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Abstract: This paper deals with control of smart grid by using distributed Model Predictive Control to control the load
frequency of the power network. The control objective is to minimize the cost function while still keeping the frequency
deviation constrained to a safe level. Some different control structures are proposed and control law and constraints are
derived. Lastly we show the effectiveness of the different controllers by using a large scale power network simulation.
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1. INTRODUCTION

In recent years there has been an increase of interest
in smart grid concept, depicted in Fig. 1, to adapt the
power grid to improve the reliability, efficiency and eco-
nomics of the electricity production and distribution. One
of the generator side problem in this is to meet the power
requirement while not wasting unnecessary power, thus
keeping the cost down, which must be done while the
frequency is kept in a suitable range that will not damage
any equipment connected to the power grid.

Therefore, in this paper, a distributed Model Predictive
Control (MPC) approach to control each power plant out-
put frequency as to not deviate from the predefined output
is proposed. The advantage of MPC is that it generalizes
directly to plants being MIMO, which can be non-square,
and takes process constraints into account, which elim-
inates the possibility of variables exceeding their prede-
termined limit.

Fig. 1 Smart grid

2. PROBLEM FORMULATION

We consider an electric power network that consist of
N(≥ 2) in series connected subsystems.

Fig. 2 Graphical representation

The normal state-space formulation for the whole system,

which is assumed to be

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(1)

can be separated into smaller subsystem equation. As-
suming that each subsystem can use information of
neighboring subsystem, then thei-th subsystem is given
by

xi(k + 1) =

N∑

j=1

Aijxj(k) +Biui(k) i = 1, . . . , N (2)

wherek is the time,xi(k) ∈ R
nxi is the states of sys-

tem i, Aij ∈ R
nxj×nxj , if j = i thenAii ∈ R

nxi×nxi ,
ui(k) ∈ R

nui is the control signal of systemi andB =
diag[B1, . . . , BN ] ∈ R

nu×nu . The setNi includes the
subsystems that subsystemi is connected to, so when the
i-th subsystem is connected to thej-th subsystem it can
be written asj ∈ Ni. If they are not connected it is ex-
pressed as

Aij = 0 if j /∈ Ni (3)

which means that the system equation (2) also can be ex-
pressed as

xi(k + 1) = Aiixi(k) +
∑

j∈Ni

Aijxj(k) +Biui(k). (4)

The centralized controller uses the information of the
whole system, while the decentralized controllers only
uses the information of their own subsystem. The dis-
tributed controller uses its own information and the
neighboring subsystems information.

The output of the system that is to be controlled is the
deviation of the frequency from the normal frequency of
the whole system.

3. MODEL PREDICTIVE CONTROL

To specify how many steps ahead the controller should
take into account, the prediction horizon and control hori-
zon is defined.

Definition 1: We denote the prediction horizon as
Np and the control horizon asNc. The prediction horizon
defines how many steps ahead the controller should pre-
dict the states. The control horizon dictates the number



of steps the controller should try to complete the control
objective in.

Also, an assumption about the control horizon is
needed such that it does not cause problems in the cal-
culations.

Assumption 1: It is assumed that the control hori-
zonNc is chosen to be less than or equal to the prediction
horizonNp

Nc ≤ Np

since it is not possible to predict a control trajectory with-
out having predicted the states at that time instant.

Based on the state-space model Eq. (1), the future state
variables are calculated sequentially using the future con-
trol parameters. By substituting the previous row into the
next one, we can get a predicted state estimate at a cer-
tain time with calculations only depending on the current
statesx(k) and the control inputu.

x(k + 1) = Ax(k) +Bu(k)

x(k + 2) = Ax(k + 1) +Bu(k + 1)

= A2x(k) +ABu(k) +Bu(k + 1)

...

x(k +Np) = ANpx(k) +ANp−1Bu(k)+

+ANp−2Bu(k + 1) + · · ·+

+ANp−NcBu(k +Nc − 1)

(5)

From the above equation and the original state-space
model Eq. (1) we can get the predicted output vari-
ables, by substitution, so all predicted variables are for-
mulated in terms of current state variable information
x(k) and the future control movementu(k + t), where
t = 0, 1, . . . , Nc − 1.

y(k + 1) = CAx(k) + CBu(k)

y(k + 2) = CA2x(k) + CABu(k) + CBu(k + 1)

y(k + 3) = CA3x(k) + CA2Bu(k)+

+ CABu(k + 1) + CBu(k + 2)

...

y(k +Np) = CANpx(k) + CANp−1Bu(k)+

+ CANp−2Bu(k + 1) + · · ·+

+ CANp−NcBu(k +Nc − 1)

(6)

Rearranging these into matrices thus gives the system
as

x
−→

= Pxx(k) +Hx u
−→

y
−→

= Pyx(k) +Hy u−→
(7)

where

x
−→

=










x(k + 1)
x(k + 2)
x(k + 3)

...
x(k +Np)










, u
−→

=










u(k)
u(k + 1)
u(k + 2)

...
u(k +Nc − 1)










,

Px =










A
A2

A3

...
ANp










, Py =










CA
CA2

CA3

...
CANp










,

Hx =










B 0 . . . 0
AB B . . . 0
A2B AB . . . 0

...
...

. . . 0
ANp−1B ANp−2B . . . ANp−NcB










,

(8)

Hy =










CB 0 . . . 0
CAB CB . . . 0
CA2B CAB . . . 0

...
...

...
.. . 0

CANp−1B CANp−2B . . . CB










.

Using the cost function

J = x
−→

TQ x
−→

+ u
−→

TR u
−→
, (9)

whereQ ≥ 0 andR > 0 is the weighting matrices, the
minimization in regards tou

−→
using the prediction system

from Eq. (7) becomes

min
u
−→

J = (Pxx(k) +Hx u−→)TQ(Pxx(k) +Hx u−→)+

+ u
−→

TR u
−→
,

(10)

and from the minimization that the derivative should be
zero, we get that

dJ

d u
−→

= 0 ⇒ −(HT
x QHx +R) u

−→
= HT

x QPxx(k), (11)

from which it is given that the optimal control law is

u
−→

= −(HT
x QHx +R)−1HT

x QPxx(k)

= −Kx(k),
(12)

whereK = (HT
x QHx + R)−1HT

x QPx. From Eq. (8)
and Eq. (12) it can also be seen thatK only depends on
the system parameters, hence is a constant matrix that can
be calculated offline.

Even thoughu
−→

contains the predicted control signal
for Nc steps ahead, since the calculation is made in ev-
ery sample only the firstu(k) is used, which is called
Receding Horizon Control since the horizon is always
moving away. This ensures that the most recent data is
used, which gives a more precise control calculation and
a faster response to new changes that might occur, de-
picted in Fig. 3.



Fig. 3 Receding Horizon Control

So from the complete set of predicted control signals

u
−→

=










u(k)
u(k + 1)
u(k + 2)

...
u(k +Nc)










(13)

we only want the most relevant control signal for the next
control correction

u(k) =








u1

u2

...
unu







, (14)

nu being the number of control signals to the plant.
Since we only take the first element ofu

−→
, we can write

the control signal as

u(k) = eI u−→
= −eIKx(k), (15)

whereeI = [1 1 . . . 1
︸ ︷︷ ︸

nu

0 0 . . . 0] eliminates all el-

ements inK except for the first control sequence. Thus
the state equation can be written as

x(k + 1) = Ax(k)−BeIKx(k)

= (A−BeIK)x(k).
(16)

4. CONSTRAINTS

The Quadratic Programming algorithm used to recal-
culate the control signal in case of constraints, optimizes
the problem on the form

min
u

(fTu+
1

2
uTHu) (17)

under the constraints such that

AQPu ≤ b, (18)

where in our caseu are the control signalu
−→

, andH and
f is from the optimal control law in Eq. (12)

H = HT
x QHx +R, f = HT

x QPxx(k), (19)

wheref depends on the current state value, thus are time-
varying. The constraints are formulated intoAQP , which
is a matrix of linear constraint coefficients, andb, which

is a time-varying vector. Constraints on the control sig-
nal, such as

−0.5 ≤ u
−→

≤ 0.5 (20)

would be rearranged into
[
−1
1

]

u
−→

≤

[
0.5
0.5

]

. (21)

Constraint on the output signal, such as

−0.2 ≤ y
−→

≤ 0.2 (22)

needs to be rewritten in terms of u, which by using Eq.
(7)

y
−→

= Pyx(k) +Hy u−→
(23)

becomes

−0.2 ≤ Pyx(k) +Hy u−→ ≤ 0.2. (24)

Rearranging Eq. (24) gives the boundaries as
[
−Hy

Hy

]

u
−→

≤

[
0.2 + Pyx(k)
0.2− Pyx(k)

]

. (25)

Constraints on the states would be rewritten simmilarly
as constraints on output signal, but usingx

−→
from Eq. (7)

instead ofy
−→

.

By combining the constrains on the control signal in
Eq. (21) and the constraints on the output signal in Eq.
(25), we get the complete constraint matrix Eq. (18) as






−1
1

−Hy

Hy







︸ ︷︷ ︸

AQP

u
−→

≤







0.5
0.5

0.2 + Pyx(k)
0.2− Pyx(k)







︸ ︷︷ ︸

b

. (26)

From this we can use the Quadratic Programming algo-
rithm to get the new optimized control signalu from Eq.
(17) under the constraints from Eq. (26).

5. KALMAN FILTER

Since the plants only output is the frequency deviation,
and the above described MPC uses all the states, a state
observer is needed.

For this a state estimate with Kalman filter is imple-
mented as

x̂(k + 1) = Ax̂(k) +Bu(k)+

+Kf(y(k)− Cx̂(k)),
(27)

whereKf is given by

Kf = (APCT )(CPCT +Rf )
−1, (28)

in whichRf is the weights andP is the symmetric pos-
itive semidefinite solution of the algebraic Riccati equa-
tion

AP + PAT − (PCT )R−1

f (PCT )T = 0. (29)

The decentralized controller has one Kalman filter for
each subsystem, the centralized controller uses these to
build up a complete estimate of the system, and each of
the distributed controller uses the ones it needs for the
region it controls.



6. CONTROLLER IMPLEMENTATION

The MPC controller was implemented both as separate
decentralized controllers, as a centralized controller, and
as distributed controllers.

The centralized controller uses the state-space shown
in Eq. (1), while the decentralized controller instead uses
the matricesAii, Bii andCii.

The distributed control model were split into sections
that encompass data that each subsystem have access to.
The matrices for each distributed control section can then
be taken from the complete power network system model
as shown below on theA matrix Eq. (30).

A =













A11 A12 0 0

A21 A22 A23 0

0 A32 A33 A34

0 0 A43 A44













(30)AD1

AD2

AD3 AD4

Thus the state-space for the distributed controller uses
the matricesADi, BDi andCDi.

The distributed controller implementation assumes
that the tie-line power flow deviation∆Ptiei is known.
From this and the plants own frequency deviation∆fi,
the connected subsystems frequency deviation∆fj can
be calculated if it is only connected to one other subsys-
tem, as shown in (31), and then all states of the connected
subsystem are estimated with a Kalman filter.

∆fj =
Ptiei

Tij

−∆fi (31)

This method works well when connected to one other
subsystem, likeAD1 and AD4. But the two other,
AD2 andAD3, has connections to two other subsystems,
which means this method will not work since the con-
tribution from each connected subsystem can not be as-
sumed to be equal.

Instead the distributed controller implementation uses
a slightly time delayed value of the real value of the con-
nected subsystems frequency deviation, as if the power
plants shares its information with the other plants over
for example an internet connection. As long as the time
delay is not to long, or some big changes happens to the
connected subsystem, the calculated control signal are ac-
curate enough to give a good result.

In cases with long distances or slow information trans-
fer, where the time delay might become to great, it would
be reasonable to time stamp the information when send-
ing it, so that the receiving controller can check if it is
relevant. If the information is to old, it can instead use a
previous calculated control signal fromu

−→
that used rel-

evant information, or ignore the connected subsystem al-
together and calculate a decentralized control signal in-
stead.

7. SYSTEM SETUP

The setup shown in Fig. 4 shows four subsystems con-
nected into a system, and the following system equations
are acquired from it. TheB, C andAij matrices are only
given for the first subsystem, the others are similarly con-
structed. The statesx are the tie-line power flow devia-
tion ∆Ptiei , frequency deviation∆fi, output of the gas
turbine generator∆Pgi , governor input of the gas turbine
generator∆xgi , output of Battery Energy Storage System
∆PEi

, output of thermal system∆PHi
and the demand

UARi
.

Area 1 is set up with all generators present. Area 2
only has the battery system, thermal system and wind sys-
tem. Area 3 has gas, thermal and wind system. Area 4 has
gas, battery system and wind system. Since wind power
is a non-controllable generator source it is not included
in the system model, but instead is modeled as a added
noise source in the simulation model.

Parameters used can be seen in Table 1 and below.

x1 =













∆Ptiei

∆fi
∆Pgi

∆xgi

∆PEi

∆PHi

UARi













, x2 =









∆Ptiei

∆fi
∆PEi

∆PHi

UARi









, x3 =











∆Ptiei

∆fi
∆Pgi

∆xgi

∆PHi

UARi











,

x4 =











∆Ptiei

∆fi
∆Pgi

∆xgi

∆PEi

UARi











, A12 =













0 T 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, A11 =














0 −T 0 0 0 0 0
1

Mi
− D

Mi

1

Mi
0 1

Mi
− 1

Mi
0

0 0 − 1

Tdi

1

Tdi
0 0 0

0 − 1

TgiRgi
0 − 1

Tgi
0 0

ag

Tg

0 0 0 0 − 1

TEi
0 aE

TE

0 0 0 0 0 − 1

THi

aH

TH

Ki −BiKi 0 0 0 0 0














,

B11 =













0 0 0
0 0 0
0 0 0
1

Tgi
0 0

0 1

TEi
0

0 0 1

THi

0 0 0













,

C11 =
[
0 1 0 0 0 0 0

]
.

(32)

The off-diagonal matrices ofB andC are zero.
The control weights are set to

R = [

A1

︷ ︸︸ ︷

8 0.83 12

A2

︷ ︸︸ ︷

0.83 8

A3

︷ ︸︸ ︷

10 1

A4

︷ ︸︸ ︷

8 0.83] ∗ I, (33)

Q = I (34)



The implementations is set to fulfill the constraints as

−0.2 ≤ y ≤ 0.2 (35)

Table 1 Power network parameters

Parameter Symbol Value

Inertia constant [puMW· s/Hz] M 0.2
Damping constant [puMW/Hz] D 0.26

Governor time constant [s] Tg 0.2
Gas turbine constant [s] Td 5.0
BESS time constant [s] TE 0.2

Thermal system time constant [s] TH 4.5
Gas turbine capacity [p.u.] aG 0.8

BESS capacity [p.u.] aE 0.15
Thermal system capacity [p.u.] aH 0.5

Regulation constant [Hz/puMW] R 2.5
Synchronizing coefficient [puMW] T 0.50

Sampling time [s] Ts 0.1
Prediction horizon Np 60
Control horizon Nc 10

Fig. 4 Model of power network

8. RESULTS

The results shows the response to a load frequency
change of 0.1 Hz at the time 0.1s.

The results from different settings on the prediction
horizon can be seen in Fig. 5 - 6.

Result from the different controller setups can be seen
in Fig. 7 - 8.

The effect of the difference between the real value and
the delayed value to the distributed controller is shown in
Fig. 9 - 8.
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Fig. 5 Nc effect on centralized controller cost
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Fig. 6 Nc effect on centralized controller frequency

Fig. 5 - 6 shows that although an increased prediction
horizonNp has almost no visible impact on the frequency
deviation, it has a large impact on the system cost to a cer-
tain point. The trade-off being that the longer prediction
horizon increases of size of the equation matrices, which
in turn increases the calculation time.

Fig. 7 - 8 shows that the distributed controller as ex-
pected is better than the decentralized one and not as good
as the centralized one, both in the aspect of system cost
and frequency deviation.

Fig. 9 - 8 shows that the delayed signal only slightly
increases the cost while the frequency deviation stays al-
most the same.
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Fig. 7 MPC cost
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Fig. 8 MPC frequency deviation
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Fig. 9 Delay effect on distributed controller cost
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Fig. 10 Delay effect on distributed frequency deviation

9. CONCLUSION

In this paper we applied three different controllers on
the smart grid power network by using Model Predictive
Control to control the load frequency of the system. The
control law and constraints were derived from the origi-
nal system formulation, and Kalman filters were imple-
mented as state estimator for the controllers. Lastly we
implemented the controllers on a four subsystem simula-
tion setup and showed the effectiveness of the different
controllers on the power network.

It was shown that current power network system can
be held inside of the normal constraint range of±0.2 Hz
with the proposed control method.

It was also shown that the implemented method of dis-
tributed controller using a delayed signal value to calcu-
late the control signal gave a very good result, not too far
from the original value. This shows that the distributed
controller can give good results even if delays occur in
the power network.
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