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Abstract	
  

Asian options are difficult to price analytically. Even though they have attracted much 

attention in recent years, there is still no closed-form solution available for pricing the 

arithmetic Asian options, because the distribution of the density function is unknown. 

However, various studies have attempted to solve this problem, Levy (1992) 

approximates the unknown density function using lognormal distribution by matching 

the first two moments. This paper investigates how accurate the Levy approach is by 

comparing values of Asian options from Levy’s approach with Monte Carlo 

simulations. We find that Levy’s analytic solution tends to over-estimate Asian option 

values when volatility is constant, but under-estimates under the scenario of having 

stochastic volatility. 

Key words: Asian options, Monte Carlo simulation, constant volatility, stochastic 

volatility  
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1. Introduction	
  

Historically, options were first only traded over-the-counter (OTC) and the terms 

were not standardized. The first exchange to have the listed options was the Chicago 

Board Options Exchange (CBOE) in 1973.  During the 80s when London 

International Financial Futures Exchange (LIFFE) was established, option trading 

played an important role in financial markets. With the help of Black-Scholes (1973) 

breakthrough on the valuation of options, it became simple and affordable to price and 

hedge standard options (Perera, 2002). 

As options became more frequently traded, there was a need for more complex 

options on the market. That is when exotic options came into existence; their structure 

was more complicated and attractive to many investors. Due to the increase of 

complexity and trading volume in exotic options, many simple exotic options are 

considered to be standard today (Clewlow & Strickland, 1997).  

Exotic options, such as path dependent options, have a payoff that is determined by 

taking an average of the asset price during the whole period. Asian options, which are 

a kind of path dependent options, have a payoff that depends on either geometric or 

arithmetic average price of the underlying asset before maturity. Asian options are in 

general difficult to value since the distribution of the payoff is usually unknown. For 

geometric Asian options, the payoff is a product of normally distributed random 

variables, and they are easily priced with risk neutral expectations by having the 

underlying asset follows a geometric Brownian motion process. However, for 

arithmetic Asian options, its payoff is the sum of lognormal distributed random 

variables, for which there is no recognizable distribution function (Hull 2006).  

There is no closed form solution for pricing arithmetic Asian options since the 

distribution is unknown. Nevertheless, many studies have tried to give an analytical 

approximation for valuation of Asian options. For instance, the binominal tree has 

been an efficient model used in pricing Asian options (Hull & White, 1993). Lower 
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and upper bounds for option pricing has been introduced by Curran (1992), Roger and 

Shi (1992). There have been studies valuing Asian option under the assumption that 

the arithmetic average is log normally distributed. One such research was introduced 

by Levy (1992) as well as in Turnbull and Wakeman (1991). At last, Boyle (1977) 

and Hull and White (1987) introduced the Monte Carlo simulations to price Asian 

options. The Monte Carlo simulations provide us with the numerical solution for 

Asian options with stochastic diffusion processes (Milevsky & Posner, 1998). 

The purpose of this paper is to evaluate the accuracy of Levy approximation formula, 

to see how it performs by comparing with simulations from Monte Carlo method with 

constant and stochastic volatilities. The option values from Monte Carlo simulation 

are assumed to be the real prices for Asian options, since the simulation methodology 

relies on the quality of its randomly number generator (Fu, Madan, & Wang, 1997). 

The simulations are as precise as real prices when the number of paths is large. In 

addition, for each volatility scenario, the comparison between models is studied when 

the option is Out of the money (OTM), At the money (ATM) and In the money 

(ITM). 

The thesis is divided into different sections; the second chapter gives deeper 

background knowledge about exotic options and path dependent options. Later in the 

chapter we introduce Asian options, which is our main focus in this paper. The third 

chapter introduces different methods for pricing arithmetic Asian options, as well as 

our core method to value Asian options, the Levy approximation. Chapter four 

provides a literature review of past studies on pricing standard options as well as 

Asian options, even when volatility is stochastic.  

The methodology used for this paper is described in chapter five, starting with an 

introduction of the Levy analytic approximation, and then followed by the method of 

Monte Carlo simulations under constant and stochastic volatility conditions. This 

leads to the approximation results in chapter six where the Levy approximation and 

Monte Carlo simulations have been divided into constant and stochastic volatility.  
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2. Options	
  

In this part of the paper we intend to provide a theoretical background on exotic 

options in general. Path dependent options as well as Asian options are introduced 

with a final section about valuation of Asian Options.  
	
  

2.1 Exotic	
  Options	
  

European and American call and put options are placed in the category of plain 

vanilla products. Brokers publish their prices and their implied volatilities often. They 

are standardized in their structure and traded frequently on the market. Through out 

the years, the complexity has increased and many nonstandard products are sold on a 

daily basis over-the-counter. These complex options are called exotic options and are 

more profitable compared with plain vanilla options. The reason for the existence of 

exotic options can be everything from tax, accounting, legal and regulatory reasons. 

They are also needed for hedging purposes. (Hull, 2006) 

2.2 Path-­‐dependent	
  options	
  

Path dependent option can be either European or American styled options, which have 

a different payoff than regular options. The payoff is determined by taking an average 

of the asset price during the whole period while regular options are only interested in 

the price at the maturity. These options commonly take commodities as the 

underlying assets, where the distance between the strike price and the average price is 

the payoff for options. Path dependent options can be divided into two groups, weakly 

path dependent options and strongly path dependent options. Weakly path dependent 

options are characterized via its payoff that depends on the asset price reaching a 

predetermined price level. Barrier options are weakly path dependent options with a 

predetermined barrier that can activate or terminate the option. Strongly path 

dependent options consist of a payoff that depends on the entire or part of the path of 
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the asset price during the life of the option. Asian options are strongly path dependent 

options that take the average of the price of the underlying asset during the whole 

period (Jiang, 2005). 

2.3 Asian	
  Options	
  

These path dependent options were first introduced on the Asian market in order to 

avoid the manipulation of prices on expiration date. This was a common problem in 

European options where speculators could drive up the prices before maturity. And 

through out time Asian Options have become popular for many different reasons. 

Several firms are affected by periodical payments in foreign currency and need to 

hedge their cash flows to reduce the exposure of the exchange rate. They are also 

frequently used in balance sheets, where investors seek to hedge their exposure via 

average rates rather than year-end rates. Another advantage of calculating the average 

of the price of the underlying asset during a certain interval is the lower volatility 

compared to European options. Averaging on prices of the underlying asset was 

commonly used in the 1970s with commodity-linked bond contracts. These contracts 

provided the holder an option with a bond that consisted of a commodity with an 

average value.  

Asian options are traded over-the-counter and mainly on markets such as energy, oil 

and currency. They are provided either as European Asian options (Eurasian) or 

American Asian options (Amerasian), depending on if the holder wanted to exercise 

the option at maturity or on several occasions up to expiration. The disadvantage with 

American Asian options is that the investor will not be protected against 

manipulations of prices as in European Asian options (Lee & Lee, 2010).  

The Asian call and put option has a payoff that is calculated with an average value of 

the underlying asset over a specific period. The Asian call and put options have the 

following payoffs: 
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Asian Call  Option                                max  (S− K, 0) 

 Asian  Put  𝑂𝑝𝑡𝑖𝑜𝑛                                    𝑚𝑎𝑥  (𝐾 − 𝑆, 0) 

  𝐾 = 𝑆𝑡𝑟𝑖𝑘𝑒  𝑝𝑟𝑖𝑐𝑒 

  𝑆 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑣𝑎𝑙𝑢𝑒  𝑜𝑓  𝑎𝑛  𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔  𝑎𝑠𝑠𝑒𝑡 

Since Asian options are less expensive than their European counterparts, they are 

attractive to many different investors.  

Apart from the regular Asian options there also exists Asian strike options. An Asian 

strike call option guarantees the holder that the average price of an underlying asset is 

not higher than the final price. The option will not be exercised if the average price of 

the underlying asset is greater than the final price. The holder of an Asian strike put 

option makes sure that the average price received for the underlying asset is not less 

than what the final price will provide. The following equations indicate the payoff for 

Asian strike options: 

𝐴𝑠𝑖𝑎𝑛  𝑠𝑡𝑟𝑖𝑘𝑒  𝑐𝑎𝑙𝑙  𝑜𝑝𝑡𝑖𝑜𝑛      𝑚𝑎𝑥   𝑆! −   𝑆, 0  

𝐴𝑠𝑖𝑎𝑛  𝑠𝑡𝑟𝑖𝑘𝑒  𝑝𝑢𝑡  𝑜𝑝𝑡𝑖𝑜𝑛        𝑚𝑎𝑥  (  𝑆 −   𝑆! , 0)   

𝑆! = 𝑉𝑎𝑙𝑢𝑒  𝑜𝑓  𝑎𝑛  𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔  𝑎𝑡  𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 

𝑆 =   𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑣𝑎𝑙𝑢𝑒  𝑜𝑓  𝑎𝑛  𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔  𝑎𝑠𝑠𝑒𝑡 

 

Asian options are divided into two different types when calculating the average, the 

geometric Asian option and the arithmetic Asian option. The most used Asian option 

is the arithmetic Asian option but these can be very difficult to price. The reason for 

this is because the distribution of the arithmetic average is unknown, and thus there is 

no closed-form solution for arithmetic average as long as the conventional assumption 

of a geometric diffusion is specified for the underlying asset (Hull, 2006). 
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𝑇ℎ𝑒  𝐴𝑟𝑖𝑡ℎ𝑒𝑚𝑡𝑖𝑐  𝐴𝑠𝑖𝑎𝑛  𝑜𝑝𝑡𝑖𝑜𝑛            𝐴! =
1
𝑁    𝑆!!

!

!!!

 

        𝑇ℎ𝑒  𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐  𝐴𝑠𝑖𝑎𝑛  𝑜𝑝𝑡𝑖𝑜𝑛        𝐺! = 𝑆!!

!

!!!

!/!

 

𝑆!! = 𝐴𝑠𝑠𝑒𝑡  𝑝𝑟𝑖𝑐𝑒  𝑎𝑡  𝑑𝑎𝑡𝑒𝑠  𝑡!   , 𝑓𝑜𝑟  𝑖 = 1,… ,𝑁 

However, it is possible to derive a closed form solution for geometric Asian options 

with the help of risk-neutral expectations when the underlying asset follows a 

geometric Brownian motion process. The density function for the geometric average 

is assumed to be lognormal distributed. Even though the geometric Asian options are 

easily priced they are rarely used in practice. (Milevsky & Posner, 1998) 
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3. Pricing	
  Options	
  

In this section, methods used for pricing options are introduced. Starting with a 

presentation of the famous Black-Scholes option pricing formula, and then a brief 

outline for Monte Carlo simulations, which will be discussed in more detail in the 

methodology part of this paper. At last, the analytic approximation formula for Asian 

options from Levy (1992) is presented.    

3.1 Pricing	
  Asian	
  options	
   	
  

In the early 1970s the Nobel Prize for economics went to Fischer Black, Myron 

Scholes and Robert Merton, who discovered what is today called the Black – Scholes 

model in their article “The Pricing of Options and Corporate Liabilities”. This model 

has influenced the world of derivatives for many years and is even today used 

frequently to provide option prices. European call and put options are priced with help 

of the following basic Black-Scholes pricing model: 

𝑐𝑎𝑙𝑙  𝑜𝑝𝑡𝑖𝑜𝑛 = 𝑆!𝑁 𝑑! −   𝐾𝑒!!"𝑁(𝑑!) 

𝑝𝑢𝑡  𝑜𝑝𝑡𝑖𝑜𝑛 = 𝐾𝑒!!"𝑁 −𝑑! − 𝑆!𝑁(−𝑑!) 

𝑑! =
𝑙𝑛 𝑆!

𝐾 + 𝑟 + 𝜎
!

2 𝑇

𝜎 𝑇
 

𝑑! =
𝑙𝑛 𝑆!

𝐾 +    𝑟 − 𝜎
!

2 𝑇

𝜎 𝑇
= 𝑑! − 𝜎 𝑇 

where 

𝑆! = 𝑠𝑡𝑜𝑐𝑘  𝑝𝑟𝑖𝑐𝑒  𝑎𝑡  𝑡𝑖𝑚𝑒  𝑧𝑒𝑟𝑜 

𝐾 = 𝑠𝑡𝑟𝑖𝑘𝑒  𝑝𝑟𝑖𝑐𝑒 

𝑟 = 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑙𝑦  𝑐𝑜𝑚𝑝𝑢𝑛𝑑𝑒𝑑  𝑟𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒  𝑟𝑎𝑡𝑒 

𝜎 = 𝑠𝑡𝑜𝑐𝑘  𝑣𝑜𝑙𝑎𝑡i𝑙𝑖𝑦 

𝑇 = 𝑡𝑖𝑚𝑒  𝑡𝑜  𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 



	
   11	
  

Through Black-Scholes, an analytical closed form solution has been found for plain 

vanilla options with the assumption of no arbitrage conditions (Hull, 2006). By 

constructing a dynamic portfolio with proportions of the underlying stock and a risk 

free debt instrument, it is possible to create a replicating portfolio of the payoff from 

an option. The model assumes that under risk-neutral measure of Q, the underlying 

asset follows a lognormal diffusion process where the volatility is constant. 

Nevertheless, this gives an inaccurate representation that all options with varying 

strikes and maturities have the same implied volatility and that historical volatility is 

constant over time.  

When closed form solutions are not available, Monte Carlo simulations is able to 

price complex path dependent derivatives with stochastic diffusion processes. The 

Monte Carlo method was first introduced by Boyle (1977), where a large number of 

simulations provide a high degree of accuracy within option pricing (London, 2005). 

Von Neumann first introduced the simulations during the Manhattan atomic project, 

where the simulations were seen as an imitation of the spins of the roulette wheels in 

Monte Carlo. The method is not only the most common used tool in pricing exotic 

options but also very applicable to plain vanilla options with a payoff that depends on 

the price at maturity (Raju, 2004). 

Many researchers tried to improve and develop different models that could take the 

random path of the volatility with its own diffusion process with drift and diffusion 

parameters. Among many Heston (1993), Stein and Stein (1991), Scott (1987), 

Wiggins (1987) and Hull and White (1987) proved that stochastic volatility and stock 

prices are typically correlated with one another (Corrado & Su, 1998). A widely used 

and interesting approach was introduced by Hull and White (1987), who presented a 

great deal of flexibility and correlation between stochastic volatility and changes in 

stock price.  

Hull and White (1987) first introduced the assumption that stochastic volatility is 

independent of the stock price. By comparing Black-Scholes and real option prices 



	
   12	
  

they were able to express the pricing error. When Black-Scholes was compared with 

the correct option prices it was shown that Black-Scholes is too low deep in and out of 

the money and too high at the money. Near or at the money indicates the largest price 

difference but the price error is quite small in relations to the correct option price. The 

assumption in the article is later weakened and numerical solutions are used for stock 

prices that are correlated with volatility. In positive correlation in the money options 

(ITM) were overpriced and out of the money (OTM) underpriced. (Hull & White, 

1987). 

3.2 Levy	
  approach	
  on	
  Asian	
  options	
  

The payoffs of Asian options depend on the average price of its underlying assets, 

where the average can be derived either geometrically or arithmetically. In real world, 

Asian options are commonly used on foreign currencies, interest rates, as well as 

commodities, for instance crude oil.  

For the arithmetic Asian options, a closed form solution does not exist if the 

conventional assumption of a geometric diffusion is specified for the underlying asset, 

because the density function for arithmetic average is unknown, which unlike 

geometric average, is not lognormal distributed and thus has no explicit representation. 

Due to the attraction of Asian options as well as the pricing difficulties it has, recent 

studies have put their focus on finding a pricing formula for calculating the value of 

arithmetic Asian options, and has become a special discipline in computational 

finance (Potapchik & Boyle, 2008). 

Levy (1992) had a straightforward approach, the so-called ‘Wilkinson approximation’, 

which is used to approximate the arithmetic density function by matching the first two 

moments. His approach has been claimed to be accurate and easily implemented for 

certain levels of volatility, which will be conducted in this study. 
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As in Cox and Ross (1976), applying the neutrality condition, with constant strike 

price K, the value of the arithmetic average Asian call option can be written as: 

𝐶 𝑆(𝑡),𝐴(𝑡), 𝑡 =   𝑒!!(!!!)𝔼!
!𝑀𝑎𝑥 𝐴(𝑡)− 𝐾, 0  

where 𝔼!
! is an expectation operator conditioned on 𝑆(𝑡), 𝐴(𝑡)  at time t under the 

risk-adjusted density function. 

However, pricing arithmetic Asian options using above equation is considered to be 

problematic for 𝐾 ≠ 0, because the approximation is not straightforward and thus 

requires knowledge of the distribution on the summation of lognormal distributed 

random variables. Even though the moment generating function for the sum of two 

lognormal distributed variables does exist, closed form expression for their density 

function is still not available. Levy (1992) assumes 𝑀(𝑡)  as an undetermined 

component of the final arithmetic average, which is a sum of lognormal random 

variables.  

𝑀 𝑡 =    𝐴 𝑡! − 𝐴(𝑡)(𝑚 + 1)/(𝑁 + 1)  

where 𝐴 𝑡!  represents the arithmetic average of 𝑁 + 1 prices of underlying assets, 

and 0 ≤ 𝑚 ≤ 𝑁 . Studies have suggested that such sum of lognormal random 

variables can be very well approximated by another lognormal distribution.  

Thus by accepting that ln𝑀(𝑡) follows a normal distribution with unknown mean 

𝛼(𝑡) and variance 𝑣(𝑡), the moment generating function 𝑋 𝑡 = 𝑙𝑛𝑀 𝑡 ,Ψ!(𝑘) is 

used, given:  

Ψ! 𝑘 = 𝔼!
! 𝑀(𝑡)! = 𝑒!" ! !!/!!!!(!)! 

for 𝑘 = 1 and 𝑘 = 2, which yields the first and second moment for 𝑙𝑛𝑀(𝑡) : 
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𝛼 𝑡 = 2𝑙𝑛𝔼!
! 𝑀(𝑡) −

1
2 𝑙𝑛𝔼!

! 𝑀 𝑡 ! , 

𝑣 𝑡 = 𝑙𝑛𝔼!
! 𝑀 𝑡 ! − 2𝑙𝑛𝔼!

! 𝑀(𝑡) . 

By assuming 𝑀(𝑡) is lognormal distributed, with mean 𝛼(𝑡) and variance 𝑣(𝑡), the 

arithmetic call option is valued as: 

𝐶[𝑆(𝑡),𝐴(𝑡), 𝑡] = 𝑒!!(!!!)  {𝔼!
![𝑀(𝑡)]𝑁(𝑑!) 

                                                                                                                            −[𝐾 − 𝐴(𝑡)(𝑚 + 1)/(𝑁 + 1)]𝑁(𝑑!)} 

where  

𝑑! =   
1
2 𝑙𝑛𝔼!

! 𝑀 𝑡 ! − 𝑙𝑛 𝐾 − 𝐴(𝑡)(𝑚 + 1)/(𝑁 + 1)
𝑣(𝑡) , 

𝑑! =   𝑑! − 𝑣 𝑡  

and 𝑁(. ) is the cumulative normal distribution function. 

The main advantage of Levy’s approach is that an approximation of closed form 

analytical solution for pricing arithmetic Asian options becomes possible within a 

certain range of volatility. When compared with other methods, this approach is less 

time consuming. 

The payoff for the corresponding put option, 𝑃 𝑆(𝑡),𝐴(𝑡), 𝑡 , can be estimated by 

using the above expression for call options and follow the put call parity, which will 

not be discussed in this paper. 
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4. Literature	
  Review	
  

The breakthrough of Black-Scholes (1973) article has influenced the world of option 

valuation even to this day. Many researchers have tried to implement and improve the 

models to apply for different assumptions and terms.  

Under the influence of Black-Scholes (1973), Cox and Ross (1976) published a paper 

on valuation of options based upon different jump and diffusion processes in order to 

solve difficulties with payouts and potential bankruptcies. They questioned the 

lognormal diffusion process that followed in the Black-Scholes and explained the 

importance of diffusion and jump processes in the stochastic process in continuous 

time 

𝑑𝑆
𝑆 = 𝜇𝑑𝑡 + 𝑘 − 1 𝑑𝜋 

where 𝜋 is a continuous time Poisson process and 𝑘 − 1  is the jump amplitude. 

The article presents alternative jump and diffusion processes in order to give more 

insight in the option valuation (Cox & Ross, 1976). 

A couple of years later, Heston (1993) resumed these phenomena of finding a closed 

form solution for European call options with stochastic volatility. 

𝑑𝑆! = 𝜇𝑆!𝑑𝑡 + 𝑣!𝑆!𝑑𝑊!
! 

With inspiration from previous researches Cox, Ingersoll, and Ross (1987) and their 

square-root process, 

𝑑𝑣 𝑡 = 𝐾 𝜃 − 𝑣(𝑡) 𝑑𝑡 +   𝜎 𝑣 𝑡 𝑑𝑧!(𝑡) 

Heston (1993) explained the correlation between the stochastic volatility and the asset 

price. This correlation gives incitements to explain the strike-price biases and 

skewness for the Black-Scholes model. With the help of stochastic interest rate he was 
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able to apply the model to stock options, bond options and currency options (Heston, 

1993). 

The importance of pricing average options was very essential after their introduction 

during the late seventies since many investors sought out to protect themselves from 

movements in the commodity prices. In the article “A Pricing Method for Options 

based on Average asset values” Kemna and Vorst (1989) tried to find an analytical 

solution for the arithmetic average option before and during the final time interval but 

failed to do so. However, with the help of Monte Carlo simulations they were able to 

prove that average options have a lower value than a counterpart European option. 

Much consideration was put into the variance reduction technique used in Monte 

Carlo simulations to get a more accurate standard deviation result. This was done with 

the help of the geometric average option since it creates a lower bound for the 

arithmetic average option (Kemna & Vorst, 1990).  

Since the movement in prices become averaged the significance of the price at 

maturity decreases. Turnbull and Wakeman (1989) underline the problem with the 

pricing of averaging options by emphasizing that the binominal tree approach cannot 

be used when the number of nodes becomes too large to value the history of the asset 

price movements over the averaging period. Another concern of theirs was the speed 

of adjustment when the maturity of the option is less than the average period. They 

looked at the difference between the arithmetic and geometric average options prices. 

Their conclusions were that if the averaging period is shorter than the maturity of the 

option and the standard deviation is smaller it would lead to similar results. However, 

if the averaging period is larger than the option maturity there can be differences in 

the prices (Turnbull and Wakeman, 1991).  

With the help of previous studies of Levy (1992) and Turnbull and Wakeman (1989), 

Curran (1994) explains in his article “Valuing Asian and Portfolio Options by 

Conditioning on the Geometric Mean Price” the difficulties with the Black-Scholes 

method and tries to solve the problem by presenting a method on conditioning on the 



	
   17	
  

geometric mean prices in order to calculate the option payoff. The article reaches out 

for a more accurate approximation of the average options and a faster and more 

accurate method for portfolio options than previous multinomial methods (Curran, 

1992).  

A couple of years later Milevsky and Posner (1998) tried to solve the enigma behind 

finding a closed form solution for arithmetic Asian options. Their aim was to derive 

the probability density function of the infinite sum of correlated lognormal random 

variable since the difficulty rises because the payoff depends on the finite sum of 

correlated lognormal variables. Focus was put into the valuation of the arithmetic 

Asian option where the density function was determined through the usage of the 

reciprocal gamma distribution. The cumulative density function of the gamma 

distribution G(d) had the same interpretation as the N(d) in the Black-Scholes 

equation. Through the gamma distribution the closed form analytical solution was 

found for the arithmetic Asian option (Milevsky & Posner, 1998). 
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5. Methodology	
  

As studies have pointed out, the payoff of a path dependent option is rather difficult to 

calculate, since it depends on the path of the asset prices over time, rather than its 

final value. For path dependent Asian options, there is no closed form solution 

available, therefore, large amount of researches have been carried out in order to 

find an appropriate method to price these kinds of options. For our paper, we focus 

on two methodologies to price the arithmetic Asian options: an analytical solution as 

well as a simulation approach, which will be summarized in this section: 

5.1 Analytic	
  Approximation	
  

The analytic approximation as a major approach has been widely used, and is also the 

most appealing method for pricing exotic or path dependent options, because 

comparing with other methods, it is less time consuming and thus easy to implement. 

The analytic approximation for pricing Asian options was first introduced by Turnbull 

and Wakeman (1991). Based on their study, Levy (1992) put forward another solution 

which is claimed to be more accurate. Therefore, in this paper, we will use Levy’s 

approximation to value the arithmetic Asian option. (Boyle 1977) 

As introduced in previous section, Levy in his paper approximated the distribution of 

arithmetic Asian option follows a lognormal distribution, which has the identical first 

two moments. However, Ju (2002) in more recent study states that Levy’s 

approximation using lognormal density as the first-order true density only works for 

options with short maturities. Nevertheless, Levy (1992)’s approach still contributes 

to the development of analytical solution by avoiding time consuming procedures 

(Boyle, 1977).  
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Under the Black-Scholes setting, Levy (1992)’s approximation method for pricing 

arithmetic Asian options can be written as: 

𝐶!"#$ ≈ 𝑆!𝑁 𝑑! − 𝐾!𝑒!!!!𝑁(𝑑!) 

where 

𝑑! =
1
𝑣
ln  (𝐿)
2 − ln  (𝐾!) , 𝑑! = 𝑑! − 𝑣 

𝑆! =
𝑆

𝑟 − 𝐷 𝑇 (𝑒
!!!! − 𝑒!!!!) 

𝐾! = 𝐾 − 𝑆!"#
𝑇 − 𝑇!
𝑇   

𝑣 = ln 𝐿 − 2 𝑟𝑇! + ln  (𝑆!)  

 𝐿 = !
!!

 

𝑀 =
2𝑆!

(𝑟 − 𝐷)+ 𝜎!
𝑒 ! !!! !!! !! − 1
2 𝑟 − 𝐷 + 𝜎! −

𝑒 !!! !! − 1
𝑟 − 𝐷  

and  

      S = Spot price. 

      𝑆!"#=Average asset price. 

      X = Strike price. 

      r = Risk-free interest rate. 

      D = Dividend yield. 

      T = Time to maturity. 

      𝑇!= Time remaining until maturity. 

      𝜎 = Observed volatility. 

      N(x) = Cumulative probability distribution function for a normal distribution. 
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5.2 Monte	
  Carlo	
  Simulation	
  

Other than the analytic approximation, a major numerical approach for pricing 

derivatives is the Monte Carlo simulation, which is a stochastic process first 

introduced by Boyle (1977). This method is used for derivative valuation as well as 

hedging assets.  

Moreover, Hull (2006) summarizes the procedure of Monte Carlo simulations with 

the assumption that the derivative depends solely on the underlying stock S, which 

yields a payoff at maturity T with constant volatility over time; 

1. The very first step is to divide the time to maturity T into n equally spaced 

intervals, thus let ∆𝑡 = 𝑇/𝑛. Meanwhile assuming that the stock price follows 

Geometric Brownian Motion (GBM), so that one may sample a random number of 

𝜀 with normal distribution and insert it into the equation to get the change in stock 

price: ∆𝑆 = 𝑟 − !!

!
∗ ∆𝑡 + 𝜀𝜎 ∆𝑡, then add ∆𝑆 back to S which is the stock 

price for the next period. If the procedure repeats continuously, as a result, it 

forms a random path of S in a risk-neutral world.  

2. Then the next step is to generate the payoff of the derivative at maturity T for all 

paths simulated. 

3. Repeat step 1 and 2 to get a large number of sample values. 

4. Calculate an average of the obtained sample values as an estimate of the expected 

payoff. 

5. Since the Monte Carlo simulation is formed in a risk-neutral world, so that 

according to the risk-neutral measure, the price of a derivative is the discounted 

value of its future payoff, the final step of Monte Carlo simulation is to discount 

the expected payoff at the risk-free rate to get the payoff of the derivative.  
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5.2.1 Monte	
  Carlo	
  Simulation	
  with	
  Constant	
  Volatility	
  

The Monte Carlo simulation in recent studies has been implemented to solve more 

complex derivatives, for instance the path dependent options as well as some other 

exotic options. And the majority of these implementations have been carried out 

under the same conditions as the ones that apply in the Black-Sholes model with 

constant volatility. In this paper, we will follow the procedure of Monte Carlo 

simulation to estimate the payoff of a path dependent Asian option. 

It assumes that the underlying asset follows a Geometric Brownian motion where in a 

risk-neutral world, the drift term is equal to the risk-free interest rate. In a continuous 

time notation, the stock price is: 

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 

where 𝑆 is the stock price, 𝑟 is the risk-free interest rate, 𝜎 is the volatility which 

for now is assumed to be a constant, and 𝑑𝑧 is a Wiener process, which means that 

Δ𝑧 = 𝜀 Δ𝑡, and 𝜀 follows the standard normal distribution with mean zero and 

variance of one. Therefore, for a discrete time system, a change in stock price 

becomes: 

Δ𝑆 = 𝑟𝑆Δ𝑡 + 𝜎𝑆Δ𝑧 = 𝑟𝑆Δ𝑡 + 𝜎𝑆𝜀 Δ𝑡 

thus !!
!
= 𝑟Δ𝑡 + 𝜎𝜀 Δ𝑡, which also follows a normal distribution, and represents a 

percentage change in stock return over a short time period Δ𝑡.  

We then follow the procedure for Monte Carlo simulation as mentioned above, and 

divide the lifespan of the stock into 𝑛 short intervals with length of ∆𝑡, then by 

applying Itô’s Lemma to the stock price process, we get: 
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𝑑𝑙𝑛 𝑆 =
1
𝑆 𝑟𝑆 + 0+

1
2 −

1
𝑆! 𝜎!𝑆! 𝑑𝑡 +

1
𝑆 𝜎𝑆𝑑𝑧 

= 𝑟 −
1
2𝜎

! 𝑑𝑡 + 𝜎𝑑𝑧                                               

Apply to discrete time notation, the above formula becomes: 

Δ ln 𝑆 = 𝑟 −
1
2𝜎

! Δ𝑡 + 𝜎𝜀 Δ𝑡 

Since Δ𝑡 represents short time interval, the change in stock price becomes: 

ln 𝑆!!!! − ln 𝑆! = 𝑟 −
1
2𝜎

! Δ𝑡 + 𝜎𝜀 Δ𝑡 

which eventually gives the path generating formula for the stock price by applying 

Monte Carlo simulation:  

𝑆!!∆! = 𝑆!𝑒
!!!

!

! ∆!!!" ∆! 

where 𝑆! denotes the value of the stock at time t, 𝜀 represents a number randomly 

sampled from a normal distribution with zero mean and standard deviation equals to 

one. And when the volatility is constant, the parameters 𝜇 and 𝜎 are also constant, 

which makes the above equation the true value of stocks, instead of an approximation. 

For this paper, the formula is encoded into MATLAB to create a series of random 

paths following Geometric Brownian motion, which is then used to value the price of 

an arithmetic Asian option using Monte Carlo simulation. 
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 Figure 1 shows 100 randomly generated paths of the stock price in one year  

with fixed initial value of 100. 

Before moving forward, there are two aspects we must declare when implementing 

Monte Carlo simulation. One thing is the Random Number Generator (RNG), which 

is a computational device designed to generate random sequence without any pattern. 

The RNG needs to be clearly defined in order to produce independently and 

identically distributed 𝜀. In our case, 𝜀 is assumed to be normal distributed with 

(0,1). Moreover, the initial value of the underlying asset must be fixed to a certain 

number when generating the random path. With different initial values, the RNG will 

generate different paths every time, even though we run the same simulation. And 

using fixed initial numbers also ensures us that we are able to compare our 

simulations with results implemented by the analytic method. 

The Monte Carlo simulation in general is a good way to price the value of options 

mainly due to its advantages compared to other methods: First of all, Monte Carlo 

simulation is suitable when the value of options depends either on the path or the final 

value of the underlying asset. The Asian option for example depends on the average 

price of the underlying asset, whereas the lookback option depends on the maximum 

or the minimum price of the underlying, and both of these two options can be priced 
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using the Monte Carlo simulation. 

On the other hand, the Monte Carlo simulation is recommended because one can 

actually control the accuracy of the results generated. Previous studies have shown 

that the accuracy of the method relies on the number of simulations, which can be 

indicated by the value of the standard error: !
!

 

Moreover, the confidence interval for option prices can also indicate the goodness of 

the estimation, which a 95% confidence interval can be presented as follow: 

𝜇 −
1.96𝜎
𝑁

< 𝑃 < 𝜇 +
1.96𝜎
𝑁

 

Where 𝜎 is the standard deviation, 𝜇 is the mean price and N is the number of 

simulations to be chosen.  

5.2.2 Monte	
  Carlo	
  Simulation	
  with	
  Stochastic	
  Volatility	
  

As in Black-Sholes and other models used for pricing options, the volatility is 

assumed to be constant over time. However, in real financial markets, volatility 

changes dramatically from time to time. Therefore, in order to make our analysis 

more close to reality, we will also apply Monte Carlo simulation with stochastic 

volatility and see how the results generated differ from constant volatility.  

Among all studies that incorporate stochastic volatilities, the most famous is the one 

introduced by Hull and White (1987), which is followed in this paper. The same 

assumptions are used for the underlying stock as described in the previous section but 

with one exception, the volatility 𝜎 is not constant, but rather follows a stochastic 

process in a risk-neutral world: 
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𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 

𝑑𝑉 = 𝜇𝑉𝑑𝑡 + 𝜉𝑉𝑑𝑤 

where 𝑉 = 𝜎!, 𝜓 and 𝜉 are the so called instantaneous drift and standard deviation 

of the variance. In general, 𝑑𝑧 and 𝑑𝑤 as being two Wiener process are assumed to 

have a correlation 𝜌. 

Based on large number of numerical procedures, Hull and White (1987) concludes 

that with stochastic volatility, Monte Carlo simulation can be efficiently used to 

derive option prices by assuming that the above two Wiener processes are not 

correlated, where 𝜌 = 0. Following the same idea as earlier by generating the stock 

price under the constant volatility, with 𝜉 assumed to be constant.  

𝑑𝑙𝑛𝑉 =
1
𝑉 𝑑𝑉 −

1
2
1
𝑉! 𝑑𝑉 ! 

                        = 𝜇 −
𝜉!

2 𝑑𝑡 + 𝜉𝑑𝑤 

so that                  Δ𝑙𝑛𝑉 = 𝜇 − !!

!
Δ𝑡 + 𝜉Δ𝑤 

𝑙𝑛𝑉!!!! = 𝑙𝑛𝑉! + 𝜇 −
𝜉!

2 Δ𝑡 + 𝜉(𝑤!!!! − 𝑤!) 

Which gives us the volatility at each point in time by a stochastic process as: 

𝑉!!!! = 𝑉!𝑒
!!!

!

! ∆!!!" ∆! 

similarly, 𝜀 is a random sample from a standardized normal distribution with mean 

zero and variance of one.  

When applying the Monte Carlo simulations with stochastic volatility, and assuming 

the volatility is uncorrelated with the stock price, but allow parameters 𝜇 and 𝜉 to 

depend on 𝜎 and 𝑡, which means that the instantaneous variance follows a so called 
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mean-reverting process that is: 

𝜇 = 𝛼(𝜎∗ − 𝜎) 

and 𝜉 and 𝛼 and 𝜎∗ are constants. If 𝜇 is constant instead, the volatility would 

have a drift but not follow a mean-reverting process. 

The instantaneous variance can be reformed as follow: 

𝑑𝑉 = 𝛼(𝜎∗ − 𝜎)𝑉𝑑𝑡 + 𝜉𝑉𝑑𝑤 

where 𝛼 is the speed of mean-reversion; 𝜎∗ is the volatility in the long-run; and 𝜉 

is the volatility of volatility. This mean-reverting process is applied building on the 

assumption that return of the underlying stock is uncorrelated with the volatility of the 

option. 

Furthermore, a series of stochastic variances will be generated which are 

independently and identically distributed. And each variance is calculated by adding 

the value from the previous period with a random number. Then the variance will be 

used to generate the price of underlying stock as: 

𝑆!!!! = 𝑆!𝑒
!!!!! !!! !!! !! 

In order to generate the path of the price of the underlying stock, the above equations 

will be coded into MATLAB, and the generated path will then be used to price our 

Asian options. 
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6. Approximation	
  Results	
  

This section of our paper illustrates how accurate the Levy analytic approximation is. 

The examination of accuracy is done under two volatility scenarios: constant and 

stochastic volatilities. Furthermore, for each volatility setting, the comparison 

between models for pricing arithmetic Asian options is done when the option is In the 

money (ITM), At the money (ATM) and Out of Money (OTM).  

6.1 Accuracy	
  of	
  Estimation	
  

Asian option values obtained from Levy’s approach is compared with Monte Carlo 

simulations using 100,000 paths. In which the pricing error – computed as the 

deviation from the value of Monte Carlo simulation divided by the Monte Carlo value 

– is calculated to indicate the accuracy.  

In addition, the accuracy of each Monte Carlo simulation is indicated by its standard 

error. The Monte Carlo simulation of option prices, in our case, is carried out by 

simulating 100,000 paths for the underlying stock price and by taking an arithmetic 

average of the simulated prices, given the value of the arithmetic Asian option: 

𝑓!"#$% =   
1
𝑛 𝑓!

!

!!!

 

By assuming the simulations are statistically independent, thus the variance of the 

simulations can be written as: 

𝑉𝑎𝑟 𝑓!"#$% =
1
𝑛! 𝑉𝑎𝑟 𝑓!

!

!!!

=
𝑉𝑎𝑟 𝑓
𝑛  

where 𝑓 is the option value, and thus the standard error is obtained by taking the 

square root of the variance: 

𝑆𝐸 𝑓!"#$% =
𝑉𝑎𝑟 𝑓
𝑛  
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which gives an idea that the accuracy of Monte Carlo simulation improves as the 

number of simulation increases. 

Throughout this paper, the standard error from the Monte Carlo simulations is used to 

form a 95% Confidence Interval, which also illustrates the accuracy of Levy’s 

analytic approach. 

6.2 Constant	
  Volatility	
  

In this section, the simulated values of the arithmetic Asian options are illustrated 

when the volatility is considered to be constant. The estimated values from Levy’s 

approach are compared with values obtained from the Monte Carlo simulation, where 

both of these two methods assume that the underlying stock follows the Brownian 

motion process with drift. Then the accuracy of Levy’s approach is analyzed when the 

option is Out of the money, At the money and In the money, with increasing 

volatilities.  

6.2.1 Out	
  of	
  Money	
   	
  

A call option is said to be ‘Out of money’ when the price of the underlying stock is 

lower than the strike price of the option, i.e. 𝑆! < 𝐾. 

Table 4.1 

Valuation of arithmetic Asian options with OTM: S =90, K =100,T =1 year, r =7%, 

Dividend D=0, Number of observation N=260 (assuming 260 trading days a year) 

	
  	
   	
  	
   	
  	
   	
  	
   95%	
  Confidence	
  Interval	
   	
  	
  

Volatility	
  
Levy	
  

Approximation	
  
Monte	
  Carlo	
  
Simulation	
  

Standard	
  
Error	
  

Lower	
  
bound	
  

Upper	
  
bound	
  

Pricing	
  
Error	
  (%)	
  

10%	
   0,2917	
   0,2976	
   0,0037	
   0,2904	
   0,3048	
   -­‐1,9825	
  

20%	
   1,7663	
   1,7779	
   0,0138	
   1,7509	
   1,8049	
   -­‐0,6525	
  

30%	
   3,6760	
   3,6313	
   0,0255	
   3,6261	
   3,7260	
   1,2310	
  

40%	
   5,6215	
   5,5758	
   0,0377	
   5,5020	
   5,6497	
   0,8196	
  

50%	
   7,6233	
   7,5306	
   0,0515	
   7,4297	
   7,6315	
   1,8949	
  

60%	
   9,7664	
   9,6623	
   0,0667	
   9,5317	
   9,7930	
   1,0774	
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The table above represents the results when the volatility is constant and the Asian 

option is OTM. As can be seen, with increasing volatility, the option value rises for 

both estimations from Levy and from Monte Carlo. 

Furthermore, the pricing error of Levy approximation is different at different volatility 

levels. With low volatilities i.e. 10%, the Levy approach is more likely to 

under-estimate the values of Asian options by 1.9825%. Where in contrast, with 

rather high volatility, i.e. 60%, the Levy approach tends to over-estimate by 1.0774% 

compared to the results obtained from Monte Carlo simulation. All option values from 

the Levy approach are covered by the 95% confidence interval, so in general, Levy 

has an outstanding performance for pricing arithmetic Asian options when the options 

are OTM with constant volatility. 

6.2.2 At	
  the	
  Money	
  

A call option is said to be ‘At the money’ when the price of underlying stock is equal 

to the strike price of the option, i.e. 𝑆! = 𝐾. 

Table 4.2 

Valuation of arithmetic Asian options with OTM: S =100, K =100,T =1 year, r =7%, 

Dividend D=0, Number of observation N=260 (assuming 260 trading days a year) 

	
  	
   	
  	
   	
  	
   	
  	
   95%	
  Confidence	
  Interval	
   	
  	
  

Volatility	
  
Levy	
  

Approximation	
  
Monte	
  Carlo	
  
Simulation	
  

Standard	
  
Error	
  

Lower	
  
bound	
  

Upper	
  
bound	
  

Pricing	
  
Error	
  (%)	
  

10%	
   4,2669	
   4,2457	
   0,0141	
   4,2181	
   4,2733	
   0,4993	
  

20%	
   6,2849	
   6,2485	
   0,0260	
   6,1976	
   6,2994	
   0,5825	
  

30%	
   8,4351	
   8,3504	
   0,0387	
   8,2744	
   8,4263	
   1,0143	
  

40%	
   10,6288	
   10,5397	
   0,0523	
   10,4371	
   10,6422	
   0,8454	
  

50%	
   12,8501	
   12,6059	
   0,0670	
   12,4746	
   12,7371	
   1,9372	
  

60%	
   15,0957	
   14,9141	
   0,0841	
   14,7493	
   15,0789	
   1,2176	
  

 

The outcomes from table above indicate the results for the ATM options with constant 
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volatility. Comparing to Table 4.1, the Asian options are more expensive when the 

price of underling stock is equal to the strike price, which in our case is S = K= 100. 

By looking at the pricing errors, Levy approximation over-estimates the option value 

at all levels of volatility with the highest pricing error of 1.9372% at 50% volatility 

level. Consequently, when the volatility is around 50% and 60%, the option values 

composed by Levy fall outside the 95% Confidence Interval, which is regarded as 

‘unreasonable’ in the critical level.  

6.2.3 In	
  the	
  Money	
  

A call option is said to be ‘In the money’ when the price of underlying stock is greater 

than the strike price of the option, i.e. 𝑆! > 𝐾. 

Table 4.3 

Valuation of arithmetic Asian options with OTM: S =110, K =100,T =1 year, r =7%, 

Dividend D=0, Number of observation N=260 (assuming 260 trading days a year) 

	
  	
   	
  	
   	
  	
   	
  	
   95%	
  Confidence	
  Interval	
   	
  	
  

Volatility	
  
Levy	
  

Approximation	
  
Monte	
  Carlo	
  
Simulation	
  

Standard	
  
Error	
  

Lower	
  
bound	
  

Upper	
  
bound	
  

Pricing	
  
Error	
  (%)	
  

10%	
   13,0242	
   13,0206	
   0,0195	
   12,9824	
   13,0588	
   0,0276	
  

20%	
   13,7660	
   13,6731	
   0,0359	
   13,6028	
   13,7434	
   0,6794	
  

30%	
   15,3063	
   15,2142	
   0,0510	
   15,1143	
   15,3141	
   0,6054	
  

40%	
   17,2062	
   17,0652	
   0,0664	
   16,9352	
   17,1953	
   0,8262	
  

50%	
   19,2842	
   18,9587	
   0,0831	
   18,7958	
   19,1217	
   1,7169	
  

60%	
   21,4678	
   21,0627	
   0,1008	
   20,8651	
   21,2604	
   1,9233	
  

 

The table above exemplifies the results when the volatility is constant and the Asian 

option is ITM. Again, the option values are increasing with higher volatilities, when 

comparing with options that are OTM and ATM. 

Under the scenario of constant volatility and options that are ITM, the Levy 

approximation over-estimates the option values regardless of the volatility level. 

However, with volatilities of 20%, 40%, 50% and 60%, the pricing error of Levy is 
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relatively high, and the approximated values fall outside the 95% confidence interval, 

which are considered to be unreliable.  

To summarize, the option value increases with increasing volatility, which yields a 

higher standard error as well. And with constant volatility Levy gives an 

over-estimation of option values when options are OTM, ATM and ITM; and it only 

under-estimates during OTM with relatively low volatilities. The pricing error overall 

is greater for volatilities at high levels, which are very rare in reality. 

6.3 Stochastic	
  Volatility	
  

When the volatility is stochastic, the variance used for Monte Carlo simulation is 

assumed to follow the mean-reverting process. Whereas for the Levy approximation, 

in order to get consistent results, the volatility used is the arithmetic mean of the 

simulated volatility is the so-called mean variance. 

6.3.1 Out	
  of	
  The	
  Money	
  

In occurrences of the strike price being above the stock price with stochastic volatility 

similar outcomes are discovered. 

Similarly to the outcomes with constant volatility, it can be underlined that Levy 

approximations under-estimate option values to a greater extent, as shown by the table 

below, when the volatility is around 10% to 40%. The pricing error on the other hand 

is much bigger under stochastic volatility than with constant volatility for OTM 

options. And the most important is that the approximation from Levy falls into the 95% 

confidence interval only when the volatility is at 50%, with the pricing error of 

1.2375%. Therefore, we can conclude that the estimation from Levy is not significant 

for OTM options with stochastic volatility. 
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Table 4.4 

Valuation of arithmetic Asian options with OTM: S =90, K =100,T =1 year, r =7%, 

Dividend D=0, Number of observation N=260 (assuming 260 trading days a year) 

Speed of mean reversion: 𝛼=10, long run mean:𝜎∗=15%, volatility of vol.: 𝜉=30% 

	
  	
   	
  	
   	
  	
   	
  	
   95%	
  Confidence	
  Interval	
   	
  	
  

Volatility*	
  
Levy	
  

Approximation	
  
Monte	
  Carlo	
  
Simulation	
  

Standard	
  
Error	
  

Lower	
  
bound	
  

Upper	
  
bound	
  

Pricing	
  
Error	
  (%)	
  

10%	
   0,2727	
   0,2963	
   0,0037	
   0,2890	
   0,3035	
   -­‐7,9649	
  

20%	
   1,7226	
   1,7796	
   0,0138	
   1,7525	
   1,8066	
   -­‐3,2030	
  

30%	
   3,5032	
   3,6451	
   0,0254	
   3,5953	
   3,6948	
   -­‐3,8929	
  

40%	
   5,4798	
   5,5971	
   0,0380	
   5,5227	
   5,6716	
   -­‐2,0957	
  

50%	
   7,7148	
   7,6205	
   0,0515	
   7,5195	
   7,7215	
   1,2375	
  

60%	
   9,7326	
   9,4914	
   0,0656	
   9,3629	
   9,6199	
   2,5412	
  

*Note, the volatility above is the starting value for estimating stochastic volatility 

6.3.2 At	
  the	
  Money	
  

With options that are ATM i.e. 𝑆! = 𝐾, and volatility is stochastic, the values of the 

Asian options are once again under-estimated by the Levy approximation. 
 

Table 4.5 

Valuation of arithmetic Asian options with OTM: S =100, K =100,T =1 year, r =7%, 

Dividend D=0, Number of observation N=260 (assuming 260 trading days a year) 

Speed of mean reversion: k=10, long run mean:𝜎∗=15%, volatility of vol.: 𝜉=30% 

	
  	
   	
  	
   	
  	
   	
  	
   95%	
  Confidence	
  Interval	
   	
  	
  

Volatility*	
  
Levy	
  

Approximation	
  
Monte	
  Carlo	
  
Simulation	
  

Standard	
  
Error	
  

Lower	
  
bound	
  

Upper	
  
bound	
  

Pricing	
  
Error	
  (%)	
  

10%	
   4,2284	
   4,2424	
   0,0141	
   4,2148	
   4,2700	
   -­‐0,3300	
  

20%	
   6,1667	
   6,2164	
   0,0259	
   6,1657	
   6,2670	
   -­‐0,7995	
  

30%	
   8,4481	
   8,4649	
   0,0387	
   8,3889	
   8,5408	
   -­‐0,1985	
  

40%	
   10,4257	
   10,4517	
   0,0523	
   10,3493	
   10,5542	
   -­‐0,2488	
  

50%	
   12,5867	
   12,6200	
   0,0668	
   12,4890	
   12,7509	
   -­‐0,2639	
  

60%	
   14,5793	
   14,7149	
   0,0838	
   14,5506	
   14,8792	
   -­‐0,9215	
  

*Note, the volatility above is the starting value for estimating stochastic volatility 
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The above table represents the estimated option values when the option is ATM with 

stochastic volatility. ATM options are more expensive than OTM options, which is 

coherent with the results of constant volatility. As can be seen from the above table, 

the pricing errors for Levy approximation at all volatility levels are negative, which 

means that Levy in general under-estimates ATM options when having 

mean-reverting stochastic volatilities. Even so, the option values from Levy are 

considered to be significant, since they are not rejected by the 95% confidence 

interval. 

6.3.3 In	
  the	
  Money	
  

Under the condition of stochastic volatility, ITM option outcomes are analogous with 

options that are OTM.  
	
  

Table 4.6 

Valuation of arithmetic Asian options with OTM: S =110, K =100,T =1 year, r =7%, 

Dividend D=0, Number of observation N=260 (assuming 260 trading days a year) 

Speed of mean reversion: k=10, long run mean:𝜎∗=15%, volatility of vol.: 𝜉=30% 

	
  	
   	
  	
   	
  	
   	
  	
   95%	
  Confidence	
  Interval	
   	
  	
  

Volatility*	
  
Levy	
  

Approximation	
  
Monte	
  Carlo	
  
Simulation	
  

Standard	
  
Error	
  

Lower	
  
bound	
  

Upper	
  
bound	
  

Pricing	
  
Error	
  (%)	
  

10%	
   13,0209	
   13,0276	
   0,0982	
   12,9895	
   13,0657	
   -­‐0,0514	
  

20%	
   13,6906	
   13,7460	
   0,0360	
   13,6755	
   13,8165	
   -­‐0,4030	
  

30%	
   15,1730	
   15,1737	
   0,0508	
   15,0741	
   15,2733	
   -­‐0,0046	
  

40%	
   16,9369	
   16,9657	
   0,0663	
   16,8357	
   17,0957	
   -­‐0,1698	
  

50%	
   19,3249	
   18,9610	
   0,0828	
   18,7987	
   19,1232	
   1,9192	
  

60%	
   21,5012	
   21,2120	
   0,1013	
   21,0135	
   21,4106	
   1,3634	
  

*Note, the volatility above is the starting value for estimating stochastic volatility 

The difference between having constant and stochastic volatility when options are 

ITM, is that Levy over estimates option values for all levels of constant volatility. 

While under stochastic volatility, Levy over-estimates option values only with high 

volatilities, which in our case is when volatility is at a level of 50% and 60%. 

Nevertheless, the over-estimated option values are beyond the 95% confidence 
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interval, and consequently are considered to be insignificant and therefore should not 

be taken into consideration. Overall speaking, the Levy approximation 

under-estimates option values when they are ITM with stochastic volatility. 

To sum it up, Asian options with stochastic volatility, which follow a mean-reverting 

process, Levy approximation tends to under-estimate option values. In particular, for 

options ATM, Levy under-estimates at all level of volatilities, whereas for ITM 

options, it only happens with lower volatility up to 40%. However, when Asian 

options are OTM, the outcomes from the Levy approximation are not reliable, since 

the option values are not significant under the 95% confidence interval at almost all 

levels of volatility, with an exception of volatility level at 50%.  
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7. Conclusion	
  

The main purpose of this thesis is to test how accurate the Levy approximation is 

when pricing arithmetic Asian options with constant and stochastic volatility. In 

addition, for each volatility scenario, the analysis on Levy approximation is examined 

for Asian options that are OTM, ATM and ITM.  

Levy approximation formula altogether gives good estimation for Asian option values. 

The pricing error is relatively small (less than 1%) for option prices that are 

statistically significant, which in our case are option prices not rejected under the 95% 

confidence interval. However, Levy approximation tends to over-estimate Asian 

option values when the volatility is constant, with an exception of OTM Asian options 

where Levy gives an under-estimation of option values when volatility is at 10%-20%. 

With stochastic volatilities, Levy in contrast is inclined to give under-estimated option 

values; the reason is that with stochastic volatility, using mean variance does not seem 

to capture all the impact that the stochastic volatility has on option prices. 

In addition, when volatility is high around 60%, the option values estimated by 

Levy´s formula are more likely to generate insignificant results regardless of the 

volatility being constant or stochastic. This is because high variance makes the Levy 

approximation more sensitive to volatility changes; and can also be explained by 

having pricing error increases with increasing volatility. With further research, studies 

could be done by having more focus on the moneyness conditions with a reasonable 

low volatility, for instance, how Levy approximation performs when Asian options 

are deep in the money. In addition, different variance reduction techniques could be 

applied to Monte Carlo simulations to have more accurate benchmarks with lower 

standard error.  
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Appendix	
  

Matlab	
  code	
  for	
  Monte	
  Carlo	
  simulation	
  with	
  constant	
  volatility	
  

function f = Asian_Constant(S,r,sigma,T,nsteps,Npaths)  

dt=T/nsteps; 

mu=(r-0.5*sigma^2)*dt; 

sig=sigma*sqrt(dt); 

b=exp(-r*T);  

path=zeros(Npaths,nsteps+1); path(:,1)=S; 

  

for i=1:Npaths 

    for j=1:nsteps 

        path(i,j+1)=path(i,j)*exp(mu+sig*randn); 

    end 

end 

   

Payoff=path;  

Each_run_mean=sum(Payoff,2)/(nsteps+1);  

Dispayoff=b*max(Each_run_mean-K,0);  

Asian_constant=sum(Dispayoff)/Npaths;  

f=Asian_constant 

 

Matlab	
  code	
  for	
  Monte	
  Carlo	
  simulation	
  with	
  stochastic	
  volatility	
  

function f = Sto_price(S,K,r,sigma,T,nsteps,Npaths,k,Q,z) 

dt=T/nsteps; 

mu=(r-0.5*sigma^2)*dt; 

sig=sigma*sqrt(dt); 

b=exp(-r*T);  

path=zeros(Npaths,nsteps+1);  

path(:,1)=S; 

  

for i=1:Npaths 

    for j=1:nsteps 

                

sigam_v=sigma*exp((k*(Q-sqrt(sigma))-z^2*0.5)*dt+z*sqrt(dt)*randn);  

        mu=(r-0.5*sigma^2)*dt; 

        sig=sigma*sqrt(dt);  

        path(i,j+1)=path(i,j)*exp(mu+sig*randn);  

        sigam=sigam_v; 

    end 
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end 

  

Payoff=path;  

Each_run_mean=sum(Payoff,2)/(nsteps+1);  

w=Each_run_mean-K;  

Disp=b*max(Each_run_mean-K,0);  

asian_stochastic=sum(Disp)/Npaths;  

f= asian_stochastic; 

  

 

  

	
  
	
  


