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Abstract 

Transboundary river basins provide inhabitance and water resources to millions of people 

around the globe and they are a source of dispute among neighbor countries also. This thesis 

focuses on the snow melt and runoff modeling of a small transboundary river, Talas; using a 

physically distributed rainfall-runoff model, TOPKAPI-ETH. Investigation on the use of 

remotely sensed precipitation estimates and MODIS snow cover images shows that they can be 

a key to model snowmelt and water resources of remote and un-gauged catchments. However 

the need of observed precipitation data from different regions and elevation zones of the basin 

is vital in generating the runoff with higher accuracy. Annual runoff prediction strategies from 

snow cover area is also proposed which can be of great help in efficient management of water 

resources and hence in resolving conflict between the riparian countries, Kyrgyzstan and 

Kazakhstan. 

 

Keywords: Talas River, Remotely Sensed Precipitation, TRMM, GPCC, MODIS, Chu-Talas 

River Basin, Transboundary Rivers, Central Asia. 
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Chapter 1 

1. Introduction 

Transboundary waters play a key role in supporting life of millions of people in Europe, 

Central Asia, South Asia and Africa. Transboundary basins provide inhabitance to more than 

50 % of population (approximately 460 million people) and occupy more than 40 % of surface 

of the European and Asian UNECE region1 only (UNECE 2011). The five Central Asian 

Republics (CARs) have since independence been facing dispute about transboundary waters 

division. The upstream countries Kyrgyzstan and Tajikistan want to use water in winter for 

producing hydroelectric power. This sometime causes floods in the downstream countries and 

scarcity of water for irrigation when it is badly needed in the summer. During Soviet rule, the 

upstream countries were provided energy by central government and water was stored in dams 

for use in the later part of the year (Libert and Lipponen 2012). In order to meet the continually 

increasing demand of cotton or ‘White Gold’ by the central government in Moscow, the 

irrigated land increased by 4.9 million ha in 70 years of Soviet rule making the total cropland 

area to be 7.5 million ha. From 1950 onwards new projects were launched for developing 

highly integrated water distribution and irrigation networks. The agricultural production is 

more or less completely dependent on irrigation. The importance of agriculture can be 

understood from the fact that 40 % of population in CARs is directly employed in the 

agriculture sector and for a huge number it serves as major secondary income source (O'Hara 

2000). Presently 93 % of total water resources are consumed for agricultural purposes but 

unfortunately this sector contributes least to the GDP mainly because of 

mismanagement (Porkka et al. 2012). 

With the fall of the Russian Federation, there is no alternative energy source for upstream 

countries. Winter water releases, floods in low lying areas and water shortages are the 

outcomes of hydropower generation by Kyrgyzstan and Tajikistan. More than 90% of total 

electricity demand in these two countries is met through hydropower and they also export 

some (UNECE 2011). This causes increasing tensions between neighbor countries coupled with 

poor management, deterioration of infrastructure, lack of information system and distrust 

towards each other (Porkka et al. 2012; O'Hara 2000).  

                                                

1  http://www.unece.org/oes/nutshell/ecemap.html 
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Amu Darya is the largest river in Central Asia which originates from Tajikistan, Afghanistan 

and has a total length of 2540 km. The total catchment area of Amu Darya is 692, 300 km2 with 

an average annual discharge of 78.5 km3. The second largest river in Central Asia, Syr Darya, 

originates from Kyrgyzstan and is fed by Naryn and Kara Darya (Naryn Darya receives water 

from more than 700 glaciers in the Tien Shan mountain range). The total length of the river is 

2200 km, with an average annual discharge of 37.2 km3  (WARMAP 1996). Amu and Syr 

Darya together account for almost 90 % of the total usable water resources in the Aral Sea 

Basin. The 10 % of the remaining water resources are generated from hundreds of small rivers 

and streams in the region.  

The water use in Central Asia was small and most of the abstraction was made from small 

rivers and streams in the region until the first half of last century (O'Hara 2000). Diversion 

from large rivers was difficult and only 17 % of Amu Darya discharge was being used 50 years 

ago (Lewis 1962). With the rise in population and enormous increase in water demand for 

irrigation, hydro power, industrial use and ecosystem requirements, the harnessing of water 

resources and construction of large dams on big rivers is inevitable. But the importance of 

small rivers can still not be underestimated. The hundreds of small trans-boundary rivers, 

glacial lakes and ground waters are not only important in terms of water resources and 

sustainability of the communities living in their vicinity but they also pose a regular threat 

through calamities caused by floods or droughts to the same people. From unofficial sources 

around 2000 people died in Uzbekistan enclave of Shakimardan when a small dam broke in 

Kyrgyzstan after overfilling from a combination of high rainfall and high temperatures (O'Hara 

2000). More recently on March 10, 2010, a small dam failed due to high rain and snow melt 

leaving 45 people dead, 300 injured and ruining hundreds of homes in a small village in 

Kazakhstan2. There are lots of similar cases of disasters caused by small dams and rivers.  

There has been a large amount of research and practical work done on Amu and Syr Darya. 

Keeping in view the need of research on small transboundary rivers, this study focuses on Talas 

River, having a total length of 661 km and a catchment area of 44, 115 km2. It is one example 

of the numerous small rivers and streams that generate 10 % of the water resources of the Aral 

Sea Basin. It originates from Kyrgyzstan and flows to Kazakhstan. Despite of its small size, the 

river is important to both of the countries and is a source of dispute among them also. The 

snowmelt and river runoff is simulated from 2000 to 2012 using TOPKAPI-ETH model. Most 
                                                

2  https://www.youtube.com/watch?v=Q00p_xKH4NQ 
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of the input data was obtained from remote sensing products. The simulated discharge and 

snow cover was compared with observed runoff from eight gauging stations and snow cover 

data supplied by MODIS. The accuracy assessment shows good correlation for the 

mountainous stations and fair correlation for floodplain gauging stations. In addition, the 

annual runoff prediction method is also proposed in the study that can be of great help in 

managing water resources of the river and preventing disasters caused by the floods or by 

below average discharge. The present study serves as a prototype of the bigger and complex 

problem faced by the Central Asian Republics regarding Transboundary Rivers.  

1.1. Snowmelt Modeling 

Snow cover has an important impact on earth’s energy balance and environment on a regional 

scale as 50 % of the Northern Hemisphere is covered by it in the winter (Dietz et al. 2013). The 

stream flow generated from snow melt is not only important for mountainous regions but it also 

provides water to the lowland areas. Mountains share 50 to 90 % (in extreme cases >95 %) of 

total rivers discharge in arid and semi-arid regions which make them one of the most important 

water towers of the world (Konz et al. 2010). Similarly the Hindu Kush-Karakoram-Himalaya 

(HKH) region is also called the third pole of the world due to the large amount of snow packs 

stored in their mountains and they provide water for drinking and agricultural purposes to some 

of the most populated countries in the world (Pellicciotti et al. 2012). Snow melt is a major 

source of fresh water for Aral Sea and Lake Balkhash catchments also. This makes the study of 

snow melt phenomena important. Variations in snow cover and spontaneous snow melt can 

result in natural calamities like droughts, floods, or landslides (Dietz et al. 2013).  

Snowmelt models can be divided into two board categories; temperature index models (also 

called conceptual models by some authors (O'Hara 2000)) and physical energy balance models. 

The melt rate is calculated with an empirical formula with temperature as only input variable in 

the former model type. The latter may be defined as a model in which the melt rate is 

calculated from sum of energy fluxes taking place at the glacier surface. The individual fluxes 

are calculated from physically based measurements using direct computation of meteorological 

variables. Temperature index models have been widely used but they have the disadvantage 

that the melt rates can be calculated for the whole catchment in a lumped or semi lumped 

manner only (Pellicciotti et al. 2005). The physical energy balance models on the other hand 

have rigorous data requirements which are usually not met in remote catchments (like our study 

area) in developing countries.  
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Snowmelt is the major source of Talas river discharge. In this study, TOPKAPI-ETH model has 

been used which employs an enhanced temperature index method for estimating melt rates. It is 

an intermediate approach between the two categories described above and combines benefits of 

parsimonious data requirement and physical representation of important surface energy fluxes.  

1.2. Study Area 

Talas basin having a total area3 of 44, 115 km2, is located on the northern part of Tian-Shan 

Mountains and on the eastern corner of Turan lowland (Figure 1). The mountainous part of the 

basin lies in the Talas province of Kyrgyzstan where most of the river runoff is generated while 

the lowland area is in Jambyl province of Kazakhstan. There are 20 small rivers in Talas 

basin (UNECE 2007). The Karakol and Uch Kochoy rivers originating from Kyrgyz ridge and 

Talas Alatau meet at the tail end of Talas valley to form the Talas River proper. In the 

beginning, the river flows in the western direction and after entering Kazakhstan it flows in the 

north-western direction. The river runs through the cities of Talas, Kyrgyzstan and Taraz, 

Kazakhstan; and ends in the Moinkum sands before reaching Lake Aydyn forming small ponds 

and marshlands (UNECE 2011). 

Talas River is 661 km long out of which 453 km (69 %) lie in Kazakhstan and 208 km (31 %) 

in Kyrgyzstan. There were 21 gauging stations on the river in Kyrgyzstan out of which only 13 

are operational now (UNECE 2007). The runoff of Talas River is 1.616 km3/year as stated in 

UNECE, Second Assessment of Transboundary Rivers, Lakes and Groundwaters (according to 

flows in 1983). The available water is equally divided between the two countries (CTWC 

2006). There is only one reservoir on Talas River which is called Kirov reservoir. The designed 

storage capacity of Kirov is 0.55 km3 (UNECE 2011). Analysis of last 13 years of data shows 

that the river has an average annual inflow of 0.87 km3 at Kirov Reservoir. In Kazakhstan there 

is Tersashchibulak reservoir with a storage capacity of 158 million m³ on the Ters River which 

is a tributary that runs into Talas (UNECE 2007).  

Water is used for grazing and animal husbandry in the mountainous parts and it is abstracted 

for irrigation and animal husbandry in the foothills and lowlands of the basin. The irrigated 

                                                

3  The area of Talas Basin reported by Kyrgyz and Kazakh authorities is 52, 700 km2 (UNECE 2011). The 
difference in area calculated by us occurred because the flat part of the catchment is difficult to delineate in 
ArcGIS. But this will not affect the results of present study whatsoever. 
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land in Kyrgyzstan and Kazakhstan is approximately 137,600 ha and 105,000 ha (UNECE 

2007). 95% of water resources are used for irrigation in the basin (CTWC 2008). 

Application of pesticides and fertilizers on cropland is affecting water quality in both countries. 

The main sources of pollution in Kyrgyzstan are untreated industrial and residential waste 

water, mining waste in the mountains, animal breeding discharge and dumping of waste in open 

places close to the residential area. Ammonium-nitrogen and copper are the major pollutants 

and the concentration of iron is observed to be higher in water close to Talas city. An additional 

polluting factor in Kazakhstan is untreated waste water from sugar and alcohol 

factories (UNECE 2007). One important development in the recent years is gold and copper 

extraction from the mines in Kyrgyz ridge of Talas catchment4. This will bring economic 

prosperity as well as it will be a source of water pollution if necessary treatment methods are 

not adopted. 

                                                

4  http://www.tcg.kg/index.php?option=com_content&view=article&id=182&Itemid=184&lang=en 

Figure 1: Geographical location of study area. Talas basin has borders with Chui and 
Jalalabad provinces of Kyrgyzstan on east and south side. It is connected to Uzbekistan by 

a small finger in the south-west direction. 

Copyright:© 2013 Esri, DeLorme, NAVTEQ, TomTom, Source: Esri, DigitalGlobe,
GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo,
and the GIS User Community
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Contrary to most of the other transboundary waters, the cooperation on water resources 

management of Talas River is a success story. The delegations from the two countries agreed to 

resolve the problems through mutual understanding. The Chu-Talas Water Commission 

(CTWC5) was inaugurated on 26 July, 2006 in Bishkek to institutionalize the resources 

management and water management facilities in Chu-Talas basins. Kazakhstan agreed to pay 

part of the cost that it incurs in building new infrastructure and maintenance of the old (CTWC 

2008). This is a good beginning to counter issues regarding sharing of water and has set 

example for other countries as well. The mutual distrust and lack of cooperation between 

experts’ groups of the two countries are due to the following reasons (Rodina et al. 2008). 

− Timely assessment of water resources is not possible due to decaying infrastructure. 

− The volume of water available from snow cover in Kyrgyzstan cannot be determined 

because of limited funds.  

− The Kyrgyz officials cannot provide correct forecasts of precipitation in the vegetation 

season.  

− Absence of accurate figures regarding water required for irrigation of cropland.  

                                                

5  http://www.youtube.com/watch?v=lVDxGCFR90s 

Figure 2: Pictorial view of 84 m high wall and discharge point of Talas Dam. The dam was 
constructed in 1975 (Rasskazchikov 2010). Image source (CTWC 2008) 
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All of this information is important for Kazakhstan to estimate the amount of water available 

for irrigation in summer and to take precautionary steps if there is a flood warning. 

1.3. Aims and Objectives 

The aim of the project is to investigate the relationship between snow melt and runoff in Talas 

River Basin. The runoff of Talas River is determined by snow melt in the mountains and 

precipitation. Snow cover and rainfall can be assessed by remote sensing. Together with a snow 

melt model and real time temperature data, the aim is to predict flows in the near future. The 

forecast will help in managing water storage and release from Kirov Reservoir. 

1.4. Research Questions 

1. Determine correlation between snow melt and runoff in Talas River. 

2. Can remotely-sensed precipitation help in modeling runoff of the river? 

3. How far can MODIS Snow Cover maps help in determining snow fall and snow melt 

timing in the study area? 

4. Can one quantify the correlation between snow cover area in spring and annual water 

flow in the river? 

5. What other methods can be used to predict summer runoff of the river three months in 

advance? 

6. Can this knowledge be used in solving the conflict between the two countries? 

1.5. Structure of thesis 

The thesis is structured as follows. Chapter 2 introduces different datasets used in the study and 

their preparation steps briefly. A quick step by step working mechanism of TOPKAPI model 

and methods for assessing accuracy are also presented. Detailed analysis of the observed 

runoff, gauge precipitation, satellite precipitation estimates and bias correction methods are in 

the subjects of chapter 3.  

Chapter 4 focuses on TOPKAPI modeled runoff and its comparison with the observed runoff. 

The accuracy of simulated snow cover, overestimation of modeled runoff due to bias in TRMM 

precipitation data, irrigation demand in the catchment, different ecosystem components of the 

model and distribution of water among them are also described in this section.  
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The annual runoff forecast method for Talas catchment along with its accuracy is proposed in 

chapter 5. And finally the thesis is concluded in chapter 6 by discussing the results presented in 

previous chapters and proposing some steps that can be helpful for future researchers working 

on Talas River or similar case studies.  
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Chapter 2 

2. Data Preparation 

2.1. Digital Elevation Model 

The Digital Elevation Map (DEM) of the study area was extracted from ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer6) Global Digital Elevation Map 

version 2 (GDEM). It is perhaps the highest resolution publicly available global DEM having 

spatial resolution of 30 m × 30 m (1 arc-second). The data is referenced to WGS-1984 

Geographic Coordinate System and is available in GeoTIFF format that can easily be opened in 

ArcGIS.   

 

Figure 3: Digital Elevation Map of the study area showing height distribution. The map is 
made by overlaying DEM on to hill shade of the study area to make the mountains prominent. 

                                                

6  http://asterweb.jpl.nasa.gov/gdem.asp 
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Table 1: Percentage of area in different elevation classes in Talas River Basin. The first 
column shows contour interval of 500 m and height above sea level. 

Elevation Range Area ( km2 ) Percentage 

316 - 500 21313.25 48.31 

500 - 1000 9749.5 22.10 

1000 - 1500 4535.75 10.28 

1500- 2000 2279 5.17 

2000 - 2500 2033.5 4.61 

2500 - 3000 1715.25 3.89 

3000 - 3500 1678.5 3.80 

3500 - 4398 813 1.84 

Total 44117.75 100 

 

As a first step, fifteen tiles were mosaicked to contain the study site with 1 degree of buffer 

area on all sides. The catchment area and stream network of Talas River was generated through 

standard GIS procedures. This includes use of tools like sink, fill, flow direction, flow 

accumulation, stream order, basin, stream to future etc. under ArcGIS Hydrology toolbox. 

Because the snow cover maps generated by the model were to be compared with MODIS Snow 

Cover maps available at resolution of 500 m × 500 m, the model was run at the grid size of 500 

m and the DEM was also resampled from 30 m to 500 m resolution.  

70.4 % of the basin lies between an elevation range of 316 m 

and 1000 m above sea level. This part is the comparatively 

flat and dry portion of the basin and 97 % of this is 

within Kazakhstan. A contour map of the study area 

with an interval of 500 meters was made and 

Table 1 shows the percentage of area present in 

each contour interval.  

 

Figure 4: Outline of Talas basin upstream of Kirov 
Reservoir. The present study focuses on this area only. 
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2.1.1. Talas Upper Valley 

As the major portion of river runoff is generated in the mountains by snow melt in the summer, 

we decided to focus on this region only and study the basin upstream of Kirov reservoir. Only 

this part of the basin is relevant for the operation of Kirov Reservoir. The area lies on North – 

West corner of Kyrgyzstan between coordinates 42 to 43 North and 71 to 74 East. It is only 19 

% of the total catchment covering an area of 8957 km2 which also includes 1142 km2 of 

irrigated land. 

The DEM of Talas basin upstream of Kirov reservoir is shown in Figure 5. Please note that this 

region will be referred to as study area and Talas River Basin in the report now unless stated 

otherwise. A Landsat image of the basin can be seen in Figure 80 Appendix A. The percentage 

of area present in each contour interval of 500 meters is shown in Table 2. 

 

Figure 5: Triangulated Digital Elevation Map of Talas river basin upstream of Kirov 
Reservoir. Talas valley is located in north of Talas-Alatau mountain range which forms the 
southern and eastern border of Talas Province. On the northern side of the valley is Kyrgyz 
Alatau mountain range which forms natural border between Kyrgyzstan and Kazakhstan. 

Kyrgyz Alatau and Talas Alatau are part of the famous Tien Shan mountain range. 

· 0 25 50 75 10012.5

Kilometers

Talas Triangulated (TIN) DEM

 

Edge type

Soft Edge

Elevation

4000 - 4427

3500 - 4000

3000 - 3500

2500 - 3000

2000 - 2500

1500 - 2000

1000 - 1500

806 - 1000

1 cm = 13 km



Chapter 2 Data Preparation 

12 
 

Table 2: Percentage of area in different elevation classes in Talas upper valley. The first 
column shows contour interval of 500 m and height above sea level. 

Elevation Range Area (km2) Percentage 

806 - 1000 251 2.80 

1000 - 1500 1489 16.62 

1500 - 2000 1592.25 17.78 

2000 - 2500 1605.5 17.92 

2500 - 3000 1480.25 16.53 

3000 - 3500 1640 18.31 

3500 - 4000 853.5 9.53 

4000 - 4497 45.5 0.51 

Total 8957 100 

 

The contour map can be seen in Figure 82 in Appendix A.  

2.2. TOPKAPI Model 

The project was carried out using the hydrological model “Topographic Kinematic 

APproximation and Integration model”  (TOPKAPI) . It is a fully distributed model 

representing major hydrological processes physically based and is mainly developed for flood 

prediction and routing. The model is based on solving the kinematic wave equation for water at 

three levels. (1) Horizontal drainage in the soil, (2) Overland flow on saturated soil and (3) 

Channel flow. 

TOPKAPI is used as research tool in ETH Zurich and is not available commercially. It has 

been successfully applied in Italy, China and Switzerland. The model can efficiently simulate 

snow cover, snow melt, glacier melt; under natural flow conditions and steep areas and is 

suitable for water management operations analysis. The model was run at hourly time step and 

at a grid size of 500 m × 500 m. All of the input data is required hourly except cloud 

transmissivity which should be provided at a daily time step. The model requires six fields of 

input data in order to run. 
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1. Digital Elevation Map (DEM) is required to generate river and streams network. The 

geometric properties of channels like length and width together with roughness 

coefficients are also needed to feed the model.  

2. TOPKAPI requires the land cover map of the study area which is a key to calculate 

potential evapotranspiration depending on cropping factor and vegetation. 

3. Soil depth and hydraulic conductivity both in horizontal and vertical directions are the 

most important data required for the model. The hydraulic conductivity can be found by 

FAO soil type maps of the world and tables for hydraulic conductivity of each type. The 

soil depth has proven to be the trickiest part of data required so far for this model. 

4. Air temperature is required and it should be adjusted for high altitudes according to the 

lapse rate. This is important for simulating snow cover and snow melt. 

5. Precipitation is one of the most important input data required by the model as it is the 

main source of water either in liquid or solid form and contributes to river flow. 

6. Cloud transmissivity is also required which is used to calculate global irradiance. 

 

 

Figure 6: Simplified flow chart of TOPKAPI-ETH model structure.  
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2.3. Talas Meteorological Station 

There is only one meteorological station in the study area which is located in the center of 

Talas valley. The data go back to 1975 and are available on NCDC NOAA website7. There are 

13 different climatic factors available in the data but only temperature and precipitation are 

used in this project. Snow height data is also available but there are only two or three readings 

from each month with unusual peaks in summer in some cases which makes the data unreliable 

and hence they are not used in the project. 

2.3.1. Temperature 

Temperature data is available at temporal resolution of three hours. Missing values for a 

particular day and time were filled by taking the average of temperature for the same day and 

time from all other years. It was then interpolated to hourly time step using the Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) method in MatLab. 

2.3.2. Precipitation Data 

Precipitation is one of the most important inputs to the model. The observed precipitation data 

is available at daily time step from Talas meteorological station. This data is also available 

from 1975 and the missing values were processed in the same way as temperature. The mean 

yearly precipitation is 196 mm only and the area is classified as semi-arid region because of its 

lower precipitation compared to potential evapotranspiration.  

Data from precipitation gauges can have shortcomings. Most importantly they do not have 

dense coverage in a watershed especially in developing and semi-arid countries. Gauge 

observations usually underestimate precipitation because of turbulence introduced by wind at 

the gauge orifice, blowing of snow / rainfall in windy climate, wetting losses on gauge walls, 

splashing and evaporation (Smith et al. 2006; Boushaki et al. 2009; Huffman et al. 1997). 

Gauge measurements can have a bias range of 4 – 5 % with the largest error possibility in 

snowfall. They can also have systematic and representative error. Representative error occurs 

because the amount of precipitation observed at a point may not effectively represent rainfall in 

its neighborhood due to a localized rainfall event (Boushaki et al. 2009).  

 

                                                

7 http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-
network-ghcn 
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Figure 7: Average annual gauge observed precipitation from 1976 to 2012. The graph shows 
daily precipitation averaged for each year from (1976 to 2012). The gauge is not working since 

2002. 

Figure 7 shows mean daily precipitation in Talas Valley since 1976. The precipitation declines 

suddenly in 2002 and onwards because the precipitation gauge malfunctioned. 

The aim of the project was to use remotely sensed precipitation products in order to have 

distributed rainfall data over the entire catchment. As gauge data is incomplete for the last ten 

years to be modeled, this favored the decision of using remotely sensed precipitation estimates 

which are described in the next section. 
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2.4. Remotely Sensed Precipitation Products 

Satellite products provide a good alternative for un-gauged catchments. Since two decades, 

huge progress has been made in this domain and remotely sensed products have become an 

inevitable data source in many areas of science. Satellites offer better spatial coverage 

especially over mountainous areas as compared to radar and gauge measurements. Satellite 

Precipitation Estimates (SPEs) are derived either from infrared and visible radiations range of 

GEO satellites establishing a relationship between cloud characteristics and rainfall rate at the 

surface or from active / passive microwave data of low earth satellites measuring the 

precipitation rate by analyzing hydro-meteoric distribution of clouds (Boushaki et al. 2009). 

They have less spatial sampling and random errors as compared to gauge sampling.  

On the other hand, satellites also have a major problem of bias because they measure processes 

in the atmosphere remotely. The problem can arise due to improper tuning of satellite 

instruments, diurnal sampling bias, problems in the software code, unexpected surface or 

atmospheric phenomena which the code cannot understand (Smith et al. 2006). Satellites also 

have bias because they measure thermal radiance of clouds instead of measuring precipitation 

directly from the surface. And in case of radar observations bias can occur due to unaccounted 

evaporation losses and beam blockage over mountainous regions (Boushaki et al. 2009). The 

newer instruments and algorithms have less bias in comparison to their predecessors. But still it 

is very important to develop bias correction methods to correctly quantify data available from 

initial satellite sensors (Smith et al. 2006). The satellite data used in this project was also bias 

corrected which is explained later. 

We decided to use TRMM and CMORPH precipitation products in the project. The idea behind 

using two datasets was that although TRMM is an older product and much research studies 

have been made and published using TRMM data. It is known to have some errors. And as 

good quality of observed data was not available, it was important to check different datasets 

available to see which one has a precipitation closer to reality at the gauging station and 

produces realistic runoff. CMORPH is a relatively newer product and is also available in better 

resolution compared to TRMM. 

2.4.1. TRMM Precipitation Data 

TRMM is the abbreviation of Tropical Rainfall Measuring Mission which is a collaborative 

program between National Space Development Agency (NASDA) in Japan and National 
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Aeronautics and Space Administration (NASA) in United States. The primary mission of 

TRMM is to measure precipitation in tropics and tropical oceans (Bowman 2005). Latent heat 

released during precipitation accounts for three-fourth of heat energy received by the 

atmosphere and approximately two-third of earth’s precipitation falls in the tropical region (± 

35 degrees) which makes it one of the main drivers of global atmospheric circulation. 75 % of 

the tropical region is covered with oceans (Kummerow et al. 1998). Most of the oceanic rain 

gauges are located on islands which due to different topographic and surface heating features 

have different precipitation than the ocean around them. TRMM was launched to provide good 

spatial coverage over tropics especially tropical oceans to compensate for absence of gauge 

precipitation there. It has TRMM Microwave Imager (TMI) and Precipitation Radar (PR) 

instruments for measuring precipitation on board. TMI is a passive microwave radiometer 

which measures precipitation by differentiating warm raindrops emitting microwaves from the 

cold ocean background. Due to changing surface emissivity, TMI is less efficient over land. PR 

is the first space-based radar which provides three dimensional (especially vertical) profiles and 

near surface estimates of precipitation at high resolution (Bowman 2005). 

2.4.1.1. Pre-processing of TRMM Data 

TRMM data is available from 1998 at different temporal and spatial scales. The TRMM 3B42 

daily product having spatial resolution of 0.25° × 0.25° is used in this project. TRMM data can 

be downloaded8 in Hierarchical Data Format (HDF), NetCDF and ASCII formats. Since ASCII 

was not available for large downloads, data was obtained in NetCDF format. The images were 

downloaded for the whole world and the study area was extracted using a small iterative model 

in ArcGIS performing the following steps. 

1. Import data in ArcGIS using “Make NetCDF Raster Layer” command. 

2. Define geographical reference system of the file as WGS-1984. 

3. Extract study area from raster image using “Extract by Mask” command.  

4. Save the extracted image as text file (.txt) with unique date number. 

5. Divide study area into a set of virtual stations for precipitation depending on the spatial 

resolution of TRMM and give them a unique ID. This resulted in 31 virtual stations. 

6. Assign a unique virtual station ID to each of the smaller grid cells of 500 m × 500 m. 

Hence all smaller pixels residing in a particular TRMM virtual station area will have the 

                                                

8  http://disc.sci.gsfc.nasa.gov/giovanni, http://pmm.nasa.gov/node/158 
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same precipitation as that of the TRMM pixel. Make a map of this to be given as input 

to TOPKAPI. This is shown in the figure below for better understanding. 

 

Figure 8: Study area divided according to TRMM spatial resolution where each pixel will act 
as a Virtual station. 

The text files prepared in ArcGIS were later imported to MatLab for further processing. This 

included downscaling from daily to hourly time step by dividing by 24, making time series of 

data and saving in a single CSV file with a header to make it compatible with TOPKAPI input 

requirements. 

2.4.2. CMORPH Precipitation Data 

CMORPH9 (CPC MORPHing technique) is a gridded and relatively new product compared to 

TRMM. It incorporates Passive MicroWave (PMW) data from low orbiting satellites and 

Geostationary Operational Environmental Satellites (GOES) infrared (IR) imagery data (Joyce 

et al. 2004). The algorithm uses precipitation estimates that have already been derived from 

microwave observations. In case of missing data for a location, spatial lag correlations are 

computed by using series of geostationary satellite IR images to produce propagation vector 

matrices. These matrices are then used to propagate precipitation estimates derived from 

microwave observations. This helps in producing precipitation estimates at relatively higher 

spatial and temporal resolution (Joyce et al. 2004). 

                                                

9  http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html 

0.25° × 0.25° 
TRMM Pixel 500 m × 500 m Grid cells 



Bias Correction 

19 
 

CMORPH has three different data sets available depending on temporal and spatial resolution. 

The daily product with 0.25° × 0.25° latitude / longitude resolution was used and it was 

prepared in a similar way as TRMM i.e. full images were downloaded and the study area was 

extracted in ArcGIS. 

2.5. Bias Correction 

As explained in the last two sections, satellite sensors can have biases. This means that 

although the sensor is a good instrument, its instantaneous or average values are not exactly 

equal to the observed ones. The difference between the instrument's and the true value is called 

bias. When an instrument has this kind of error, it is possible to estimate the bias and improve 

the data by subtracting or adding the estimated bias from the observed readings. This procedure 

is called bias correction. 

As indirect methods are used to derive satellite based rainfall measurements, they are prone to 

higher biases compared to radar based rainfall products. Scientists have been using different 

techniques for bias correction. e.g. merging radar and satellite based rainfall estimates and 

quantifying the bias to make data consistent (Tesfagiorgis et al. 2011). A simple covariance 

method is used here for applying bias correction to TRMM data. Covariance can be defined as 

correspondence between two random variables. Mathematically the covariance between two 

random variables is given by  

 �	��, �� 	= 	
∑ 		��� 	− 	 �̅� × ��� − 	�		��

���


 − 1
 ( 1 ) 

Where �̅ and �	 are averages of variables x and y. In MatLab “��
��” command is used to 

generate the least sum of squared errors between two variables in presence of known 

covariance by optimizing the bias factor		1/�. 

 � = ��
��	��� , ��� ( 2 ) 
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where �� is a gauging station observed or actual precipitation and �� is satellite estimated 

value. The above equation gives the least squares solution to the linear system of 

equations	�� × 	� = 	 �� . Then the corrected data is given by 

 
����	��
��� = 1/� 

�����
���	���� = ���	����	 × ����	��
��� 

( 3 ) 

( 4 ) 

GPCC Full Data Reanalysis Version 6.0 data and rain gauge observed data was used for bias 

correction. GPCC was used because the observed precipitation data is not available for last ten 

years. Another benefit was to have variable and distributed correction factors. This was not 

possible with observed precipitation as the data is available from only one gauge which is not 

enough to correctly interpolate the precipitation to each grid cell considering sharp 

topographical changes in the catchment. 

2.5.1. GPCC Bias Correction 

Global Precipitation Climatology Center (GPCC) provides one of the world’s finest and largest 

gridded area mean rain gauge precipitation dataset. They have four different products available 

with a fifth coming soon, each one suitable for different research requirements at a spatial 

resolution of 2.5, 1 and 0.5 degrees. It combines data from two broad classes depending on 

availability. The near-real-time data from SYNOP-DWD10, CLIMAT 11 bulletins, monthly 

totals from SYNOP-CPC12 obtained through Global Telecommunication System (GTS) and 

non-real-time data which forms the bigger portion obtained from National Meteorological and 

Hydrological Services (NMHS) supplied by WMO, data collected regionally and globally and 

monthly sums calculated from Global Historical Climatology Network (GHCN) daily data. 

This is pictorially shown in Figure 84 (Appendix A). GPCC only uses data from a gauging 

station that has at least 10 years of uninterrupted time-series. In total, approximately 65, 200 

stations pass this barrier and hence have been used to produce different precipitation products. 

The data gathered from different sources is stored in eight different slots in a Relational 

Database Management System (RDBMS). This helps in cross comparison and pre-processing 

of data according to different source and initial errors present in each source by a specific set of 
                                                

10 SYNOP data received at Deutscher Wetterdienst, Germany. SYNOP is abbreviation of surface synoptic 
observations encoded in SYNOP (FM-12) data format. For more information visit  
http://weather.unisys.com/wxp/Appendices/Formats/SYNOP.html 
11  Name for monthly averages or sums compiled from SYNOP reports 
12  Monthly precipitation data compiled by Climate Prediction Center, Washington DC using SYNOP data 
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algorithms (Becker 2013). It is followed by area averaged precipitation estimates on to grid 

cells from gauge readings performed in three steps which are (i) the data is interpolated from 

point observations to 0.25 degree latitude / longitude grid cells using a robust and empirical 

SPHEREMAP interpolation method, (ii) estimation of area averaged precipitation for 0.25 or 

0.5 degree grid cells, (iii) and calculation of area averaged precipitation for coarser resolution 

of 0.5°, 1° or 2.5° grid mesh (Becker 2013; Huffman et al. 1997).  

GPCC Full Data Reanalysis Version 6.0 (GPCC FD) provides highest accuracy and is used in 

this project. The temporal coverage ranges from 1901 to 2010 and the data is available as total 

monthly precipitation having spatial resolution of 0.5° × 0.5°. GPCC data was prepared for the 

study area in a similar manner as explained for TRMM and CMORPH. In order to compare the 

two products the monthly sum of TRMM data was taken. Since GPCC has coarser spatial 

resolution, more than one TRMM pixel can be accommodated in a single GPCC pixel. Hence 

all TRMM pixels present in the area of one GPCC pixel were bias corrected after comparing 

with that single pixel. This is shown in the figure below. 

2.5.2. Observed Precipitation Bias Correction 

Observed precipitation bias correction was carried out using data from four overlapping years 

before the gauge stopped working i.e. 1998 to 2001. The covariance matrix between observed 

precipitation and TRMM precipitation for the pixel where Talas meteorological station is 

located was produced which gave a bias factor of 0.6690. This single bias factor was used for 

correction of all TRMM data. This is a draw back in gauge bias correction due to availability of 

data from only one gauge which is not enough to correctly interpolate the precipitation to each 

grid cell considering sharp topographical changes in the catchment. The idea behind using 

GPCC was to have variable and distributed correction factors for each grid cell. Another 

problem with the observed precipitation data is that it is not available for the last ten years. But 

surprisingly the gauge bias correction gave better results compared to GPCC bias correction 

which is discussed in chapter 3. 



Chapter 2 Data Preparation 

22 

 

Figure 9: Location of Talas meteorological station in the valley.  

2.6. FAO Harmonized World Soil Database 

The Harmonized World Soil Database (HWSD)13 is produced by joint efforts of the Food and 

Agriculture Organization (FAO) and the Land Use Change and Agriculture Program (LUC) of 

the International Institute for Applied System Analysis (IIASA), Austria. They combined data 

from 5 different sources namely (i) FAO soil maps of the world (ii) regional studies made by 

SOTER (Global and National Soils and Terrain Digital Databases) (iii) data from the European 

Soil Bureau Network (ESBN) (iv) the 1:1 million scale soil map of China obtained through 

Institute of Soil Science, Chinese Academy of Sciences and (v) soil parameter estimates based 

on the World Inventory of Soil Emission Potential (WISE) database. The data is available at 

spatial resolution of 1 km (30 arc seconds) provided in “Band interleaved by line” (BIL) 

format. It has 1600 different soil mapping units with information on soil parameters like 

organic carbon, pH, water storage capacity, soil depth, total exchangeable nutrients, lime and 

gypsum contents, sodium exchange percentage and textural class (Nachtergaele et al. 2009). 

The data is provided in WGS-1984 Geographic Coordinate System projection which is 

consistent with the projection used in our case study. However the study area was extracted 

using ArcGIS in a quite similar manner as for other datasets explained earlier (Figure 10). The 

percentage of different soil types and area covered by them in the catchment is presented in 

Table 3. 

                                                

13  http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en/ 
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Figure 10: Soil map of Talas basin made from FAO Harmonized World Soil Database. 

 

Table 3: Percentage of different soil types in Talas River Basin. 

Soil Type Area ( km2 ) Percentage 

Sandy Loam West Mountain 244.25 2.727 

Clay Loam Talas Valley 1278.15 14.270 

Sandy Loam South-West Mountain 1651.25 18.435 

Clay Loam East & North Mountain 5782.75 64.561 

Total 8957 100 
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2.7. Cloud Transmissivity 

Cloud Transmissivity (CT) is used to estimate global irradiance. The CM-SAF14 remotely 

sensed mean daily Cloud Fractional Cover (CFC) data was used to calculate CT for the study 

area.  

Climate Monitoring (CM) is a dedicated center for research on global climate change within the 

Satellite Application Facility (SAF) of the European Organization for the Exploitation of 

Meteorological Satellites15 (EUMETSAT). In short it is called CM-SAF. The center is hosted 

by the German Meteorological Service (Deutscher Wetterdienst, DWD) in Offenbach and is 

run in collaboration with meteorological institutes of Belgium, Finland, Netherlands, Sweden, 

Switzerland and United Kingdom (Karlsson and Hollmann 2012). 

CM-SAF uses data from NOAA satellites observations made by Advanced Very High 

Resolution Radiometer (AVHRR) on board. The time series ranges between 1982 - 2009 (first 

NOAA-7 satellite and last NOAA-18 satellite). CFC data is available at spatial resolution of 

0.25 degree latitude / longitude grids in NetCDF format (Karlsson and Hollmann 2012).  

2.7.1. Pre-processing of Cloud Fractional Cover Data 

The pre-processing of cloud fractional cover was also carried out in MatLab and ArcGIS. The 

data was available till end of 2009. In order to fill the gap for the last three years i.e. 2010 – 

2012, data from 2007 – 2009 was repeated. CT was then calculated from CFC by using the 

relation below (Kasten and Czeplak 1980). 

 �� = 1 − (�	 × ��� 	�)	 ( 5 ) 

Where � = 0.75	and � = 3.4	are parameters. Cloud transmissivity values can range between > 

0 and ≤ 1 with 0 as a sky completely covered with clouds and 1 as 100% clear sky. The lowest 

possible mean daily CT was limited to 0.20 because values lower than this will mean a 

completely dark day.  

                                                

14  http://www.cmsaf.eu/bvbw/appmanager/bvbw/cmsafInternet 
15  http://www.eumetsat.int/website/home/index.html 
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CT was also used like TRMM within the concept of virtual stations. All of the smaller 500 m × 

500 m pixels residing in a big pixel of CT were given the same value. For this purpose a CT 

pixel ID map was created in ArcGIS. 

 

Figure 11: Study area divided according to spatial resolution of Cloud Fractional Cover grid 
size.  

2.8. Land Cover Map 

The land cover map of the region was made from GLOBE Cover data which is also a remotely 

sensed product. Globe Cover16 is one of the projects run by the European Space Agency (ESA) 

in order to provide a global land cover map, bimonthly and annual surface reflectance mosaics 

at fine resolution. The data is derived from Medium Resolution Imaging Spectrometer 

Instrument (MERIS) on board the ENVISAT satellite launched in 2002. MERIS measures 

reflected solar radiations from earth surface in 15 spectral bands between 412.5 nm to 900 nm. 

Raw data is pre-processed to apply geometric correction, atmospheric correction, cloud 

screening and Land / Water reclassification. The measured reflectance is associated with 

signatures of different land covers in a classification module comprised of supervised and un-

supervised classification together with other refinements.  The final map is based on 22 land 

cover classes defined by United Nations Land Cover Classification System (LCCS) that are 

widely used and accepted in the world. The overall class weighted accuracy of the map is 67.5 

% when using 2190 globally distributed points for validation (Bontemps et al. 2011). 

                                                

16  http://due.esrin.esa.int/globcover/ 
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Figure 12: Land cover map of Talas basin showing distribution of 12 land cover classes in the study 
area. 

73°30'0"E

73°30'0"E

73°0'0"E

73°0'0"E

72°30'0"E

72°30'0"E

72°0'0"E

72°0'0"E

71°30'0"E

71°30'0"E
42

°4
0'

0"
N

42
°4

0'
0"

N

42
°2

0'
0"

N

42
°2

0'
0"

N

42
°0

'0
"N

Talas Land Cover Classification

Talas River Basin

Irrigated croplands

Rainfed croplands

Mosaic Croplands / Vegetation

Mosaic Vegetation / Croplands

Closed to open mixed broadleaved &
needleleaved forest

Mosaic Forest-Shrubland / Grassland

Closed to open grassland

Sparse vegetation

Artificial areas

Bare areas

Water bodies

Permanent snow and ice

·
0 20 40 60 8010

Kilometers

1 cm = 8 km

Talas Land Cover Map



Land Cover Map 

27 
 

The product is provided at spatial resolution of 300 meters and in Plate-Carrée projection with 

geographic latitude / longitude grids referenced to WGS-1984 ellipsoid. A colored version of 

map is available in TIFF format that was imported to ArcGIS and projected to the Geographic 

Coordinate System. The map was then resampled to 500 meter resolution and the study area 

was extracted. 

Table 4: Different land cover classes and their percentages of total area in Talas River Basin. 
The data is derived from land cover map of the study area made from GLOBE Cover product. 

Land Cover Class Area ( km2 ) Percentage 

Irrigated croplands 1364 15.23086 

Rain fed croplands 248.75 2.777623 

Mosaic croplands / vegetation 469.5 5.242588 

Mosaic vegetation / croplands 2031.25 22.68159 

Closed to open mixed forest 17 35.5 0.396404 

Mosaic forest-shrub land / grassland 5.25 0.058623 

Closed to open grassland 554.75 6.194517 

Sparse vegetation 1824.25 20.37016 

Artificial areas 12.5 0.139579 

Bare areas 2359 26.34135 

Water Bodies 23.25 0.259617 

Permanent snow & ice 27.5 0.307074 

Total 8955.5 100 

2.8.1. Water Abstraction Map 

Talas basin has a valley in its center which is mainly an agriculture area. Farming and animal 

husbandry are the major sources of income of communities living there. A large volume of 

river water is being used in the valley and this fact has to be incorporated in the model. The 

globe cover land use map mentioned in the last heading was used to produce the agricultural 

area map. It was done in ArcGIS using topology and parcel fabrics toolboxes. These tools offer 

                                                 

17  Closed to open mixed broadleaved & needle leaved forest 
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efficient creation, editing and management of contiguous blocks e.g. split a big area into small 

blocks according to desired size or proportion, give each new block a unique ID and associate 

desirable properties with it, prevent overlapping of area, boundaries and rule out gaps within 

blocks. A brief step by step procedure of making a water abstraction map includes (i) Two of 

the land cover classes namely irrigated croplands and mosaic cropland / vegetation ( >70 % 

agriculture area) were merged to make one big polygon. This gave a total cropland area of 

114,200 ha (ii) The area was divided in 71 blocks called irrigation districts. (iii) Each district 

was assigned a unique outlet point from the nearest stream in order to supply water to that area. 

(iv) Water abstraction schedule was made starting from March to October. (v) Hourly 

irrigation rate and minimum soil moisture content above which irrigation will start was also set 

for each district. 

 

Figure 13: Talas Irrigation districts map. The 71 districts are shown here in unique colors. 

 

Figure 14: Outlet points for irrigation of cropland in the catchment. The 71 irrigation districts 
were supplied water from unique outlet points in the river or stream. 
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2.9. Accuracy Assessment 

The model results are validated against observed runoff in the river at eight gauging stations 

and the MODIS snow cover product. These two datasets are explained in the next two sections. 

2.9.1. Runoff Gauging Stations 

The runoff data was obtained from Kyrgyz Water Resources Department for eight gauging 

stations at different locations in the catchment. It is in the form of decadal means. i.e. ten days 

averages and hence three readings from each month. The data was obtained from January, 

2000 to December, 2012 with exception of Uch Kochoy gauging station. The station was 

closed from October, 2005 until the end of 2006 because the flow was directed to another 

stream due to road construction. The missing data for year 2005 was filled by taking average 

runoff of the same months in other years. The station had a defect in September 2009. The data 

is not available after that time and it was left untreated. Figure 15 shows the locations of 

gauging stations in the catchment. A generalized map of the river in the whole Talas basin is 

presented in Figure 85, Appendix A. 

 

Figure 15: Location of mountainous and flood plain gauging stations. Ak Tash, Besh Tash, 
Kumush Too and Ur Maral are mountainous stations while Uch Kochoy, Kara Oi, Kluchevka 

and Kirov are in the flood plain. 
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The stations are divided in two broad classes; mountainous and floodplain gauging stations. 

The former stations are located on the mountains with little or no agriculture area in the sub-

catchment while the latter stations are present in the valley or flat part of the basin with some 

agriculture area in the sub-catchment. 

2.9.1.1. Sub-catchments 

 

Figure 16: Location of runoff gauging stations and sub catchment area of each station. 

Table 5: Sub-catchment areas of gauging stations. 

Gauging Station Name Area ( km2 ) 

Besh Tash 307.188 

Kumush Too 391.678 

Ak Tash 557.630 

Ur Maral 1101.388 

Uch Kochoy 1241.363 

Kara Oi 2532.663 

Kluchevka 6717.786 

Kirov Reservoir 8954.119 
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2.9.2. MODIS Snow Cover 

The Earth Observing System (EOS) Terra and Aqua satellites launched in December, 1999 and 

May, 2002 are equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) 

along with other sensors. MODIS is capable of providing images of earth surface and clouds in 

36 spectral bands ranging between 0.4 – 140 µm. The MODIS band 4 (0.545 – 0.565 µm) and 

band 6 (1.628 – 1.652 µm) are used to calculate Normalized Difference Snow Index (NDSI) by 

automatic snow map algorithms using the formula shown in eq. ( 6 ). The data time series of 

Terra and Aqua satellites starts from 24 February, 2000 and 4 July, 2002 which is made 

publicly available by National Snow and Ice Data Center (NSIDC) (Hall et al. 2002). 

 
���� = 	

���		4 − ���		6

���		4 + ���		6
 ( 6 ) 

Snow cover is a major source of fresh water in Central Asia (Dietz et al. 2013). As the network 

of the weather stations with information about snow cover, height are not available in the study 

area and the data collected at one station is also inconsistent, the adaptation to remotely sensed 

data is a good alternative. In this project MODIS Terra Daily Snow Cover (MOD10A1) and 

MODIS Aqua Daily Snow Cover (MYD10A1) products are used. The datasets have global 

coverage at spatial resolution of 500 meter grids and are available in Sinusoidal Map 

Projection. In clear sky conditions the accuracy of snow cover extent is 93 % (Riggs et al. 

2006). The study area is covered by H23V04 tile as shown in Figure 87 in Appendix A.  

2.9.2.1. Terra versus Aqua 

NDSI is calculated by taking the difference between infrared reflectance of snow in visible and 

shortwave radiations. The difference is calculated between MODIS band 4 (0.55 µm) and band 

6 (1.6 µm) in case of data from Terra satellite. As the band 6 detector failed on the Aqua 

satellite shortly after the launch, band 7 (2.1 µm) is used to calculated NDSI for Aqua. Another 

drawback with Aqua data is that the NDSI / NDVI estimation of snow cover in vegetated 

regions was cancelled due to large overestimation of snow resulting from the use of band 

7 (Riggs et al. 2006). 

Cloud coverage is a main problem in analyzing snow cover maps and it is difficult to find clear 

sky conditions especially in winter when it is most important to estimate snow cover extent.  
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2.9.2.2. Pre-processing of MODIS  

Pre-processing of the raw data was performed to extract the study area out of world images in 

ArcGIS. Missing days and clouds were removed by sensor and temporal combination in 

MatLab before finally using it for accuracy assessment. These methods are further explained 

under the next three headings. 

2.9.2.2.1. Study Area Extraction  

The data was initially processed in ArcGIS to extract the study area and change the projection 

system with the help of a small iterative model designed to carry out the following steps. A 

sketch of the model can be seen in Figure 88. 

1. Make a raster catalog and load raw data into the catalog. 

2. Read raster images from the catalog by Raster Iterator.  

3. Calculate date of each file from the original name using Calculate Value tool and give 

it as precondition to Project Raster tool. 

4. Project files from sinusoidal projection to Geographic Coordinate System WGS-1984. 

Use “MAJORITY” as resampling technique to keep pixel value intact. Set a unique 

output name for each file by giving date number calculated in previous step as part of 

name. 

5. Extract study area from world image using Extract by Mask tool and Talas boundary 

file. 

6. Convert the file from raster to text format and save with unique date numbers. 

2.9.2.2.2. Sensor Combination 

The next step was to have a sensor combination. If MODIS Terra data was missing for a day, it 

was replaced by data from MODIS Aqua sensor. In case data was available from both sensors, 

Terra data was preferred because of errors present in Aqua time series as described before. The 

sensor combination method has been used in studies before and is reported to reduce accuracy 

by 1.4 % for a pixel (Dietz et al. 2013). The missing data for 18 different days was substituted 

from Aqua satellite. The data from both sensors was missing for 50 days in the years 2000, 

2001 and 2002. These days were ignored in the snow cover accuracy assessment.  

2.9.2.2.3. Temporal Combination 

Clouds were removed by performing a three day temporal combination of the data. It was done 

in MatLab using a small model that checked each pixel for presence of clouds. In case clouds 

were present on a particular day, the pixel value was checked for the previous and future days 
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for land, snow or lake information. If any of the mentioned three code values had occurred, the 

pixel code of cloud was replaced by that value. The data for this day was overwritten and saved 

so that while examining cloud cover for the upcoming day, the overwritten data was used 

instead of raw data for the previous day. In case the model did not find other information, the 

cloud value was left unchanged.  

2.9.2.2.4. Snow Cover Efficiency 

The accuracy of simulated snow cover was found by comparing it with MODIS snow cover 

images on a pixel to pixel basis. The model generates snow cover maps at daily time step. The 

accuracy was also calculated for each day by comparing every pixel of the modeled snow 

cover image with corresponding MODIS image pixel and classifying it as correctly predicted 

or not correctly predicted. The correctly predicted pixels are added to find the total number. 

The snow cover efficiency is calculated by using equation ( 7 ). 

 ���� =
�
. 
�	�


�����	�
�	����		������

�
���	������	��	����ℎ���� − �
. 
�	��
�	�	������
	× 100 ( 7 ) 

Where ���� is snow cover efficiency, the numerator is the total number of correctly predicted 

pixels, the first element in the denominator is the total number of pixels in the catchment and 

the second element is the number of pixels covered with clouds in MODIS observed data. A 

full time series of daily snow cover efficiency was created in this way and mean snow cover 

efficiency was calculated. 
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Chapter 3 

3. Input Data Analysis 

3.1. Monthly Temperature 

Variation in the maximum, minimum and average temperatures observed at Talas 

meteorological station is shown in Figure 17. A quick look on the graph shows colder winter 

periods in the years 2001, 2006, 2008 and 2012.  

 

 

Figure 17: Annual cycle of maximum, minimum and average temperatures in Talas Valley 
from 2000 to 2012. The maximum temperature is shown by red line, average temperature by 

green line and minimum temperature by blue line. The graph is made by taking monthly 
averages of each temperature category.  

The average temperature slowly rises from -2 °C in February to 21 °C in July followed by a 

constant decline to below freezing point in December. It reaches its lowest value in January 

when the average temperature is -4 °C. This is shown in the bar graph in Figure 18 made by 

calculating long term monthly means from 2000 to 2012. The mean maximum temperature 

occurs in July when it is 28 °C and the mean lowest temperature is -9 °C observed in the month 

of January.  
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Figure 18: Long term mean of maximum, minimum and average temperatures in Talas Valley. 
The values are monthly averages for a period of 13 years starting from 2000 to 2012. 

 

Figure 19: Diurnal temperature difference for each month in Talas Valley. The graph is made 
by subtracting long term means of the minimum temperature from the maximum temperature 

on monthly basis.  

The mean diurnal temperature difference in each month is shown in Figure 19. It is highest in 

September with a temperature difference of 16 °C and lowest in February with a temperature 

difference of 10.9 °C. The strong diurnal variation in daily temperature results in snow melt at 

temperature higher than the melting point of ice. 

3.2. MODIS Snow Cover 

The MODIS data was prepared for accuracy assessment by sensor and temporal combinations 

as explained in the data preparation chapter. The extent of clouds removed is shown here with 

the help of a bar graph representing percentage of clouds present in the data before and after 
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temporal combination. Figure 20 shows that the method adopted serves well in removing 

clouds and only few days with clouds are left.  

 

 

Figure 20: Percentage of clouds in MODIS data after sensor combination (left graph) and 
temporal combination (right graph). 

The extent and distribution of clouds in the study area is pictorially presented in Figure 21 to 

Figure 23. They are generated after calculating “MODE” for each pixel from 2000 to 2012 i.e. 

the most repeated value for each pixel throughout the time series.  The study area was largely 

covered with clouds with the exception of four months from July to October. But these months 

are least important in determining seasonality of snow covered area as the catchment is mostly 

snow free during this time of the year. Hence it was important to process and remove the 

clouds from MODIS data in order to have accuracy assessment of snow covered area.  

One problem with this method is that if there is an error in the previous or the future day 

information, it will be propagated into the data. But because each day there is a new picture 

available and the model continuously checks for the future day information also, the error will 

not persist for long time unless there is a long series of cloudy days.  
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Figure 21: MODIS Snow Cover before (left column) and after Temporal Combination (right 
column) from January to April. The graphs are made after calculating mode for each pixel 

from 2000 to 2012. 
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Figure 22: MODIS Snow Cover before (left column) and after Temporal Combination (right 
column) from March to August. The graphs are made after calculating mode for each pixel 

from 2000 to 2012. 
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Figure 23: MODIS Snow Cover before (left column) and after Temporal Combination (right 
column) from September to December. The graphs are made after calculating mode for each 

pixel from 2000 to 2012. 
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3.3. Global Irradiance 

The global irradiance (IG) is calculated from a combination of global clear sky irradiance (IGCS) 

and cloud transmissivity (CT) correction. TE employs methods explained in  (Corripio 2002, 

2003) to calculate IGCS and CT parameterizations as described in (Pellicciotti 2004).  

IGCS depends on several parameters like position of sun relative to the study area, 

extraterrestrial solar radiation, direct and diffuse sunlight depending upon zenith angle, shading 

effect depending upon solar position, topography of the area etc. The estimation of CT from 

CFC is described in the data preparation chapter. The CT is further parameterized for each grid 

cell by a relation depending upon temperature of the grid cell and empirical factors. The 

decadal average of IG before and after cloud transmissivity correction is shown in Figure 24 

and its spatial distribution is further presented in Figure 25. The average IG (Figure 25) analysis 

shows that in general, the IG is higher at the top of the mountains and is subjected to variations 

as compared to its consistent intensity in the valley. The hills facing south direction receive 
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Figure 24: Global Irradiance from 2000 to 2012 plotted as 10 days average. The top graph 
shows irradiance calculated with clear sky conditions. The bottom graph shows irradiance 

estimated after correction of cloud transmissivity. 
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higher sunlight. Regions deprived of IG are depicted by red spots in the images. They occur due 

to sunlight blockage and shading effect caused by the hills. There is slight decrease in IG after 

taking into account the CT correction. 

 

 

Figure 25: Global irradiance with clear sky and after including cloud transmissivity. The 
figure shows average daily global irradiance for each grid cell in W / m2 from 2000 to 2012. 

3.4. Mean Decadal Observed Runoff 

The long term mean of the observed runoff at mountainous and flood plain gauging stations is 

presented in this section. The results are compiled after calculating average runoff for each 

decade from 2000 to 2012. 

3.4.1. Mountainous Gauging Stations 

The mountainous stations have snow melt as main runoff source. The flow starts to increase 

with summer rain in April and May with a contribution of water coming from snow-melt. The 

flow reaches its peak in June and starts declining in the month of July. There is no flash flow 

from rainfall in October. Please note that the y-axis is different in all of the plots. The flow is 

highest for Ur Maral post followed by Ak Tash, Besh Tash and Kumush Too. The stations are 

important in the same order depending on their percentage contribution to the runoff of Talas 

River.  
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3.4.2. Floodplain Gauging Stations 

The floodplain gauging stations include Uch Kochoy located at the tail end of the valley with 

little agricultural area upstream. It has Kara Oi just 2 kilometers downstream with relatively 

bigger agricultural area on North-East side of the catchment. The Kara Oi station is located 

downstream of the confluence point of two streams coming from North-East and South-East 

direction. This can be seen in Talas River Gauging Stations map shown in the Figure 15. The 

stream coming from North-East side has higher flow and it includes sub-catchment of Ak Task 

gauging station also. The flow from South-East side is little less than the other stream and Uch 

Kochoy post is located before the confluence of the two streams. The reason for higher flow at 

Kara Oi compared to Uch Kochoy, despite of the fact that it is situated only two kilometers 

downstream of Uch Kochoy, is the addition of water coming from North-Eastern streams. 
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Figure 26: Long term decadal mean of observed runoff for mountainous gauging stations. 
The plots have been made after estimating average runoff for each decade throughout the 

time series from 2000 to 2012. 
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The valley has a huge agricultural area downstream of these two stations where river water is 

used for irrigation purposes. The Kirov Reservoir is the ultimate destination of water coming 

from all big or small streams. The runoff measured at Kirov gauging station includes the total 

loss of water in the catchment due to evapotranspiration. Kluchevka gauging station is located 

20 km upstream of Kirov Reservoir. These two stations have identical flow pattern with higher 

flow at the latter station. The runoff recorded at mountainous posts do not show decline in May 

and August. This necessarily points towards water abstraction from the river to meet the 

irrigation and household demands of the communities living in Talas Valley.  

Figure 27: Long term decadal mean of observed runoff for floodplain gauging stations. The 
plots have been made after estimating average runoff for each decade throughout the time 

series from 2000 to 2012. 
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The difference in runoffs recorded at Kara Oi and gauging stations located upstream of Kara 

Oi is shown in Figure 28. The runoff should increase at the Kara Oi station because of water 

addition from precipitation and groundwater in the area between upstream and downstream 

stations. The difference in the figure shows that this is not the case because of water 

abstraction in the agricultural area in the North-East side of Kara Oi sub-catchment. The 

difference in observed and expected runoffs is small because of little agricultural area in the 

sub-catchment. Cropland is mainly concentrated in the Kluchevka sub-catchment which results 

in large difference in observed and expected runoffs for this station as shown in Figure 29. 

Hence the depression in flow curves in May and August for Kara Oi, Kluchevka and Kirov 

Reservoir stations is due to water abstraction.  

 

 

Figure 28: Mean decadal observed and expected runoffs at Kara Oi gauging station. The 
observed runoff is shown by the blue line. The expected runoff which is sum of the runoffs 
observed at Ak Tash and Uch Kochoy gauging stations is presented in the red line. The 

difference in the observed and expected runoffs is shown in the green line. 

However the sum of runoffs from upstream stations decreases in winter because of 

precipitation in solid form there in contrast to precipitation in liquid form in the flood plain 

area (Figure 62). A big proportion of winter precipitation falling as snow is stored in the snow 

packs while all of the precipitation in liquid form contributes to runoff of the river which 

eventually reaches Kluchevka and Kirov Reservoir gauging stations. The water stored in 

groundwater aquifers and soil layers also contributes to the flow of flood plain stations. This is 

higher in Kluchevka because of the bigger catchment area meaning that more area can 
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contribute through groundwater and as the station is located in the center of the valley with 

more chances of precipitation as rainfall.  

 

 

Figure 29: Mean decadal observed and expected runoff at Kluchevka gauging station. The 
observed runoff is shown by the blue line. The expected runoff which is sum of the runoffs 

observed at Kara Oi, Besh Tash, Ur Maral and Kumush Too gauging stations is presented in 
the red line. The difference in the observed and expected runoffs is shown in the green line. 

The same graph made for Kirov Reservoir reveals that the difference is either zero or 

negligible. The expected runoff is calculated by adding the runoffs observed at Kluchevka, 

Bakianskie, Beisheke, Chimkentskie, Kara Buura and Kirovskie Rodniki gauging stations. The 

five stations mentioned here are located on the small streams on the north-west side of the 

catchment. The runoff data was obtained for these stations also but it is unreliable and is not 

used in the project except at this place only to show that the observed and expected runoffs 

overlap. This indicates a possibility that the inflow to Kirov Reservoir is calculated by simply 

adding the runoffs of these stations instead of recording real time flows with a gauge. This 

cannot be said for sure because according to a personal communication, the inflow to Kirov 

Reservoir is measured by calculating differences in the volume of the lake with the help of a 

scale bar which is not a precise method in itself (Mr. Andrey Yakovlev, former 

KGZHydromet).  
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Figure 30: Mean decadal observed and expected runoffs at Kirov Reservoir. The observed 
runoff is shown by the blue line. The expected runoff and the difference in observed and 
expected runoffs are shown in the red and green line. These two lines exactly overlap. 

3.4.3. Observed Runoff Anomalies 

The observed long term decadal means presented in the Figure 26 and Figure 27 were 

subtracted from the yearly runoffs to produce anomalies graphs. The runoffs time series for all 

stations can be seen in the Figure 89 to Figure 92 in Appendix B. The figures include graphs 

for Bakianskie, Beisheke, Chimkentskie, Kara Buura and Kirovshie Rodniki gauging stations 

also.  

The anomalies graphs show that low discharge was observed in the years 2000, 2001, 2006, 

2008 and 2012 at all stations. (The data for the year 2006 and 2010 to 2012 is missing for Uch 

Kochoy station). And the highest runoff was recorded in the year 2002. This has to do with 

precipitation in the sub-catchment of the gauging stations. The low runoff years are further 

discussed in details in Chapter 4. 

3.4.4. Runoff Seasonality Comparison 

The rise in summer flow does not occur at the same time for all stations. A monthly 

comparison of runoffs is shown in Figure 32 where the differences in start of summer flow and 

peak flow timing can be observed. The three stations Ak Tash, Uch Kochoy and Kara Oi 

located on the eastern side of the study area show increase in runoff in April. It continues to 

rise till the month of June and starts declining in July. The runoff increases one month later for 

the stations Ur Maral, Kumush Too and Besh Tash located on the southern side.  
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Figure 31: Anomalies in average decadal observed runoff at all stations. The bars represent 
ten days average values in m3 / sec. Negative anomalies are significant in the years 2000, 
2001, 2006, 2008 and 2012. And year 2002 shows high positive anomaly for all stations. 
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The peak runoff time for Kluchevka, Kara Oi, Uch Kochoy, Ak Tash and Besh Tash is same 

and occurs in the month of June. While the peak runoff occurs in the month of July in case of 

Kumush Too and Ur Maral which are located in a different soil zone. The water volumes of 

mountainous stations are dependent on their catchment area. The bigger the catchment size, the 

larger is the water volume. This can be seen in Figure 32 also. Ak Tash and Ur Maral have 

higher flows because they have larger catchment areas while Besh Tash and Kumush Too have 

comparatively less flow because their catchment areas are small. The location of gauging 

stations and their catchment areas can be seen in Figure 16 and Table 5. 

 

Figure 32: Monthly averages of observed runoff in 13 years. The graph shows seasonality 
comparison of increase and peak time of summer runoff among different stations. 

The difference in summer runoff start time between Ak Tash and Ur Maral is because of their 

location in different regions. These two stations have higher flow as compared to the other 

mountainous stations. Ak Tash is located on north-east side while Ur Maral lies on the 

southern side. The east side of study area generally receives higher precipitation in the summer 

and winter that can be seen in TRMM precipitation spatial distribution maps (Figure 44).  
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3.4.5. Kirov Reservoir Inflow and Outflow 

The decadal inflow observed at Kirov Reservoir is shown in the last section together with 

runoff observed at other gauging stations. This section presents a comparison of inflow, 

outflow and water volume observed at Kirov Reservoir on the basis of monthly averages. The 

outflow from Kirov is little in the beginning of the year and increases gradually till summer. It 

is maximum in the months of May, June, July and August and decreases again with time to 

merely 8 m3/sec in December. As Kirov Reservoir is built to meet irrigation demands of a huge 

agricultural area downstream in Kazakhstan, water is released form the dam in summer when 

the irrigation demand is at its peak. The outflow is small during winter and is mainly used to 

prevent salinization. The study area is semi-arid and the large evapotranspiration rate causes 

the salts to rise to the soil surface by capillary transport and accumulate there. Water is 

released in winter to flush or leach these salts out of the soil.  

 

 

Figure 33: Observed inflow and outflow at Kirov Reservoir. The values represent monthly 
averages of data from 2000 to 2012. The outflow is higher in summer for irrigation of 

agricultural land in Taraz city, Kazakhstan. 

This is in agreement with the water volume recorded at the reservoir as shown in Figure 34. 

The inflow to the reservoir is high in winter and this water is stored in the dam. The water 

volume continuously rises from November to April in the reservoir. From May to August a 

large volume of water is released to the downstream agricultural area. The inflow is also not 
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very high in these months because of water use for irrigation in Talas Valley. Therefore the 

water volume stored in the reservoir slowly declines to the minimum level in October.  

  

Figure 34: Water volume recorded at Kirov Reservoir. The values represent monthly averages 
of data from 2000 to 2012. The volume reduces in summer due to water release for irrigation. 

3.5. Observed and Remotely Sensed Precipitation  

3.5.1. Daily and Monthly Correlation 

A comparison between observed precipitation and TRMM precipitation for the pixel where 

Talas meteorological station is located was done. The data was analyzed for the overlapping 

period of four years from 1998 to 2001 and scatter plots were made. The results show that 

there is low correlation between the two datasets at daily time scale and the RMSE is high. The 

values are also concentrated corresponding to precipitation of 1, 2 and 3 mm etc. as shown in 

the top left plot in Figure 35. A scatter plot between monthly averaged precipitations on the 

other hand gives good correlation and low RMSE. The same trend was observed when scatter 

plots between CMORPH and gauge observed precipitations were made. The correlation and 

RMSE are 0.0093 and 3.9 for daily precipitation respectively. The correlation increases to 0.3 

and RMSE decreases to 2 when average monthly precipitation is compared (Figure 36). The 

correlation is not strong but still it is better than the correlation at daily time scale. 

The accumulated monthly observed and TRMM precipitation was also calculated in order to 

compare it with GPCC data. Scatter plots were made between GPCC and observed 

precipitation (left plot, Figure 37) and TRMM and observed precipitation (right plot, Figure 

37). The correlation is good in both cases.  
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Figure 35: Scatter plots between gauge observed and TRMM precipitations using four 
years of data from 1998 to 2001. The top scatter plots are between daily values. The x-scale 

is limited in the top right plot. The bottom scatter plot is between monthly averaged 
precipitations. 
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Figure 36: Scatter plots between gauge observed and CMORPH precipitations using four 
years of data from 1998 to 2001. The left plot is between daily values while the right one is 

between monthly averaged precipitations. 

 

Figure 37: Scatter plots between observed, GPCC and TRMM precipitations using four years 
of data from 1998 to 2001. The plots are made between accumulated monthly precipitations of 

each dataset. 

3.5.2. Mean TRMM and CMORPH Precipitation 

Figure 38 shows a comparison of daily precipitation averaged for each month over a four year 

period. It is clear from the figure that CMORPH has large overestimation error. TRMM is also 

overestimating but the difference is less and it is following the seasonality of the observed 

precipitation which CMORPH fails to do.  
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Figure 38: Monthly averaged daily precipitations from gauge, TRMM and CMORPH datasets. 
The data is compared for an overlapping period of four years. CMORPH has large 

overestimation error. 

A further comparison of TRMM and CMORPH average daily precipitations from 1998 to 2012 

is shown in the map in Figure 39. The map is made by using the same legend and it can be seen 

that the result obtained from these two products is different. CMORPH is overestimating 

precipitation in most of the region. For example, if the North-East region of the study area is 

considered, the precipitation from TRMM in this area is 1.12 mm / day while from CMORPH 

it is 1.77 mm / day. The overestimation is 0.65 mm / day which means it will be 19.5 mm / 

month and 237.25 mm / year of extra precipitation. This is even larger than the actual 

precipitation recorded in Talas valley which is 196 mm / year.  

Hence these two comparisons clearly show that the CMORPH product has an overestimation 

error which makes it unsuitable for further use in the project. However a bias correction was 

applied to the TRMM data as it is also overestimating. 
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Figure 39: Spatial distribution of TRMM & CMORPH mean daily precipitations from 
1998 to 2012. The map shows comparison between satellite precipitation estimates form 
the two products. CMORPH has considerable overestimation error that is significant on 

the north-east corner of the catchment in this map.  

TRMM Average Daily Precipitation (1998 - 2012)

CMORPH Average Daily Precipitation (1998 - 2012)

·

TRMM Long Term Average
mm / day

0.876 - 0.918

0.919 - 1.11

1.12 - 1.27

1.28 - 1.57

1.58 - 1.64

1.65 - 1.76

1.77 - 1.95

1.96 - 2.1

2.11 - 2.83

2.84 - 3.04

CMORPH Long Term Average
mm / day

0.876 - 0.918

0.919 - 1.11

1.12 - 1.27

1.28 - 1.57

1.58 - 1.64

1.65 - 1.76

1.77 - 1.95

1.96 - 2.1

2.11 - 2.83

2.84 - 3.04

0 20 40 60 80 10010

Kilometers

1 cm = 9 km



Chapter 3 Input Data Analysis 

56 
 

3.5.3. Bias Correction 

 

 

Figure 40: Average daily precipitation in each month according to rain gauge and TRMM 
data. The average is taken for a time period of four years from 1998 to 2001. The observed and 

TRMM data are represented by blue and green bars. 

Bias correction was done using GPCC and gauge observed data. The concept of bias correction 

was explained in the second chapter. It was important to bias correct the TRMM data to 

account for overestimation observed in it. The average monthly precipitation from gauge and 

TRMM is shown by a bar graph in Figure 40. The study area receives higher early summer and 

winter precipitation. The overestimation is high from April to October. 

 

 

Figure 41: Accumulated monthly precipitation before and after GPCC bias correction. TRMM 
raw and corrected precipitations are represented by blue and green lines. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

1.5

2

2.5

Month

m
m

 /
 d

ay

Gauge and TRMM Average Monthly Precipitation

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12
0

50

100

150

 m
m

 /
 m

on
th

Year

TRMM Monthly Sum

 

 

TRMM Raw

TRMM-GPCC BC



Observed and Remotely Sensed Precipitation 

57 
 

 

Figure 42: TRMM monthly averaged daily precipitation before and after gauge bias 
correction. 

The reduction brought about by GPCC bias correction is little and the corrected average is 

largely overlapping the raw average. This is because GPCC is also overestimating the 

precipitation. The accuracy of GPCC rain gauge precipitation analysis depends on weather 

stations density in the grid cells. For example there should be 8 to 16 stations in a grid cell of 

2.5° × 2.5°, depending on the variability of the precipitation in the region in order to estimate 

monthly area mean precipitation (Becker 2013). Unfortunately Talas catchment lacks a good 

density of rain gauges which is the main reason for erroneous precipitation estimates.  

The monthly average precipitation obtained after gauge bias correction is better as shown in 

Figure 42. The comparison is made for one pixel only where the gauging station is located. 
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Figure 43: TRMM accumulated monthly precipitation before and after gauge bias BC. 
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Table 6 shows results for TRMM accumulated monthly precipitation with gauge and GPCC 

bias correction. The observed monthly sum is 19.4 mm but the TRMM and GPCC monthly 

sum is 42.6 and 40.3 mm which is two times the observed precipitation. As explained in the 

last paragraph GPCC also overestimated and the monthly sum after its correction just 

decreased by 3 mm of precipitation.  The precipitation is still higher after gauge correction but 

it is definitely preferable to GPCC correction. 

Table 6: Accumulated monthly precipitation before and after bias correction. Observed 
precipitation bias correction was carried out using four years data. GPCC correction was 
done with 15 years of data and the reduction achieved is shown in 3rd and 4th columns. 

 

Observed 

(1998 – 2001) 

mm / month 

GPCC 

(1998 – 2012) 

mm / month 

TRMM Gauge BC18 

(1998 – 2012) 

mm / month 

TRMM GPCC BC 

(1998 – 2012) 

mm / month 

Raw value 19.4147 40.3 42.614 42.614 

Bias corrected _ _ 28.509 39.05 

 

3.5.4. Spatial Distribution of Precipitation 

The spatial distribution of TRMM-Gauge bias corrected precipitation is shown in Figure 44. In 

general, the precipitation gradient increases from north-west to east and south in the study area. 

The gradient is small during winter from November to February. The difference in 

precipitation over mountains and valley gradually increases from March to May and then 

decreases again till September. The precipitation is high in the eastern and southern regions of 

the study area which mainly constitute the mountainous part of the catchment. While it is low 

in the center and north-west part which contain the flood plain and Talas valley. The 

precipitation is the maximum in the month of May with high concentration in the east and 

south-east part. The gradient is also highest in this time of year. The second high precipitation 

event takes place in October but the gradient is not as high as in May. The mean daily 

precipitation in each month can also be seen in bar graph already presented in Figure 40. In 

essence it can be concluded that the precipitation is greater in high altitude regions of the study 

area.  

                                                 

18  Bias Corrected 
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Figure 44: Spatial distribution of precipitation in Talas River Basin. The maps represent 
average daily precipitation in each month for 15 years. Average is calculated using TRMM-

Gauge bias corrected data from 1998 to 2012.  
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Chapter 4 

4. TOPKAPI Modeled Runoff 

4.1. TRMM simulated runoff 

The modeled runoff after correcting TRMM data with GPCC data and gauge observed 

precipitation is shown here from Figure 45 to Figure 52 together with observed runoff at the 

gauging stations. The simulated results are better for GPCC bias corrected precipitation for 

mountainous stations and the runoff difference in peak season is small. The discharge is less 

than observed for mountainous stations with gauge bias corrected precipitation. This is 

opposite when the results for flood plain gauging stations are analyzed and the runoff 

generated with gauge corrected precipitation is better. The benefit of using observed 

precipitation for bias correction is prominent here as the flow is much higher with GPCC 

corrected precipitation. 

The annual volumetric difference is high and negative (underestimation of runoff) for station 

corrected precipitation in the mountainous region as compared to GPCC corrected 

precipitation. While the difference is less and positive (overestimation of runoff) in flood plain 

region where the runoff generated from GPCC bias corrected precipitation is much higher. 

Since all of the water either coming from snow melt or rainfall eventually reaches the flood 

plain and Kirov reservoir, the total water balance can be better analyzed by comparing results 

at Kirov. The volumetric difference is 1.073 km3 per year (123 % overestimated) from GPCC 

corrected precipitation while it is 0.219 km3 per year (25 % overestimated) from gauge 

corrected precipitation. It means that the total precipitation in the study area is higher from 

GPCC corrected data which results in higher runoff at catchment outlet. 
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Figure 45: Observed and simulated runoffs at Ak Tash gauging station. The observed, TRMM-
GPCC and TRMM-Gauge BC runoffs are shown by continuous blue, dashed green and 

continuous red lines respectively. The time series is from 2000 to 2012 plotted as ten days 
averages. 

 

Figure 46: Observed and simulated runoffs at Besh Tash gauging station. The observed, 
TRMM-GPCC and TRMM-Gauge BC runoffs are shown by continuous blue, dashed green and 

continuous red lines respectively. The time series is from 2000 to 2012 plotted as ten days 
averages. 
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Figure 47: Observed and simulated runoffs at Kumush Too gauging station. The observed, 
TRMM-GPCC and TRMM-Gauge BC runoffs are shown by continuous blue, dashed green and 

continuous red lines respectively. The time series is from 2000 to 2012 plotted as ten days 
averages. 

 

Figure 48: Observed and simulated runoffs at Ur Maral gauging station. The observed, 
TRMM-GPCC and TRMM-Gauge BC runoffs are shown by continuous blue, dashed green and 

continuous red lines respectively. The time series is from 2000 to 2012 plotted as ten days 
averages. 
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Figure 49: Observed and simulated runoffs at Uch Kochoy gauging station. The observed, 
TRMM-GPCC and TRMM-Gauge BC runoffs are shown by continuous blue, dashed green and 

continuous red lines respectively. The time series is from 2000 to 2012 plotted as ten days 
averages. Uch Kochoy observed runoff is missing for the year 2006. 

 

Figure 50: Observed and simulated runoffs at Kara Oi gauging station. The observed, TRMM-
GPCC and TRMM-Gauge BC runoffs are shown by continuous blue, dashed green and 

continuous red lines respectively. The time series is from 2000 to 2012 plotted as ten days 
averages. 
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Figure 51: Observed and simulated runoffs at Kluchevka gauging station. The observed, 
TRMM-GPCC and TRMM-Gauge BC runoffs are shown by continuous blue, dashed green and 

continuous red lines respectively. The time series is from 2000 to 2012 plotted as ten days 
averages. 

 

Figure 52: Observed and simulated runoffs at Kirov Reservoir gauging station. The observed, 
TRMM-GPCC and TRMM-Gauge BC runoffs are shown by continuous blue, dashed green and 

continuous red lines respectively. The time series is from 2000 to 2012 plotted as ten days 
averages. 
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The model is underestimating runoff at Ak Tash and Besh Tash stations which is because of 

inadequate soil information from FAO map. 64 % of study area is characterized as clay loam. 

A small change in properties of this soil region has relatively small effect on flow of 

mountainous stations but the impact is large on flood plain gauging stations. If the properties 

like soil depth, residual soil water content are reduced, the water holding capacity of the soil 

reduces which results in higher flow in the channel. Hence the runoff at Ak Tash and Besh 

Tash improves but on the other hand this causes large increase in runoff at the downstream 

stations especially Kluchevka and Kirov reservoir. The volumetric difference increases by 

large amount at Kirov reservoir. Therefore a compromise had to be made between runoff at 

upstream stations Ak Tash, Besh Tash and floodplain Kluchevka and Kirov Reservoir stations.  

The Ur Maral and Kumush Too gauging stations have different runoff characteristics. 

Although they are present in a separate region which is composed of sandy loam soil type but 

soil has proven not to be the only important factor in modeling the runoff of these stations. The 

problem is that the simulated runoff peak occurs one month earlier than the observed runoff 

peak. To control this, the hydraulic conductivity of soil was reduced and soil depth was 

increased which delayed the simulated runoff peak in the summer. But this decreased the total 

water flowing through the stations and increased the volumetric difference. The factors other 

than soil properties that can be important in delaying the simulated runoff for Ur Maral and 

Kumush Too can be roughness of the terrain and flow partition coefficient. The Manning’s 

roughness coefficient and flow partition coefficient depend on Strahler order of the stream in 

TOPKAPI. They are constant for one stream type and change with varying stream order. 

A brief summary of runoff results on annual scale is shown in Table 7. If a box model is 

considered where precipitation is input, evapotranspiration and water abstraction for irrigation 

are losses and Kirov reservoir is taken as the outlet point of the catchment (in truth the outlet 

point is few pixels downstream Kirov gauge) where the total discharge is measured, the 

precipitation corrected with observed data give better results. 
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Table 7: Correlation coefficient, coefficient of determination and volumetric difference 
between observed and simulated runoff. The results are averaged for 13 year period (2000 to 

2012). The table shows comparison between results of model run from TRMM-Gauge and 
TRMM-GPCC bias corrected precipitation datasets. 

Station Name 

Correlation 

Coefficient ( R ) 

Coefficient of 

Determination ( r2 ) 

Volumetric Difference 

(km3 / year) 

Gauge GPCC Gauge GPCC Gauge GPCC 

Talas Ak Tash 0.92 0.91 0.91 0.80 - 0.132 - 0.043 

Besh Tash 0.94 0.93 0.96 0.91 - 0.049 - 0.012 

Kumush Too 0.76 0.80 0.87 0.70 - 0.006 0.034 

Ur Maral 0.76 0.80 0.92 0.82 - 0.084 0.033 

Uch Kochoy 0.77 0.79 0.52 - 0.11 - 0.016 0.130 

Kara Oi 0.75 0.72 0.33 - 0.91 0.019 0.375 

Kluchevka 0.51 0.39 -0.85 - 5.17 0.254 0.997 

Kirov Reservoir 0.55 0.41 -0.95 - 5.82 0.219 1.073 

 

4.1.1. Snow Cover Efficiency 

The accuracy of simulated snow cover was calculated by comparing it with MODIS snow 

cover images on a pixel to pixel basis. The mean snow cover efficiency is equal to 80 %. The 

snow melt starts from Talas valley and cropland area in North-West of the basin. With the rise 

of temperature in summer, the snow in the nearby mountains starts melting gradually in south 

and east direction. The southern part shows relatively quick snow melt as compared to eastern 

part. This is because of higher mountains in the eastern side which have a higher temperature 

gradient. By the end of May more than 90 % of area becomes snow free as shown in MODIS 

images. The eastern part receives higher precipitation and the snow accumulation starts earlier 

there as compared to mountains in the south and north direction. Hence this area shows late 

snow melt and early snow accumulation. The snow melt occurs few weeks late in the model 

and the snow does not melt as quickly as observed in the MODIS data. This is a drawback in 

the present study as more time was required to calibrate the model. A comparison of snow 

cover area on the first day of each month is shown in the next three figures. The comparison is 

shown for the year 2003. 
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Figure 53: Comparison between MODIS observed Snow Cover after temporal combination 
(left column) and modeled snow cover by TOPKAPI (right column) from January to April, 

2003. 
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Figure 54: Comparison between MODIS observed Snow Cover after temporal combination 
(left column) and modeled snow cover by TOPKAPI (right column) from May to August, 2003. 
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Figure 55: Comparison between MODIS observed Snow Cover after temporal combination 
(left column) and modeled snow cover by TOPKAPI (right column) from September to 

December, 2003. 
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Figure 56: Monthly average of snow water equivalent from 2000 to 2012. The maps show 
snow height measured in mm of water equivalent and its monthly cycle averaged for a period 

of 13 years. 

The monthly average of simulated snow water equivalent is shown in Figure 56. The snowfall 

starts in the month of October with higher intensity over the eastern mountains. The whole 

basin is then gradually covered by snow which reaches its maximum extent in February. The 

snow height is small in the valley represented by the white and the grey colors. The snow 

height starts decreasing from March and roughly 90 % of the area becomes snow free in June. 

4.1.2. Low runoff years 

The observed runoff is quite low in 2000, 2001, 2006, 2008 and 2012 which is not correctly 

predicted by the model. The simulated runoff is lower than in other years but still higher than 

observed discharge in the low runoff years. The possible reasons for low observed discharge 

can be (1) Low precipitation, (2) High temperature or (3) Increase in water abstraction for 

irrigation. 
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Figure 57: Two annual cycles of TRMM long term monthly mean calculated for a period of 15 
years from 1998 to 2012. The TRMM-Gauge bias corrected data is used in this calculation and 

the plot is made by taking monthly averages of daily precipitation in mm. 

The two annual cycles of TRMM long term monthly mean are presented in Figure 57. The plot 

shows that the study area receives higher summer precipitation in April and May and higher 

early winter precipitation in October and November. The first graph in Figure 58 shows 

TRMM running monthly mean. The precipitation was low in 2000, 2001, 2004, 2006, 2008 

and 2012. The long term monthly mean was subtracted from running monthly mean of each 
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Figure 58: TRMM running monthly mean and TRMM monthly anomalies from 2000 to 
2012. The TRMM-Gauge bias corrected data is used in this calculation and the plot is 

made by taking monthly averages of daily precipitation in mm. 
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year to produce the monthly anomalies plot shown in the second graph in Figure 58. The 

anomalies graph also reveals lower than average precipitation in these years. The precipitation 

is particularly below average in the summer months while it is positive in the month of October 

in most of the years. The precipitation was below average for most of the months in 2000 and 

2001. The winter of 2005 and summer of 2006 also received less precipitation. The lower than 

average snowfall in 2005 led to small runoff generated from snow melt in the succeeding 

summer period of 2006. In addition the summer precipitation was also low in 2006. The two 

events of less precipitation resulted in overall low river discharge in the year 2006. A similar 

event took place in winter 2007 and summer 2008. This caused another year with low river 

runoff. The precipitation was below average all year long in 2012 except for the month of 

December. This figure provides one reason for extremely low observed runoff in the above 

mentioned years. These years were characterized by low precipitation, particularly the summer 

rainfall.  

 

 

Figure 59: Difference in observed and simulated runoff at Kluchevka and Kirov reservoir 
gauging stations. The graphs are made after subtracting average decadal observed runoff 

from TOPKAPI simulated runoff. 
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The reason for higher simulated runoff is overestimation of precipitation by the TRMM 

product. The anomalies plot shows less precipitation in the low runoff years but it is still higher 

than the observed values. Although bias correction of TRMM data with Gauge readings helped 

to scale down the precipitation but it did not help in eradicating the overestimation error 

completely (Table 6). A detailed analysis of the precipitation anomalies for individual sub-

catchments of the mountainous stations was also carried out (Figure 95, Appendix C). The 

results show a very similar pattern as that of the TRMM anomalies plot for Talas catchment 

(Figure 58) with little increase in positive and negative anomalies. This shows that the TRMM 

actually observed less precipitation in the low runoff years at mountainous regions of the study 

area but it was still higher than the actual precipitation there.  

The difference in the observed and simulated runoffs at Kluchevka and Kirov gauging 

stations (Figure 59) shows that the simulated runoff is overestimated by more or less the 

same quantity throughout the time series (exception for the year 2001). This is due to 

higher input of water into the hydrological system in form of precipitation. The remotely 

sensed data overestimate precipitation by roughly the same amount every year.  

 

 

Figure 60: Temperature anomalies from 2000 to 2012. The graph shows anomalies in monthly 
average temperature in Talas Valley calculated by using 13 years of long term mean from 

2000 to 2012. 

Figure 60 shows that the temperature in Talas valley was above average in the summer months 
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years but temperature is one of the reasons for drier summer periods in 2001, 2006, 2008 and 

2012. The warmer season is especially visible in 2006 and 2008. The hotter climate combined 

with low precipitation resulted in decreased runoff in the river.  

Higher water abstraction can be one of the important reasons for low observed runoff. Crops 

having higher water demand like rice and cotton are not regularly sown in Talas valley. But 

there is a big possibility of change in cropping pattern in these years. In order to analyze this, 

the difference in runoff observed at Kluchevka station and total runoff from stations located 

upstream of Kluchevka was calculated for 13 years. The long term difference (Figure 29) was 

subtracted from yearly difference to generate the anomalies plot (Figure 61). The graph shows 

that the water abstraction was high in the years 2000, 2001 and 2012. But the water abstraction 

was not high in all of the low runoff years. In addition the anomalies are positive and high in 

the years 2009, and 2011 also but the water flow in the river was not low in these years. This 

means that water abstraction for irrigation does not have a drastic effect in reducing discharge 

of the river.  

 

 

Figure 61: Talas Kluchevka runoff difference anomalies from 2000 to 2012. The plot is made 
after subtracting long term difference in runoff recorded at Kluchevka and total runoff from 

stations located upstream of it from yearly difference. 
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second graph in the figure. The first high precipitation event occurs in May while the second 

one occurs in October. The precipitation is less during the other months. It is classified as rain 

or snow by adjusting the threshold air temperature for the precipitation state transition factor in 

the model. When the temperature is above this threshold, it rains, while it snows when the 

temperature is below or equal to the threshold temperature. Rainfall mostly occurs in the 

summer months between March and October when the temperature is high. Snowfall is 

dominant from November to February. This can be seen in the third and the fourth graphs in 

the figure and can be compared with temperature in the first graph. The snow peaks occur 

when the temperature lines are in depression representing cold winter climate and the rainfall 

approaches zero in these months. Precipitation as snowfall is zero during summer when the 

rainfall lines are at peak. The trend is more prominent in Figure 64 which shows results for 

TRMM dataset bias corrected with GPCC precipitation. The first difference between the two 

figures is higher total precipitation in GPCC bias corrected data. The snow and rain peaks in 

winter can be better seen in the latter figure which explains the change of precipitation state 

with temperature.  

The spatial distribution of precipitation as rainfall and snowfall is also shown in Figure 62. The 

precipitation is dominantly rainfall in the lower elevation regions where the temperature is low. 

And it precipitates as snowfall at higher altitudes because of decrease in temperature due to 

adiabatic lapse rate and elevation.  

 

 

Figure 62: Distribution of precipitation into rainfall and snowfall depending upon temperature 
and elevation in the study area. The graphs show average hourly precipitation in mm from 

2000 to 2012. 
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Figure 63: Total precipitation and its distribution into rain and snow depending on 
temperature. The time series is from 2000 to 2012 for TRMM-Gauge BC precipitation. The 

plotted values are ten days averages. 
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Figure 64: Total precipitation and its partitioning into rain and snow according to 
temperature. The time series is from 2000 to 2012 for TRMM-GPCC BC precipitation. The 

plotted values are ten days averages. 
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4.2.2. Snow melt 

The seasonal change in snow melt timing is presented in Figure 65. Separate plots are made for 

Gauge and GPCC BC precipitations in the blue and green lines respectively. The snow melt is 

highest in hot summer months of May, June and July when the temperature is at its peak. The 

peak slowly declines till the end of each year and the snow melt is very low from November to 

January. The enhanced temperature index model used to calculate snow melt is a function of 

temperature, global irradiance, albedo and two empirical factors namely shortwave radiation 

factor and temperature factor. In addition the snow melt is also dependent on three factors (1) 

Threshold temperature for snow melt (2) Melt onset temperature (3) Number of days that 

should exceed the limit of melt onset temperature in order for melt to occur finally depending 

on threshold temperature. Since the temperature can often go above zero in the valley and 

mountainous regions in May and October and sufficient energy is also available from sunlight, 

the freshly fallen snow in these two months finds its way to the river soon. This is evident from 

the two peaks which occur before and after the highest peak of snow melt in the summer. The 

big peak occurring before the highest peak is in May and the little peak occurring after is in 

October. Hence a part of the precipitation which falls in the form of snow as shown in Figure 

63 and Figure 64 melts earlier.  

One interesting fact shown in this figure is the graph for number of grid cells covered with 

snow in the catchment. It is almost the same for the two datasets throughout the time series as 

the two lines are overlapping. The reason for this is that although the total precipitation in 

GPCC corrected data is higher as compared to Gauge corrected data, this high precipitation 

falls as snow on the same number of grid cells. It depends on temperature of the grid cells 

which does not change in the two model runs. This results in larger snow water equivalent 

content in GPCC corrected data but the number of cells covered with snow remains the same in 

both model runs.  
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Figure 65: Snow melt in mm of water equivalent per hour and number of cells covered by snow 
in the catchment. The time series is from 2000 to 2012 plotted as ten days averages. The blue 
and green lines represent model runs from TRMM-Gauge and TRMM-GPCC bias corrected 

precipitation datasets. 
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4.2.3. Evapotranspiration 

The environmental demand of evapotranspiration and actual evapotranspiration (AET) taking 

place in the study area is shown in Figure 66. The evapotranspiration rises in the summer with 

rise in temperature and global irradiance (Figure 24) and becomes zero in the winter when 

global irradiance is least, temperature is below freezing point and the study area is largely 

covered with snow. A crop factor correction is also included in the model to account for 

increase in potential evapotranspiration (PET) in the irrigated area. This result in slight 

increase in PET in the third plot compared to PET estimated without considering the crop 

effect in the second plot. As the temperature, cloud transmissivity and global irradiance do not 

change, PET is similar to the two precipitation datasets. 

The AET is approximately three times less than PET indicating deficiency of water available to 

balance this difference. The AET from TRMM-GPCC corrected data (dashed green line) is 

larger than the other data because it has higher mean precipitation and supplies more water to 

the area that eventually results in higher AET. It is important to note here that AET is less in 

the years 2000, 2001, 2004, 2006, 2008 and 2012 which correspond to low runoff years also. 

This is because the climate was drier than usual and less water was available in form of 

precipitation and hence for evapotranspiration at that time.  

The AET is significantly higher in the cropland area. The mountains in the catchment are 

mostly dry with no vegetation cover and hence the AET is lower at high altitudes. The river 

and streams also contribute to water losses through evaporation as shown in Figure 67. There is 

a considerable increase in AET with irrigation of agricultural districts.  
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Figure 66: Seasonal variation of potential evapotranspiration, potential evapotranspiration 
after crop factor correction and actual evapotranspiration. Blue lines represent results of 

TRMM bias correction from gauge observed precipitation and broken green lines represent 
results from GPCC bias corrected precipitation. The values are 10 days average from year 

2000 to 2012. 
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Figure 67: Spatial distribution of actual evapotranspiration in the study area. The left and the 
right maps are made from model runs with and without irrigation. The graphs show average 

daily AET in m3 from 2000 to 2012. 

4.2.4. Exfiltration 

Figure 68 depicts the contribution of soil and groundwater storage to the surface and channel 

flow through exfiltration. The figure includes graphs for exfiltration from the top soil layer, 

bottom soil layer and groundwater. Exfiltration is higher in the summer when plenty of water is 

available through rainfall and snow melt. It is absorbed by the soil and transported to the 

bottom soil layer and groundwater component through hydraulic conductivity. Part of this 

water exfiltrates and feeds the soil layer above or the water channel. The exfiltration is less in 

the first soil layer as compared to the second soil layer and it is highest in case of groundwater. 

This is related to the soil depth and its storage capacity. The first soil layer has little depth and 

can store less water. The second soil layer has a larger depth than the top layer and 

groundwater storage is the largest. Hence the exfiltration is higher as we move from the surface 

to the groundwater component because of greater capacity to store and transport water. The 

exfiltration is higher from GPCC BC precipitation in all components as shown by green lines 

because of higher mean precipitation and water availability.  

 

Actual Evapotranspiration

 

Actual Evapotranspiration

 

0 5 10 15 20 25 30 35 40 45



Chapter 4 TOPKAPI Modeled Runoff 

84 
 

 

Figure 68: Exfiltration from first soil layer, second soil layer and groundwater. The time series 
is from 2000 to 2012 plotted as ten days averages. The blue and green lines represent model 

runs from TRMM-Gauge and TRMM-GPCC bias corrected precipitations respectively. 
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4.2.5. Water flow and water volume 

The same trend is seen for water flow and water volume at the surface, in the soil layers and in 

groundwater i.e. they are higher in summer and decrease in winter. Figure 69 shows water flow 

at the surface and in the two soil layers. The surface flow is smaller as most of the water 

infiltrates into the soil or goes to the channel. The top soil layer has higher flow peaks because 

of higher conductivity and lower depth. This makes it sensitive to rainfall events and the graph 

shows sudden increases in May and October. The flow in the second soil layer is not as high 

and it shows less decrease in winter too. The lower conductivity and higher depth allows it to 

store and transport water at a slower rate compared to the first soil layer. It is also not very 

sensitive to rainfall events. The groundwater flow is significantly less because of very low 

conductivity.  

The difference in water volume in the channel, at the surface and in the soil layers is shown in 

Figure 70. Please note that the y-axis in this figure is not constant for all graphs. The bottom 

soil layer plays an important role in feeding water to the channel as it has a higher water 

volume. Water stored in the second soil layer and groundwater aquifers are main sources of 

generating runoff in the channel during winter when there is little rain and the snow melt is 

small. The spatial distribution of the groundwater volume and groundwater table depth is 

shown in Figure 71. The floodplain area in the basin which dominantly contains the 

agricultural fields has higher groundwater volume. The volume is also higher along the river 

bed in the mountainous regions. It is minimum and close to zero at higher altitude because of 

steep slope and lower groundwater depth. The floodplain area is flat and serves as the 

collection point of groundwater flow. The groundwater table is also high in the valley and 

along the river and streams in the mountainous regions. The thin brown lines representing 

higher groundwater table at higher altitudes match well with the stream network map of the 

study area. This is simply because of higher seepage and discharge of groundwater into the 

streams. 

The seasonal variation and spatial distribution of infiltration, percolation and soil saturation is 

also similar to the above explained variables. They are high in summer and decrease in winter 

(Figure 93 and Figure 94 in Appendix B). The difference in soil saturation in the floodplain 

and the mountains is presented in the Figure 72.  
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Figure 69: Flow of water at surface and in first and second soil layers. The time series is from 
2000 to 2012 plotted as ten days averages. The blue and green lines represent model runs from 

TRMM-Gauge observed and TRMM-GPCC bias corrected precipitation respectively. 
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Figure 70: Seasonal variation of water volume in the channel, at the surface and in the first 
and second soil layers. The time series is from 2000 to 2012 plotted as ten days averages. The 
blue and green lines represent model runs from TRMM-Gauge observed and TRMM-GPCC 

bias corrected precipitation respectively. 
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Figure 72: Saturation percentage of upper and lower soil layers and its spatial distribution in 
the study area. The values show average saturation (%) level from 2000 to 2012.  

  

Figure 71: Mean daily groundwater volume and groundwater table from 2000 to 2012. The 
graphs are made from TRMM-Gauge corrected precipitation. Groundwater volume is 

measured in m3 while the table is measured in m from the surface for each pixel. 
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4.3. Irrigation Demand 

The effect of water abstraction from the river to meet the irrigation demand is presented in this 

section. The model was run with TRMM-Gauge BC precipitation. All other inputs and 

parameters were kept constant while the water abstraction module was turned off only. Since 

there is no water abstraction before the mountainous gauging stations, they do not show any 

change in runoff. The cropland area in the sub-catchments of Uch Kochi and Kara Oi stations 

is small and the change in runoff is also little. The effect of water abstraction on river flow is 

prominent in the cases of Kluchevka and Kirov Reservoir gauging stations. Hence the runoff 

comparison is shown only for these two stations here in Figure 73. The simulated values 

Figure 73: Observed and simulated runoff at Kluchevka and Kirov Reservoir gauging stations. 
The blue, red and green lines represent observed runoff, model run with irrigation and without 
irrigation. The time series is from 2000 to 2012 plotted as ten days average and the model was 

run with TRMM-Gauge bias corrected precipitation. 
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without water abstraction are significantly higher than the observed runoff and the modeled 

flow with water abstraction. The rise occurs in the summer because the water abstraction is 

scheduled from March to October. As the model overestimated runoff in the years 2000, 2001, 

2004, 2006, 2008 and 2012, the results are already poor in case of runoff without water 

abstraction.  

The water balance components are also examined and the results show an expected increase in 

channel water volume owing to absence of water use for irrigation. The surface water volume 

and water retained in the first and second soil layers decreases. This is shown in Figure 75 

where blue and red lines represent results from model runs with and without irrigation. This 

causes a decrease in infiltration from the surface and percolation from soil layers. The 

saturation percentage of soil layers also decreases. These results are presented in Figure 94 

Appendix C. Please note that the channel water volume graph shown in Figure 75 represents 

the average channel water volume in the whole catchment. One may think that the rise in 

channel water volume is not balancing the decline in surface and soil water volumes. Figure 74 

shows channel water volume passing through the outlet cell of the basin. The difference is 

significant in this figure and the effect of water abstraction can be better understood. This 

graph is quite similar to runoff at Kirov because the outlet cell is very close to the reservoir 

gauging station.  

 

Figure 74: Water volume passing through the channel of basin’s outlet cell. The results are 
derived from the model run with TRMM-Gauge bias corrected precipitation. The blue and 

broken red lines represent results for model run with and without water abstraction from the 
river. The time series is from 2000 to 2012 plotted as ten days averages. 
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Figure 75: Variation in water volume in the channel, at surface and in the two soil layers. The 
results are derived from model run with TRMM-Gauge bias corrected precipitation. The blue 
and broken red lines represent results for model run with water abstraction and without water 
abstraction from the river. The time series is from 2000 to 2012 plotted as ten days averages. 
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Figure 76: Difference in AET, exfiltration from the soil layers and groundwater with (blue 
lines) and without (broken red lines) water abstraction from the river. The results are derived 
from model run with TRMM-Gauge bias corrected precipitation. The time series is from 2000 

to 2012 plotted as ten days averages. 
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The potential evapotranspiration does not change because temperature and global irradiance 

are identical in the two model runs. However there is a notable decrease in actual 

evapotranspiration in summer because less water is available in the cropland that can be 

transpired by the plants (Figure 76). The exfiltration from soil layers and the groundwater 

component also decreases because of decrease in the infiltration and surface/soil water 

volumes. The decrease in exfiltration is large for the second soil layer while it is small for the 

first soil layer and groundwater. This is related to the total water holding capacity and 

conductivity of each medium. The bottom soil layer has approximately double the thickness of 

the top layer resulting in larger decrease of water volume and exfiltration in this layer. On the 

other hand, the reason for small decrease in exfiltration from groundwater despite of its greater 

depth is because of very low hydraulic conductivity. The large water volume stored in the 

groundwater aquifer is still enough to keep the supply sufficient and prevent considerable 

decrease in exfiltration.  

 

Table 8: Annual volumetric difference in runoff with and without irrigation. Water volume 
increases significantly at Kluchevka and Kirov reservoir gauging stations without irrigation. 
The values represent average annual volumetric difference for a period of 13 (2000 to 2012). 

Station Name Model run 
with Irrigation  

Model run without 
Irrigation 

Ak Tash - 0.132 - 0.132 

Besh Tash - 0.049 - 0.051 

Kumush Too - 0.006 - 0.006 

Ur Maral - 0.084 - 0.084 

Uch Kochoy - 0.016 0.006 

Kara Oi 0.019 0.080 

Kluchevka 0.254 0.616 

Kirov 0.219 0.700 
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Chapter 5 

5. Annual Water Volume Forecast 

Annual water volume prediction method is derived from a bachelor thesis carried out by 

Andreas Schmidt as part of this project (Schmidt and Farner 2013). He used Landsat images to 

determine snow cover area and annual water volume of Talas River. In this report, three other 

sources are used for forecasting annual water volume. 

The snow covered area determined from MODIS was used initially to find correlation. This is 

the easiest method of predicting water volume as it only requires clouds free MODIS images 

and observed runoff. Every year the snow covered area is found by using image of 20th 

February because the snow cover is at maximum in this month. The area was calculated by 

accumulating number of pixels covered by snow and multiplying it with the pixel dimension 

i.e. 500 m × 500 m. The water volume is estimated by taking sum of the decadal runoff from 

20 February to 31 December and converting it m3 / year. The scatter plots between these two 

variables are generated for the whole basin as well as the sub-catchments on annual basis as 

shown in Figure 77. The gauging stations with small catchment area like Besh Tash and 

Kumush Too appear close to the origin while Kluchevka and Kirov show highest snow area 

and water volume every year due to bigger catchment area. The plots for the year 2000 have 

not been added to save space.  
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Figure 78 shows scatter plots made in exactly the same way but with snow cover area 

simulated by TOPKAPI using TRMM-Gauge corrected precipitation. The snow depth 

information produced by TOPKAPI is also used to find a correlation with observed runoff. The 

snow depth is always measured as mm of water equivalent in the model for each day. The 

water content of the snow was converted to volume in m3 and scatter plots were made (Figure 

79). The latter two runoff prediction strategies from snow cover and snow depth information 

provided by TOPKAPI require temperature, precipitation, cloud transmissivity etc. data in 

order to run the model. Hence extensive data is needed compared to the runoff prediction from 

MODIS snow cover images.  
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Figure 77: Correlation between MODIS snow cover and annual water volume observed at 
gauging stations. The scatter plots are made by calculating area covered by snow (square 

meter) in each sub-catchment and plotting it against the sum of water volumes (cubic 
meter) observed till the end of the respective year. 
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The goodness of fit between the variables in the scatter plots made by these three methods is 

assessed by calculating coefficient of determination (r2). A comparison of this is presented in 

Table 9. All of the three methods show strong correlation and it is highest when using 

TOPKAPI snow water equivalent data. The correlation is low in the low runoff years 

particularly in 2000 and 2001. The x and y axis is not constant in the plots and a decrease in 

snow cover area and runoff can be observed in the low runoff years. 
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Figure 78: Correlation between TOPKAPI simulated snow cover and annual water volume 
observed at gauging stations. The scatter plots are made by calculating area covered by 

snow (square meter) in each sub-catchment and plotting it against the sum of water volumes 
(cubic meter) observed till the end of the respective year. 
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The correlation comparison depicts that this method can be successfully used to predict total 

water volume that will flow in the Talas River. It can help in managing water resources by 

drafting plans of water allocation for irrigation, residential area, winter release for salts 

flushing and decisions about sowing of crops (high or low water requirement) depending on 

water availability. However it has the drawback of completely ignoring runoff generation from 

summer and early winter precipitation. The strong correlation despite the fact that the 

precipitation is not considered is due to exclusion of water uses for irrigation and household 

purposes in the Talas city. Hence the ignorance of water addition from precipitation and water 

use in the city balance each other leaving a small change in the total water volume. This 

0 1 2

x 10
11

0

1

2
x 10

10

m
3

m2

2001

0 1 2

x 10
11

0

5
x 10

10

m
3

m3

2002

0 2 4

x 10
11

0

2

4
x 10

10

m
3

m3

2003

0 2 4

x 10
11

0

2

4
x 10

10

m
3

m3

2004

0 2 4

x 10
11

0

2

4
x 10

10

m
3

m3

2005

0 2 4

x 10
11

0

2

4
x 10

10

m
3

m3

2006

0 2 4

x 10
11

0

2

4
x 10

10

m
3

m3

2007

0 2 4

x 10
11

0

1

2
x 10

10

m
3

m3

2008

0 5

x 10
11

0

2

4
x 10

10

m
3

m3

2009

0 5

x 10
11

0

2

4
x 10

10

m
3

m3

2010

0 2 4

x 10
11

0

2

4
x 10

10

m
3

m3

2011

0 5

x 10
11

0

1

2
x 10

10

m
3

m3

2012

Ak Tash Besh Tash Kumush Too Ur Maral Uch Kochoy

Kara Oi Kluchevka Kirov Linear Regression

Figure 79: Correlation between TOPKAPI simulated snow water equivalent and annual 
water volume observed at gauging stations. The scatter plots are made by calculating snow 

water equivalent (cubic meter) in each sub-catchment and plotting it against the sum of 
water volumes (cubic meter) observed till the end of the respective year. 
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method cannot be used to forecast the time associated with discharge peak and decline. The 

only way is to use average runoff seasonality graphs from previous years to get an idea of rise 

and fall in the flow by rule of the thumb. 

Table 9: Coefficient of determination (r2) between snow cover/snow water equivalent and 
annual sum of water volume observed at runoff gauging stations from 2000 to 2012.   

Year 

Coefficient of Determination ( r2 ) 

MODIS 

Snow Cover 

TOPKAPI 

Snow Cover 

TOPKAPI Snow 

Water Equivalent 

2000 0.54 0.53 0.52 

2001 0.70 0.69 0.74 

2002 0.88 0.90 0.95 

2003 0.96 0.91 0.95 

2004 0.93 0.91 0.91 

2005 0.86 0.86 0.90 

2006 0.78 0.77 0.81 

2007 0.90 0.90 0.93 

2008 0.85 0.86 0.89 

2009 0.75 0.73 0.80 

2010 0.83 0.83 0.88 

2011 0.78 0.73 0.82 

2012 0.79 0.78 0.85 

Mean 0.81 0.80 0.84 
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Chapter 6 

6. Synthesis 

6.1. Discussion 

In this thesis the TOPopographic Kinematic wave APproximation and Integration (TOPKAPI) 

model is used to simulate the snow melt and river discharge of Talas river basin. The river 

flows through the cities of Talas and Taraz and supplies water to 242,600 ha of agricultural 

land in the two countries. The fully distributed, physically based, rainfall-runoff model was fed 

with the remotely sensed digital elevation map (DEM), land cover map, cloud transmissivity 

and precipitation data. The other data prepared includes temperature and soil map. Accuracy of 

the simulated discharge and snow cover area was assessed against the observed runoff from 

eight gauging stations and MODIS snow cover images.  

The simulated discharge shows high correlation with observed data at mountainous stations 

while the correlation is low for floodplain gauging stations. The average snow cover efficiency 

was found equal to 80 % when a pixel to pixel comparison was done. Keeping in mind the 

limitations of observed precipitation data, no field experiments being performed and running 

the model from remotely sensed products, the results are very good and encouraging.  

Water abstraction for irrigation purpose and inadequate precipitation and soil data are the main 

reasons for low correlation of floodplain gauging stations. Water abstraction causes 

depressions in the flow peak in May, June and August. It was also included in the model by 

distributing cropland into 71 irrigation districts and supplying water to them in the summer. 

This helped to decrease the volumetric difference in the observed and the simulated runoffs but 

the seasonality in the flow depression and rise could not be exactly captured.  

Overestimation of precipitation in the TRMM data is the most important reason for volumetric 

difference and low correlation between observed and modeled discharge at Kluchevka and 

Kirov reservoir gauging stations. TRMM precipitation was reduced by 33 % with gauge bias 

correction but it is still half time (46 %) more than the observed precipitation at Talas 

meteorological station. This results in higher water in the hydrological system of the 

catchment. Provided that the water losses through evapotranspiration, infiltration are physically 

oriented in the model and are dependent on temperature and soil properties of each pixel, they 
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cannot exceed a certain limit. The excess water brought through precipitation ultimately 

reaches Kluchevka and Kirov stations and results in moderately high volumetric difference and 

low correlation.  

The 67 % of study area being classified as one soil type in FAO soil map resulted in negative 

volumetric difference for Ak Tash and Besh Tash stations despite of excess water in the 

system. The runoff of these stations can be increased by changing the soil properties (hydraulic 

conductivity, soil moisture percentage etc.) and evapotranspiration but this causes large 

increase in the flow at downstream stations. Hence a tradeoff had to be made between runoff 

differences at mountainous and floodplain gauging stations by calibrating soil properties to 

intermediate level. The soil map was not divided into smaller units for sub-catchments as there 

was no experimental proof for this and we had to rely on what was supplied by FAO.  

The simulated runoff is higher in five years (low runoff years) due to overestimation of 

precipitation in the TRMM data. The annual difference in observed and modeled discharge 

reveals that the same amount (annual difference) of water is simulated by the model in the low 

runoff years. It follows that if the error in precipitation data is ruled out, the model results will 

be good in the low runoff years also. 

A runoff prediction method is also proposed in this study for Talas catchment. The total water 

volume that will be available in one year can be forecasted by using snow cover information 

from MODIS images after clouds removal, TOPKAPI simulated snow cover or TOPKAPI 

generated snow water equivalent data. These three techniques were applied from 2000 to 2012 

and the results show good correlation (r2) of 0.81, 0.80 and 0.84 for the three techniques 

respectively. The prediction can help in the efficient management of water resources and the 

Kirov reservoir.  

6.2. Conclusion 

This study focuses on the use of remotely sensed precipitation data together with a physically 

based rainfall-runoff model, TOPAKPI; to simulate the snow melt and river discharge in Talas 

catchment. The major findings of the thesis are that remotely sensed data can be used to model 

hydrology of the basin with fair accuracy and there exists a strong coupling between the snow 

melt and Talas river flow. The study area is semi-arid and snowmelt is the major source of 

river flow in the summer. The study also shows that MODIS snow cover images can help in 

simulating the snow cover area and the snow melt at correct time. The information available 
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through MODIS is a key to success in modeling un-gauged basins like our study area having 

tough topography and sparse weather stations.  

In addition the snow cover area and snow water equivalent estimated from MODIS and 

TOPKAPI can be used to predict the annual water volume of Talas River. The method was 

successfully applied to the study area and the results showed high accuracy. This can be of 

great help in proper allocation of water resources and establishing management plans in well 

advance to consume the available water in the best possible manner. The snow melt modeling 

and runoff prediction strategies used in this work can be instrumental in removing the conflict 

between Kyrgyzstan and Kazakhstan. It can lay down foundation stone for starting a new era 

of friendship and trust among the two countries that have been in dispute since independence 

over water resources.  

6.3. Further Research 

There are a lot of options for further research on this study area. The future research projects 

can focus on the whole Talas basin which can include allocation of water for residential areas, 

industrial use, irrigation demand, ecosystem requirements and quantity of water that should be 

passed down to the salt lakes at the tail end of the catchment in Kazakhstan. This is important 

in order to prevent salinization of the upstream area.  

We have come to know that there are more precipitation gauges distributed in the catchment 

but their data is not available on the internet. One has to contact Kyrgyz Hydromet Office in 

order to obtain this data. The precipitation information from different locations in the study 

area can better help in bias correcting the satellite data. This will dramatically improve the 

results and overestimation of runoff in the present study can be resolved.  

In this thesis the basin was modeled as one unit which makes the calibration difficult as some 

of the parameters should not be kept constant for the whole area. Dividing the basin into sub-

catchments can solve this problem. It will help in calibrating the soil and other parameters for 

each individual gauging station without influencing the flow of the other stations.  

Real time temperature and precipitation data available from weather satellites can be a good 

option for forecasting runoff of the river. 
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Appendix A 

 

Figure 80: Landsat image of study area. Talas valley is shrouded with mountains in the north, 
south and east direction. 

Figure 81: Huge agricultural area in Talas valley. The dry mountains and Kirov reservoir are 
also clearly visible. 

Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX,
Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
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Figure 82: Contour map of Talas River Basin. The contour lines are overlayed on the hill shade view of the catchment. 
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Figure 83: Variation in surface slope of the study area. The slope angle is measured in degrees. 
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Figure 84: Different sources used to feed GPCC relational database and output products. 

 

 

Figure 85: Generalized map of Talas River.  
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Figure 86: Talas irrigation districts (partially transparent) overlayed on the hill-shade view of 
the catchment. The figure shows that the agricultural area is present in the flat regions of the 

basin. 

 

 

 

Figure 87: Scanning line of MODIS sensor. The study area is covered by the tile h23v04 (Dietz 
et al. 2013). 

h23v04 
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Figure 88: Flowchart of ArcGIS model designed for pre-processing of MODIS data. The 
preprocessing of precipitation, cloud transmissivity was also performed using similar kind of 

models 
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Figure 89: Observed runoffs at Ak Tash, Besh Tash and Kumush Too gauging stations. The 
observed data was obtained as ten days average values in m3 / sec from 2000 to 2012. 
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Figure 90: Observed runoffs at Ur Maral, Uch Kochoy, Kara Oi and Kluchevka gauging 
stations. The data was obtained as ten days average values in m3 / sec from 2000 to 2012. 
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Figure 91: Observed runoffs at Kirov Reservoir, Bakianskie, Beisheke and Chimkentskie 
gauging stations. The data was obtained as ten days average values from 2000 to 2012. 

00 01 02 03 04 05 06 07 08 09 10 11 12
0

50

100

150
Kirov Observed Runoff

m
3  /

 s
ec

00 01 02 03 04 05 06 07 08 09 10 11 12
0

1

2

3
Bakianskie Observed Runoff

m
3  /

 s
ec

00 01 02 03 04 05 06 07 08 09 10 11 12
0.5

1

1.5
Beisheke Observed Runoff

m
3  /

 s
ec

00 01 02 03 04 05 06 07 08 09 10 11 12
0.3

0.35

0.4

0.45

0.5

0.55
Chimkentskie Observed Runoff

m
3  /

 s
ec



Appendix B 

116 
 

 

Figure 92: Observed runoffs at Kara Buura and Kirovshie Rodniki gauging stations. The data 
was obtained as ten days average values in m3 / sec from 2000 to 2012. 
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Figure 93: Total infiltration, percolation and saturation level of the first and the second soil 
layers. The time series is from 2000 to 2012 plotted as ten days averages. The blue and green 
lines represent model runs from TRMM-Gauge and TRMM-GPCC z precipitation datasets. 
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Figure 94: Change in infiltration, percolation and saturation level of the first and the second 
soil layers with (blue lines) and without (broken red lines) water abstraction from the river. 
The results are derived from model run with TRMM-Gauge bias corrected precipitation. The 

time series is from 2000 to 2012 plotted as ten days averages. 
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Figure 95: TRMM monthly precipitation anomalies for sub-catchments of mountainous 
stations. The TRMM-Gauge BC data is used in this calculation and the plot is made by taking 

monthly average of daily precipitation in mm.  
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Swiss Federal Institute of Technology (ETH) Zurich 
Responsibilities: This project is part of master thesis being carried out at ETH, Zurich. The 
runoff of Talas River is determined by snow melt and precipitation in the mountains. Rainfall 
data was obtained from remotely sensed TRMM, CMORPH & GPCC products. Digital 
Elevation Model, Soil map, Land Cover map & Fractional Cloud Cover data were obtained 
from ASTER DEM, FAO, Globe Cover and CF-SAM datasets respectively. All these inputs 
together with real time temperature data from NCDC were fed to TOPKAPI (Topographic 
kinematic approximation and integration) model to simulate runoff and snow covered area of 
Talas Basin from 1998 – 2012. The modeled runoff is compared with observed runoff from 8 
Gauging Stations. Snow cover maps generated by the model are compared with MODIS 
Cryosphere product. 
Contact: Tel.: + 41 44 63 33 075 – Fax: + 41 44 63 31 061 
Web Link:  http://www.ethz.ch/index_EN , http://www.ifu.ethz.ch/index_EN  
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Bachelor Thesis Co - Supervision                                                             Mar 2013 – Jun 2013 
Predicting Summer Stream Flow from Spring Snowpack in a Catchment in Kyrgyzstan 
Students: Andreas Schmidt and David Farner 
Abstract: Correlation between snow covered area in spring and runoff volume in summer is 
found by developing a simple model. The predictions of runoff from the model are used as 
basis for reservoir management plan.  
 
National Internship Program                                                               Mar 2010 – Feb 2011 
Chief Engineer Faisalabad Irrigation Zone 
Responsibilities: The internship was mainly aimed at managing flow of water in canals 
depending on season and amount of area to be irrigated. Apart from that lining of canals and 
designing of outlets for supplying water from canals to the fields was also carried out. 
Contact: Tel.: (92-41) 92 00 268, 92 00 270 – Fax: (92-41) 92 00 277 

Internship                                                                                                                         Jul 2008 
Pakistan Council of Research in Water Resources (PCRWR) 
Responsibilities: The main responsibilities included study of surface, ground water resources, 
annual inflow through precipitation, snowfall and melting of glaciers. Water required for 
irrigation and hydropower purposes. 
Contact: Tel.: (92-51) 92 58 477 – Fax: (92-51) 92 58 963 – Website: 
http://www.pcrwr.gov.pk 

Computer Skills 
- Proficient user of ArcGIS , MatLab , Microsoft Office, IDRISI 

- Beginner level of ERDAS Imagine, Pro-Engineering, AutoCAD, C++, Adobe Photoshop 

Hobbies 
- Extra-Curricular activities I have been doing so far are Equitation, Swimming, Cricket, 

Badminton, Photography, Reading, Movies and Songs. Big plans for future ☺ 
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Seminar Series 

Institutionen för naturgeografi och ekosystemvetenskap, Lunds Universitet.  

Student examensarbete (Seminarieuppsatser). Uppsatserna finns tillgängliga på institutionens 

geobibliotek, Sölvegatan 12, 223 62 LUND. Serien startade 1985.  Hela listan och själva 

uppsatserna är även tillgängliga på LUP student papers (www.nateko.lu.se/masterthesis) och 

via Geobiblioteket (www.geobib.lu.se) 

The student thesis reports are available at the Geo-Library, Department of Physical Geography 
and Ecosystem Science, University of Lund, Sölvegatan 12, S-223 62 Lund, Sweden. Report 
series started 1985. The complete list and electronic versions are also electronic available at the 
LUP student papers (www.nateko.lu.se/masterthesis) and through the Geo-library 
(www.geobib.lu.se) 

245 Linnea Jonsson (2012). Impacts of climate change on Pedunculate oak and 
Phytophthora activity in north and central Europe 

246 Ulrika Belsing (2012) Arktis och Antarktis föränderliga havsistäcken 

247 Anna Lindstein (2012) Riskområden för erosion och näringsläckage i Segeåns 
avrinningsområde 

248 Bodil Englund (2012) Klimatanpassningsarbete kring stigande havsnivåer i 
Kalmar läns kustkommuner 

249 Alexandra Dicander (2012)   GIS-baserad översvämningskartering i Segeåns 
avrinningsområde 

250 Johannes Jonsson (2012)  Defining phenology events with digital repeat 
photography  

251 Joel Lilljebjörn (2012) Flygbildsbaserad skyddszonsinventering vid Segeå 

252 Camilla Persson (2012) Beräkning av glaciärers massbalans – En metodanalys 
med fjärranalys och jämviktslinjehöjd över Storglaciären 

253 Rebecka Nilsson (2012) Torkan i Australien 2002-2010 Analys av möjliga 
orsaker och effekter  

254 Ning Zhang (2012) Automated plane detection and extraction from airborne 
laser scanning data of dense urban areas 

255 Bawar Tahir (2012) Comparison of the water balance of two forest stands 
using the BROOK90 model 
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256 Shubhangi Lamba (2012) Estimating contemporary methane emissions from 
tropical wetlands using multiple modelling approaches 

257 Mohammed S. Alwesabi (2012) MODIS NDVI satellite data for assessing 
drought in Somalia during the period 2000-2011 

258 Christine Walsh (2012) Aerosol light absorption measurement techniques: 

A comparison of methods from field data and laboratory experimentation  

259 Jole Forsmoo (2012) Desertification in China, causes and preventive actions in 
modern time 

260 Min Wang (2012) Seasonal and inter-annual variability of soil respiration at 
Skyttorp, a Swedish boreal forest 

261 Erica Perming (2012) Nitrogen Footprint vs. Life Cycle Impact Assessment 
methods – A comparison of the methods in a case study. 

262 Sarah Loudin (2012) The response of European forests to the change in 
summer temperatures: a comparison between normal and warm years, from 
1996 to 2006 

263 Peng Wang (2012) Web-based public participation GIS application – a case 
study on flood emergency management 

264 Minyi Pan (2012) Uncertainty and Sensitivity Analysis in Soil Strata Model 
Generation for Ground Settlement Risk Evaluation 

265 Mohamed Ahmed (2012) Significance of soil moisture on vegetation 
greenness in the African Sahel from 1982 to 2008 

266 Iurii Shendryk (2013) Integration of LiDAR data and satellite imagery for 
biomass estimation in conifer-dominated forest 

267 Kristian Morin (2013) Mapping moth induced birch forest damage in northern 
Sweden, with MODIS satellite data 

268 Ylva Persson (2013) Refining fuel loads in LPJ-GUESS-SPITFIRE for wet-
dry areas - with an emphasis on Kruger National Park in South Africa 

269 Md. Ahsan Mozaffar (2013) Biogenic volatile organic compound emissions 
from Willow trees 

270 Lingrui Qi (2013) Urban land expansion model based on SLEUTH, a case 
study in Dongguan City, China 

271 Hasan Mohammed Hameed (2013) Water harvesting in Erbil Governorate, 
Kurdistan region, Iraq - Detection of suitable sites by using Geographic 
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Information System and Remote Sensing 

272 Fredrik Alström (2013) Effekter av en havsnivåhöjning kring Falsterbohalvön. 

273  Lovisa Dahlquist (2013) Miljöeffekter av jordbruksinvesteringar i Etiopien 

274 Sebastian Andersson Hylander (2013) Ekosystemtjänster i svenska 
agroforestrysystem 

275 Vlad Pirvulescu (2013) Application of the eddy-covariance method under the 
canopy at a boreal forest site in central Sweden 

276 Malin Broberg (2013) Emissions of biogenic volatile organic compounds in a 
Salix biofuel plantation – field study in Grästorp (Sweden) 

277 Linn Renström (2013) Flygbildsbaserad förändringsstudie inom skyddszoner 
längs vattendrag 

278 Josefin Methi Sundell (2013) Skötseleffekter av miljöersättningen för natur- 
och kulturmiljöer i odlingslandskapets småbiotoper 

279 Kristín Agustsdottír (2013) Fishing from Space: Mackerel fishing in Icelandic 
waters and correlation with satellite variables 

280 Cristián Escobar Avaria (2013) Simulating current regional pattern and 
composition of Chilean native forests using a dynamic ecosystem model 

281 Martin Nilsson (2013) Comparison of MODIS-Algorithms for Estimating 
Gross Primary Production from Satellite Data in semi-arid Africa 

282 Victor Strevens Bolmgren (2013) The Road to Happiness – A Spatial Study of 
Accessibility and Well-Being in Hambantota, Sri Lanka 

283 Amelie Lindgren (2013) Spatiotemporal variations of net methane emissions 
and its causes across an ombrotrophic peatland - A site study from Southern 
Sweden 

284 Elisabeth Vogel (2013) The temporal and spatial variability of soil respiration 
in boreal forests - A case study of Norunda forest, Central Sweden 

285 Cansu Karsili (2013) Calculation of past and present water availability in the 
Mediterranean region and future estimates according to the Thornthwaite 
water-balance model 

286 Elise Palm (2013) Finding a method for simplified biomass measurements on 
Sahelian grasslands 

287 Manon Marcon (2013) Analysis of biodiversity spatial patterns across multiple 
taxa, in Sweden 
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288 Emma Li Johansson (2013) A multi-scale analysis of biofuel-related land 
acquisitions in Tanzania - with focus on Sweden as an investor 

289 Dipa Paul Chowdhury (2013) Centennial and Millennial climate-carbon cycle 
feedback analysis for future anthropogenic climate change 

290 Zhiyong Qi (2013) Geovisualization using HTML5 - A case study to improve 
animations of historical geographic data 

291 Boyi Jiang (2013) GIS-based time series study of soil erosion risk using the 
Revised Universal Soil Loss Equation (RUSLE) model in a micro-catchment 
on Mount Elgon, Uganda 

292 Sabina Berntsson & Josefin Winberg (2013) The influence of water 
availability on land cover and tree functionality in a small-holder farming 
system. A minor field study in Trans Nzoia County, NW Kenya  

293 Camilla Blixt (2013) Vattenkvalitet - En fältstudie av skånska Säbybäcken 

294 Mattias Spångmyr (2014) Development of an Open-Source Mobile 
Application for Emergency Data Collection 

295 Hammad Javid (2013) Snowmelt and Runoff Assessment of Talas River 
Basin Using Remote Sensing Approach 

296 Kirstine Skov (2014) Spatiotemporal variability in methane emission from an 
Arctic fen over a growing season – dynamics and driving factors 

297 Sandra Persson (2014) Estimating leaf area index from satellite data in 
deciduous forests of southern Sweden 

298 Ludvig Forslund (2014) Using digital repeat photography for monitoring the 
regrowth of a clear-cut area 

299 Julia Jacobsson (2014) The Suitability of Using Landsat TM-5 Images for 
Estimating Chromophoric Dissolved Organic Matter in Subarctic Lakes 

300 Johan Westin (2014) Remote sensing of deforestation along the trans-
Amazonian highway 

301 Sean Demet (2014) Modeling the evolution of wildfire: an analysis of short 
term wildfire events and their relationship to meteorological variables 
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