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Abstract

This thesis concerns itself with relative primality of integers. It uses
the concept of totatives, that is, integers relatively prime to a fixed
number n, to investigate the distribution and products of those inte-
gers.

The thesis presents two sufficient conditions for uniform distribu-
tion of totatives, a composite analogy of Wilson’s theorem, and some
results on partial products, including sufficient conditions for congru-
ence of partial products in composite moduli and the Gauss and Jacobi
coefficient theorems for prime moduli.
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1 Introduction

The natural numbers are the most ancient of all mathematical objects, and
the fascination for and study of integers predates universities and academies.
Divisibility of integers has been a subject of study at least since antiquity,
with Euclid stating the main features of the fundamental theorem of arith-
metic in his Elements (book VII).

This thesis is devoted to the study of integers with a special property:
that of being relatively prime to a fixed prime or composite number n. By
the fundamental theorem of arithmetic, every integer n > 1 can be expressed
uniquely as a product of primes, n = pα1

1 pα2
2 · · · pαrr where p1, . . . , pr are dis-

tinct primes and αi ≥ 1 for i = 1, 2, . . . , r and r ≥ 1. If the integer k does
not share any prime factors with n, we say that k and n are relatively prime.
We shall, however, use a slightly different terminology that is better suited
to the purpose of this thesis.

Definition 1.1. Given an integer n, we say that k is a totative of n if
and only if k and n are relatively prime.

The concept of totatives marks a fruitful path of inquiry, as it leads us to
look beyond the relation

n ∗ k ⇔ n is relatively prime to k

and turn our attention to the set of integers relatively prime to a given
integer n. Studying totatives, it suffices to consider the interval 1, 2, . . . , n−
1, for they recur periodically with period n. Indeed, if τ is a totative of n, so
is n+ τ . This leaves us with the task of investigating φ(n) numbers, where

φ(n) = n(1− p−1
1 )(1− p−1

2 ) · · · (1− p−1
r ) (1.1)

denotes Euler’s phi-function. This set, which can be identified with the
multiplicative subgroup Un of the ring Zn, is what we will dissect in this
thesis. We shall construct rules for dividing it into subsets and consider the
cardinalities of these subsets as well as the products of all elements in the
subsets. As we shall see, some interesting results can be obtained for n both
prime and composite.

The point of departure of this thesis is two articles, one by Cosgrave
and Dilcher [CD11] and one by Lehmer [Leh55]. Most central theorems and
proofs in this thesis are presented in their entirety in these articles. However,
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there are some (nontrivial) results which I consider to be my own contri-
butions which I have marked with an asterisk [*]. The reader is assumed
to have a basic understanding of elementary number theory and group and
ring theory.
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2 Uniform Distribution of Totatives

An interesting aspect of the subject of totatives (see Definition 1.1) of a given
composite number n = pα1

1 pα2
2 · · · pαrr , is their distribution over the real line.

This section of the thesis will concern itself with defining uniform distribu-
tion of totatives, and presenting two sufficient conditions under which the
totatives of n are uniformly distributed.

It is clear that for a prime p, by any definition the totatives must be
uniformly distributed over the interval 1, 2, . . . , p−1, as in fact all integers in
this interval are totatives of p. To define uniform distribution of totatives for
a composite number n, let us divide the interval 1, 2, . . . , n into k subintervals
of equal length, [nq/k, n(q + 1)/k] where q = 0, 1, . . . , k − 1 (here, we shall
assume n > k). We can easily conclude that every totative belongs to exactly
one of these subintervals, for if a totative would belong to two subintervals,
it would occupy a common end point of two subintervals, i.e. it would be
of the form nq/k. But if nq/k is a totative, then n must divide k, which
is impossible since n > k. If every subinterval contains the same number
of totatives, we say that the totatives of n are uniformly distributed with
respect to k.

Following Lehmer [Leh55], we define the partial totient function φ(k, q, n)
by

φ(k, q, n) = |Sq| , (2.1)

where Sq = {τ | nq/k < τ < n(q + 1)/k, gcd(τ, n) = 1}.

It is clear that
k−1∑
q=0

φ(k, q, n) =
k−1∑
q=0

|Sq| = φ(n). (2.2)

Lehmer also introduces the function

E(k, q, n) = φ(n)− kφ(k, q, n). (2.3)

This function can be conceived of as the excess of totatives of n over the
amount of totatives there would be if they were everywhere as densely dis-
tributed as over the subinterval [nq/k, n(q + 1)/k].

If the totatives of n are uniformly distributed with respect to k, this
implies that E(k, q, n) = 0, q = 0, 1, . . . , k − 1. A necessary condition for
this to happen is that k divides φ(n); indeed, this is a necessary condition
for E(k, q, n) to equal zero even for a single value of q.

In conjunction with Lehmer [Leh55], we make the following observations.
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Theorem 2.1. If n > k, E(k, q, n) = E(k, k−q−1, n) for q = 0, 1, . . . , k−1.

Proof. Follows directly from the fact that if τ is a totative of n, so is n−τ .

Theorem 2.2. If k2|n, then E(k, q, n) = 0 for q = 0, 1, . . . , k − 1.

Proof. Let n = hk2 and first consider the totatives of hk. If τ is a totative of
hk, then clearly τ+qhk is a totative of hk2 for q = 0, 1, . . . , k−1, so for each
totative τ of hk there exist k totatives of hk2 of the form τ + qhk. But then
all totatives of hk2 must be of this form, as there are kφ(hk) = φ(hk2) such
totatives. It is then clear that the totatives of n are uniformly distributed
with respect to k.

We have thus found one sufficient condition for uniform distribution
of totatives of n with respect to k, namely that k2|n. Before proceeding
to presenting the second sufficient condition for uniform distribution, we
need to prepare the ground by investigating some properties of the function
E(k, q, n). In doing so, we shall make use of the Möbius µ-function, which
is defined by

µ(pα) =

{
−1 if α = 1,

0 if α > 1

for prime power arguments, and is multiplicative, meaning that for pi 6= pj ,

µ(pα1
1 pα2

2 · · · p
αr
r ) = µ(pα1

1 )µ(pα2
2 ) · · ·µ(pαrr ), r ≥ 1.

Lemma 2.3. Let f(x, n) be the number of totatives of n which do not ex-
ceed x. Then

f(x, n) =
∑
d|n

µ(d)
[x
d

]
,

where [y] denotes the greatest integer not exceeding y.

Proof. [*] Let n = pα1
1 pα2

2 · · · pαrr be the prime factorization of n. Consider
the set S = {m ∈ Z | gcd(m,n) = 1, 1 ≤ m ≤ x}, and the sets

Api = {m ∈ Z | m = pik, 1 ≤ m ≤ x} , i = 1, 2, . . . , r,

which each contain all integers between 1 and x not relatively prime to the
given prime factor pi of n. Clearly we have

|Api | =
[
x

pi

]
and S = {1, 2, . . . , [x]} \ ∪ri=1Api .
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We also observe that for each i, Api ⊆ {1, 2, . . . , [x]} . and so

|S| = |{1, 2, . . . , [x]}| − |∪ri=1Api | .

Now, by the inclusion-exclusion principle,

|∪ri=1Api | =
r∑
i=1

|Api | −
∑

1≤i<j≤r

∣∣Api ∩Apj ∣∣+
∑

1≤i<j<k≤r

∣∣Api ∩Apj ∩Apk ∣∣+ · · ·

· · ·+ (−1)r−1 |∩ri=1Api | . (2.4)

As Api ∩ Apj = {m ∈ Z | m = pipjk, 1 ≤ m ≤ x} ,
∣∣Api ∩Apj ∣∣ =

[
x
pipj

]
.

We have a similar formula for the cardinality of each intersection up to

|∩ri=1Api | =
[

x∏r
i=1 pi

]
.

Hence we get

|S| = [x]−
r∑
i=1

|Api |+
∑

1≤i<j≤r

∣∣Api ∩Apj ∣∣+ · · ·+ (−1)r |∩ri=1Api | =

[x]−
r∑
i=1

[
x

pi

]
+

∑
1≤i<j≤r

[
x

pipj

]
− · · ·+ (−1)r

[
x∏r
i=1 pi

]
= µ(1)

[x
1

]
+

r∑
i=1

µ(pi)

[
x

pi

]
+

∑
1≤i<j≤r

µ(pipj)

[
x

pipj

]
+ . . .+ µ

(
r∏
i=1

pi

)[
x∏r
i=1 pi

]
=

∑
d|p1p2···pr

µ(d)
[x
d

]
.

The sum produced is taken over exactly all the square-free divisors of n. But
as we know that µ(d) = 0 if p2 | d for any prime p, we can do the summation
over all divisors of n without changing the result. We thus have

|S| =
∑

d|p1p2···pr

µ(d)
[x
d

]
=
∑
d|n

µ(d)
[x
d

]
.

Theorem 2.4. E(k, q, n) =
∑

δ|n

(
δ + k

[
qδ
k

]
− k

[
(q+1)δ
k

])
µ(n/δ).
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Proof. By Lemma 2.3, we have

f(x, n) =
∑
δ|n

[x
δ

]
µ(δ) =

∑
δ|n

[
δx

n

]
µ(n/δ).

This gives us

φ(k, q, n) =
∑
δ|n

([
δ(q + 1)

k

]
−
[
δq

k

])
µ(n/δ).

The formula now follows from equation (2.3).

Theorem 2.5. The totatives of n are uniformly distributed with respect to
k if p | n, where p ≡ 1 (mod k) is a prime.

Proof. It is sufficient to show that φ(k, q, n) is independent of q, given the
conditions above. Let n = pαm, p ≡ 1 (mod k), p - m. Then

φ(k, q, n) =
∑
δ|m

µ(m/δ)g(k, q, pα, δ), (2.5)

where

g(k, q, pα, δ) =
α∑
v=0

([
pvδ(q + 1)

k

]
−
[
pvδq

k

])
µ(pα−v).

Since µ(pβ) = 0 for β > 1, we have

g(k, q, pα, δ) =

[
pαδ(q + 1)

k

]
−
[
pαδq

k

]
−
[
pα−1δ(q + 1)

k

]
+

[
pα−1δq

k

]
.

Let pα = kr + 1, pα−1 = ks+ 1. Then[
pαδq

k

]
= rδq +

[
δq

k

]
,[

pα−1δq

k

]
= sδq +

[
δq

k

]
,[

pαδ(q + 1)

k

]
= rδq + rδ +

[
δ(q + 1)

k

]
,[

pα−1δ(q + 1)

k

]
= sδq + sδ +

[
δ(q + 1)

k

]
.
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Substituting, we find that

g(k, q, pα, δ) = (r − s)δ = δφ(pα)/k.

Since this is independent of q, the theorem follows.

Concluding this section, we have presented Lehmer’s definition of uniform
distribution of totatives, and two sufficient conditions under which the to-
tatives of n are uniformly distributed with respect to k.
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3 Products of Totatives

In this section, we shall turn our attention to products of totatives of a given
number n, and their values (mod n). We shall use Wilson’s famous theorem
concerning the value of (p−1)! (mod p) for a prime p as a point of departure
for our enquiry, and develop analogies for composite numbers.

3.1 Wilson’s Theorem

Wilson’s theorem together with its converse, proved by Lagrange, states
that p is a prime if and only if

(p− 1)! ≡ −1 (mod p). (3.1)

It is one of the most essential theorems in elementary number theory, and
we shall omit its proof here. Instead, we proceed by noting an interesting
implication of Wilson’s theorem. For any odd prime p, we can exploit the
symmetry relation k ≡ (−1)(p− k) (mod p) to rewrite the factorial (p− 1)!
so as to produce

(p− 1)! ≡
(
p− 1

2

)
!(−1)

p−1
2

(
p− 1

2

)
! (mod p) (3.2)

which, using Wilson’s result, implies that((
p− 1

2

)
!

)2

≡ (−1)
p+1
2 (mod p). (3.3)

This result marks the first step in our investigation of partial products,
which will be the main subject of the last section of the thesis. Before fur-
ther pursuing the subject, we shall now turn to composite number analogies
of Wilson’s theorem.

3.2 Composite Number Analogies of Wilson’s Theorem

As, for a composite number n, (n− 1)! contain factors of n and thus cannot
be congruent to ±1 (mod n), we shall once again restrict ourselves to the
totatives of n when we present a composite analogue of Wilson’s theorem.
The theorem was first proved by Gauss, but is actually a consequence of
a more general structural feature of abelian groups of finite order. The
theorem will therefore be presented as a corollary of the more general result
below.
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Theorem 3.1. Let G be a multiplicative abelian group of finite order. Then

∏
a∈G

a =

{
g if G has exactly one element g of order 2,

1 otherwise.

Proof. [*] By the fundamental theorem of finitely generated abelian groups,

G ' Z
p
k1
1

× Z
p
k2
2

× · · · × Z
pkrr

= H

where pk11 p
k2
2 · · · pkrr = |G|, pi not necessarily distinct primes.

Let ψ : G→ H be an isomorphism and ψ−1 its inverse.

ψ

(∏
a∈G

a

)
=
∑
a∈G

ψ(a) =
∑
b∈H

b =

∏
j 6=i

pj
kj

 pi
ki(pi

ki + 1)

2


piki

r

i=1

.

We notice that for every odd prime, (pkii + 1)/2 is an integer and so the
product within brackets becomes a multiple of pi

ki and vanishes. So if all pi
are odd, then the sum will become ([0]piki )

r
i=1.

If at least two of the primes pi equal 2, then for each pi the product∏
j 6=i pj

kj contains a factor 2, and the product within brackets will again be

a multiple of pi
ki and vanish for all i.

In the final case, where exactly one of the pi equals 2, say pm, then in
the m:th position we get that∏

j 6=m
pj
kj

2km(2km + 1)

2


2km

=

[
(2l + 1)2km−1(2km + 1)

]
2km

,

for some l ∈ Z. (Here we have used the fact that pi is odd for all i 6= m and
hence their product is also odd.) This expression simplifies to

[
2km−1

]
2km

.
In the remaining positions the products will vanish, as all primes in these
positions are odd. Therefore, in this case the sum will be(

[0]
p
k1
1

, . . . , [0]
p
km−1
m−1

, [2km−1]2km , [0]
p
km+1
m+1

, . . . , [0]
pkrr

)
= h.
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It is easy to see that 2h =
(

[0]
p
ki
i

)r
i=1

and that h must be the only element

of order 2 in the additive abelian group H. Assume for a contradiction that

there is another element ĥ of order 2 in H. If ĥ =
(

[bi]pkii

)r
i=1

, at least one

of the bi must be nonzero and satisfy [2bi]pkii
= [0]

p
ki
i

. As 2 is a unit in Z
p
ki
i

for all i 6= m, we must have zero everywhere except in the m:th position.

Now, as 2ĥ =
(

[0]
p
ki
i

)r
i=1

, we must have [2bm]2km = [0]2km , so bm = 2km−1.

But then ĥ = h.

Concluding the argument, we have

∑
b∈H

b =

h if h is the unique element in H of order 2,(
[0]

p
ki
i

)r
i=1

otherwise.

We now apply ψ−1 to s =
∑

b∈H b.

In the case s =
(

[0]
p
ki
i

)r
i=1

, s is the additive identity element, and any iso-

morphism must map it to an identity element. In a multiplicative group,
this element is by convention called 1. Hence we have

∏
a∈G a = ψ−1(s) = 1.

In the case s = h, we have ψ−1(s) = ψ−1(h) = g, where g is the unique
element in G of order 2, as ψ−1 is an isomorphism from H to G.

Corollary 3.2. For any integer n ≥ 2 we have

∏
1≤j≤n−1
gcd(j,n)=1

j ≡

{
−1 (mod n) for n = 2, 4, pα, or 2pα,

1 (mod n) otherwise,

where p is an odd prime and α is a positive integer.

Proof. [*] First, identify the integers ai in the product (mod n) with the
remainder classes [ai]n in the multiplicative group Un of units in Zn. Clearly
we can construct a bijection f by letting f(ai) = [ai]n. Let

P =
∏

1≤j≤n−1
gcd(j,n)=1

j,

and consider the values of n for which we want to prove that P ≡ −1
(mod n). The case n = 2 is trivial, but the other values of n for which
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the congruence should hold are exactly those for which n has a primitive
root, say r, and then Un = 〈[r]n〉. As |Un| = φ(n) ≡ 0 (mod 2) for n > 2,

there exists a u ∈ Un such that u =
[
r
φ(n)
2

]
n
. By Euler’s generalization of

Fermat’s theorem, u2 = [1]n, and thus |〈u〉| = 2.
Now suppose there exists another element v in Un, v 6= u, such that

|〈v〉| = 2. Then v = rl for some l such that 1 ≤ l ≤ φ(n), 2l ≡ 0
(mod φ(n)). But then we must have l = φ(n)/2, which implies that v = u.
So u must be the unique element of order 2 in Un. Using Theorem 3.1, and
the fact that (−1)2 ≡ 1 (mod n), for this choice of n we must have

∏
a∈Un

a = [u]n ⇒ f−1

( ∏
a∈Un

a

)
= f−1 ([u]n) ⇒ P ≡ −1 (mod n).

We shall now consider the cases n = 22+α, n = 21+αpβ1m, n = pα1 p
β
2m,

where α and β are positive integers, p1, p2 odd primes, gcd(m, pi) = 1 for
i = 1, 2 and gcd(m, 2) = 1. As there is at least one element of order 2 in
Un (namely [−1]n), by Theorem 3.1 it is sufficient to show that there are at
least two elements of order 2 in Un to prove that P ≡ 1 (mod n). We begin
by showing that this is true for m = 1.

Consider n = 22+α. |Un| = 2α+1. As α + 1 ≥ 2 and Un is not cyclic (n
has no primitive root), we must have

Un ' Z2k1 × · · · × Z2kr , k1 + · · ·+ kr = α+ 1, r ≥ 2.

As each group Z2ki contains an element of order 2 and there are at least two
such groups, Z2k1 × · · ·×Z2kr contains at least two elements of order 2 and,
by isomorphism, so does Un.

In both of the two remaining cases, n is a product of two distinct prime
powers pk, with φ(pk) even. We shall now show that

Upα11 p
α2
2
' Upα11

× Upα22
.

By the Chinese Remainder Theorem for principal ideal domains (cf.
Corollary 14.5 in [Hun12]), there exists a ring isomorphism

ϕ : Zpα11 p
α2
2
→ Zpα11

× Zpα22
.

Observe that Upα11 p
α2
2
⊆ Zpα11 p

α2
2

and let x ∈ Upα11 p
α2
2

, ϕ(x) = (x1, x2).

Then ϕ(1) = ϕ(xx−1) = ϕ(x)ϕ(x−1) = (x1, x2)(x1, x2)−1 = (1, 1).
Consider the equation (x1, x2)(x1, x2)−1 = (1, 1). To obtain 1 in both

positions of the right hand side, both x1 and x2 must have inverses and
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must be multiplied by them, as multiplication in direct products of groups
is always done coordinatewise. Hence (x1, x2)−1 = (x−1

1 , x−1
2 ).

So x ∈ Upα11 p
α2
2
⇒ x1 ∈ Upα11

, x2 ∈ Upα22
.

As ϕ is injective and surjective, it maps every element of Upα11 p
α2
2

to an

element in the direct product of the respective groups of units for pα1
1 and

pα2
2 . So the restriction of ϕ to Upα11 p

α2
2

is a group isomorphism to Upα11
×Upα22

.
Now, as we have seen before that Upα11

and Upα22
each contain an element

of order 2, their direct product must contain at least two elements of order
2 (in fact, at least three) and by Theorem 3.1 we thus have∏

a∈U
p
α1
1 p

α2
2

[a]pα11 p
α2
2

= [1]pα11 p
α2
2
⇒ P ≡ 1 (mod pα1

1 pα2
2 ).

For m > 1, we can use the same argument to show that

Umpα11 p
α2
2
' Um × Upα11

× Upα22
,

so if Upα11 p
α2
2

contains at least two elements of order 2, so does Umpα11 p
α2
2

and

hence P ≡ 1 (mod n) in this case too.
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4 Partial Products

This section is devoted to the exploration of partial products, a subject
which was touched upon slightly already in section 3.1 (more specifically, by
equation (3.2)). Here, a more general definition and also some interesting
results will be provided.

For a prime p, define the partial product Π
(M)
j as the j:th of the products

obtained by dividing (p− 1)! into M parts. That is,

Π
(M)
j =

(
(j − 1)

p− 1

M
+ 1

)(
(j − 1)

p− 1

M
+ 2

)
· · ·
(
j · p− 1

M

)
.

As is evident from the definiton, p only has partial products with respect to
M if p ≡ 1 (mod M).

Exploiting the same symmetry relation as in equation (3.2), it is clear
that

Π
(M)
M−j ≡ ±Π

(M)
j (mod p), j = 1, 2, . . . ,

[
M − 1

2

]
.

When M is odd, the “central” product Π
(M)
(M+1)/2 plays a somewhat spe-

cial role, as there is generally no simple relation between its value and the
values of other partial products. For fixed M , Cosgrave and Dilcher [CD11]
suggest that computations have so far not been able to produce a prime p for
which all partial products are congruent. Instances where two of the partial

products Π
(M)
j , j = 1, 2, . . . ,

[
M+1

2

]
are congruent have however been found.

4.1 Composite Moduli

If one is interested in finding conditions under which the partial products of
a certain modulus are all congruent, one should then perhaps leave the prime
moduli behind and instead turn one’s attention to the composite moduli.
This is what we will do here, and later on we shall see that this search is
indeed more fruitful.

For a composite modulus n, we may define Π
(M)
j as the product of all to-

tatives of n in the interval
[
(j − 1) (n−1)

M + 1, j n−1
M

]
, and the Gauss factorial

Nn! by

Nn! =
∏

1≤j≤N
gcd(j,n)=1

j.

If the partial products are all congruent (mod n), it must follow that(
n− 1

M

)
n

! ≡ Π
(M)
j (mod n), j = 1, 2, . . . ,M . (4.1)

13



By definition, the equation is always satisfied for j = 1. Departing from
this deifinition, we will now present two interesting theorems on sufficient

conditions for congruence of the partial products Π
(M)
j . The proof of the

first of the theorems relies on a lemma, the proof of which is somewhat
technical and therefore omitted (for details, see [CD11]).

Lemma 4.1. Let M ≥ 2 and n ≡ 1 (mod M), n = pαqβw for distinct
primes p, q ≡ 1 (mod M), α, β ≥ 1, and gcd(pq, w) = 1. Then for i =
1, 2, . . . ,M we have(

i
n− 1

M

)
n

! ≡ εi
p−1
M

piA
(mod qβw), A =

pα−1

M
φ(qβw), (4.2)

where

ε =

{
−1 if w = 1

1 if w > 1.

Theorem 4.2. Let M ≥ 2 be an integer, and suppose that n has at least
two distinct prime factors congruent to 1 (mod M). Then (4.1) holds, i.e.
the partial products are all congruent (mod n).

Proof. We start off by observing that every partial product Π
(M)
j can be

written as a quotient of two Gauss factorials, namely

Π
(M)
j =

(j n−1
M )n!(

(j − 1)n−1
M

)
n
!
, j = 1, 2, . . . ,M , (4.3)

with the convention that 0n! = 1.

Combining the congruence (4.3) with (4.2), we get

Π
(M)
j ≡ ε

p−1
M

pA
(mod qβw), A =

pα−1

M
φ(qβw). (4.4)

Since we can interchange pα and qβ, we also have

Π
(M)
j ≡ ε

q−1
M

qB
(mod pαw), B =

qβ−1

M
φ(pαw). (4.5)

We can now apply the Chinese Remainder Theorem to (4.4) and (4.5) to

determine a unique value of Π
(M)
j modulo pαqβw = n, which is independent

of j. This completes the proof of the theorem.

14



Theorem 4.3. Let M ≥ 2 be an integer, and suppose that the positive
integer n has at least three distinct prime factors ≡ 1 (mod M). Then

Π
(M)
j ≡ 1 (mod n) for j = 1, 2, . . . ,M . (4.6)

Proof. We begin by rewriting A in (4.4) by using the multiplicativity of
Euler’s phi-function and the fact that q ≡ 1 (mod M).

A =
pα−1

M
φ(qβ)φ(w) = pα−1 (q − 1)qβ−1

M
φ(w) = Cφ(w)

for some integer C. As p - w, it follows from Euler’s generalization of
Fermat’s little theorem that

piA =
(
piC
)φ(w) ≡ 1 (mod w).

Consider the quotient εi
p−1
M

piA
. We know that the denominator is congruent

to 1 (mod w). If w > 1, ε = 1 and then the numerator is also congruent to
1 (mod w). If w = 1 the numerator is trivially congruent to 1 (mod w). So
in either case, by (4.4) we have

(
i
n− 1

M

)
n

! ≡ 1 (mod w) and Π
(M)
j ≡ 1 (mod w). (4.7)

Now, let n = pα1
1 pα2

2 pα3
3 w̄, where p1, p2, p3 are distinct primes with pi ≡ 1

(mod M), αi ≥ 1 for i = 1, 2, 3, and gcd(p1p2p3, w̄) = 1. Replace w in (4.7)

with wi, wi = pαii w̄, i = 1, 2, 3. This gives Π
(M)
j ≡ 1 (mod wi) for i =

1, 2, 3. The congruences (4.6) then follow directly from the Chinese Re-
mainder Theorem.

4.2 Revisiting the Primes: The Gauss and Jacobi Binomial
Coefficient Theorems

Although we have already suggested that there might not be any prime for

which all the partial products Π
(M)
j are congruent (mod p) for a fixed M ,

there are interesting relationships between the quotients of partial products
and the representation of p as a sum of squares.
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4.2.1 Q4(p) and the Gauss Binomial Coefficient Theorem

Let us first turn our attention to the case when we have four partial products.

As we have already taken note of, Π
(M)
M−j ≡ ±Π

(M)
j (mod p), so the inter-

esting relationship here is the quotient Q4(p) =
Π

(4)
2

Π
(4)
1

. For p ≡ 1 (mod 4),

Π
(4)
1 = p−1

4 ! and Π
(4)
1 Π

(4)
2 = p−1

2 !, so

Q4(p) =
Π

(4)
1 Π

(4)
2(

Π
(4)
1

)2 =
p−1

2 !(
p−1

4 !
)2 =

(p−1
2
p−1

4

)
.

By a classic theorem of Fermat (see for instance [Bur02]), if p is a prime
and congruent to 1 (mod 4), it can be represented as a sum of two squares
a2 and b2, where a, b 6= 0 are integers. Choose a such that a ≡ 1 (mod 4).
It is obvious that there is always such a choice of a, as one of a2 and b2 must
be congruent to 1 (mod 4).

We can now state Gauss’s binomial coefficient theorem as follows.

Theorem 4.4. Let the prime p and integer a be as above. Then(p−1
2
p−1

4

)
≡ 2a (mod p).

The proof of the theorem is nonelementary and will not be stated here.
An interesting application of the theorem, however, is the following result.

Corollary 4.5. Π
(4)
2 6≡ ±Π

(4)
1 (mod p) for all p ≡ 1 (mod 4).

Proof. To prove this, assume for a contradiction that Q4(p) ≡ ±1 (mod p).
On the other hand, by Theorem 4.4 we know that Q4(p) ≡ 2a (mod p), so
2a ≡ ±1 (mod p). The smallest possible value of a is then p−1

2 . But as

p = a2 + b2, we must have |a| < √p, and since
√
p < p−1

2 for p > 5, this is
impossible. So there are no solutions of the congruence 2a ≡ ±1 (mod p),
which was what we had to show.

4.2.2 Q3(p) and Jacobi’s Binomial Coefficient Theorem

For primes p ≡ 1 (mod 6) we consider

Q3(p) =
Π

(3)
2

Π
(3)
1

=
Π

(3)
1 Π

(3)
2(

Π
(3)
1

)2 =

(
2p−1

3

)
!(

p−1
3 !
)2 =

(
2p−1

3
p−1

3

)
.
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Jacobi’s binomial coefficient theorem gives us a formula for Q3(p) analogue
to Gauss’s formula for Q4(p). The expression of p as a sum of squares is,
however, less straightforward for p ≡ 1 (mod 6). We will therefore use the
following two lemmas to present the result.

Lemma 4.6. Let p ≡ 1 (mod 6), p prime. Then ∃ x, y ∈ Z : p = x2 + 3y2.

Proof. [*] By Theorem 9.10 in [Bur02], if p is a prime and p 6= 3, then

(3 | p) =

{
1 if p ≡ ±1 (mod 12)

−1 if p ≡ ±5 (mod 12),

where the Legendre symbol (3 | p) equals 1 if 3 is a quadratic residue of p
(i.e. if there exists a such that a2 ≡ 3 (mod p)), and (3 | p) = −1 otherwise.

Let p = 6m + 1, m an integer. By Theorem 9.2 in [Bur02] we know that

(−1 | p) = (−1)
p−1
2 = (−1)3m, m ∈ Z. If m is even, then p ≡ 1 (mod 12)

and (−1)3m = 1. If m is odd, then p ≡ −5 (mod 12) and (−1)3m = −1.

Combining the results for (3 | p) and (−1 | p) we get

(−3 | p) = (−1 | p)(3 | p) =

{
1 · 1 = 1 if p ≡ 1 (mod 12)

(−1)(−1) = 1 if p ≡ −5 (mod 12).

So for all p ≡ 1 (mod 6) ∃ a : a2 ≡ −3 (mod p). Naturally, we must have
gcd(a, p) = 1, and by Thue’s lemma, the congruence ax ≡ y (mod p) admits
a solution (x0, y0) where 0 < |x0|, |y0| <

√
p.

Squaring the congruence, it follows that

(ax0)2 ≡ y2
0 (mod p)⇒ −3x2

0 ≡ y2
0 (mod p).

We can thus conclude that

3x2
0 + y2

0 = kp, (4.8)

where k ≥ 1 is an integer. As 0 < |x0| <
√
p and 0 < |y0| <

√
p, we obtain

0 < 3x2
0 + y2

0 < 4p. Thus, the only possible values of k are 1, 2 or 3.

If k = 3, then it follows that 3 | y0 ⇒ y0 = 3y1 for some y1 ∈ Z. This gives
3x2

0 + (3y1)2 = 3p ⇒ x2
0 + 3y2

1 = p, and then we can choose (x0, y1) as a
solution of the equation.
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If k = 2, then 3x2
0 + y2

0 = 2p and we must have x0 ≡ y0 (mod 2). If
x0 ≡ y0 ≡ 0 (mod 2), then x0 = 2x2, y0 = 2y2 and (4.8) becomes

3(2x2)2 + (2y2)2 = 2p⇔ 4(3x2
2 + y2

2) = 2p⇒ 2 | p.

This leads to a contradiction, as p ≡ 1 (mod 6).

If x0 ≡ y0 ≡ 1 (mod 2), then x0 = 2x3 + 1 and y0 = 2y3 + 1, x3, y3 ∈ Z.
Then the left hand side of (4.8) will equal 3(2x3 +1)2 +(2y3 +1)2 = 3(4x2

3 +
4x3 + 1) + (4y2

3 + 4y3 + 1) = 4n+ 4 ≡ 0 (mod 4) (n an integer). Again, the
left hand side of (4.8) is a multiple of 4, which implies that p is a multiple of
2 and hence leads to a contradiction. In case k = 1, (4.8) gives the required
representation.

Lemma 4.7. Let p ≡ 1 (mod 6), p prime. Then there exist three distinct
solutions (xi, yi), i = 0, 1, 2, xi, yi > 0 of the equation

x2 + 3y2 = 4p. (4.9)

Proof. [*] By Lemma 4.6, we know that there exist positive integers a and
b such that a2 + 3b2 = p. Consider the ring

Z[
√
−3] =

{
x+ y

√
−3 | x, y ∈ Z

}
.

Let N be the norm in Z[
√
−3], defined by

N(x+ y
√
−3) = (x+ y

√
−3)(x+ y

√
−3) = x2 − (−3)y2 = x2 + 3y2.

By Theorem 10.19 in [Hun12], N(αβ) = N(α)N(β). If we choose a and b
as above, then N(a + b

√
−3) = p, and 4p = 4N(a + b

√
−3) = N(2)N(a +

b
√
−3) = N(2a+ 2b

√
−3). So (2a, 2b) is a solution of the equation.

Now consider the larger ring Z[ω], ω = −1+
√
−3

2 . Clearly,

Z[
√
−3] ⊆ Z[ω], as Z[

√
−3] = {x+ yω | x ∈ Z, y ∈ 2Z} .

We see that N(ω) = 1
4(−1 +

√
−3)(−1−

√
−3) = 1. So in Z[ω] and for

k a positive integer, we have

4p = N(2)N(ωk)N(a+ b
√
−3) = N

(
2ωk(a+ b

√
−3)

)
.
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It is thus possible to obtain more solutions by multiplying our first solution
(2a, 2b) by powers of ω. We may also note that

ω2 =

(
−1 +

√
−3

2

)2

=
−1−

√
−3

2
= −1− ω and

ω3 = ωω2 = ω(−1− ω) = 1.

This implies that the relevant powers of ω to multiply our solution by is ω
and ω2. Now, 2ω, 2ω2 ∈ Z[

√
−3] as 2 ∈ 2Z, and hence the product will be

an element of Z[
√
−3].

Multiplication by ω gives

2ω(a+ b
√
−3) = (−1 +

√
−3)(a+ b

√
−3) = −

(
(a+ 3b) + (b− a)

√
−3
)

.

Similarly, multiplying by ω2, we get

2ω2(a+ b
√
−3) = (−1−

√
−3)(a+ b

√
−3) = −

(
(a− 3b) + (a+ b)

√
−3
)

.

Collecting the results obtained by multiplying our original solution by ω
and ω2, and requiring both coordinates to be positive in our new solutions,
we have found two additional solutions of the equation 4p2 = x2 + 3y2,
namely (x1, y1) = (|a + 3b|, |a − b|), (x2, y2) = (|a − 3b|, |a + b|). These
two solutions together with the solution (x0, y0) = (|2a|, |2b|) represent the
desired three solutions of the equation.

It can be shown that there are no further solutions of (4.9).

We shall now show that for p ≡ 1 (mod 6), there is a solution (r, s) of
(4.9) such that

4p = r2 + 3s2, r ≡ 1 (mod 3), s ≡ 0 (mod 3).

Let

(x0, y0) = (|2a|, |2b|), (x1, y1) = (|a+ 3b|, |a− b|), (x2, y2) = (|a− 3b|, |a+ b|)

and recall that
x2
i + 3y2

i = 4p. (4.10)

We have to show that there is only one choice of yi such that yi ≡ 0 (mod 3),
which will then uniquely determine r. First note that 3 - a, for otherwise
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the left-hand side of equation (4.10) would be a multiple of 3, which cannot
be true since p ≡ 1 (mod 6).

In the case b ≡ 0 (mod 3), then y0 ≡ 0 (mod 3), and as 3 - a we must
have 3 - y1, 3 - y2.

In the case b ≡ ±1 (mod 3), as 3 - a we must either have a ≡ b (mod 3)
or a ≡ −b (mod 3). If a ≡ b (mod 3), then 3 | y1 and 3 - yi for i 6= 1. If
a ≡ −b (mod 3), then 3 | y2 and 3 - yi for i 6= 2.

Now, in each individual case we must have xi ≡ ±1 (mod 3) for the
corresponding value of i. For that xi, choose r = xi or r = −xi so that
r ≡ 1 (mod 3). We shall now proceed to stating Jacobi’s binomial coefficient
theorem, which will give us an explicit expression of Q3(p).

Theorem 4.8. Let p and r be as above. Then(2(p−1)
3
p−1

3

)
≡ −r (mod p).

As with Gauss’s binomial coefficient theorem, we shall leave the proof aside
and turn to a direct consequence of the theorem, namely the following result.

Corollary 4.9. Π
(3)
2 6≡ Π

(3)
1 (mod p) for p ≡ 1 (mod 6).

Proof. Assume for a contradiction that the two partial products were in-
deed congruent. Then we would have r ≡ −1 (mod p), and as r = −1 is
impossible since r ≡ 1 (mod 3), the smallest possible solution of the con-
gruence is r = p− 1. But as we must have |r| < 2

√
p, and we have seen that

2
√
p < p− 1 for p > 5, this solution is also impossible.
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