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Abstract

In this work the major models for calculating di�usion in simulations of
a laminar premixed hydrogen �ame, the mixture averaged approximation
and the multicomponent model, are explained and compared. This is done
in order to see if the accuracy gained in implementing the multicomponent
model is enough to warrant the increased workload the transition will
cause.

The models are used to calculate the mean �ame speed for a hydrogen
�ame, as that is the one most easily measured in experiments. But the
results are inconclusive in comparison with experiment, since thermal dif-
fusion was not implemented. Still, it does show a clear distinction between
the results produced by the two models, as the mixture averaged model
gives the �ame speed as 239 cm/s while the multicomponent gives it as
250 cm/s, for a stoichiometric hydrogen �ame with standard temperature
and pressure.

The calculation time is also signi�cantly di�erent, as the multicompo-
nent calculation took 42 minutes, while the mixture averaged calculations
only took 17 minutes. Worth noting is that the mixture averaged model
was heavily optimized, which explains some of the di�erence.
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1 Introduction

Combustion may be one of humankind's oldest technologies, but it is still re-
sponsible for around 80-90% of the energy consumption in the modern society
e.g., heating, electric power, transport. This means that it is important to un-
derstand the process, to be able to make it as e�cient and safe as possible. Even
as we strive to get away from fossil fuels, many combustion processes are just
shifted to renewable fuels, so combustion will be with us for a long time.

The central part of combustion is the �ame. Since the �ame process is a com-
plicated process, which includes radicals that are highly reactive and thereby
short lived, it is hard to measure everything in practice. Because of this, simula-
tions are used as a complement to experiments. To get an indication of whether
the simulated result is close to what actually goes on in the �ame, one or more
measurable properties, e.g. the �ame speed, are compared to their experimental
values. The �ame speed is the speed with which the �ame will propagate in
a homogeneousus combustible mixture. It is often measured and documented,
and depends on some of the important parts of the calculation, so it is a good
indicator that the simulation is close to reality. It is also dependent on the
di�usion, and is therefore a good measure of the results of the simulations made
in this work.

A typical �ame to simulate is a laminar premixed �ame. That it is laminar

means that it has only one, clearly de�ned, direction of propagation, the opposite
being a turbulent �ame. An example of a laminar �ame is the center of a Bunsen
burner, away from any edge e�ects, it burns in only one direction, strait up.
Premixed means that fuel and oxygen is mixed before reaching the �ame, also
as in a Bunsen burner. It is not mixed in the �ame, as in a candle. Since it is
relatively easy to control the fuel-oxygen-ratio of a premixed gas, and change
the gas velocity to match the �ame speed, it is one of the easiest �ames to
measure the �ame speed of. It is also a useful �ame, as it can be used as an
approximation for very many things, from gasoline engines to Bunsen burners.
In this work all �ames simulated were premixed laminar hydrogen �ames.

Two di�erent ways to calculate di�usion, the multicomponent model and the
mixture averaged approximation, are compared in this work. This is in part to
see if the multicomponent model can be easily implemented as an alternative to
the mixture averaged approximation, and if it is accurate enough to be worth
the extra calculation time.

1.1 Software and data used

The simulation software used in this work is called Chamble, part of the com-
mercial software DARS owned by DigAnaRS [1]. Chamble uses the mixture
averaged approximation as standard, but was modi�ed to use the multicompo-
nent model as well. It gets the chemical and physical properties of the species
from �les, based mainly on experiments.
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2 Theory

This section starts with some basic �ame theory, and then the theory needed to
understand the two di�erent di�usion models are presented. At the end of the
section, the two models themselves are presented.

2.1 Flame terminology

In combustion sciences, there are some terms used to describe di�erent �ames.
First, the fuel can be premixed with the oxygen, or non-premixed . Secondly the
�ame can be turbulent or laminar. These concepts were introduced in chapter 1.

Flames can also be fuel-rich or fuel-lean, depending on if there is an excess
of fuel or oxygen. If the fuel and oxygen ratios are such that all the fuel and all
the oxygen get depleted in the process, the �ame is said to be stoichiometric.

H2 +O2 → H2O + 1
2O2 Lean

2 H2 +O2 → 2 H2O Stoichiometric
3 H2 +O2 → 2 H2O +H2 Rich

To describe the ratio between the fuel and the air in a way that is suitable for
the combustion process, the ratio is weighted against the stoichiometric ratio,
thus making sure that it is easy to see if the mix is lean, rich or stoichiometric.
This weighted ratio is called fuel equivalence ratio and is de�ned as

Φ =

Xfuel
XO2

Xfuel, stoich
XO2 Stoich

(2.1)

where Xi is the mole fraction of the species i, de�ned as

Xi =
ni
ntot

(2.2)

where ni is the number of molecules of species i in a volume, and ntot is the
total number of molecule in the same volume. With this de�nition Φ = 1 means
that the �ame is stoichiometric, Φ > 1 means that the �ame is rich and Φ < 1
means that it is lean.

The �ame speed is the speed of the unburned mixture in system where the
�ame is stationary.

2.2 Flame theory

When simulating �ames, two things are of prime importance. The �rst is to
know where everything is, and the second were it is going. Since the goal of this
work is to study what e�ect di�erent methods of calculating the di�usion has
on the �ame velocity, it is important that that relation is clear.

In all the simulations of this work, the �ames are expected to be stationary.
To that end, there are three quantities that must be accounted for. First the
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total mass is to be conserved, so the mass transport has to be constant in space
[2]

∂ (ρv)

∂z
= 0 (2.3)

where ρ is the density, v the velocity of the gas and z the velocity direction. To
get the density, the gas is considered near enough ideal and the ideal gas law is
used.

Secondly, the mass of each species needs to be accounted for. This is done
by looking at the species' mass as it is transported or transformed [2]

∂ji
∂z
− ρv ∂Yi

∂z
+ ri = 0 (2.4)

where ji is the di�usion �ux of species i relative to the average mass velocity,
Yi = mi

m is the mass fraction of species i, mi is the mass of species i and m is the
mass of the mixture, and ri represents the chemical reactions. The �rst term
is the mass change of species i due to di�usion, the second term is the mass
change of species i due to the macroscopical �ow, and the last term corresponds
to the mass change of species i due to chemical reactions.

Finally, the total energy needs to be conserved. This is done by looking at
the temperature di�erence and how that relates to energy being transported
and released in chemical processes [2]

∂

∂z

(
λ
∂T

∂z

)
−

(
ρvcp +

∑
i

jicp,i

)
∂T

∂z
−
∑
i

hiri = 0 (2.5)

where λ is the thermal conductivity of the mixture, T is the temperature of the
mixture, cp is the speci�c heat constant for the mixture, cp,i is the speci�c heat
constant for species i, and hi is the speci�c enthalpy of species i. In analogy
with above, the �rst term is the thermal energy that travels due to thermal
conduction, the second term is the thermal energy that traveling species carry
with them and the last part is the change in thermal energy due to chemical
reactions. These sets of equations are then solved for T , Y1, Y2,... and v using
the boundary conditions based on that the initial Yi and T are known, and since
the model uses radiation, that their curvature is constant, i.e.

∂2Yi
∂z2 = 0
∂2T
∂z2 = 0

(2.6)

Finally, the assumption that at a given point in the �ame, the temperature will
have increased by 30 % from the initial T . Initial is, in this context, taken to
mean �spatially before the �ame�, since the equations are time independent.

2.3 Flame velocity

Calculating the �ame velocity usually means solving a system of di�erential
equations, most often by numerical methods. But in order to use an approximate
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model to give some indication to how it will behave, a presentation of Zeldovich's
�ame analysis will follow. This model were created by Zeldovich and Frank-
Kamenetskii in 1938 [2].

Starting of with two of the conservation equations (2.4) and (2.5) the as-
sumption that all the chemical kinetics can be simulated by a one-step global
reaction with the �rst order reaction rate needs to be made

r = −ρYFAe−
Eact
RT (2.7)

where YF is the mass fraction for the fuel, A is the preexponential factor, which
is an empirically veri�ed factor. Eact is the activation energy and R is the
gas constant. The three quantities λ, cp and ρD, where ρD is the di�usion
coe�cient since D is the mass di�usivity, are expected to be constant in space
and the sum of di�erent di�usion velocities times di�erent speci�c heat transfers∑
j Vjcp,j is assumed negligible. With these approximations applied to (2.4) and

(2.5), and denoting the fuel with F and the product with P, they turn into

D
∂2YF
∂z2

− v ∂YF
∂z
− YF ·A · e−

Eact
RT = 0 (2.8)

λ

ρcp

∂2T

∂z2
− v ∂T

∂z
+ YF

hP − hF
cp

·A · e−
Eact
RT = 0 (2.9)

Through examining experimental data, the assumption that the mass di�u-
sivity D and the thermal di�usivity λ

ρcp
are roughly the same seems reasonable

[2]. This means that now (2.8) and (2.9) are almost the same. Substituting the
enthalpy with the temperature in 2.8, via

δ = Tb − T =

[
hP − hF

cp

]
YF (2.10)

where Tb is the temperature of the burnt gas, gives

D
d2δ

dz2
− v dδ

dz
− δ ·A · e

− Eact
R(Tb−δ) = 0 (2.11)

Now 2.11 is the same as 2.9.
The solution of (2.11) is complicated, but it can be shown that a solution

exists only if v has an eigenvalue, called �ame velocity, that is

vL =

√
D

τ
(2.12)

where τ = [A · exp (−E/RT )]
−1

is a characteristic reaction time at temperature
T < Tb. In this model the �ame velocity depends only on the characteristic
reaction time and the di�usivity (this is a simpli�ed model that does not take
radiation into account, so mass and energy di�usion are equivalent). This is of
course a very simpli�ed model, but it shows the importance of being able to
calculate the di�usion terms accurately.
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2.4 The Boltzmann equation

To describe the particles in a gas, the velocity distribution function f (r,p, t),
were r is position, p is momentum and t is time, is used. It describes the amount
of particles in the small phase space region of f (r,p, t) drdp. This means that
for a gas with N particles, it is dependent on 6N + 1 variables, i.e. the three
dimensional positions r and momenta p of all the particles in the gas and the
time. This makes it almost impossible to express the function in full, but it
is still applicable to derive an approximation, and that is what the Boltzmann
equation is.

Looking at a gas with the species S, and speci�cally the specie i ∈ S, if
the gas is subject to an external force Fi but no internal interactions, then the
particles of species i that occupy the space fi (r,p, t) drdp a short time later will

occupy the space fi

(
r + 1

mi
pdt,p + Fidt, t+ dt

)
drdp, where mi is the mass

of a particle of species i. This means that, without collisions

fi

(
r +

p

mi
dt, p + Fidt, t+ dt

)
drdp = fi (r,p, t) drdp (2.13)

This is of course not true if the particles interact with each other. If the
time spent interacting with other molecules is considered only a small part of
the particles' lifetime, the assumption that only binary collisions are relevant can
be made. Then collisions will cause some of the particles that started up inside
the �rst region to end up outside of the second, and some particles starting
outside the �rst region will, due to collisions, end up inside the second. To

account for this, the collision terms Γ
(+)
ij and Γ

(−)
ij are added, to account for

adding and subtracting particles of species i due to collisions with particles of
species j, respectively. This turns 2.13 into

fi

(
r +

p

mi
dt, p + Fidt, t+ dt

)
drdp = fi (r,p, t) drdp+

∑
j∈S

[
Γ
(+)
ij − Γ

(−)
ij

]
drdpdt

(2.14)
If the left hand side is Taylor expanded with respect to to dt and only the �rst
order terms are kept, this gives

fi

(
r +

p

mi
dt, p + Fidt, t+ dt

)
=

=

[
fi (r,p, t) +

p

mi
dt
∂fi
∂r

+ Fidt
∂fi
∂p

+ dt
∂fi
∂t

]
drdp (2.15)

Now combining 2.14 with 2.15, subtracting fi (r,pi, t) drdpi from both sides
and dividing by drdp, this turns into the Boltzmann equation

∂fi
∂t

+
1

mi

(
p · ∂fi

∂r

)
+

(
Fi ·

∂fi
∂p

)
=
∑
j

[
Γ
(+)
ij − Γ

(−)
ij

]
(2.16)

9



2.5 The collision terms

Since the collision terms Γ
(−)
ij specify all collisions that cause the particles at

(r,p, t) to not end up in
(
r + p

mi
dt, p + Fidt, t+ dt

)
, they relate to all particles

that are close enough to collide with the i -molecules from (r,p, t) during the
time dt. This is described by

Γ
(−)
ij =

¨
fifj |gij |αijdê′dpj (2.17)

were gij =
pj
mj
− pi

mi
is the relative velocity vector, ê′ is a unit vector in the

direction of g′ij , where the apostrophe marks that it is after the collision, and
αij is a positive scalar that is de�ned as

αij =
b
∣∣∣ ∂b∂χ ∣∣∣

sinχ
(2.18)

b is the o�set of the collision and χ is the polar angle between the relative
velocities before and after the collision. Here both the subscript i and j are
used, as the particles that are close by can be of a di�erent species than that of
the particle originally looked at. This will a�ect the potential experienced by
the colliding particles, and will be discussed more in 2.7.

The second group of collision terms corresponds to collisions that push

molecules not in the original volume into the volume
(
r + pi

mi
dt,pi + Fidt

)
by time t+ dt. Those terms is described by

Γ
(+)
ij =

¨
f ′if
′
j |gij |αijdêdpj (2.19)

were f ′ is the velocity distribution function after the collision. Using this in
equation (2.16), the Boltzmann equation becomes

∂fi
∂t

+
1

mi

(
pi ·

∂fi
∂r

)
+

(
Fi ·

∂fi
∂pi

)
=
∑
j

¨ (
f ′if
′
j − fifj

)
|gij |αijdêdpj (2.20)

were the left side is due to normal movement and the right side is due to colli-
sions. This can also be written as Di (fi) =

∑
jBij (fi, fj), were Di (fi) is the

normal movement part and
∑
jBij (fi, fj) is the collision part. It is usually

written in terms of velocity rather than momentum, and then turns into

∂fi
∂t

+

(
vi ·

∂fi
∂r

)
+

1

mi

(
Fi ·

∂fi
∂vi

)
=
∑
j

¨ (
f ′if
′
j − fifj

)
|gij |αijdêdvj (2.21)

2.6 The Chapman-Enskog Theory

At the start of last century, Sidney Chapman and David Enskog independently
worked on a solution to the Boltzmann equation. Their theories were later
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merged into the Chapman-Enskog Theory. They assumed that the Boltzmann
equation could be expressed as a sum of functions fi = f0i + f1i + ..., each
term bringing the total closer to the actual value [3]. Expressing the Boltzmann
equation as

ξi (fi) = 0 (2.22)

were ξi (fi) = Di (fi)−
∑
jBij (fi, fj), they assumed that there would be a way

to divide ξ so that the n:th term only depends on the �rst n terms in the fi-sum

ξi (fi) = ξi
(
f0i + f1i + ...

)
= ξ0i

(
f0i
)

+ ξ1i
(
f0i , f

1
i

)
+ ξ2i

(
f0i , f

1
i , f

2
i

)
+ ... (2.23)

Now, since ξi (fi) = 0, and the subdivision in 2.23 is not unique, the con-
straint that all the terms ξki should be zero is not an impossible one. This
changes 2.22 from one equation with an in�nite number of unknowns to an in-
�nite number of equations, but each only introducing one new unknown. Also,
since each equation takes the result closer to the real value, only a limited num-
ber of them needs to be solved to get an approximation of the result.

The subdivision made it possible to express the �rst term of the function as
a Maxwellian distribution

f0i = ρi

(
mi

2πkBT

) 3
2

exp

(
−mi (vi − v0)

2

2kBT

)
(2.24)

were ρi is the density of the species i, kB is Boltzmann's constant and v0 is the
local mass averaged velocity.

The second term to f is expressed as

f1i = f0i Φi (2.25)

were Φi is a scalar function with three parts. The �rst part is dependent on the
gradient of the logarithm of the temperature, the second is dependent on the
gradient of the mean mass velocity of the total gas, and the third is dependent
on the gradient of the pressure of each gas component [3]. When looking at
the di�usion, the �rst part relates to the thermal di�usion and the last part to
regular di�usion.

2.7 The Stockmayer potential and the collision integrals

When calculating the collision terms, as seen in 2.5, the scattering of di�erent
collisions �rst needs to be calculated. To do this, the interaction potential needs
to be known. Since many species that are common in combustion are dipoles,
it is a good idea to have a potential takeing that into account. The standard
potential for this is the Stockmayer potential [4, 5]

φ(r) = 4εij

((σi,j
r

)12
−
(σi,j
r

)6)
−
(µ1µ2

r3

)
ζ (2.26)
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Figure 2.1: The variables in the Stockmayer potential. The left part is seen
from the side, while the right part are the same particles seen from the right.

where εij is the characteristic collision energy between species i and j, σi,j is
the cross-section for the collision, r is the distance between the molecules, µi is
the dipole moment of molecule i, and ζ is de�ned as

ζ = 2 cos θ1 cos θ2 − sin θ1 sin θ2 cosφ (2.27)

where θ1 and θ2 are the angles between the respective dipole moments and the
line that connects the center of the two molecules, and φ is the azimuthal angle
between them, see �gure 2.1. It can be noted that if one of the particles is
without dipole moment, the Stockmayer potential turns into the well known
Lennard-Jones 12-6 potential[5].

Using the potential, the angle of de�ection can be calculated from the clas-
sical expression

χ (b, g) = π − 2b

ˆ ∞
rm

(
1− φ

mijg2ij/2
− b2

r2

)−1/2
dr

r2
(2.28)

where mij = mimj/ (mi +mj) is the reduced mass and rm is the minimum
approach distance, de�ned through

φ (rm) =
mijg

2
ij

2

(
1− b2

r2m

)
(2.29)

In order to calculate the de�ection angle with a potential that di�erentiates
between di�erent angles, without knowing all the particles orientations, some
assumptions need to be made. In an early attempt to solve the problem, Krieger
tried to put ζ to a �xed value of 2, but it was later shown that his good results
only related to an error in his calculations and this model has been discarded[4].

Instead Monchick and Mason [4] tried to use a mean value, which gave
good results. They based their work on two assumptions; the �rst is that the
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rotational energy is small compared to the kinetic energy, which means that
the inelastic collisions, where kinetic energy is transferred to rotational, can
be neglected. Their justi�cation for this is that most energy transferred to
rotational is only one rotational quantum, which in turn is much less then the
mean kinetic energy of the molecules in the gas, which is 3

2kBT . This does
not work well when dealing with quantities that are concerned speci�cally with
internal energy, such as the thermal conductivity, but will su�ce when dealing
with di�usion.

The second assumption concerns the orientation-dependent potential. Al-
though the potential is acting on the molecules during the whole trajectory,
Monchick and Mason suggested that the angle is most relevant only for a short
period, when the molecules are closest to each other. This means that instead
of looking at all possible trajectories, they were only concerned with looking at
the relative angle during impact, and that angle was considered to be static.

Using this assumption, an average of the possible outcomes could be calcu-
lated, and that is done by the collision integral

Ω
(k,l)
i,j =

√
2πkBT

mi,j

ˆ ∞
0

ˆ ∞
0

e−ĝ
2

ĝ(2l+3)
[
1− (cosχ)

k
]
bdbdĝ (2.30)

were k and l are two integer parameters that relate the collision integral to
di�erent modes of transportation and ĝ = g

√
mi,j/2kBT . Now introducing the

reduced temperature and reduced dipole moment

T ∗i,j =
kBT

εi,j
(2.31)

µ∗i,j =
1

2

µiµj
εi,jσ3

(2.32)

and then normalizing the collision integral to the collision integral for the hard

sphere, the result is the non-dimensional reduced collision integral, Ω
(k,l)∗
i,j

(
T ∗i,j , µ

∗
i,j

)
,

that is a function of only two parameters, and can be tabulated, as Monchick
and Mason did[4]. This is then used in the expression for the binary di�usion
coe�cient;

Dij =
3

16

√
2π (kBT )

3
/mij

pπσ2
i,jΩ

(1,1)∗
i,j

(
T ∗i,j , δ

∗
i,j

) (2.33)

were p is the pressure.

2.8 The Multicomponent Model

The multicomponent model as described by Ern and Giovangigli[6] is a more
exact solution of the Boltzmann equation compared to the mixture-averaged
approximation to be described later. Their solution is interesting since it takes
energy levels into account, although that is not implemented in this work. This
is a necessary exclusion, since the energy levels were not implemented in the
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chemical data, but also a justi�able exclusion since the change in internal en-
ergies due to collisions are much smaller than the thermal energies. Hence, it
should only have a small e�ect on the result, and is not a necessary inclusion in
this study.

The solution presented by Ern and Giovangigli is symmetric, which facilitates
the solving of the equations, and using all the methods fully would decrease the
complexity signi�cantly. Unfortunately, due to time restraints on this work that
was not implemented, and thereby the complexity is still n3.

Ern and Giovangigli start by using the Chapman-Enskog method of saving
the Boltzmann equation, then they subdivided Φ = {Φi} i∈S into parts, where
ΦDi is the part related to the di�usion, and then expressed that as

ΦDi =
∑
r=0,1

∑
j∈S

αrDij ξrj (2.34)

were S is a set containing all the relevant species, ξrj are a set of carefully
chosen basis functions and αrDij is a set of scalar coe�cients that relate ΦDi to

the basis functions. αrDij relates to the di�usion coe�cient through

α0Di
j = Dij (2.35)

Then they used a variational procedure to get the equation

LαDi = βDi (2.36)

where L is a symmetric, positive de�nite 2n× 2n matrix derived from the basis

functions, αDi is a vector with the elements

{{
α0Di
j

}
j∈S

;
{
α1Dl
j

}
j∈S

}
and

βDi is a 2n'th order vector derived from the basis functions and the functions
Ψ =

{
−D

(
log f0i

)}
i∈S , and related to the mass-fractions by{

β0Di
j = δij − Yj i, j ∈ S
β1Di
j = 0 i, j ∈ S

L is expanded to

L =

(
L00 L01

L10 L11

)
(2.37)

where the elements of the sub-matrices are

L00
ii =

∑
j ∈ S
j 6= i

XiXj

Dij
i ∈ S (2.38)

L00
ij = −XiXj

Dij
i, j ∈ S, i 6= j (2.39)
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L01
ii =

∑
j ∈ S
j 6= i

XiXj

Dij
mi

mi +mj
(6̄ij − 5) i ∈ S (2.40)

L01
ij =

XiXj

2Dij
mi

mi +mj
(6C̄ij − 5) i, j ∈ S, i 6= j (2.41)

L11
ii =

∑
j ∈ S
j 6= i

XiXj

Dij
mimj

(mi +mj)
2

[
15

2

mi

mj
+

25

4

mj

mi
− 3

mj

mi
B̄ij + 4Āij

]
i ∈ S

L11
iji = −XiXj

Dij
mimj

(mi +mj)
2

[
55

4
− 3B̄ij − 4Āij

]
i, j ∈ S i 6= j (2.42)

and L10 =
(
L01
)T

. Āij , B̄ij and C̄ij are de�ned as

Āij =
1

2

Ω
(2,2)
ij

Ω
(1,1)
ij

(2.43)

B̄ij =
1

3

5Ω
(1,2)
ij − Ω

(1,3)
ij

Ω
(1,1)
ij

(2.44)

C̄ij =
1

3

Ω
(1,2)
ij

Ω
(1,1)
ij

(2.45)

There are some e�cient ways to do this, but in this work the theory up to
this point was the main focus, and the more e�ective ways were not explored.

2.9 The Mixture-averaged Approximation

In the mixture-averaged approximation, the di�usion velocity for each gas is
calculated by approximating all the other gases' velocities as the same. That
means that instead of calculating the di�usion term Dij for each couple of gases,
only one di�usion term, D′im, is calculated for each species.

Starting with the assumption[7]

Vi = − 1

Xi
D′im∇Xi (2.46)

where X = ni
n is the mole fraction of species i, and Vi is the speed of specie i

relative to the mean mass speed, i.e.

Vi = Ṽi − V = Ṽi −
∑
j

ṼjYj (2.47)
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V is the mean speed of the mass in the center of mass frame of reference, and Ṽi
is the mean speed of species i in the laboratory frame of reference. Combining
(2.46) and (2.47), the gradient of the mole fraction can be expressed as

∇Xi = −
Xi

(
Ṽi −

∑
j ṼjYj

)
D′im

(2.48)

Using the Stefan-Maxwell formula[7]

∇Xi = −
∑
j

XiXj

Dij

(
Ṽi − Ṽj

)
(2.49)

where Dkj are the binary di�usion coe�cients, the combination of (2.48) and
(2.49) yields

Xi

(
Ṽi −

∑
j ṼjYj

)
D′im

=
∑
j

XiXj

Dij

(
Ṽi − Ṽj

)
(2.50)

Applying the mixture averaged approximation, that Vi = Vj ,∀i 6= j, and
rearranging yields

D′im =
1− Yi∑

j 6=iXj/Dji
(2.51)

As can be seen, (2.51) makes the di�usion coe�cient only depend on things
which are easily calculated, while the speed terms, which are complicated to
calculate, have been removed.

2.10 Complexity of the two models

One of the things to keep in mind when working with simulations is the com-
putation time. The computation time is dependent on both the type of model
used, and a series of other factors, as the numbers of chemicals considered in a
�ame simulation. The number of chemicals varies depending on fuel, and can be
from as few as six, if the fuel is hydrogen, up to well over a thousand if the fuel
is a carbohydrate fuel, the latter being common in fossil fuels. To discuss how
di�erent models' calculation time react with an increasing number of chemicals,
the concept of scaling is introduced. If a model scales as n, it means that if the
number of chemicals is doubled, the calculation time is doubled as well. On the
other hand, if the model scales as n2, the calculation time is quadrupled if the
number of chemicals are doubled, since 22 = 4.

Since the mixture averaged approximation requires the inversion of a matrix
that is 2n× 2n, see section 2.8, that has a base scaling of n3[8]. The matrix has
some symmetries so the scaling can be taken down to the order of n [6], but
that is not fully implemented in this work.

On the other hand, the mixture averaged approximation treats one species
at the time, and treats all the others as a homogeneous mixture. This means
that it scales as n.
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3 Results

In this work, focus has been given to the in�uence three variables have on the
�ame speed within the two models. These three variables are the fuel equivalence
ratio, the starting temperature and the pressure. Since it is di�cult to examine
the e�ect of these three variables at the same time, they have been examined
one at a time instead. First the calculations of the �ame speed depending on the
fuel equivalence ratio is presented in �gure 3.1, where it is also compared to the
experimental measurements of the �ame speed presented in [9]. The pressure
and temperature are set to standard values (T = 298K, P = 101.3 kPa). All
simulations are done without thermal di�usion.

The �rst thing that can be seen is that neither result is a close �t to the
experimental values for low Φ. The mixture-averaged approximation comes
marginally closer, but for 1 < Φ ≤ 2 neither is close to the experiment's results.
These results are also con�rmed by table 3.1, that once again compares the
calculations to the values presented in [9]. It is also worth noting that the
multicomponent calculation returns higher values for the �ame speed almost for
all Φ, although for Φ ≥ 0.5, the di�erence between the two calculations is never
greater then 3%.

The simulations with varying initial pressure are not compared to any ex-
perimental values, since none have been found. Here a stoichiometric mixture
is used, and the initial temperature is room temperature (T = 298K). As can
be seen in the �gure 3.2, the �ame speed calculated with the multicomponent
model is higher here as well, but never goes higher than 3% more than the
mixture averaged, with a peak in the (relative) di�erence around normal air
pressure.

In the plot showing the temperature variation simulation, �gure 3.3, a sto-
ichiometric mixture and normal air pressure is used. It can be seen that the
multicomponent values are still higher, but the relative di�erence between the
two methods is increasing steadily, from about 2.7% to the left of the plot
(250K) to about 3.5% to the right (600K).

Next, the mass �ux is considered directly. The mass �uxes of the radicals
and that of the H2O and O2 basically have the same shape, independent of which
model is used in the calculation. It is just shifted or scaled. But the diagrams
for both the H2 molecule, �gure 3.5 a), and the N2 molecule, �gure 3.5 d), show
some di�erences. In the hydrogen molecule there is a discrepancy in the �rst
part of the plot, where the mixture averaged approximation calculates a higher
value than the multicomponent. Despite this, they still agree quite well after
0.12mm. But the di�erence di�erentiates the two curves from each other.

The other mass �ux that di�ers is the nitrogen, where the mixture averaged
predicts that the nitrogen di�usion mass �ux should move nitrogen away from
the point 0.08mm from zero. This despite the fact that nitrogen, as opposed to
every other species considered here, is not reacting in these simulations. This
gives the e�ect that unlike the oxygen radical, which shows a similar curve, the
nitrogen can not be created at the point it �ees from. In the Multicomponent
model, the nitrogen is mostly accelerated to the right, although a small section
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Table 3.1: Flame speed
φ SL(mm/s) MC(mm/s) MA(mm/s)

0.30 180 100 119
0.45 470 613 642
0.60 910 1295 1268
0.75 1360 1891 1805
0.90 1700 2319 2206
1.05 2030 2598 2480
1.20 2280 2755 2650
1.50 2500 2810 2755
1.65 2540 2754 2729
1.80 2490 2680 2674
2.10 2360 2463 2518
2.35 2290 2283 2373
2.60 2060 2114 2227
3.00 1830 1853 1998

before the 0-point is accelerated to the left.

4 Discussion

This is started with a short discussion of the two models, followed by compar-
isons between them, to experiment and to other work.

4.1 The multicomponent model

This is the more precise model for calculating the gas properties. As such,
it is also the more computational demanding. Since all species interact, the
system scales at least as n2, but in this application, it scales as n3 since it is
based on inverting a n×n-matrix. This might not seem like much when dealing
with combustion of hydrogen, which uses nine species, but when calculating
the combustion of long carbon chains, the number of species can reach into the
hundreds. On the other hand, it is a more exact model, and as such should give
more precise answers.

4.2 The mixture averaged approximation

Since the main approximation done when calculating the di�usion coe�cient
for a species with the mixture averaged approximation is that all other species'
di�usion velocities are equal, this seems like the place to start an evaluation.
This approximation will be less correct the more the velocities di�er, which
in principle means that the more the masses di�er, the less exact the mixture
averaged approximation becomes.
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Figure 3.1: a) The calculations compared to Aung's measurements [9]. b)
The relative di�erence in �ame speed, (vMC − vMA) /vMA, as depending on
Φ. The pressure and temperature are set to standard values (T = 298K, P =
101.3 kPa).
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Figure 3.2: a) The �ame speed dependence on the initial pressure. The pressure
axis is logarithmic. b) The relative di�erence in �ame speeds as a function of
the initial pressure.
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Figure 3.3: a) The �ame speed dependence on the initial temperature. b) The
relative di�erence in �ame speed as a function of the initial temperature.
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Figure 3.4: The comparison of the di�usion mass �ux for the H radical, the O
radical, the OH radical, the HO2 radical and the H2O2 radical, respectively.
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Figure 3.5: The comparison of the di�usion mass �ux for the H2 molecule, the
H2O molecule, the O2 molecule and the N2 molecule, respectively.
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Figure 4.1: Comparison between the mixture averaged model with thermal
di�usion, and the experiment from [9]

Since this is an approximation, and it does not take into account that the
total mass �ux must be zero, it is necessary to apply some correction to make
sure that the mass �ux is zero, and no mass is lost due to approximations. One
way of doing this is via a correction term,

ji = jMA
i − Yi

∑
j

ρYjVj (4.1)

This correction is usually not big enough to return any signi�cant di�erence,
but in slightly more than one percent of the cases in a hydrogen calculation, it
is larger than ten percent of the jMA

i .

4.3 Comparison of the Mixture Averaged and the Multi-

component models

As can be seen in the results section above, the two calculations do not give
the same results, which is to be expected. If the results were the same, the
multicomponent variant would be pointless, since it uses more computational
time. The approximation used to derive the mixture averaged approach has
been touched on in section 4.2 above, and is not expected to give a major
di�erence, since the mass di�erences are relatively small. Since the hydrogen
combustion is a well-documented area, the mixture averaged calculations should
give a result close to the actual values, at least the �ame speed. The fact that
these simulations are made without thermal di�usion explains quite well why the
calculated values deviates from the experimental this much. If thermal di�usion
was included, the values would be lower, as can be seen in �gure 4.1.

It is good that the multicomponent approach does not deviate to much from
the mixture averaged when comparing the �ame speed, since that too would
imply that the mixture averaged approximation is a bad approximation. And
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if it was bad for hydrogen, it would be terrible when heavier species comes into
the system, since the larger the di�erence in mass is, the worse the mixture
averaged approximation that all species velocities are the same will be.

The other thing worth noting is the di�usion mass �ux for the hydrogen
molecules and the nitrogen molecules who's curves were di�erent between the
two models. The one with the most apparent di�erence is the nitrogen, that
moves in two di�erent directions according to the mixture averaged approxima-
tion, but mainly in one according to the multicomponent model. This behavour
is probably related to the correction term discussed above.

4.4 Comparison to experiment

One major thing to note is how far from the experimental values the calcula-
tions end up. That can, at least in part, be explained by the lack of thermal
di�usion. Since the thermal di�usion in the multicomponent model is not im-
plemented here, it has been switched o� in the mixture averaged model as well,
to make comparing them to each other more reasonable. But in doing so, the
calculated values are no longer comparable to the experimental, at least not for
the region Φ ≤ 2. Another fact that further diminishes the relevance of this
comparison is the fact that all the chemical values are tuned to work well with
the mixture averaged model, and that means that the multicomponent model
is at a disadvantage.

The fact that no experimental data to compare the �ame speed's dependence
on temperature or pressure has been found is not too bad, since it is highly
unlikely that they would have ended up close enough to be relevant without
thermal di�usion.

4.5 Comparison to other work

The result seen here indicates that the multicomponent model calculates a
higher value for �ame velocity then the mixture averaged, which is quite the
opposite to Bongers and De Goey [10], where the multicomponent gives the best
results.

The fact that di�erent chemical �les also can give di�erent results can of
course also be a contributing factor. Depending on which values the species
constants have, the end result will di�er. One other thing that can a�ect the
results of these multicomponent calculations compared to the ones made by
others are that in this work, the energy levels that relate to rotation have been
excluded. This means that all non-reacting collisions are considered elastic,
which is not ideal. Exactly how much this a�ects the end result is hard to say
without a deeper examination of this area but it seems unlikely that the e�ect
is large.
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5 Conclusion

As has been shown, the multicomponent model comes quite close to the mixture
averaged when simulating hydrogen combustion, which seems reasonable. This
means that if hydrogen was the only combustion process that was examined,
mixture averaged calculations would be the one to use. But since the mixture
averaged approximation gets less exact the more the weight ratio between the
species increase, the larger molecule velocities involved in the process will be
and the less the accuracy of the mixture averaged model will be. And that is
why the multicomponent model is considered. In car fuel, one of the standard
molecules are octane, weighing more than one hundred times more than the
hydrogen radical, that also will be present in the �ame region.

This means that the main point of the work presented here will be to enable
others to carry on and develop the multicomponent model and implement it
in Chamble. What have been shown here is that the mixture averaged is a
good approximation for combustion of hydrogen, but it is not identical to the
multicomponent. At this time, the work here can only relate to other articles to
assess that the multicomponent model is the more precise, but can show some
di�erences in the results.
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