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Chapter 1

Introduction

Entanglement is a concept of quantum mechanics that has puzzled the world of
science for almost a century. Quantum mechanics was developed in the 1920’s
and 1930’s, and the theory contradicts the importance of common sense when
developing physical theories. Niels Bohr even claims that “Anybody who is not
shocked by quantum theory has not understood it”. [1]

It is not possible to write about entanglement without mentioning the con-
tradiction to classical physics that has shaken the view of the world that the
scientists nearly believed to be complete. When Albert Einstein, Nathan Rosen
and Boris Podolsky tried to convince the world that quantum mechanics is not
a complete theory of nature, they argued for a few “elements of physical reality”
that they asserted every physical theory must represent. [2] The EPR-paradox
(1935) showed that quantum mechanics violates the element of locality. Realism
is a fundamental principle in classical physics, which at can seem like an obvious
assumption, but seems to be violated by quantum mechanics as well. These two
arguments of common sense states [3]

(i) There is no action-at-a-distance in nature.

(ii) There exist an external reality with definite properties, whether or not
these properties are observed.

Quantum mechanics violates the state of realism (ii) by suggesting that a system
can be a superposition of many different states, and that a certain property can
have different outcomes, that is randomized proportionally to the probability
of each possible value. A certain value is only determined at the point when
the property is measured. According to quantum mechanics, measuring the
system could not only give different results, but also collapse the system to
that certain state which goes together with the value. Hence, simply measuring
or “observing” a property of the system could always put the system into an
irreversible state. To make this contradiction with common sense clearer, this
can be thought of as saying that the moon only exists in its orbit with certainty
when looking at it, since one is somehow observing its position. Not looking at
the moon, one can never be certain that the moon is in a determined place in
its orbit, or if there even has a position after all, until you observe it again.
That our moon suddenly appears in a galaxy far far away is of course not
a probable outcome even in the perspective of quantum mechanics, since the



moon is a macroscopic object that constantly interacts (i.e. gets measured) with
the universe. But for sure, how can anyone be certain of the state of a system
without interacting with it?

Many attempts has been made to find loopholes in the quantum theory, but
even up till the experimental attempts in 2013, the quantum theory seems to
agree with nature.

Entanglement is the concept in quantum mechanics that violates the argu-
ment of locality (i). If the entanglement is not broken between two subsystems
through further operations on the system, the correlation still exists even if the
particles are moved 150 kilometres away from each other, (this was experimen-
tally proved with polarization-entangled photon pairs, that were separated to
the islands of La Palma and Tenerife 2010 [4]). If their system is collapsed by
operating on one of the subsystems, experiments seem to agree that the other
subsystem instantly collapses accordingly with the first. This points to an in-
stant connection (or at least a connection faster than the speed of light) that
acts independently on the distance between the subsystems.

These results of distance-independent connection might wake dreams about
instant information transfer and even teleportation, since the locality, and hence
common sense, seems to be broken. In recent years, it has come to knowledge
that teleportation is possible, but this only includes teleportation of states (i.e.
a state of a system can be teleported to another system). Teleporting matter on
the other hand still seems to be an unsolved question, and even though states
can be teleported, there seems to be no way of achieving information by this
without an classical exchange of information as well. In recent years it has
been realized that entanglement constitutes a resource for quantum information
processing [1]. The prospect of scaling and interfacing quantum devices with
conventional electrons has sporred interest in entanglement in nano systems.

Nano systems are small enough systems to be able to behave quantum me-
chanically (with entanglement as an important application area), but large
enough to be included in larger systems such as processors. This is hence a
way of being able to use quantum phenomena in our macroscopic world. With
the definition of entanglement known in chapter 2, a model will be used to, in
the simplest possible way, determine the entanglement quantity of three small
nano systems of 2, 3 and 4 %—spin particles in chapter 4. As it will be mentioned,
these small clusters can both be compared with atoms of a trimer molecule, or
coupled quantum dots in a nano system.



Chapter 2

Entanglement

Entanglement represents a correlation between two subsystems that goes be-
yond their individual properties. A definition of entanglement can be stated
as "[...], two spatially separated particles are entangled if their state can not
be prepared from a product state by operating locally on each particle]...]. [5]
This will now be explained mathematically: Consider two subsystems A and B,
described by the wave functions |¢4) and |¢)) respectively. Bringing the two
systems together into one system [¢)), would in quantum mechanics be repre-
sented by a product state of the two subsystems

) = |¥a) ® [¥B) . (2.1)

But, if the two subsystems are prepared together, the total system can end up
in a state that do not consist of two individual states, but also has terms that
entangle the two subsystems. If the state of the system can not be represented
as a product state of two individual subsystems, the system is defined to be
entangled. A common entangled state in nature is the spin singlet state for two
%—spin particles:

1

V2

As can be shown, this state can not be achieved from a product state of the two
individual states [1pa) = (aa |T) 4 +5Ba|l) o) and [¥B) = (ap 1) 5 +Bs|l) ) and
is hence an entangled state, which can be found in a great part of the electron
pairs in nature.

|¥) (Ma@ s —1aehp) (2.2)

2.0.1 Quantifying entanglement - the von Neumann en-
tropy

There exist different ways of quantifying the entanglement, and different mea-
surements might be used in different areas of the field, but the quantity that has
been most successful for determining the entanglement of pure systems (which
with a simplification can be considered as isolated systems) is the von Neumann
entropy. This is hence the entropy that will be used to quantify the entangle-
ment of the following chapters, since the calculations mostly consist of pure
systems. The von Neumann entropy quantifies the entanglement by measuring
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Figure 2.1: An isolated system including two subsystems, A and B. The corre-
lation between the subsystems gives a value for the von Neumann entropy.

the available information between the subsystems A and B. Since the entan-
glement occurs between two participants, the entropy value is independent on
whether the calculations are considering the entropy calculated from the per-
spective of the subsystem A or B. This is quite neat as it drastically reduces
the amount of possible subsystem configurations when looking at a symmetric
system, as will be noticed in the following chapters.

Once the state of the pure system is known, the density matriz needs to be
calculated. The density matrix is generally a very useful operator when a system
is an ensemble of states or even a mixed system. From the density matrix, the
reduced density matrix can be calculated, considering only the subsystem A.
The density matrix p for a pure state is defined by

p=1¥) (| (2.3)

and the reduced density matrix is then

pPA = t?‘B(p) (24)

The partial trace trp is additive, and as the system is divided into the sub-
systems A and B, each element of the density matrix is calculated according
to

trp(lai) (az| @ [b1) (ba|) = [a1) (az| tr(|br) (bal)- (2.5)

The von Neumann entropy then measures the amount of available information
that is shared between the subsystems A and B with the use of the reduced
density matrix. The von Neumann entropy is calculated with its definition [1]

S(pa) = —tr(palogpa) = = > _ Aylog A, (2.6)

where {)\,} are the eigenvalues of p4. To calculate the entanglement entropies
for simple systems is now a straight forward action.



Chapter 3

The model

To be able to quantify the entanglement for a system of %—Spin particles (which
will be done in Chapter 4), the Hamiltonian of the total system have to be
calculated. Each particle has two possible spin states, |1) and ||), which will in
the following text be referred to as |0) and |1) respectively.

The Hamiltonian will here be considered in the simplest possible way in
these very first calculations of the entanglement. Assume that the Hamiltonian
of an isolated system of %—Spin particles consists of two terms

H=Hg+ Hy (3.1)

where Hg represents the Hamiltonian as a result of the individual particle energy
contributions to the total system and Hj is the added Hamiltonian that is a
result of the interaction between the particles.
The Hg term for a single spin particle in e.g. a magnetic field can be gener-
alized as
Hg = €1 [0) (0] + ¢, [1) (1]

and further rewritten as

€ +¢€ € — €
Hs = ~-2=5(10) (0] + 1) (1)) + =5=-(10) (0] — [1) (1])
.€rte€ € — €
= ]]_ .2
5 t—5— 7 (3.2)
with 0% = |0) (0] — |1) (1]. A constant energy contribution in the Hamiltonian

does not have any physical relevance (since the energies in a measurement are
already relative energies), therefore, only the second term in expression 3.2 will
be considered. We define

Hg = ec”

where € = % is the deviation from the mean value of the two energy values,
here defined to be real and positive, 0 < € € R. For N inseparable spin-particles
in equal potential, this term will be the sum of the individual particle energies

N
Hg = Z €oy. (3.3)
i=1



To simplify the system further, the system is said to follow the Heisenberg
XXZ-model, where the interaction in the X and Y directions are taken the
same. For simplicity, the interaction in the Z-direction is put to zero. Doing
this, and letting a particle interact pairwise with its nearest neighbours only,
the interaction term of the Hamiltonian will have the following form

N
H; = Z Jij(of ® 0f + o} ®0Y) (3.4)

4,J=1

where ¢ = |0) (1] + [1) (0], o¥ = i(]0) (1] — |1)(0]) and J;; is J if ¢ and j
are nearest neighbours, and 0 otherwise. In the calculations in Chapter 4,
the particles are always at equal distance to each other and hence, no particle
interaction will be neglected. J is the factor that determines the strength of the
interaction between the particle pair, here defined to be real, J € R.

With the Hamiltonian known, the states with their corresponding eigenvalue
can now be calculated for the systems that will be considered in the following
chapter.



Chapter 4

The von Neumann entropy
for few-particle systems

—
50 nm

Figure 4.1: Examples of possible three %—spin particle systems. Left: Gold nano
particles from Van Duyne Group, Northwestern University. Right: Quantum

dots [6].

The entanglement in systems of a few interacting %—Spin particles will now
be quantified. These particles could be e.g. magnetically impure metallic nano
particles or electrons in quantum dots in a nano system, see figure 4.1. Even
though assumptions and simplifications were made in the model that will be
used, the results will give some idea of how these kinds of systems behave.

To begin, a small system consisting of two localized %—spin particles will be
considered, to further expand the system to three and even four particles. In all
these systems, the entanglement entropy of the ground state (which depends on
different rates of J/e¢) will be calculated. The ground state will be considered
because this is the state which is most likely to find a system in when considering
nano systems in thermal equilibrium at low temperature. Also, as the number
of particles in a system is increased to N, the eigenstates of the Hamiltonian
of the system increases to 2V, which quickly becomes a large number. A lot
of symmetries can though be found which minimize the amount of calculations
that needs to be done. For larger system, the states are easier to be calculated
numerically in a program.



4.1 2 particles

Figure 4.2: Two particles in an isolated system.

According to equation 3.3, the Hg-term in the Hamiltonian for two particles
will be
Hs =¢(o] @1+ 1R 035) (4.1)

which means

Hg = €[(|0) (0] = 1) (1]) @ (|0) (O] +[1) (1]) + (10 (0] + 1) {1]) @ ((|0) (O] —[1) &I;])
Particle 1 and 2 are chosen to individually be independent of each other and
hence commuting. Equation 4.2 can then be easily be simplified by letting
|01) (01] ®|02) (02| be denoted as |0102) (0102|, and further simplified to |00) (00|
by letting particle 1 be consistently denoted to the left and particle 2 to the
right. The expression of Hg will then become

Hyg = 2¢(]00) (00| — [11) (11]). (4.3)

As can be seen in equation 4.3, the cases where the two particles are of opposite
spins, the sum of the individual energies adds to zero.
The term that is a result of the interaction between the two particles will
look like
Hy = J(of ® 05 + 0f © 03)

which is equal to
Hy = J[(|0) (1] +1) (0])@(|0) (1]+]1) (0D +3*(|0) (1] —[1) (O)) @ (|0} (|~ [1) (O])]-

Here, one can see that in this model, interaction only occurs when the two
particles are of opposite spins. With the new denotation it will be

Hy = 2J(]10) (01] + 01) (10]). (4.4)

With both terms determined, the Hamiltonian for two %—spin particles in
the chosen model will be the sum of these and the matrix will look like

2 0 O 0
0 0 2J O
H = 0 2J 0 0 (4.5)

0 0 0 —2e



with matrix denotations in the basis {]|00),|01),|10),|11)}.
Solving the eigenvalues {);} by diagonalizing the matrix, and with the equa-

tion H |¢;) = A; |1);) calculating the eigenstates, the possible eigenstates for the
system with their eigenvalues will be

1. |¢1) = |00) with eigenvalue 2¢

2. o) = |11) with eigenvalue —2e

3. |ys) = %(HO) +101)) with eigenvalue 2.J
4. |iy) = 12(|10> —|01)) with eigenvalue —2.J

The energy ratio between the interaction energy and the individual energy,
J/e, may differ due to circumstances of the system. Plotting the energy ratios
{\i/€e}t,; to the ratio J/e, the ground state at different ratios can easily be
found, see figure 4.3. As mentioned in chapter 3, € is defined to be real and
positive, and J is defined to be a real. As can be seen in figure 4.3, in region I,

2 particles

10 i

Ne
o

-10
-3 -2 -1 0 1 2 3

Figure 4.3: The energy ratios for the eigenvalues, {\;/e}?_;, plotted to the ratio
for the interaction strength .J/e for a system of two spin-particles. The plot is
divided into three regions, I, IT and III, with different ground states.

where J < —¢, the ground state is
o [i5) = J5(01) +10)

and in region II, where |J| < ¢, the ground state is
o [¥5) = 11).

In region ITI, where J > ¢, the ground state is

o |43) = J5(l01) - [10)).

10



It is seen that as the absolute value of the interaction strength of the particles
increases, it is prefarable for the systems to be in a state that is a superposition of
different spin configurations. For a positive J, the singlet state is favored as the
ground state of the system. By simply rewriting the H-part of the Hamiltonian,
it can be shown that the energies of H is given a positive contribution from the
total spin of the system. Hence, the singlet state with the total spin Sg = 0,
will be favored as the ground state, compared to the triplet state with the total
spin St = 1. The difference in energy for the triplet and singlet state |i2) and
|th4) with spin configurations |S = 1, Mg = 1) and |S = 0, Mg = 0) respectively,
is a result of the exchange interaction [7]. The exchange energy X is given by
A2 — Ay = —2X = —2(e+J) which with the insert of Ao and Ay yields X = e+ J
for this two-particle system.

4.1.1 The von Neumann entropy

Figure 4.4: Two particles in an isolated system where the von Neumann entropy
is calculated between the subsystems A and B.

The von Neumann entropy is first calculated for region I of figure 4.3, with
the ground state ‘w;>. Following the steps in section 2.0.1, the density matrix
is first determined according to equation 2.3

p=Y) (|
=
000 0
1o 11 0
=510 1 1 0
00 0 0

The reduced density matrix for the subsystem A is calculated according to
equation 2.4
pa=trp(p)

where the calculations for the reduced trace operator is defined in equation 2.5,
and the new denotation of the commuting states give the expression

trp(laibr) (azba|) = [a1) (a2 (b2|b1)

11



for each element of the density matrix. For the state |¢;> with the density
matrix seen above, the reduced density matrix is

pa=1 <}) ‘1’) | (4.6)

With this diagonalized matrix, the von Neumann entropy is simply calculated
according to equation 2.6, where

S(pa) == AelogAs.

The von Neumann entropy for ground state ’1/13> is
e S =log2~0.301.

This is a maximally entangled state for a 2-particle system!

Since the ground state in the second region is not a superposition of different
possible states, there can not exist any entanglement. Calculating the reduced
density matrix for this state results in a one dimension-matrix p4 = |1) (1| and
the entropy for this state is accordingly

° ngloglzo

For the third region, where the ground state is |¢Z’>7 the density matrix is
calculated in the same way as above to be

—_
|
—
oo o

This gives a reduced density matrix equal to 4.6 and accordingly the same
entropy

e S3=1log2~0.301.

It seems like there is a connection between the strength of the interaction
and the entanglement of the ground state. With |J| > €, the entanglement in
this system is maximized while for |J| < e, there is no entanglement in the
ground state at all.

4.2 3 particles

Now, a system containing three particles will be considered and the von Neu-
mann entropy will be calculated for the ground states. An equilateral triangle
is created and the interaction will be calculated pairwise. The Hg-term of the
Hamiltonian will now be a sum of three particles

Hs=€(0i®1®1+1R05101+1Q1R03).

Computing the term in the same way as for 2 particles gives the result

Hg = ¢[3(|000) (000] — [111) (111]) + 001) (001 + |010) (010] +
+[100) (100| — |110) (110] — |011) (011] — [101) (101[].

12



Figure 4.5: Three particles in an isolated system with a symmetric interaction
strength between the particles.

This is understood more clearly in matrix form. Let the basis be
{]000}),|100) , [010) , |001),|110),]011),|101),|111)}. Now, the Hg term can be

read as

OO OO OO W

0

o eNeBeoNeNell -

OO OO+ OO

0

O OO OO

0

o 0 0 O
o 0 0 O
o 0 0 O
o 0 0 O
-1 0 0 0 (4.7)
0o -1 0 O
0o 0 -1 0

The interaction part for three particles will be

H; = J(07®05@1+07®1R05+1Q05 @05 +0] R0y @140 Q1Q05+1Q05 @03 ).

Which eventually gives the matrix

00 0 0 0 0 0O
001 10000
01 01 0 000
01 1.0 0 000
Hr=2J1g 00001 1 0 (4.8)
00 0 01 0 10
00 0 0 1 1 0 0
0000 O0OO0OTUO0OTPO
The Hg-term and the H;-term now sum up to the Hamiltonian
3¢ 0 0O O 0O O0 O 0
0 e 2J 2J 0 0 O 0
0 2J € 2J 0 0 0 0
0 2J 2J € 0 0 0 0
H = 0 0 0 0 —e 2J 2J 0 (4.9)
0 0 0 0 2J —e 2J O
0 0 0 0 2J 2J - O
0 O 0 0 0 0 0 —3e




according to equation 3.1. The eigenstates and eigenvalues of the block matrices
was calculated by hand in the same way as for two particles, and the results
were checked in Mathematica. The eigenstates of the Hamiltonian are:

1. |¢1) = |000) with eigenvalue 3e
. |¢2) = |111) with eigenvalue —3e
. |13),|v4) are linear combinations of «;(|011) — [110)) + G3;(]101) — |110))
with eigenvalue (—e — 2.J)
4. |¢5) , |1b6) are linear combinations of «;(]001) —[100)) + 5,(|010) — |[100))
with eigenvalue (e — 2.J)
5. |v7) = %(|110> + [101) + |011)) with eigenvalue (—e + 4.J)

6. [1g) = %(|001> +1010) + |100)) with eigenvalue (e + 4.J)

w N

3 particles
15 , , , , ,
3
=3
10 — —-2J|
€-2J
5 T —e+4d |
£+4J ||
w
=< 0f 7
_5' -
-10f | M i :
_15 1 1 1 1 1
-3 -2 -1 0 1 2 3

Figure 4.6: The energy ratios for the eigenvalues, {\;/€}%_;, plotted to the ratio
for the interaction strength J/e for a three particle system.

The energy ratios {\;/e}5_; were plotted against the ratio J/e, as can be
seen in figure 4.6. It can be seen that the strongest interaction is found when the
three particles are found in a completely symmetric superposition of all possible
configurations with the same sum of the spin projections Zle sg). The total
spin is not considered. The plot shows that, as for two particles, the ground
state depends on the ratio J/e and this ratio can be divided into three regions.

In the eigenstates for three particles, there exist degenerated states for the
eigenvalues (—e — 2J) and (e — 2J), which is a result of the symmetry of our
system and/or possible hidden symmetries that are not considered here. The
degeneration leads to an existence of an infinite number of eigenstates that is a
linear combination of two eigenstates.

In region I, where J < —%e, the ground state is

14



o ]w;}:%(\110>+|101>+|011>)

with the energy (—e + 4J). In region II, where —%e < J < ¢, the ground state
is
o [42) =111).

and in region III, where J > e, the ground state is a mixed state of the de-
generated states with eigenvalue (—e — 2.J). The states which are chosen to be
considered can have different criteria, such as rotational symmetry, but there is
no principle that claims that a system prefers one state in front of the other.
A trace over degenerated states is basis invariant, so the von Neumann entropy
will be calculated, even though it is not as successful for what now is a mixed
state. To create an orthonormal base, orthogonalization is done by hand with

the Gram-Schmidt and checked with Mathematica. The results are the two
states

o |43') = J5(|011) — [110))
o [132) = Z(~011) — [110) + 2]101)).

-5

4.2.1 The von Neumann entropy

Figure 4.7: The Neumann entropy calculated between the two subsystems A
and B.

In the same way as for two particles, the entropies of the ground states were
calculated to be

o Sy =—3log1/3 — 2log2/3 ~ 0.637
o SQ =0.
The ground state of the third region consists of degenerated states. Since no

principle claims that a system prefers one state in front of the other, the density
matrix is calculated with its general definition that includes mixed states [1]

p= Zpi i) (il (4.10)

where p; is the probability for the state |1;). The probability for each state is
assumed to be the same, following the argument that no pinciple claims that a
system prefers one state in front of the other. With p3; = psa = 1/2, the density
matrix was calculated and the entropy of this mixed state was calculated to be

15



o Sy = —%log% — %log§ ~ 0.6365.

Even for three particles, the interaction strength is shown to affect the en-
tanglement of the ground state in the same way as for two particles.

Since there exist symmetries in the system and in the entanglement quantity,
and the von Neumann entropy is most suitable for pure systems where all sub-
systems are included in the calculations, there exists no other way of dividing
the subsystems A and B to achieve different entropy values.

4.3 4 particles

Figure 4.8: A four particle system with equal interaction strength between the
particles.

Four particles are placed as a tetrahedron, where each particle pair has the
same interaction strength (all pairs are nearest neighbours). The Hamiltonian
was calculated by hand in the same way as for two and three particles. The
matrix in the chosen basis is

4¢ 0 0 O 0O O O 0O O 0O 0 © 0 0 0 0
0 2 2J 2J 2J 0 0O O 0O O 0 0O 0 0 0 0

0 2J 2 2J 2J 0 0O O O O 0 0 0 0 0 0

0 2J 2J 2 2J 0 0 0 0O 0 0 0 0 0 0 0

0 2J 2J 2J 2 0 0 0O 0O O 0 0 0 0 0 0

0 0 0 0 0 0 2J 0 2J 2J 2J 0 0 0 0 0

0 0 0 0 0 27 0 2J 2J 2J 0 0 0 0 0
g_l0o o o 0o o 0o 27 0 27 27 27 0 0 0 0 0
“lo o o o0 o0 2J 2J 2J 0 0 2J 0 0 0 0 0
0 0 0 0 0 2J 2J 2J 0 0 2J 0 0 0 0 0

0 0 0 0 0 2J 0 2J 2J 2J 0 0 0 0 0 0

0o 0 0 O 0O 0 0 0O 0 0 0 -2 2J 2J 2J 0
00 0o 0O 0O 0O 0 0O 0 0 0 2J -2 2J 2J 0

0 0o 0o O 0O 0O 0 0O 0 ©O0 0 2J 2J -2 2J 0

0 0o 0 O 0O 0O O O 0 ©O0 0 2J 2J 2J -2 0

0 0o 0o O 0O O O O 0O O 0 0 0 0 0 —dc
(4.11)

For time saving, Mathematica calculated the eigenstates and eigenvalues of this
matrix. The results are:

1. |¢p1) = |0000) with eigenvalue 4e

2. o) = |1111) with eigenvalue —4e

3. |¥3), [14), [ths) are linear combinations of a;(]1001) —[0110))+ 3;(]|1010) —
|0101)) + 7;(|1100) — |0011)) with eigenvalue O

16



4. |ie) = ﬁ(mlll) +]1011) + |1101) + |1110)) with eigenvalue —(e — 3.J)

5. |¥7),|ws) , [1he) are linear combinations of «;(]1000)—[0001))+4;(]0100) —
|0001)) + ~,(]0010) — |0001)) with eigenvalue 2(e — J)
6. |t10), [111) are linear combinations of ay (|0110)+]1001)—]0011)—|1100))+

Br(]0101) 4 |1010) — |0011) — |1100)) with eigenvalue —4.J
- [12) = Z=(|0101) +[1010) + |0011) +[1100) + |0110) + [1001)) with eigen-
value 8J

~

8. |t13), [114) , [th15) are linear combinations of oy (|1110)—]0111))+5;(|1101)—
|0111)) + ;(]1011) — |0111)) with eigenvalue —2(e + J)
9. |Yr6) = ﬁ(|0001> + ]0010) + |0100) + |1000)) with eigenvalue 2(e + 3.J).

As for three particles, the strongest interaction occurs when the state is a com-
pletely symmetric superposition of all possible configurations with the same
and minimized sum of the spin projections Z?:l sg). The total spin is not
considered. The energy ratios {\;/e}18, against J/e were plotted and since the

4 particles
25 ‘ : ;
201
—0
157 4
10r -4
‘ / B e b))
Sh——— T 2())
2 o0 e -4
T 8J
=l | —2()
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| I 11
-201
—2b Il Il Il 1 Il I}
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Figure 4.9: The energy ratios for the eigenvalues, {\;/€}1%,, plotted to the ratio
for the interaction strength J/e for a four particle system.

J-dependence of the eigenvalues stays linear as the number of particles increases,
there are three different regions to examine.
In region I, where J < —%e, the ground state is the state

. ’¢;> = |¢12) = %(|0011> +]0110) + |1100) 4 |0101) + |1010) + |1001)).
In region I, where —%e < J < ¢, the ground state is the state

o |v7) = l2) =[1111)
and finally, in the third region, where J > ¢, the ground states consist of de-

generated states with eigenvalue —4.J. With the same arguments as for three
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particles, the density matrix will be calculated for a mixed state constructed
from two orthogonal eigenstates with equal probability

o [¥5') = J7(]0110) + [1001) — [0011) — [1100))
o [¥3?) = 5(210101) +2[1010) — [0011) — [1100) — [0110) — [1001}).

In figure 4.9, points can be found where the ground state shifts. In this four-
particle system, the shift at J = ¢ also includes a degeneration of the states
|th13) , [114) , |t015), which are not ground states in any of the regions. These
states will though not be considered when calculating the entropy for the ground
states.

4.3.1 The von Neumann entropy

A B

Figure 4.10: Division of the subsystems A and B between which the entropy
will be calculated.

In the same way as for two and three particles, the entropies between the
subsystems A and B as shown in figure 4.10 was calculated to be

e S; =log2=0.301
L] SQ =0.

With the density matrix for mixed state defined in equation 4.10, with p; =
p2 = 1/2, the von Neumann entropy was calculated to be

e S3=1log2 = 0.301.

These entropy values of log2 are the same as the values calculated for two
particles. This is notable since the subsystems are here divided with 1 and 3
particles respectively.

This pattern may suggest that all systems with an even number of particles,
and with one subsystems containing one particle only, gives these results, but
this statement needs to be further examined.

The calculated von Neumann results quantifies the entanglement between the
subsystems A, with one particle, and B, with three particles. For this pure four
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Figure 4.11: Division of the subsystems A and B, containing two particles each.

particle system, there is also another way of dividing the subsystems to calcu-
late the entanglement. Dividing the particles two and two, as can be seen in
figure 4.11, might give a different result.

Calculating the reduced density matrices with this division gives the follow-
ing result of the entropies for the ground states of the system:

o Si=—2logl—4log 4~ 0868
i 52:07

and for the mixed state

o Ss = _%bg% — %]og% ~~ 1.2425.

Dividing the system like this results in the largest entropy values that has been
calculated so far. Even though S3 is is not fully considered as it is a mixed
state, S7 still reaches the tops of the calculated entropies.

Consistently, the results have shown that the entropy is at its largest value
when the ground state is a superpositioned state that is as symmetric as possible,
with a the sum of the spin projections Zf\il si” of each superpositioned state
as small as possible.
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Chapter 5

Outlook

Even if the model in these calculations are as simplified as possible, the results
give a feeling of how the entropy behaves in few interacting %-spin particle
systems. With a strong interaction between the particles, the entanglement
seems to exist in the ground state. The pattern that have occured for the
pure state, that the strongest interaction occurs for a completely symmetric
superposition would be interesting to further examine for larger systems. To
give a better grasp of the behaviour of the entropy, it would also be interesting
to calculate the entropy for the states which superpositioned states are not
minimized in the sum of the spin projections. The total spin of the system
was only considered for the two-particle systems, but it would be interesting to
consider the total spin in the states of the systems of 3 and 4 particles.

With a better grasp of the phenomena with these possible patterns, the
quantification could be made more systematic for larger systems. Comparing
mixed states with pure states are not to prefer, since different methods are
prefered in the entanglement quantification of these systems. Degenerate states
can be avoided by considering systems with less symmetry, but then the ap-
proximation of nearest neighbour-interaction will result in a quantification that
is more approximated than the symmetrized systems that has been considered
here. With a system consisting of more than 4 particles though, the symmetry
must be broken, since the dimension of space needed for equal distance of the
particles is already maximized in the 4-particle case. To be able to create these
kinds of system in a laboratory, the importance of the simplifications that have
been made need to be considered.

The field of quantum mechanics and entanglement is in a historical sense
a new field, that is still developing and explored with curiosity. The limits
of what could be achieved with the new gained knowledge have not yet been
reached, and how to quantify entanglement and other new properties in a useful
way is still a question with an unclear answer. Nano systems might though,
as mentioned earlier, be a way to connect quantum mechanical phenomena
with the macroscopic world. Knowledge is good, but knowledge is even better
if it can be applied. The areas where entanglement is potentially useful are,
so far, superdense coding, quantum teleportation, interferometry and quantum
cryptography. The future with applications of entanglement might not be far
away.
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Chapter 6

Self-reflection

During this work, I have gained a lot of knowledge and experienced personal
growth. I have learned to use programs that are used in the daily work for many
mathematical physicists. Both Latex and Mathematica were unknown softwares
to me before I started, but now I can not imagine writing a thesis without them.
Before I started my thesis I had already heard about entanglement and gained
curiosity about the subject, but not fully known the area and its capabilities.
I now feel that I have gained more knowledge about the history of quantum
mechanics and entanglement, which has been very interesting as this is an area
which is really up to date and which possibilities are still examined. I have
learned terminology about the subject which deepens my understanding of it
and I too, as I believe every person that learn about the subject, have gone
through a lot of thinking and discussions to come to the point where I at least
think that I know enough about the subject to be able to figure out what it is
possible, and what it is not.

I have really enjoyed working with entanglement, since this is the part of the
world of physics which has really captured my interest. I hope and believe that
my future studies will keep focusing on the world of quantum mechanics.

I also feel that I have grown personally during these months. To work with a
thesis together with a supervisor for a whole semester, and now have the result
in my hands feel like a great achievement that strengthens my self-confidence
that will help my future studies and master thesis. Overall, it has been really
fun to do my bachelor thesis and I am so happy that I was able to work in the
subject of physics which I am most interested in, with Peter Samuelsson as my
supervisor.
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Figure 4.1 (left) was found from the source http://www.ineffableisland.com /2011 /04 /nanotechnology-
to-aid-art-restoration. html.

All other figures was made by the author.
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