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Abstract

Tractography is a visualization technique which reconstructs and mod-
els neural fibers in the white matter of the brain based on data from dif-
fusion magnetic resonance imaging. It is already used locally to model
parts of dominant fiber pathways but global methods are also emerging
which aim to reconstruct all the brain fibers simultaneously.
In this thesis we have attempted to improve the current state of the art
of Global Tractography by introducing three principles:

• Anatomical Priors

• Introduction of fiber weights

• Reduced complexity

Our approach uses an optimization method based on Markov Chain Monte
Carlo (MCMC) and Simulated annealing in order to fit a set of plausi-
ble initial fiber trajectories to a dataset acquired by diffusion MRI. Our
method was compared to the state of the art global tractography method
known as the Gibbs Tracker in a phantom study using conventional global
tractography evaluation methods. In a second test, we also try the method
on an in-vivo dataset of a human brain and derive the connectivity matrix
with corresponding network parameters. Our approach showed consider-
able improvements in decreasing the amount of wrong fibers and reduced
computational time. However the method still struggles to eliminate cer-
tain false but plausible connections. To remedy this, several improvements
to the MCMC sampler are suggested for future work.

Keywords: Diffusion MRI, fiber tracking, global tractography, Markov
Chain Monte Carlo, simulated annealing
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1 Introduction

1.1 Background
Tractography is a 3D modeling technique used to visually represent the neural
pathways in the white matter of the brain using data collected by diffusion
magnetic resonance imaging (dMRI). The white matter of the brain consists
primarily of bundles of myelinated nerve cells which have a fibrillar structure
much like skeletal muscle cells. Diffusion MRI measures the motion of hydrogen
atoms within water molecules which diffuse only along the direction of these
fibers, revealing these pathways. Tractography has been given increased interest
due to its usefulness in clinical applications which include [4]:

• Stroke

• Multiple sclerosis (MS)

• Neurodegenerative diseases

• Neurosurgical applications

• Spinal cord disorders

Tractography can also be used on a global scale (referred to as global tractog-
raphy) to create a connectivity map between distinct regions of the brains gray
matter called a connectome, a term referring to a comprehensive map of neu-
ral connections in the brain [15]. The connectome can be used to study the
brains structural connectivity using conventional mathematical graph theory
by extracting network parameters much like studying traffic, computer or social
networks [30].

Global tractography and connectome analysis is a rapidly developing field
still in its infancy with much waiting to be explored.

1.2 Objectives
The objective of this thesis was an attempt to develop a probabilistic global
tractography reconstruction method based on the current state of the art; which
not only performs better than the current state of the art, but also is a starting
point for a novel way to study the connectome: namely to analyze a set of pos-
sible connectomes by exploring around an optimal solution using Markov Chain
Monte Carlo sampling, thus obtaining a distribution of possible connectomes.
This new approach by allowing a degree of uncertainty to the end solution, is
potentially very useful as currently there exists no absolute ground truth of the
connections in real brain tissues.

This thesis was written at the Signal Processing Laboratory 5 (LTS5) at
École Polytechnique Fédérale de Lausanne (EPFL) in Lausanne Switzerland
which conducts research in structural brain connectivity analysis using tractog-
raphy where new global reconstruction algorithms are being developed.
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1.3 Outline of Thesis
Chapter 2 introduces the reader to the topic of MRI and more specifically dif-
fusion MRI. First the basic physics behind MRI is explained along with the
different imaging and acquisition techniques used for diffusion MRI. The chap-
ter then continues by providing a thorough background for tractography.

Chapter 3 presents the proposed method itself, along with the calibration of
parameters and datasets used for evaluation of the model.

Chapter 4 presents and discusses the results of the developed method. Here
we elaborate over the method’s advantages and limitations and also outlines for
future work are discussed.

Chapter 5 is a concluding discussion over the results where also improve-
ments and future work are suggested.
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2 State of the Art

2.1 Basics of Magnetic Resonance Imaging
The following section is a brief overview of the physics which enable magnetic
resonance imaging and is mainly a summery of the theory presented in [19].
Magnetic resonance imaging (MRI) is an imaging technique used to create im-
age volumes in which slices can be viewed at any location or direction. The
fundamental property which enables MRI is spin. One can think of spin as a
particle rotating around its own axis causing it to behave like a tiny magnet
with a north and a south pole. This generates a magnetic moment vector m
that is parallel to the rotation axis.
The direction of this magnetic momentm is usually considered random because

Figure 1: Nuclear spin causing the particle to behave like a tiny magnet [19]

the orientation of the individual particles is unknown, so the total magnetic mo-
ment over several particles is zero.
When a group of particles are placed under an external magnetic field B, the
direction of the spin vectors will align themselves either parallel or anti-parallel
to the outer field, giving rise to two energy states: a low energy state consisting
of parallel spins and a high energy state consisting of anti-parallel spins.
As a consequence of the laws of thermodynamics, in which nature strives to

Figure 2: Spins aligned parallel or anti-parallel with the external magnetic field
[19].

minimize its energy, the number of spins in the lower energy state will slightly
outnumber the ones in the higher energy state. The ratio between the number
of particles in each state are given by the Boltzmann distribution

N−

N+
= e

−E
kT , (1)

3



where N− represents the number of spins in the higher energy level, N+ the
number of spins in the lower energy level, k is Boltzmann’s constant and T is
the temperature in Kelvin.
Once all the particles are aligned and placed in these two distinct states, it is
possible for the particles in the lower state to transition to the higher state by
absorbing photons containing the exact amount of energy as the energy gap
between the states.
On a macroscopic scale, the slight overweight of particles in the lower energy
state will result in a net magnetization vector M pointing in the direction of the
external magnetic field B. . When acquiring an MRI image, a radio frequency

Figure 3: Net macroscopic magnetization vector M pointing in the direction of
the main magnetic field B [19].

pulse (RF) is applied towards the area that is to be examined. This pulse is much
weaker than B and is applied through a rotating reference frame perpendicular
to B. This RF-pulse causes individual particles in the area to absorb the quanta
of energy required to transition from the lower energy state to the higher state
by changing their alignment to B, thus causing M to spiral away from its initial
alignment withB and end up rotating aroundB at a distance proportional to the
time length of the RF-pulse. After a certain length of time, M will have rotated
90 degrees and will be perpendicular to B. The net magnetization M also starts
to dephase since different particles will experience a slightly different magnetic
field. This is usually referred to as phase coherence. When the RF-pulse is

Figure 4: RF pulse applied through a rotating reference frame causing the net
macroscopic magnetization to spiral away from the B [19].

removed, particles will begin to return to their lower energy state, causing M
to gradually return to its initial position aligned with B. This loss of energy is
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then detected by a coil in the MRI-scanner which is the information used to
produce an image. The information gathered by the scanner is:

• The energy release

• The time passed until M returns to its "normal" alignment, called the T1
relaxation.

• The time passed until the phase coherence is lost, called T2 relaxation
time.

In clinical MRI, the RF-pulse is chosen to coincide with the frequency corre-
sponding to energy difference required for hydrogen protons in water molecules
to transition between energy states. The energy release is then an estimate of the
number of hydrogen nuclei, which in principle corresponds to the amount of wa-
ter in the examined volume. The T1 relaxation gives information on the chem-
ical surrounding of the water and the T2 relaxation reflects the surroundings
of each individual atom, which gives a different contrast. With these variables
it is possible to separate tissues since they will show different characteristics in
T1 and T2 relaxation time. Images acquired using the different relaxation are
usually called, respectively, T1 weighted and T2 weighted.

Figure 5: Left: T1 weighted axial slice. Right: T2 weighted axial slice [19].

2.2 Diffusion MRI
Diffusion MRI is an extension of conventional MRI focused on mapping the dif-
fusion process of molecules as a cause of Brownian motion. Brownian motion,
which was discovered by Einstein in 1903 [11], refers to the random motion of
molecules resulting from thermal energy. In a glass of water, the motion of the
water molecules are completely random and is limited only by the boundaries
of the container. This motion is best described by a displacement distribution
describing the proportion of molecules that undergo displacement in a specific
direction. Diffusion of a molecule in a homogeneous medium is well described
in having a Gaussian distribution. In neuronal tissue however, with its fibrillal
structure, the movement of the molecules are hindered to a greater extent in
the direction perpendicular to the axonial orientation than parallel to it, thus
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Figure 6: A typical diagram showing the diffusion probability within a voxel with
axons aligned in the same direction. Note that the probability is color coded
due to the face that the three spatial dimensions are used for representing the
positions of the diffusion [16].

resulting in an according distribution in which the pathway of the fiber is re-
vealed. Diffusion MRI is able to depict this motion by adding a sequence to the
normal MRI procedure that involves applying a gradually increasing gradient
field in the same direction as the RF-pulse introducing an additional phase shift
to the magnetic moment proportional to the molecular displacement along that
gradient direction [16]. The more a molecule has moved in the gradients direc-
tion during the acquisition, the larger the phase shift will be. This leads to a
loss of signal which is used to measure the diffusion.

2.3 Diffusion MRI Local Reconstruction
In diffusion MRI, the objective is to obtain the 3D orientation distribution
function (ODF) of the water diffusion for each 3D voxel coordinate of the vol-
ume studied. An ODF may be considered as a deformed sphere whose ra-
dius in a given direction is proportional to the sum of values of the diffusion
PDF in that direction [16]. To further ease visualization, the surface of the
ODF is color coded according to a diffusion direction. Most commonly used is
[x, y, z] =[red,green,blue].
Now follows a brief overview of diffusion MRI techniques from the simplest to
the most sophisticated technique [16]. This is important to understand as it is
this information which is used to later reconstruct the fiber tracks in tractogra-
phy.

2.3.1 Diffusion Weighted Imaging

Diffusion weighted imaging (DWI) is the basic component needed for any of the
more sophisticated imaging techniques. It is simply the unprocessed result of
an acquisition using a single gradient field in one specific direction. Figure 8
shows a typical diffusion weighted image where darker regions represent areas
with high diffusion along the specific acquisition gradient direction and lighter
parts represent less diffusion. Even though this is not as informative as having
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Figure 7: A typical orientation distribution function (ODF) representation in a
single voxel [2]

an image with the ODF of the diffusion in every voxel, DWI is still applied
clinically for stroke investigations which cause damage to neural pathways and
restrictions in water movement.

Figure 8: A typical diffusion weighted image. The darker regions show increased
diffusion in the specific acquisition direction while the lighter regions show re-
duced diffusion. This specific image shows a brain with acute ischaemia. The
diffusion image clearly shows decreased diffusion in the infarcted tissue. [3].

2.3.2 Diffusion Tensor Imaging

Normally more information than the DWI is required when studying the struc-
tural connectivity of the brain. Diffusion tensor imaging (DTI) is the most
standard way to view this [2].
Assuming plain diffusion MRI, the diffusion effect on the MRI signal is a scalar
value A which depends on the diffusion D and the "b-factor" which characterizes
the gradient pulses (timing, amplitude and shape) used in the MRI sequence.
Since the diffusion of assumed to be a 3D-Gaussian process it is modeled as a
tensor.

A = exp(−bD). (2)

Where D is the diffusion tensor which describes the diffusion along each
direction.

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (3)
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This tensor is symmetric (Dij = Dji) where i, j = x, y, z and from it several
useful measurements can be extracted. The mean diffusion is derived from the
trace (which is the sum of the diagonal) of the tensor while the principle direc-
tion of the diffusion maximum can be obtained by computing the eigenvectors
and eigenvalues of the tensor [2]. Eigenvectors which are orthogonal to one an-
other will, together with the eigenvalues which are ordered as λ1 >= λ2 >= λ3
describe the properties of the tensor, resulting in a diagram much like figure 9.

Figure 9: Diagram of diffusion of tensors. In A, the diffusion tensor is shown
as an ellipsoid with its principle axis along the eigenvectors (λ1, λ2, λ3) charac-
terizing the strength of diffusion in each direction. In B the diffusion tensor is
shown as an ODF [16]

The relationship between the eigenvalues reflect the characteristics of diffu-
sion. The shape is represented by a scalar value known as fractional anisotropy
which is computed by comparing each eigenvalue to the mean of all of the eigen-
values 〈λ〉 [2].

FA =

√
3

2

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

λ21 + λ22 + λ23
, (4)

where FA is the fractional anisotropy.
The DTI model performs well in regions where there is only one fibre population
(i.e. fibres are aligned along a single axis), where it gives a good depiction of
the fibre orientation. However, it fails in regions with several fibre populations
aligned along intersecting axes, such as fiber crossings, because it cannot be used
to map several diffusion maxima at the same time. Figure 11 shows a sketch
of a DTI reconstruction of a fiber crossing; note that since there are diffusion
maxima, the tensor is modeled as a sphere.

2.3.3 High Angular Resolution Diffusion Imaging (HARDI)

In order to overcome the problems of complicated fiber scenarios, imaging tech-
niques that provide higher angular resolution are needed. High angular resolu-
tion diffusion imaging (HARDI) is a collection name of these techniques which
obtain more diffusion information by an increased number of acquisitions, with
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Figure 10: Extraction of scalar values from DTI. (a) shows the mean diffusion
calculated by the trace of the tensor. (b) shows the fractional anisotropy, which
is computed from the eigenvalues and eigenvectors of the tensor. (c) Color coded
fractional anisotropy better representing diffusion along the x-,y-,z and z-axis
[16].

Figure 11: Left:A fiber crossing. Right: Sketch of DTI reconstruction of fiber
crossing. The round tensor in the middle shows how the tensor is unable to
represent the two fiber directions simultaneously [19].
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gradients that vary in strength and direction. The cost of this is an increased
acquisition time around 10 times longer than DTI. For global tractography this
imaging technique is much more preferred regardless of the longer acquisition
time. With this increased amount of information it is possible to extend the
single tensor of DTI (2) to a multitensor model consisting of a several tensors
modeling the diffusion in individual compartments [28].

A =
∑
j

fjexp(−bDj), (5)

where fj is the apparent volume fraction of the voxel with diffusion tensor Dj .
Each tensor which has an orientation to fit a major diffusion direction will
then contribute to modeling diffusion proportional to its corresponding volume
fraction.

2.4 Tractography
While the imaging techniques explained in the previous chapter focuses on ac-
quiring the diffusion tensor or ODF in each voxel, tractography is the next step
of post processing in which this information is used to construct and visualize
neural tracts (bundles of fibers) traversing through each voxel. Tractography is
currently the only noninvasive in-vivo method available for studying the fiber
tract anatomy of the human brain [19]. Tractography techniques can be divided
into two subgroups: local and global tractography.

2.4.1 Local Tractography

Local methods reconstruct fibers one by one independently, without taking into
consideration the influence of neighboring fibers. Because of this, local tractog-
raphy is mostly used to study white matter in specific predetermined regions
where specific tracts are of interest, which is useful for numerous medical ap-
plications explained in the introduction. There are several different approaches
for local tractography which fall into two subcategories [22].

Line Propagation Methods

The first category, Line propagation methods, are deterministic methods based
on line propagation algorithms using the local tensor information from each
voxel obtained from DTI. The fiber pathways are reconstructed by propagating
through each voxel from a designated starting point with the assumption that
the fiber continues in the maximum diffusion direction provided by the diffusion
tensor. Tractography algorithms use this information to track the whole white
matter pathway by inferring the continuity of fiber paths from voxel to voxel [2].
The pathway is reconstructed progressively until certain stopping criteria are
met. Mainly two stopping criteria are used: the first one is called the angular
threshold. If the angle between two diffusion directions in adjacent voxels is
larger than a certain threshold, the propagation is terminated. This is used to
prevent implausible pathways such as a fiber that turns too sharply. The sec-
ond stopping threshold, the anisotropy threshold, stops the propagation when it
reaches a voxel with very low to no anisotropy. Low anisotropy areas are either
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Figure 12: A schematic diagram showing the principle of the streamline tractog-
raphy approach. The fiber path propagates through each voxel in the direction
of the maximum diffusion [4].

gray matter or areas of the white matter with many crossing fibers such that a
clear dominant diffusion direction cannot be distinguished. In the first case with
gray matter it makes sense to stop the propagation since it has then reached the
end of the tract, in the second case however the stop is to ensure that the fiber
pathways don’t continue in uncertain directions since the continued diffusion
direction is unknown [4].

The Streamline algorithm is the most used method for line propagation re-
constructions [23]. Line propagation methods are fast and suitable to use when
one is only interested in dominant pathway between two predetermined regions
of interest.

Energy Minimization Techniques

Energy minimization techniques which are the second category of local meth-
ods, focus on finding the most energetically favorable path between two prede-
termined voxels. The fast marching technique [25] calculates the speed for the
spreading front propagation in a certain point using the equation

F (r) = A |ε1(r) · n(r)| , (6)

where A is the anisotropy, ε1 is the eigenvector and n the orientation normal
to the front [22]. This equation reflects that the spreading speed is the largest
when the propagating front line is parallel to the eigenvector and minimal when
it is perpendicular. Using this equation, multiple contour representing the dif-
fusion shape at different time points. These contours represent a likelihood of
connections map. The most likely path is then found by following the gradient
of steepest path.

Advantages with local methods are mostly that they are fast but they unfor-
tunately struggle in correctly reconstructing fibers in complicated scenarios such
as branching of fibers, fiber kissing and fiber crossings shown in figure 13 due to
the limited information given by the diffusion tensor in these scenarios. Local
techniques also struggle in reconstructing long fibers due to error accumulation
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along the propagation route resulting from local noise in each voxel [22].
Local reconstruction methods are therefore unsuitable in their current state

Figure 13: The figure shoes the three problematic scenarios for local tractogra-
phy methods. Left: Branching scenario of fibers. Middle: Kissing scenario of
fibers. Right: Crossing of fibers [1].

for global tractography. This brings us to the second subgroup of tractography
algorithms, namely global methods.

2.4.2 Global Tractography

Global tractography, which is the category which the developed model for this
thesis falls within, represents a new approach to identifying brain networks. It
involves the simultaneous reconstruction of all the fibers which align with the
directions of least hindrance to water diffusion in the brain by finding a solution
that best fits the measured diffusion data. This is achieved by minimizing
a global cost function which is represented by the L2-norm of the difference
between the reconstructed model of fibers and the measured data consisting of
ODFs in each voxel. The global approach has a better ability to resolve local
fiber orientations, as it considers more than just the local information. Because
of this, global tracking may be more stable than local methods in the presence of
noise and imaging artifacts in the data [20]. Among existing global tractography
methods, there are especially two which are noteworthy of mentioning.

The Gibbs Tracker

The Gibbs tracker [27][18] is a probabilistic reconstruction method with ori-
gins in statistical physics, hence the name. The reconstructed fibers are built
with small line segments that introduce the diffusion anisotropy which are ran-
domly inserted into the image. These elemental segments bind together during
the optimization forming fibers. Their orientation and number are adjusted si-
multaneously to match the data. This behavior is governed by an interaction
between line segments and by an increasing match to the measured data.

The Spin-Glass Model

The idea behind the spin glass model framework [13] is to parameterize a set
of white matter fibers by small segments called spins. These spins are allowed
to move, rotate and duplicate. They are controlled by three potential energies:
a diffusion, an interaction and a generative potential. The diffusion potential

12



attracts spins towards the main fiber directions, while the interaction potential
encourages them to form longer chains of minimal curvature. The generative
potential prevents a spin chain to end inside the domain by allowing the creation
of new spins. The optimal spin configuration is finally retrieved by a global min-
imization procedure.

Global tractography is a new emerging approach to tractography. Although
promising, global tractography currently has obstacles to overcome and needs
to be rigorously validated in order to prove to be clinically feasible. The main
problem with global methods is that they have a very high computational cost
due to the large size of the solution space. The issue of validation is also impor-
tant because currently there exists no absolute ground truth on the connections
existing in real brain tissues. Even if the reconstruction algorithms prove to
work well on a phantom, it is not guaranteed to perform as well on real brain
data with its many more complicated fiber scenarios.

In contrast to local methods, global methods are intended to be used when
studying the structural connectivity of the brain between different regions. The
neural pathways modeled by tractography which connect distinct gray matter
areas can be used to create a comprehensive map of the brains neural connections
called a connectome.

2.5 Brain Connectivity Analysis
This section will give an overview of how the structural connectivity of the brain
is studied using network parameters given a connectome. Over the past decade,
the study of networks has rapidly expanded across a number of scientific disci-
plines, including neuroscience, due to the realization that the brain as a complex
interconnected and dynamic system can be analyzed using mathematical and
statistical tools developed in graph theory.

Graphs are mathematical descriptions of a system composed by intercon-
nected elements, comprising of nodes and edges. See figure 14 for a visual
representation of a graph. The nodes are the fundamental functional units of
the system, edges are the connections links between each node. In our case
with the brain, nodes are the regions of the brains gray matter which are to be
connected and edges are the fiber pathways modeled by tractography. It is the
characteristics of the edges which define the network properties. The complete
set of nodes and edges are represented in a connection matrix [30]. These con-
nection matrices can be either unweighted or weighted. The unweighted (also
known as binary) connection matrix’s elements are either 0 or 1 determining if
there exists a connection between the nodes or not. The valus of the weighted
matrix’s elements are determined by how strong of a connection exists between
two nodes.
There are many measures which can be calculated for a network but in this

thesis we will only focus on the core measures [12].
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Figure 14: Graphical representation of a network (or graph) [12]

Strength (k)

The strength of the node corresponds to the number of edges which connect to
it, which is also the number of nodes which directly connect to it.

Clustering Coefficient (C)

This is the main measure of local structure of a network which can be calculated
for individual nodes or the entire network. The clustering coefficient ci of node
i with strength ki can be defined as the ratio of the actual number of edges
between neighbors of i, which is defined as ei, and the maximum number of
possible number of edges between those edges.

ci =
2ei

ki(ki − 1)
(7)

The clustering coefficient C of the network is the average of all individual clus-
tering coefficients. The clustering coefficient varies between 0 and 1. A high C
means that neighboring nodes are well connected which means that the loss of
an individual node will have little impact on the structure of the network.

Characteristic Path Length (L)

The characteristic path length of a network is the average distance between all
pairs of nodes

L =
1

N(N − 1)

∑
i,j∈N,i6=j

di,j (8)

where N is the total number of nodes and di,j is the path length between two
nodes i and j which is defined by the smallest number of edges connecting them.
This is a measure indicating how well integrated a network is and how easy in-
formation can flow within the network.

Based on these core network measures, it is possible to distinguish the net-
work type, identify different hubs or compare them to healthy or pathological
networks.
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3 The Proposed Model
Denote the set of all fibers in our model by M and the measurement data
by D(x,n) = S(x,n)/S0(x,n) where S(x,n)/S0(x,n) is a diffusion weighted
HARDI signal at position x with gradient direction n normalized by the mea-
surement without diffusion weighting. The objective is to explore the different
states of the model to find the combination of fibers which best fits the data.
Concretely this is a combinatorial optimization problem. The optimal solution
is found by exploring the distribution of possible solutions and sampling candi-
dates from the posterior probability P (M|D) with respect toM. According to
Bayes theorem the posterior distribution is given by

P (M|D) ∝ P (D|M)P (M.) (9)

Where P (M) is the prior and P (D|M) is the data likelihood.
The prior information P (M) used in the model was mainly two things:

• The fibers start and end up in the gray matter of the brain.

• The fibers will strive to be as smooth as possible and will choose the most
energy minimizing path in respect to the diffusion between two regions of
interest.

The developed method incorporates this by generating plausible initial trajecto-
ries using an initialization method based on Dijkstra’s shortest path algorithm
[9]. The algorithm works in such a way that it for each considered voxel, eval-
uates the pathways between evenly distributed nodes on the voxel edges, and
returns the ones which have the least cost in respect to following the diffusion
direction given by the ODF and the pathways curvature.

The data likelihood P (D|M) was derived from the Gibbs distribution of
statistical physics which is used to determine the probability of a certain state
given the value of the energy in the system [18].

P (M|D) = e−E(M,D)/T . (10)

Here the energy E expresses the similarity between the model in its current
state and the measured data. Consider a single fiber in the modelM evaluated
as segments of length l evenly along it. Each segment contributes additively in
reconstructing the ODF in neighboring voxels with an intensity proportionate
to a Gaussian distribution centered in that voxel.

ρseg(x,n) = e−bDe−|x−xi|t2/σ2

(11)

The first exponential is the expression of the ODF according to the diffusion
multitensor model explained in 2.3.3 and the second exponential is the Gaussian
distribution centered in x of that voxel, where ni and xi are the orientation and
position of the center the segment. The procedure of multiplying by a Gaussian
distribution is referred to as Gaussian smoothing and figure 15 attempts to
visualize the principle.
For one fiber, consisting of individual segments, its contribution to the total
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Figure 15: Simple figure showing logic behind Gaussian smoothing. The closer
the segment is to the center of the voxel, the larger it contributes to the calcu-
lated ODF

signal is simply the sum of all of its segment’s contributions multiplied by a
weight w ≥ 0

ρM(x,n) = w
∑
seg

ρseg(x,n). (12)

The weight parameter is not initially known and is one of the parameters which
is to be set and optimized by the method according to how well that fiber fits
the signal. One can consider the weight as a measure of the signals amplitude
or how strong connection that specific fiber has. If we have a voxel with several
fibers passing through it, the algorithm is supposed to apply a high weight to
the fibers fitting the data well and a low weight to ones not fitting. Also, two
correctly overlapping fibers can instead merge as one if we merge their weights
and remove the other fiber. This will prune away unnecessary and incorrect
fibers when fitting them to the measured data.
An obvious advantage of using weights is that we can use less fibers to represent
connections instead of letting the strength of a connection be determined by the
amount of fibers between regions.

The energy in the likelihood distribution expression (10) is the L2-norm of
difference between the reconstructed signal and the data.

E(M, D) = ||ρM −D||2L2
. (13)

This equation will in the future be referred to as the cost function.

In order to minimize the number of parameters describing the fibers, a spline
formulation was used to represent them; more specifically, the Catmull-Rom
(CR) spline formulation with five control points [6]. This has previously proved
to be successful in other tractography models [17] but then only for reconstruct-
ing certain connections. This model is the first attempt to use splines to model
fibers in the scale of the entire connectome.

For the unintroduced user, a spline is a mathematical way of representing a
curve, by specifying a series of points at intervals along the curve and defining
a function that allows additional points within an interval to be calculated.
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CR splines are a family of cubic interpolating splines formulated such that
the tangent at each control point Pi is calculated using the previous and next
control point on the spline, τ(pi+1 − pi−1). The full representation is given by

P(s) = [1 u u2 u3]


0 1 0 0
−τ 0 τ 0
2τ τ − 3 3− 2τ −τ
−τ 2− τ τ − 2 τ




pi−2
pi−1
pi
pi+1


CR splines are widely used in graphical applications thanks to three useful
properties. First, the curve will always interpolate through it’s control points
which gives good control of the spline when placing or moving its control points.
Second, each control point only effects a small neighborhood around itself. This
means that one only has to re-parameterize the affected section of the spline
instead of its entirety granting computational speed.

Figure 16: A typical Catmull-Rom spline [6]

The Douglas-Peucker point reduction algorithm [10] (DPPA) was used to
simplify the control points of each fiber to the number of points needed for the
spline formulation (five in our case). Here follows a description of the algorithm
along with figure 17 to help visualize the procedure.
Initially the algorithm is given a fiber. It then automatically marks the first
and last point to be kept. It then finds the point that is furthest from the line
segment with the first and last points as end points, (distance b in figure 17).
If that point is closer than a set threshold value ε to the line segment it can be
discarded without the simplified curve being worse than ε.

If the point is greater than ε from the approximation line, then that point
must be kept. The algorithm then recursively calls itself with a new fiber where
the first point and evaluated point act as the new first and last point. When
the recursion is completed a new output curve can be generated consisting of
all the points that have been marked as kept.

Since it was not possible to predefine the amount of points to reduce to, the
DP-algorithm had to run several times on the same fiber and increase epsilon
each time. If the fiber was reduced by too many points it was disregarded and
not included in the initial setup. This was deemed as an acceptable loss due to
the large number of fibers included in the shortest path initialization.
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Figure 17: The different steps of the Douglas-Peucker point reduction algorithm
[10]
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3.1 Markov Chain Monte Carlo Optimization
The optimization procedure used for the method was Markov Chain Monte
Carlo (MCMC) combined with simulated annealing.

3.1.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo is the most used method for simulating from a com-
plicated and/or high-dimensional distribution. The basic idea is to construct a
Markov Chain that has f as a stationary distribution, where f is the distribution
we want to simulate from [29].

3.1.2 Simulated Annealing

Simulated annealing is an expansion of Markov Chain Monte Carlo (MCMC)
used when the Markov chain’s movement through the state space is hindered
by regions of low probability, thus preventing it to converge to their equilibrium
distribution within a reasonable time.
The method was introduced for optimization problems when the goal was to
sample from the Boltzmann distribution P (E) = exp−E/kt/Z for a system at
temperature zero, in which the probability is concentrated at the states of min-
imal energy [24].

The term "Simulated Annealing" is inspired from metallurgy in which slow
cooling (annealing) is used when forging metal in contrast to fast cooling (quench-
ing) to minimize defects. When a Markov chain simulation is used to sample
from the Boltzmann distribution given some energy function, as in our case 13,
the analogous procedure is to gradually reduce the temperature from an initial
high one to a temperature value at which we wish to sample. The initial high
temperature will allow the Markov chain to wander more freely and hopefully
overcome energy barriers.

For our model this involves sampling new candidates from the posterior dis-
tribution (9) and accepting them if they better fit the data while successively
lowering the temperature term T in (10). As T becomes lower, it is more likely
to sample from the maximum of the posterior distribution.

The success of simulated annealing lies in large part on the choice of a
suitable cooling schedule and initial temperature. Common cooling schedules
include:

• Logarithmic cooling: Ti+1 = T0/log(i)

• Geometric cooling: Ti+1 = αTi, 0 < α < 1

• Exponential cooling: Ti+1 = T0e
−αi, α > 0.

There is no exact method in determining which schedule is "correct" for each
application, and it is mostly fine tuning or trial and error which determines the
most suitable one [24]. An important common trait is that the temperature
should always be decreasing for each iteration. For the developed model, an
exponential cooling schedule was used since it had been proven successful for
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Figure 18: Temperature cooling scheme for simulated annealing

the Gibbs tracker [27]. The starting temperature T0 was set to 1 T0 = 1 and
the cooling parameter was set so that the stop temperature was Tstop = 10−3.

3.1.3 The Metropolis Hastings Algorithm

Sampling from the posterior distribution was done using the Metropolis Hast-
ings (MH) sampler which is an established technique when dealing with high
dimensional distributions [29]. It works as follows: starting from a current state
of the modelM, modify the model and transfer it to a new stateM′ according
to a proposal distribution q. Then calculate the ratio given by

α =
P (M′|D)q(M|M′)
P (M|D)q(M′|M)

. (14)

If α > 1 the new state is accepted, otherwise it is accepted with the probability
α. The expression α balances the Markov chain to both sample more probable
states while at the same time exploring states which are harder to reach. The
first half of the expression

P (M′|D)

P (M|D)

will give a higher α if the proposed state M′ is more probable than M, i.e,
P (M′|D) > (M|D). The second half of the expression

q(M|M′)
q(M′|M)

reduces α if state M′ is easy to reach from M and increases α if it is easy to
get back toM fromM′, thus compensating the fact that some states are easier
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to reach than others. The full optimization algorithm is displayed below.

Input: Start with shortest path initialized fiber setM
while temperature T > temperature Tmin do

Randomly select a fiber
Randomly select a proposal
Generate a new stateM′
Compute α = P (M′|D)q(M|M′)

P (M|D)q(M′|M)

if α > 1 || α > u ∼ U(0, 1) then
accept new stateM←M′

else
reject new state

end if
reduce temperature

end while
Output: Final state of the modelMfinal

Two different proposals were considered to generate the new states

• Movement of a fiber’s control point

• Change a fiber’s weight

The new state was chosen according to a Gaussian distribution N(0, σ2) making
them symmetric, i.e, q(M ′|M) = q(M |M ′) reducing the acceptance probability
in ()14) to

α =
P (M′|D)

P (M|D)
(15)

The parameter σ is the Gaussian distribution could be one of three values: σGM ,
σWM or σweight, depending on if the chosen proposal’s distribution: moving a
control point in white matter, gray matter or changing a fiber’s weight.

The input of the model consisted of the set of plausible connections, all
with a weight of w = 0, which is equivalent to an empty set. So by randomly
selecting an untouched fiber and changing its weight basically meant inserting
a new fiber into the model. If a fiber with weight w = 0 was chosen to move its
control point, it was instead assigned a random value for its weight in order to
not waste iterations.

3.2 Model Parameter Selection
3.2.1 Proposal Parameters

It was especially important to choose the σ-parameters σGM and σWM wisely.
They could not be set too high because that would result in the proposal con-
stantly moving the control points outside of the white and gray matter, resulting
in too many rejected proposals. If they were set too small then the proposals
would not explore the possible solutions fast enough, resulting in much longer
time to find the optimal solution.

Since the regions of interest in the brains gray matter were much smaller
than in the white matter, the Gaussian determining the step size in the gray
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matter was set to half the width of the one for the white matter.
The third parameter σweight was initially set 1.

3.2.2 Spline and Gaussian Smoothing Parameters

These parameters were chosen by running the method over a plausible interval
of each parameter and choosing the one which gave the lowest cost function of
the end result. The segment length of the spline was a compromise between
computational speed and accuracy. The segment length was evaluated on the
interval of l = [0.5, 2] because larger segments than 2 sould be larger than the
voxels and caus the fiber not be a good representation. It turned out by looking
at the end results in figure 19, that a segment length of l = 2 gave the lowest
cost function.

Figure 19: Plot of the different final costs for some values of segment lengths

The size of the parameter σsmooth controlling the size of the Gaussian smooth-
ing distribution was also a trade-off between speed and accuracy. If σsmooth was
set too high, then each fiber segment would have a much larger contribution
in neighboring voxels. This leads to the method being too computationally
expensive. A small value of σsmooth makes each segment contribute very little,
requiring a larger number of fibers to correctly reconstruct the ODFs for a voxel.
That would again make the method too computationally expensive. The pa-
rameter was calibrated by evaluating the final value for values of σsmooth on the
interval (0, 1]. The results as shown figure 20 show that σsmooth = 0.3 turned
out to give the lowest cost function.
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Figure 20: Calibration of Gaussian smoothing σsmooth parameter. The value
giving the lowest cost was σsmooth = 0.3

3.3 Implementation
The algorithm was implemented in C++ with much effort put into the code
running as fast as possible. A key feature was to precompute kernels for the
most time consuming operations, namely: calculating the Gaussian smoothing,
the temperature cooling scheme of the simulated annealing procedure and cal-
culation of each voxels ODF. A consequence of this was that the reconstructions
were more sparse because the computed input vales for each kernel was rounded
to the nearest pre-calculated value.

3.4 Datasets and Evaluation
The method was tested on two datasets: one phantom dataset called the Fiber-
Cup and one in-vivo data set of a human brain. Since it is currently not possible
to know the ground truth of the in-vivo dataset, global tractography methods
are currently scored on the FiberCup data set after a method called the Trac-
tometer [5] which will be explained later in this section. The test on in-vivo
data was primarily to evaluate its speed and make sure that the method actu-
ally generates a connectome to study and generate some network parameters to
study.
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3.4.1 FiberCup

The FiberCup is a phantom designed for a tractography contest at the MICCAI
conference held in London in 2009 [26]. It is now an open and widely used
dataset to test tractography methods on. The phantom itself consisted of 12
regions of interest and seven connections containing many of the problematic
fiber scenarios such as crossing, kissing and blending of fiber configurations.
The phantom was acquired in 64 directions at b = 1500s/mm2 and 3 × 3 × 3

Figure 21: The FiberCup data. The left image shows the ground truth of the
seven connections. The right image shows the tracking mask used with the
regions of interest. The red color represents the white matter, the yellow color
represents the gray matter [7].

mm in plane resolution, acquiring three 3 mm slices.

3.4.2 Tractometer

The tractometer is a methodology proposed in [5], which is an evaluation system
for tractography with a particular emphasis on global connectivity. It involves
counting and keeping track of:

• True Connections (TC): fibers connecting expected ROIs. TC will be
reported in percentage of true connections.

• False but Plausible Connections (FPC): fibers connecting unexpected ROIs
not corresponding to the ground truth. It is also reported in percentage.
These connections are especially important to score as they look anatom-
ically good but are in fact incorrect.

• Wrong connections (WC): fibers that are incomplete and don’t connect
two ROIs. We expect this count to be zero for our method due to the
anatomical priors.

• True Bundles (TB): a bundle is the collection of fibers connecting two
ROIs. This score counts the total number of correct connected ROIs.

• Wrong but plausible bundles (WPB): counts the number of bundles con-
necting two ROIs which are not supposed to be connected.
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3.4.3 In-vivo Brain Data

The in-vivo diffusion measurements were acquired on a Siemens 3T Trio. The
whole brain was covered with 51 contiguous 2 mm slices with an in-plane res-
olution of 2 × 2 × 2 mm. The diffusion measurements were performed in 64
directions with an effective b-value of b = 3000 s/mm2. Segmentation of the
gray matter (GM) and white matter (WM) mask was done using from the T1
data set using established methods. The gray matter was divided up into 83
regions based on anatomical functions [8] using the well known neuroimaging
software package known as freesurfer (surfer.nmr.mgh.harvard.edu).
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4 Results and Discussion
Once the method was implemented and parameters fine tuned to the above
values, it was run ten times on the FiberCup dataset and one time on the
in-vivo brain data.

4.1 FiberCup Dataset
In the latest competition which evaluates global tractography methods on the
FiberCup [14], the Gibbs tracker was the best performing model, making its
suitable benchmark for the method derived in this thesis.

The proposed method took around 15 minutes to run on a conventional
laptop using an Intel R© CoreTMi7-2630QM CPU @ 2.0 GHz. Compared to
the Gibbs tracker which takes about 40 minutes to run, this is a considerable
improvement much thanks to the reduced computational burden using the spline
formulation.
The evolution of the cost for all ten runs is shown in figure 22 while the mean
all ten runs is shown in figure 23. We see that the method converges after about
3 · 106 iterations.

The reconstruction of the connections in the FiberCup shown in figure 24
where the individual connections have been isolated.

Recall that each fiber has a weight which cannot be shown by figure 24. The
weighted connection matrices in figure 25 complements figure 24 by summing
the weights of all the fibers in each connection.
The reconstruction successfully reconstructs all the true connections (which
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Figure 22: Figure showing the evolution of the cost function for all ten iterations
of the method
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Figure 23: Figure showing the mean of the evolution of the cost function for all
ten iterations of the method

can be identified in figure 21) but struggles with the "kissing" connections [1−
12], [3− 10], [1− 10], [3− 12]. Here we expect [1− 12], [3− 10] to be stronger
than [1−10], [3−12]. The major reason for this result is that for all of the fibers
in these connections, the majority of the segments still fits the data in each voxel
relatively well and it is only in occasional voxels where the model fits the signal
poorly. Therefore the method struggles to distinguish between a correct and
an incorrect fiber as both will give a relatively similar low cost. This is one of
the major improvement areas for the method in it’s current state. The method
does still however produce less incorrect fibers than the Gibbs tracker who’s
reconstruction of the 14 most prominent bundles are shown below in figure 26
which is a noticeable improvement.
The coefficient of variation defined as the ratio of the standard deviation σ to
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Figure 24: The figure shows the reconstruction of all the fiber bundles recon-
structed by the method. Figure a-g shows the correct connections and h-i shows
false but plausible connections.
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Figure 25: Weighted connection matrices showing the strength of the connection
between two ROIs as the sum of the weights of all the fibers connecting them.
The weights have been normalized against the strongest connection which has
the value 1.
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Figure 26: The figure shows the reconstruction of all the fiber bundles recon-
structed by the Gibbs tracker. It is clear that the Gibbs tracker reconstructs
more incorrect fiber bundles [7].

the mean µ:
cv =

σ

µ
(16)

can be used to measure the extent of the variability of each connection deter-
mining how the results vary in each run. Figure 27 compares the coefficient of
variation of our method with the Gibbs tracker in each connection. Clearly, our
developed method has a lower variability between the runs and is thus more
stable than the Gibbs tracker by converging to the same answer more often.

Next we evaluate our method according to the tractometer. Table 1 com-
pares our method’s reconstruction to the Gibbs tracker, where the results of the
Gibbs tracker were taken from [7].

Gibbs Our method
TB 7 7
FPB 12.5 2.8

WC (%) 76.5 0
TC (%) 19.8 75
FPC (%) 3.7 25

Table 1: Tractometer scores for our method compared to te Gibbs tracker.

As we can see, the introduction of anatomical priors completely removes all
of the wrong connections while having a high percentage of true connections
and identifying a fewer number false but plausible bundles of Gibbs. However
normalizing the Gibbs fibers by the number of actual connecting fibers (1-WC),
the number of true connections (TC) for Gibbs is actually 84.3% and 15.7%
false but plausible connections (FBP), which although initially seems better
than our method is not fair comparison; as our method has weights on the re-
constructed fibers, while the Gibbs tracker’s fibers do not. A better comparison
would be instead of a binary threshold to only include fibers reconstructed with
our method which have a high enough weight. Further research must be done
first to identify what this threshold should be.

In the end, even if the Gibbs tracker does produce a higher number of true
connections, the fact that it also produces a high number of false but plausible
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Figure 27: The figure shows the coefficient of variation for each connection for
ten runs. Top: The Gibbs tracke. Bottom: Our method.
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connections makes the Gibbs tracker method more difficult to use for connec-
tome analysis compared to our method.

4.2 In-vivo Data
For the in-vivo dataset the iterations had to be raised by a magnitude of 10
to 107 iterations due to the shear size of the dataset. The simulation took
approximately 2 hours which is half of the time that Gibbs tracker which takes
4 hours. Figure 28 shows the front, side and top view of the entire reconstruction
along with certain bundles segmented out.

Figure 28: The left column shows the entire reconstruction of all the Fiber bun-
dles. The right column shows the reconstruction of the Fiber bundles through
the Corpus Callosum (top red), the cingulate cortex (middle green) and the
Corticospinal tract (bottom blue).
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The weighted connection matrix was derived from the weights of the recon-
structed fibers and is displayed in figure 29

Figure 29: The weighted connection matrix displaying the connection strength
between the 83 regions of interest. The connection strengths has been normal-
ized against the strongest connection, giving it the value 1.

From the connection matrix the network parameters used to evaluate the
network can be derived. In this dataset with 83 regions of interest, it will be
difficult to view the local values for each individual node and we will focus on
the global values. Usually these 83 regions of interest are grouped into clusters
corresponding to what regions are to be studied. But since this thesis has fo-
cused on global reconstruction the dataset contained the 83 regions unclustered.

Global Network Parameter value
Mean strength (k) 3.3973

Clustering coefficient (C) 0.0416
Characteristic path length (L) 0.0128

Table 2: Global network parameters derived from the connectivity matrix.

Further analysis of these network parameters is beyond the scope of this
thesis, but procedure is normally to compare the local and global network pa-
rameters to healthy and pathological brain s in order to determine the condition
of the brain connectivity.
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5 Conclusions
In this thesis we have developed a new global tractography algorithm which
performs better than the state of the art method, the Gibbs tracker in the tests
used to score these kinds of methods. However, the method still has problems
not removing enough wrong but plausible connections and needs additional
improvements and refinements in order do this this. Unfortunately, simply
increasing the number of iterations is not an obvious remedy as the solution
space of the problem is so large that there is no guarantee of convergence within a
feasible amount of time. The two obvious ways of going forward are: decreasing
the solution space and more efficient exploration of the distribution. To do this
two main improvements are proposed:

• Start with a better solution

• Improve proposals

Initial Solution

Currently the method starts with all the initialized fiber weights set to zero.
This creates an enormous space to explore, especially for real brain data where
the plausible fibers are about 5 · 105. The possibility should be explored to
start the sampler with a set of plausible prior weights just as for the anatomical
priors for the connections. This will greatly decrease the number of incorrect
states that the Markov Chain has to traverse through before reaching the region
around the optimal solution. It has been proven possible to optimize the weights
given a stationary setup using convex optimization [7]. This information should
perhaps be incorporated into the prior.

Proposal Improvements

There are ways to more efficiently generate correct candidates thus increasing
convergence speed using Hybrid Monte Carlo methods [21]. These are methods
where the proposals can be skewed to propose candidates with a higher accep-
tance rate thus resulting in a more efficient exploration of the distribution and
faster convergence.

With these improvements we will hopefully have a state of the art method
which not only can be used for better reconstructions of fiber tracts but also a
method capable of studying the evolution of the connectome by exploring the
state of the connectome around an optimal solution in order to study how the
brain network parameters are affected. This has never previously been done but
would be of great interest to the diffusion MRI community.
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