
Department of Automatic Control

Navigation and Autonomous
Control of a Hexacopter
in Indoor Environments

Johan Fogelberg

Msc Thesis
ISRN LUTFD2/TFRT--5930--SE
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2013 by Johan Fogelberg. All rights reserved.
Printed in Sweden by Media-Tryck
Lund 2013

Contents

Abstract 1

Preface 3

Acknowledgments 5

List of symbols 7

Acronyms 9

1. Introduction 11
1.1. Overview . 11
1.2. Previous work . 11
1.3. Problem formulation and objectives 12
1.4. Background . 13
1.5. Thesis Outline . 14

2. System overview 15
2.1. Hardware . 15
2.2. System architecture . 18

3. Modeling the system 21
3.1. Multirotor basics . 21
3.2. Theory . 22

3.2.1. Coordinate frames . 22
3.2.2. Angular rotations . 22
3.2.3. Rotation matrix . 23
3.2.4. Equations of motion . 24
3.2.5. Forces and torques . 26
3.2.6. Final system equations . 29

3.3. System identification . 29
3.3.1. Angular rotations . 29
3.3.2. Thrust . 30

4. Estimation 33
4.1. Theory . 34

4.1.1. Nonlinear model . 34

i

Contents Contents

4.1.2. The extended Kalman filter 34
4.1.3. Sigma-point Kalman filters . 35
4.1.4. The unscented transform . 36
4.1.5. Square root unscented Kalman filter implementation 37

4.2. Method . 41
4.2.1. Process model . 42
4.2.2. Measurement model . 42
4.2.3. Noise model . 44
4.2.4. Bias removal of acceleration and angular measurements 44

5. Control 45
5.1. Theory . 45

5.1.1. PID control . 45
5.2. Method . 48

5.2.1. Altitude control . 48
5.2.2. Horizontal control . 49

6. Simulink model 53
6.1. Main blocks . 53
6.2. Scheduling . 54

7. Experiments 55
7.1. Simulation . 55
7.2. The real system . 56

8. Results 57
8.1. Simulation . 57

8.1.1. Estimation . 57
8.1.2. Control . 58

8.2. The real system . 61
8.2.1. Estimation . 61
8.2.2. Control . 62

9. Discussion 67
9.1. General . 67
9.2. Estimation . 67
9.3. Control . 68

10.Conclusion 69

A. The extended Kalman filter algorithm 71

Bibliography 73

ii

Abstract

This thesis presents methods for estimation and autonomous control of a hexacopter
which is an unmanned aerial vehicle with six rotors. The hexacopter used is a
ArduCopter 3DR Hexa B and the work follows a model-based approach using Matlab
Simulink, running the model on a PandaBoard ES after automatic code generation.
The main challenge will be to investigate how data from an Internal Measurement
Unit can be used to aid an already implemented computer vision algorithm in a
GPS-denied environment.
First a physical representation is created by Newton-Euler formalism to be used
as a base when developing algorithms for estimation and control. To estimate the
position and velocity of the hexacopter, an unscented Kalman filter is implemented
for sensor fusion. Sensor fusion is the combining of data from different sensors to
receive better results than if the sensors would have been used individually. Control
strategies for vertical and horizontal movement are developed using cascaded PID
control. These high level controllers feed the ArduCopter with setpoints for low
level control of angular orientation and throttle.
To test the algorithms in a safe way a simulation model is used where the real
system is replaced by blocks containing a mix of differential equations and transfer
functions from system identification. When a satisfying behavior in simulation is
achieved, tests on the real system are performed.
The result of the improvements made on estimation and control is a more stable
flight performance with less drift in both simulation and on the real system. The
hexacopter can now hold position for over a minute with low drift. Air turbulence,
sensor and computer vision imperfections as well as the absence of a hard real-
time system degrades the position estimation and causes drift if movement speed is
anything but very slow.

1

Preface

This thesis was made in 2013 by myself, Johan Fogelberg, supported by my company
supervisor Simon Yngve and university supervisor Prof. Anders Robertsson. The
work was carried out at Combine Control Systems AB in cooperation with Lunds
Tekniska Högskola (LTH), Department of Automatic Control, both located in Lund,
Sweden. This thesis is a sequel to a previous thesis work [1] at Combine Control
Systems by Niklas Ohlsson and Martin Ståhl and begins where their work ended.

3

Acknowledgments

First I would like to thank my company supervisor Simon Yngve who have guided
me through this thesis work, providing both knowledge and ideas. I also want to
thank my university supervisor Prof. Anders Robertsson for his help and knowledge
and Mathworks employee Daniel Andersson for support and shown interest. Finally
I want to thank Amanda Hagbrand for her never ending support and trust in me.

5

List of symbols

A hexacopter cross-sectional area
C friction constant
F forces affecting the hexacopter
P state estimate covariance matrix
I inertia tensor
Jr propeller rotational inertia
Q process noise covariance matrix
R measurement noise covariance matrix
RE

B body to earth rotation matrix
RB

E earth to body rotation matrix
V linear velocity
b thrust constant
d drag factor
g acceleration due to gravity
l hexacopter arm length
m hexacopter total mass
p roll rate, body frame
q pitch rate body frame
r yaw rate, body frame
u linear velocity along x-axis, body frame
v linear velocity along y-axis, body frame
w linear velocity along z-axis, body frame
x linear position along x-axis
y linear position along y-axis
z linear position along z-axis
Ω propeller speed

7

Ωr overall propeller speed
θ pitch angle
μ rotor drag coefficient
ρ air density
τ torques affecting the hexacopter
φ roll angle
ψ yaw angle
ω angular velocity

8

Acronyms

EKF Extended Kalman Filter
GPS Global Positioning System
IMU Inertial Measurement Unit
PID Proportional Integral Derivative
PWM Pulse Width Modulation
SRUKF Square Root Unscented Kalman Filter
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter
VTOL Vertical Take-Off and Landing
wrt with respect to

9

1. Introduction

1.1. Overview

A multirotor is a type of aircraft similar to the traditional helicopter but with
more than two rotors. The most common amount of rotors are 3 (tricopter), 4
(quadcopter), 6 (hexacopter) or 8 (octocopter), but any configuration is possible.
More rotors give a higher maximum lifting capacity but are more expensive to build
and need a higher current output from the batteries. If the multirotor is carrying
expensive equipment 6 or especially 8 rotors can be recommended since a crash
can be avoided even if one motor fails during flight. An octocopter can experience
a motor failure and still have full control while a hexacopter will loose control of
its heading. Multirotors have attracted a lot of attention for research in recent
years due to their maneuverability, simple construction, flexibility and ability to
take a payload. Today their main commercial use is related to aerial photography,
surveillance and remote sensing [2]. With a few exceptions all multirotors belong to
the families of vertical take-off and landing (VTOL) and unmanned aerial vehicles
(UAV) and they can either be controlled manually with a radio controller or operate
autonomously on their own.
When flying autonomously outdoors the Global Positioning System (GPS) is usually
the main source of information for position estimation, making navigation indoors a
complex task since no GPS signal is available. To cope with this the most common
approach is to use computer vision systems with cameras or laser scanners. Due to
the computational complexity of position and velocity estimation using these sys-
tems, a low sampling rate and/or external processing is often needed. For research
purposes a stationary motion capture system can be used to get accurate position
and velocity estimates but this can of course only be used at a predetermined loca-
tion.
In this thesis autonomous navigation and control of a hexacopter will be presented
using only on-board sensors and on-board processing.

1.2. Previous work

This thesis begins where a previous thesis [1] by Niklas Ohlsson and Martin Ståhl
ended. The main scope of [1] was to use a model based approach to implement

11

Chapter 1 Introduction

computer vision algorithms, position control and autonomous behavior in a GPS-
denied environment. A PandaBoard, which is a software development platform, was
attached to the hexacopter and was used to run a Matlab Simulink model. Below
is a list of work that was carried out in their thesis that will be used in this thesis.

• Assembling of all hardware
• Creating a communication protocol for the Ethernet-connection between the

PandaBoard and the hexacopter autopilot.
• Developing computer vision algorithms for position estimation.
• Developing a camera simulator for the web camera that is used.
• System identification of the relation between setpoint and measured value of

the angular rotations controlled by the hexacopter autopilot.
• Choosing the Navigation-Guidance-Control architecture of the Matlab Simulink

model.

1.3. Problem formulation and objectives

One of the most important tasks in [1] was to attain a stable hover and this was
partly accomplished. The hexacopter could stay in position for some time but was
subject to drift and was not very stable, mainly because of some of the weaknesses
in the vision algorithm, unsatisfying altitude hold and Simulink lags.
The vision algorithm is based on template matching where a small piece of an image
frame, called template, is chosen and then by trying to fit this template into the next
image frame a pixel displacement can be calculated. But if no good match can be
found, a small piece of the most recent image is chosen as a new template and this
gives a small time delay. By looking at logged data it is clear that this happens very
often causing moments of blackout in the position estimation and thereby increased
drift in the position estimation.
In [1] the altitude was controlled by the ArduCopter autopilot (see Sec. 2.1 for more
details). The performance of the altitude controller was not satisfactory and is in
need of improvement.
The main objective of this thesis is to investigate if the currently unstable hover
can be improved by using additional information from the hexacopter internal mea-
surement unit (IMU) as well as implement additional control strategies. Some of
the key problems have been identified and a summary of the objectives proposed to
solve them are listed below:

• Use of nonlinear filtering for sensor fusion of computer vision and IMU data
to improve position and velocity estimates.

• Improved altitude control of the hexacopter. A more stable altitude hold will
also give better results from the computer vision algorithm.

12

1.4 Background

• Improved horizontal control.

If a sufficiently accurate velocity estimate can be found by sensor fusion of IMU
and vision data, this velocity can be integrated to fill the gaps and potentially lower
the sampling rate of the vision algorithms, saving computation time. Since both
the altitude and horizontal control of the hexacopter depend on their respective
velocities, a better controller performance should also be attained if the velocity
estimates are more accurate.

1.4. Background

The state of the art in unmanned aerial vehicles (UAV) is in a vast stage of de-
velopment. Progress is made not only by researchers and corporations but also by
dedicated hobbyists involved in open-source projects [3, 4].

Many papers rely either on a GPS signal for outdoor use or a motion capture system
to estimate the position of the UAV when flying indoors. This way the UAV is
supplied with absolute position and velocity estimates that be used for trajectory
following, formation flights etc. Some research project only use on-board sensors
which allows for more flexibility even though it greatly increases the complexity of
finding sufficiently accurate position estimates at a sufficiently high sampling rate.
When all sensors are on board, position estimates become relative and might start
to drift and if no offline processing is allowed computational power is often an issue.
In [5] all information for navigation is acquired by on-board sensors where position
and velocity is estimated by using an optical flow sensor. A simplification has been
made though since the UAV always follows a landing pad with a predetermined
pattern. In [6] IMU data is fused with data from an on-board laser scanner using a
complementary filter but the vision data is processed on an external computer.

To overcome sensor disturbances and inaccuracies correct filtering is often needed
when fusing inertial data with vision data or GPS data. For this application the
extended Kalman filter is a popular choice [7, 8, 9] but [10, 11, 12, 13] show that a
different approach using a Sigma point Kalman filter can outperform the extended
Kalman filter. The complementary filter can also be a viable choice because of
its theoretical and practical simplicity. It is widely used for fusing gyroscope and
accelerometer data of UAVs in order to estimate angles but for full position and
velocity estimation of the UAV, the nonlinear Kalman filters seem more popular.

A number of different control algorithms have been implemented to control multi-
rotors. The main focus is often to stabilize the attitude but since that is done by
the ArduCopter autopilot it is outside the scope of this thesis. For position control
some of the most adopted techniques have been PID control [6, 5, 14, 15] and back-
stepping control [16, 17]. The PID controller is very dominant and other types of
control are usually implemented for research but not for practical use.

13

Chapter 1 Introduction

1.5. Thesis Outline

Chapter 2 gives an overview of the system by explaining the main hardware, how
the hardware is connected and how estimation and control is carried out.
Chapter 3 is about creating a dynamic model of the hexacopter. First the basics
of the multirotor structure is presented along with some important notations and
explanations of the different coordinate frames that is used. Then the dynamic model
is created by Newton-Euler formalism and by using the definition of various forces
and torques. Finally some of the equations are replaced by system identification.
Chapter 4 explains how the position and velocity of the hexacopter can be estimated
by sensor fusion. For this a detailed description of the unscented Kalman filter and
its implementation is given.
Chapter 5 is about control. First the theory and implementation aspects for the
PID controller is given and then the models used for control is presented. Cascaded
PID controllers are implemented to control the horizontal and vertical position of
the hexacopter.
Chapter 6 shows the main structure of the Matlab Simulink model and how schedul-
ing is performed.
Chapter 7 presents the achieved results, both in simulation and on the real system.
Here the performance of estimation and control is evaluated and a comparison is
made between the extended Kalman filter and the unscented Kalman filter.
Chapter 8 gives a discussion and interpretation of the results in Chapter 7.
Chapter 9 presents the conclusions that have been drawn.
Theory and methods for modeling, estimation and control are presented in their
chapters respectively.

14

2. System overview

This chapter explains the main hardware and system architecture.

2.1. Hardware

ArduCopter 3DR Hexa B The hexacopter is a ArduCopter 3DR Hexa B from
3DRobotics [18]. It is a ready-to-fly kit delivered with an ArduPilot Mega 2.5+
autopilot. Some of the features are fixed-pitch propellers, 850Kv brush-less motors,
SimonK Electronic Speed Controllers (ESC), aluminum arms, fiberglass mounting
boards, a power distribution board, GPS and a 3DR radio telemetry kit. A picture
of the ArduCopter 3DR Hexa B is shown in Fig. 2.1.1 where the blue arms indicate
the front of the vehicle.

Figure 2.1.1.: ArduCopter 3DR Hexa B with PandaBoard ES mounted on top

15

Chapter 2 System overview

ArduPilot Mega 2.5+ The ArduPilot Mega 2.5+ [15] is an open source autopilot
system capable of controlling angular rotations and altitude as well as way point
navigation if a GPS signal is available. It features a Atmel ATMEGA2560 chip for
processing and a ATMEGA32U-2 chip for USB functions. It includes an Internal
Measurement Unit (IMU) with the following sensors:

• InvenSense MPU-6000, 3-axis Gyro / 3-axis Accelerometer.
• Honeywell HMC5883L-TR, 3-axis magnetometer
• Measurement Specialties MS6511-01BA03, Barometric pressure sensor

It also supports data from some external sensors:
• 3DR uBlox LEA-6, GPS
• MaxSonar, Sonar (ultrasonic range finder)

Only the sonar will be used for measuring altitude since the barometer is not accurate
enough for indoor use and since it depends on air pressure it can react to if someone
opens a door to the room etc. The magnetometer is also ignored because flights are
made indoors and metal objects and beams as well as other electronics seem to cause
major disturbances. Not using the magnetometer will cause some drift in heading
but it tends to be rather small. A GPS signal is unavailable indoors and thus the
GPS receiver is ignored. The autopilot is supplied with its own source code.

Figure 2.1.2.: ArduPilot Mega 2.5+

PandaBoard ES PandaBoard [19] is a low-cost, open OMAP 4 mobile software
development platform. Technical specifications of importance for this thesis is listed
below.

• Dual-core ARM Cortex -A9 MPCore 1.2 GHz processor
• 1 GB low power DDR2 RAM
• SD card cage with support for high-speed and high-capacity SD cards

16

2.1 Hardware

• On-board 10/100 Ethernet
• 1x USB 2.0 High-Speed On-the-go port
• 2x USB 2.0 High-Speed host port
• 802.11 b/g/n (based on WiLink™ 6.0), wireless connection
• Size: 114.3x101.6 mm
• Weight: 81.5g

Figure 2.1.3.: PandaBoard ES

Logitech C310 USB Camera Since GPS cannot be used for position estimation
indoors a simple web camera is used for position estimation. The camera is mounted
underneath the hexacopter facing downwards towards the ground and features 720p
resolution, Hi-Speed USB 2.0 and a frame rate of 30 FPS.

Figure 2.1.4.: Logitech C310

17

Chapter 2 System overview

Spektrum DX7S Radio Controller
For safety and other practical reasons a radio controller is used to manually disarm
the motors and control the hexacopter. By flipping a switch, control is given to the
PandaBoard and the hexacopter becomes autonomous. The user can at any given
time request control again by flipping back the switch. It features 7 channels and a
2.4GHz DSM spread spectrum telemetry system.

Figure 2.1.5.: Spektrum DX7S Radio Controller

2.2. System architecture

An overview of how the hardware is connected can be seen in Fig. 2.2.1, which is
directly taken from [1]. The high level estimation and control is developed in Matlab
Simulink and runs on the PandaBoard after automatic code generation into C-code.
By using a WiFi-connection it is possible to download the model as well as interact
with the running model by the External mode in Simulink. The PandaBoard is
supplied with images from the camera via one of the USB ports and it also receives
measurements and status data from the ArduCopter via Ethernet. The higher level
position controllers on the PandaBoard communicate with the ArduCopter using
the same Ethernet connection. The protocol used for the Ethernet connection is
UDP. The PandaBoard is mounted on top of the hexacopter and has its own power
distribution thanks to the work done by [1].
The control system overview is presented in Fig. 2.2.2. The ArduCopter autopilot
will be used for low level control like controlling the angular rotations and setting

18

2.2 System architecture

Figure 2.2.1.: System overview

motor outputs and also for providing sensor data used by the higher level estimation
and control on the PandaBoard. The IMU, sonar and vision data is fused by using
a nonlinear filter (unscented Kalman filter) and the estimates are supplied to the
controllers that control the vertical and horizontal position of the hexacopter by
sending attitude and throttle setpoints back to the ArduCopter autopilot.

19

Chapter 2 System overview

Figure 2.2.2.: Control overview

20

3. Modeling the system

In this chapter a dynamic model is created to give understanding of the system
and to provide equations to be used when designing algorithms for estimation and
control.

3.1. Multirotor basics

A hexacopter is a multirotor aerial vehicle with six rotors as represented by Fig. 2.1.1.
The multirotor is an under-actuated, dynamically unstable, six degrees of freedom
system in very strong need of control. The six degrees of freedom consist of trans-
lational and rotational motion in three dimensions where the translational motion
is created by changing the direction and magnitude of the upward propeller thrust.
For fixed rotor blades (as in this thesis) the rotational motion needed to tilt the
thrust vector is accomplished by changing the speed of the propellers individually
to create torques around the center of rotation. The sum of the propeller speeds will
decide the magnitude of the trust vector. The multirotor motion in two dimensions
is depicted by Fig. 3.1.1.

Figure 3.1.1.: Multirotor motion

21

Chapter 3 Modeling the system

3.2. Theory

3.2.1. Coordinate frames

To keep track of the hexacopter two different coordinate frames are used to represent
the position and orientation in three dimensions, the earth frame and the body
frame. The earth frame is a fixed frame used as an unmoving reference. Say for
example that the user want to define a path that the hexacopter should follow, then
that path would be represented in the earth frame. The body frame axes are aligned
with the sensors which is convenient when reading sensor data and controlling the
angular orientation (attitude). In this thesis the body frame is defined as having
the x-axis pointing forward (indicated by blue arms), y-axis pointing to the left and
the z-axis pointing upwards, see Fig. 3.2.1.

Figure 3.2.1.: Hexacopter body frame and rotor indexing

3.2.2. Angular rotations

The attitude is defined by the orientation of the body frame compared to the earth
frame. It represents the rotations about the x-, y- and z-axes, in this case using the
right-hand rule, and consists of roll, pitch and yaw, see Fig. 3.2.2. The attitude is
controlled by changing the rotor speeds where the rotors are numbered in a clockwise
manner with rotor 1 being the front right rotor of the hexacopter, again see Fig. 3.2.1.

22

3.2 Theory

Roll is the rotation about the x-axis and is obtained by lowering/increasing the
speed of rotor 1, 2 and 3 and at the same time increasing/lowering the speed of
rotor 4, 5 and 6. This leads to a torque around the x-axis and thereby an angular
acceleration. The notation for the roll angle will be φ [rad/s].

Pitch is the rotation about the y-axis and is obtained by lowering/increasing the
speed of rotor 1 and 6 and at the same time increasing/lowering the speed of rotor
3 and 4. Since the y-axis coincide with the position of rotor 2 and 5 these do not
affect pitch. The notation for pitch angle will be θ [rad/s].

Yaw is the rotation about the z-axis and to control it the fact is used that each
propeller cause a torque around the z-axis when it rotates. This torque is directed in
the opposite way of the propeller’s rotation so if the propeller is rotating clockwise
it will cause a counterclockwise rotation about the z-axis. To keep the hexacopter
stable the propellers have to be rotated in different directions so that three of the
rotors spin clockwise and the remaining three spin counterclockwise. A yaw rotation
is then created by decreasing/increasing rotor 1, 3 and 5 and at the same time
increasing/decreasing rotor 2, 4 and 6. The notation for the pitch angle will be ψ
[rad/s].

Figure 3.2.2.: Coordinate axes and their relation to roll, pitch and yaw

3.2.3. Rotation matrix

The earth frame and the body frame can be related to each other by a series of
rotations [20]:

23

Chapter 3 Modeling the system

Yaw rotation

RE
B(ψ) =

⎡
⎢⎣

cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

⎤
⎥⎦ (3.2.1)

Pitch rotation

RE
B(θ) =

⎡
⎢⎣

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤
⎥⎦ (3.2.2)

Roll rotation

RE
B(φ) =

⎡
⎢⎣

1 0 0
0 cos φ sin φ
0 − sin φ cos φ

⎤
⎥⎦ (3.2.3)

By performing all three rotations in the presented order the body to earth rotation
matrix RE

B is obtained

RE
B = RE

B(ψ)RE
B(θ)RE

B(φ) (3.2.4)

=

⎡
⎢⎣

cos ψ cos θ cos ψ sin θ sin φ − sin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ
sin ψ cos θ sin ψ sin θ sin φ + cos ψ cos θ sin ψ sin θ cos φ − cos ψ sin φ

− sin θ cos θ sin φ cos θ cos φ

⎤
⎥⎦

(3.2.5)

RE
B is an orthogonal matrix meaning its inverse equals its transpose so that the earth

to body transformation can be done according to

(RE
B)−1 = (RE

B)T = RB
E (3.2.6)

If for example acceleration is measured with the on board accelerometer the x-, y-,
and z-acceleration is obtained in body frame. To get the acceleration in earth frame,
the three acceleration measurements are placed in a column vector and multiplied
with the rotation matrix, i.e. accelEarth = RE

BaccelBody.

3.2.4. Equations of motion

As a base for simulation, estimation and control a model describing the hexacopter
and its dynamics is developed. For this the well known Newton-Euler formalism is
used to describe the dynamics of a rigid body affected by external forces and torques
as explained by [20].

24

3.2 Theory

Newton-Euler model Equation 3.2.7 describes a rigid body affected by external
forces and torques.[

mI3x3 03x3
03x3 I

] [
V̇ B

ω̇B

]
+

[
ωB × mV B

ωB × IωB

]
=

[
F B

τB

]
(3.2.7)

Here m [kg] is the mass, I [Nms2] is the inertia tensor, V B =
[

u v w
]

[m/s] is
the linear velocity in body frame, ωB =

[
p q r

]
[rad/s] is the angular velocity

in body frame, F B [N] is the forces affecting the hexacopter in body frame,τB [Nm]
is the torques affecting the hexacopter in body frame, 03x3 is a zero matrix of size 3
and I3x3 is a unit matrix of size 3. By using the fact that a vector cross product can
be expressed as a product of a skew-symmetric matrix and a vector according to

a × b =

⎡
⎢⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎥⎦

⎡
⎢⎣

b1
b2
b3

⎤
⎥⎦ , (3.2.8)

and by using the approximation that the inertia tensor is diagonal as in

I =

⎡
⎢⎣

Ixx 0 0
0 Iyy 0
0 0 Izz

⎤
⎥⎦ , (3.2.9)

Equation 3.2.7 can be expanded as described in Equation 3.2.10 - Equation 3.2.11
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mI3x3 ˙V B + ωB × mV B =

⎡
⎢⎢⎣

mu̇

mv̇

mẇ

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 −r q

r 0 −p

−q p 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

mu

mv

mw

⎤
⎥⎥⎦ = F B

Iω̇B + ωB × IωB =

⎡
⎢⎢⎣

Ixxṗ

Iyy q̇

Izz ṙ

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 −r q

r 0 −p

−q p 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ixxp

Iyyq

Izzr

⎤
⎥⎥⎦ = τB

(3.2.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

u̇

v̇

ẇ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rv − qw

pw − ru

qu − pv

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
m

F B
x

1
m

F B
y

1
m

F B
z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ṗ

q̇

ṙ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Iyy−Izz
Ixx

qr
Izz−Ixx

Iyy
pr

Ixx−Iyy

Izz
pq

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

1
Ixx

τB
x

1
Iyy

τB
y

1
Izz

τB
z

⎤
⎥⎥⎥⎦

(3.2.11)

Equation 3.2.11 is valid for all rigid bodies but to make the system describe a
hexacopter the external forces F B and torques τB have to be defined accordingly.

25

Chapter 3 Modeling the system

3.2.5. Forces and torques

Here the forces contained in F B and the torques contained in τB will be defined
according to [16, 8, 7].

3.2.5.1. Forces

The two main forces come from gravity and the thrust of the rotors but to make
the model more realistic rotor drag and air friction is also included.

Gravity

The force of gravity will always point downwards along the Z-axis wrt. the earth
frame which in body frame corresponds to

F B
gravity = RB

E

⎡
⎢⎣

0
0

−mg

⎤
⎥⎦ =

⎡
⎢⎣

mg sin θ
−mg cos θ sin φ
−mg cos θ cos φ

⎤
⎥⎦ (3.2.12)

Thrust

Thrust is the lifting power that makes the hexacopter fly and depends on the sum
of the speed of the six propellers. To maintain the total thrust the speed of one
propeller is always lowered as much as the speed of another propeller is increased
when performing roll, pitch or yaw maneuvers. Since the rotors are fixed their total
thrust will always pull upwards along the z-axis wrt. the body frame. In hover
conditions this force can be approximated by Equation 3.2.13, where b [Ns2] is a
thrust constant.

F B
thrust = b

6∑
i=1

Ω2
i (3.2.13)

Rotor drag

According to [8, 21] there is a drag force acting on the body of any multirotor while
flying. This drag force will affect the x and y accelerations wrt. the body frame
and can in hover conditions be approximated by Equation 3.2.14, where μ [kg/s] is
a constant. A more detailed description of the rotor drag and how it can be used
for velocity estimation is given in Sec. 4.2.2.

F B
drag =

⎡
⎢⎣

−μu
−μv

0

⎤
⎥⎦ (3.2.14)

26

3.2 Theory

Air resistance
Air resistance is proportional to the squared velocity, size and shape of the object
according to

F B
air =

⎡
⎢⎣

−1
2CAxρu|u|

−1
2CAyρv|v|

−1
2CAzρw|w|

⎤
⎥⎦ (3.2.15)

Here C is a dimensionless friction constant, Ai [m2] is the cross-sectional area and
ρ [kg/m3] is the density of air.

3.2.5.2. Torques

In this section the torque resulting from actuator action is very dominant compared
to the rest.

Actuator action
As described in Sec. 3.1 increasing/decreasing the speed of the six rotors indepen-
dently will create torques around the x y z axes and thus creating roll-, pitch-
and yaw-rotations. By always decreasing the speed of one rotor as much as in-
creasing the speed of another the total thrust is retained. Since there are six rotors
instead of the more traditional four the dynamics become slightly more complicated
and some trigonometry needs to be used. Torque is force multiplied by a distance
and the rotors will affect the total rotation about a certain axis differently depending
on the distance from the center of gravity. Fig. 3.2.3 relates the length and angles of
the arms to the relative distance from center of gravity which is the distance from
the rotor to the axis of rotation. In Equation 3.2.16 - Equation 3.2.18, Ω[rad/s] is
the propeller speed, l [m] is the arm length, and d [Nms2] is the drag factor (not
related to the rotor drag in 3.2.5.1).

Roll torque
By decreasing Ω1, Ω2, Ω3 and increasing Ω4, Ω5, Ω6 a positive roll moment is pro-
duced

τroll = bl(−Ω2
2 + Ω2

5 + 1
2(−Ω2

1 − Ω2
3 + Ω2

4 + Ω2
6)) (3.2.16)

Pitch torque
By decreasing Ω1, Ω6 and increasing Ω3, Ω4 a positive pitch moment is produced

τpitch = bl

√
3

2 (−Ω2
1 + Ω2

3 + Ω2
4 − Ω2

6) (3.2.17)

27

Chapter 3 Modeling the system

Figure 3.2.3.: Hexacopter rotor distances to center of gravity

Yaw torque
By decreasing Ω1, Ω3, Ω5 and increasing Ω2, Ω4, Ω6 a positive yaw moment is
produced

τyaw = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 − Ω2
5 + Ω2

6) (3.2.18)

Note that this not only depends on the definition of the yaw rotation itself but also
which rotors that spin clockwise and which rotors that spin counterclockwise. A
rotor spinning clockwise will always produce a counterclockwise yaw rotation.

Propeller gyroscopic effect
The rotation of the propellers produces a gyroscopic effect

τgyro =

⎡
⎢⎣

−Jrθ̇Ωr

Jrφ̇Ωr

0

⎤
⎥⎦ , (3.2.19)

where Jr [Nms2] is the rotational inertia of the propeller and Ωr = −Ω1 +Ω2 −Ω3 +
Ω4 − Ω5 + Ω6 [rad/s] is the overall propeller speed.

Yaw counter torque
Differences in rotational acceleration of the propellers produces a yaw inertial counter
torque

τcounter =

⎡
⎢⎣

0
0

JrΩ̇r

⎤
⎥⎦ (3.2.20)

28

3.3 System identification

3.2.6. Final system equations

By summing up the expressions derived in Sec. 3.2.4 and Sec. 3.2.5 the final equations
of motion are listed in Equation 3.2.21 and their relation to the propeller speed are
described by Equation 3.2.22.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

u̇

v̇

ẇ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rv − qw

pw − ru

qu − pv

+
−
−

g sin θ

g cos θ sin φ

g cos θ cos φ

−
−

μ
m

u
μ
m

v

+ 1
m

Fthrust

−
−
−

1
2m

CAxρu|u
1

2m
CAyρv|v|

1
2m

CAzρw|w|

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ṗ

q̇

ṙ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Iyy−Izz
Ixx

qr
Izz−Ixx

Iyy
pr

Ixx−Iyy

Izz
pq

+
+
+

1
Ixx

τroll

1
Iyy

τpitch

1
Izz

τyaw

−
+

1
Ixx

Jrθ̇Ωr

1
Iyy

Jrφ̇Ωr

+ 1
Izz

JrΩ̇r

⎤
⎥⎥⎥⎦

(3.2.21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fthrust = b
∑6

i=1 Ω2
i

τroll = bl(−Ω2
2 + Ω2

5 + 1
2(−Ω2

1 − Ω2
3 + Ω2

4 + Ω2
6))

τpitch = bl
√

3
2 (−Ω2

1 + Ω2
3 + Ω2

4 − Ω2
6)

τyaw = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 − Ω2
5 + Ω2

6)
Ωr = −Ω1 + Ω2 − Ω3 + Ω4 − Ω5 + Ω6]

(3.2.22)

3.3. System identification

Some parts of Equation 3.2.21 and Equation 3.2.22 were modeled by using the system
identification toolbox in Matlab. These models were only used for simulation to
evaluate the estimation and control algorithms and to tune parameters.

3.3.1. Angular rotations

The ArduCopter 3DR Hexa B comes with an autopilot capable of controlling roll,
pitch and yaw in a stable manner and thus no low level control of the attitude has
to be developed. However, attitude setpoints are sent from the position controller
on the Pandboard to the ArduCopter autopilot which creates a need for a model
describing the relation between attitude setpoints and actual attitude. This model
was developed by system identification in the previous thesis work [1] using the
attitude reference as an input and the measured attitude as output, thus including
both the physics and the controller. A transfer function consisting of 2 poles and
1 zero with a delay proved to be sufficient and provided a fit of about 80% when
testing the model with validation data.

29

Chapter 3 Modeling the system

3.3.2. Thrust

Instead of trying to model the electronic speed controllers (ESC) and the motors
of the hexacopter a more heuristic approach was taken to determine the thrust for
a given pulse width modulation (PWM) signal. The hexacopter was attached to a
ABB robot with a pressure sensor in the robotics lab at LTH, see Fig. 3.3.1.

Figure 3.3.1.: Experimental setup for identification of the relation between PWM
and thrust

A series of steps were performed, raising the PWM signal and then comparing it to
the pressure reading from the sensor on the robot. From this a first order transfer
function from PWM to thrust was identified according to

G(s) = KBL
1

1
τ
s + 1 = KBL

1
1

5.085s + 1 , (3.3.1)

where KBL is a steady-state gain depending on the current battery level. KBL was
identified by plotting PWM against steady state thrust and then using a simple
curve fit.
An evaluation was made by feeding a logged PWM signal from a real flight to the
model and then comparing its output to the logged accelerometer data, see Fig. 3.3.2.

30

3.3 System identification

0 200 400 600 800 1000 1200
−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

sample

ac
ce

le
ra

tio
n

[m
/s

]

Logged data
Model output

Figure 3.3.2.: Thrust model validation

31

4. Estimation

One of the true cornerstones for any autonomous UAV flight is to have correct
information about its orientation, position and velocity. If missions take place in an
outdoor environment, GPS is almost always the solution to get position estimates
of sufficient accuracy. When flying indoors, a motion capture system can be used to
get good information about orientation, position and velocity. But a good motion
capture system is very expensive and it is only viable for tests at a predetermined
location. If all sensors are carried on-board the UAV becomes much more flexible.
One viable option is to use a laser scanner, even though the information often is in
need of processing on an external computer.
In [1] a simpler approach was made by using a USB camera to get visual information
of the ground below the multirotor. By using an algorithm called template matching,
image frames are compared and the pixel displacement is used together with attitude
and altitude information to estimate movement. The algorithm works in simulation,
looking at a photo that was taken on a play mat with distinct patterns, but shows
a rather weak performance in reality even though the same play mat is placed on
the ground below.
So the question is how to improve the position estimation and at the same time get
good velocity estimates to improve control? In this thesis the needed improvement is
searched for in the additional information provided by the IMU. The accelerometers
can be integrated to get velocity and the velocity can be integrated to get position.
With the attitude information provided, transformations can be made between the
body frame and the earth frame and the impact of gravity can be compensated for.
But to do this great care has to be taken because of the imperfection of the sensors.
The accelerometers are very noisy from the vibration caused by the rotors and from
disturbances due to other electronics, they are biased and also subject to slow drift.
Attitude information is obtained by integrating gyroscopic measurements that is
corrected by the accelerometers and here again noise, bias and drift is an issue. The
errors in the sensor measurements will magnify extremely fast for each integration
making position and velocity estimation based on pure IMU data very hard if not
impossible with low cost sensors. The IMU data will not be used by its own but
instead it will be used to improve the estimates provided by the vision system and
the sonar. To address the imperfections of the sensors good filtering is still very
important.
To get the best result possible all information should be used. The available mea-
surements for estimation are listed below.

33

Chapter 4 Estimation

• Acceleration measurements from the IMU 3-axis accelerometer
• Attitude estimates from the ArduCopter autopilot (the autopilot fuses gyro

and accelerometer data from the IMU to estimate attitude)
• Altitude measurements from the sonar.
• Horizontal position estimates from the computer vision algorithm

The listed information will be fused together in a nonlinear unscented Kalman filter.
The theory will be explained in the next section and after that the implementation
details are presented.

4.1. Theory

To fuse the available data an Unscented Kalman filter (UKF) is used. The UKF
is a recursive minimum mean-square error estimator based on the Kalman filter
[22]. First a brief explanation is given of the classical nonlinear version of the
Kalman filter, namely the extended Kalman filter (EKF). Then the so-called Sigma-
point Kalman filter approach is explained followed by the details of the unscented
transform and finally the filter used in this thesis is presented which implements the
square-root version of the UKF.

4.1.1. Nonlinear model

The hexacopter will be modeled as a nonlinear system observed by measurements
according to

⎧⎨
⎩xk+1 = f(xk, uk) + vk

yk = h(xk) + nk

, (4.1.1)

where xk is the current state, uk is an external input (control signal), yk is the
observed measurement,vk is the process noise that also drives the dynamic system,
nk is measurement noise and f(·) and h(·) represent the dynamic nonlinear process
and measurement model respectively. In this thesis vk and nk are assumed to be
additive zero mean Gaussian noise with covariance Qk and Rk respectively.

4.1.2. The extended Kalman filter

By linearization the EKF [23] can, unlike the Kalman filter, use a nonlinear model in
its estimation according to Equation 4.1.1. Still some authors [10] would not like to
call it a proper extension of the Kalman filter. The Kalman filter presents an optimal

34

4.1 Theory

solution if the model is perfect, the noise is white and its covariance is known. The
EKF is more of a way to try and use the Kalman filter by approximating a nonlinear
system with a linear one. Still it has proven successful in many applications and
has been used extensively for many years in both state estimation and parameter
estimation. The EKF algorithm is given in Appendix A.
Since the EKF uses the Jacobian, which is a first order Taylor expansion, when
calculating the mean and covariance some linearization errors cannot be avoided.
A key weakness is also that the linearization is only made around a single point
which does not take into account that the state is a random variable. This means
that the mean of the state is not estimated as xk+1 = E [f(xk, uk, vk)] but instead
as xk+1 = f(xk, uk, vk). The expectation is also not included when calculating yk

or the estimated state covariance. The magnitude of these errors depend on how
nonlinear the system is and will give varying results thereafter. High nonlinearities
will result in larger errors and sometimes divergence.

4.1.3. Sigma-point Kalman filters

A different approach that has proven successful in a number of applications is the
family of Sigma-point Kalman filters [10][11]. The Sigma-point Kalman filter utilizes
a deterministic sampling approach to determine the mean and covariance of the
state, which is still assumed to be a Gaussian random variable. The idea is to create
a set of points to represent a discrete approximation of the state distribution, fully
capturing the first and second moment (mean and covariance) and then propagate it
through the nonlinear model. The distribution of the transformed points will then
be an estimate of the nonlinear transformation of the original distribution. This
approach, according to [10], follows from the intuition that

“It should be easier to approximate a Gaussian distribution than it is to
approximate an arbitrary nonlinear function”.

Meaning that it should be easier to use this sampling approach, looking at how the
Sigma-points have been transformed, then to try and understand and model how
the nonlinear function will change the statistics of its input.
One can summarize the most important steps as the following:

1. Create a set consisting of a minimal number of carefully chosen Sigma-points
that fully represent the mean and covariance of the state.

2. Propagate the Sigma-points through the nonlinear model.
3. Calculate the distribution of the transformed Sigma-points, usually by a weighted

mean and covariance.
This will capture any nonlinearities up to the second moment without error, some-
times higher depending on the distribution of the state. Higher order nonlinearities
can also be captured at the cost of more sigma points. This means that the filter is

35

Chapter 4 Estimation

not subject to the flaws of the EKF that was previously mentioned, that it is deriva-
tive free and that it also can use a model according to Equation 4.1.2 where a more
sophisticated noise model can be included compared to Equation 4.1.1. Here the
noise is not just assumed to be additive but can instead be included in the nonlinear
state and measurement models.⎧⎨

⎩xk+1 = f(xk, uk,vk)
yk = h(xk, nk)

(4.1.2)

4.1.4. The unscented transform

A key question is how to chose the Sigma-points and one of the most popular and
adopted ways of choosing them is the unscented transform presented by [24]. Assume
that the state vector x is of dimension N and that it is a random variable with mean
x and covariance Px. The random variable y with mean y and covariance Py is the
result of y = f(x), where f(·) is a nonlinear function. To estimate the statistics of y
the Sigma-Points S = {wi, χi, i = 1, ..., 2N +1} are chosen as described by Equation
4.1.3 and Equation4.1.4. The notation Ai represents the ith column of matrix A,
the first index of a vector and the first column of a matrix is defined as i=1.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
χi = x i = 1
χi = x + (

√
(N + λ)Px)i−1 i = 2, ..., N + 1

χi = x − (
√

(N + λ)Px)i−N−1 i = N + 2, ..., 2N + 1
(4.1.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
(m)
1 = λ

N+λ
i = 1

w
(c)
1 = λ

N+λ
+ (1 − α2 + β) i = 1

w
(m)
i = w

(c)
i = 1

2(N+λ) i = 2, ..., 2N + 1
λ = α2(N + κ) − N

(4.1.4)

Here wi is a set of weights that depend on the scaling parameters α, β and κ. α is
used to control the spread of the Sigma-points to avoid sampling of non-local effects
and should be constrained as 0 < α < 1, β should be non-negative and can be used
for dealing with higher order moments of the statistics, for a Gaussian distribution
β =

√
2 has been proven optimal. κ is also non-negative and it is used to guarantee

that the covariance matrix is positive definite, usually κ = 0.
S is now used instead of x as an input to the nonlinear function:

Yi = f(Si) i = 1, ...2N + 1 (4.1.5)

Finally the transformed distribution can be estimated by using the standard for-
mulas for mean and covariance together with the weights defined in Equation 4.1.4:

36

4.1 Theory

y =
2N+1∑

i=1
wiYi (4.1.6)

Py =
2N+1∑

i=1
wi(Yi − y)(Yi − y)T (4.1.7)

Pxy =
2N+1∑

i=1
wi(χi − x)(Yi − y)T (4.1.8)

4.1.5. Square root unscented Kalman filter implementation

One weakness of the standard unscented Kalman filter algorithm is the updating and
calculation of the square-root of the state covariance matrix P. In some scenarios
P might not become positive definite and it will lead to divergence. To take care
of this problem an alternative form of the unscented Kalman filter is introduced by
[11] called the square-root unscented Kalman filter (SRUKF). This filter operates
with P in a Cholesky-factored form all the time and uses some additional linear
algebra. The result is a much more numerically robust filter, still with the same
estimation accuracy and sometimes even a better computational cost depending on
the model and its size. Therefore this will be the filter of choice. A complex noise
model will not be used but instead it is assumed that the noise affecting the process
and measurements is additive and follows the one defined in Equation 4.1.1. For
additive noise [11] states that the computational complexity of the filter is O(N3)
where N is the number of states which is the same order as the EKF.
This filter algorithm is summarized below. For understanding purposes some com-
parisons are made to the standard UKF since it is more intuitive and the linear
algebra used in the SRUKF can make it hard to understand what is really happen-
ing.

The square root additive noise unscented Kalman filter algorithm

• Initialization, k = 0

x̂0 = E[x0], Sx0 = chol{E[(x0 − x̂0)(x0 − x̂0)T]} (4.1.9)

SQ = chol{Q}, SR = chol{R} (4.1.10)

37

Chapter 4 Estimation

Rchol = chol{A} represents the Cholesky factorization of the symmetric and
positive definite matrix A, which is a numerically efficient way of calculating
the square root satisfying RT

cholRchol = A.

• For k = 1, ..., ∞

1. Calculate new Sigma-points⎧⎪⎪⎨
⎪⎪⎩

χi,k−1 = x̂k−1 i = 1
χi,k−1 = x̂k−1 + γSi−1,xk−1 i = 2,, N + 1
χi,k−1 = x̂k−1 − γSi−N−1,xk−1 i = N + 2,, 2N + 1

(4.1.11)

This follows the definition of the unscented transform presented in Equa-
tion 4.1.3. Here γ =

√
N + λ is a scaling parameter, N is the number of

states and λ was defined in Equation 4.1.4. The notation Si,xk−1 is used
to represent the ith column of Sxk−1

2. Predict

In the prediction phase the Sigma-points are propagated through the non-
linear process model and these transformed Sigma-points are then used
to predict the state and its covariance. The predicted states are then used
to form a new set of Sigma-points which are propagated through the non-
linear measurement model. This second set of transformed Sigma-points
are used to calculate the predicted output. To keep the covariances in a
square root form and at the same time be numerically efficient and robust
some linear algebra will be used.

Propagate the Sigma-points through the nonlinear process model

χ−
i,k|k−1 = f(χi,k−1, uk−1) (4.1.12)

Use the transformed Sigma-points to predict the state, wi was defined in
Equation 4.1.4.

x̂−
k =

2N+1∑
i=1

w
(m)
i χi,k|k−1 (4.1.13)

Predict the covariance of the estimate

S−
xk

= qr{
[√

w
(c)
1 (χ2:2N+1,k|k−1 − x̂−

k) SQ

]
(4.1.14)

38

4.1 Theory

S−
xk

= cholupdate{S−
xk

, χ−
1,k|k−1 − x̂−

k , w
(c)
0 } (4.1.15)

qr{A} represents the upper triangular part of R from performing a QR
factorization of matrix A. A QR factorization decomposes A into an
orthogonal matrix Q and an upper triangular matrix R, A = QR =

Q
[

R1
0

]
. Here R1 equals the upper triangular factor of the Cholesky

factorization of AT A. Note that Q and R are only used here to describe
the QR factorization and have nothing to do with the process noise or
measurement noise covariance matrices. χ2:2N+1,k|k−1 − x̂−

k means that
x̂−

k is subtracted from each column of the matrix consisting of column
2,...,2N+1 of χk|k−1.
cholupdate{R, x, ±α} represents the rank 1 update to Cholesky factor-
ization. If R = chol{A} is the original Cholesky factorization of A, then
cholupdate{R, x, ±α} will return the Cholesky factorization of A±αxxT

where x is a column vector of the same size as the columns of A. If x is
a matrix then an update for each column of x will be made.
The equivalence of Equation 4.1.14 and Equation 4.1.15 in the original
UKF is presented in Equation 4.1.16. The difference between the UKF
and the SRUKF is that in the SRUKF the covariance matrix is updated
in square root form in a numerically efficient way.

P−
xk

=
2N+1∑

i=1
w

(c)
i (χ−

i,k|k−1 − x̂−
k)(χ−

i,k|k−1 − x̂−
k)T + Q (4.1.16)

Form a new set of Sigma-points using the predicted state and estimate
covariance

χk|k−1 =
[

x̂−
k x̂−

k + γS−
xk

x̂−
k − γS−

xk

]
(4.1.17)

Transform the new Sigma-points using the nonlinear measurement model

Yi,k|k−1 = h(χi,k|k−1), i = 1, ..., 2N + 1 (4.1.18)

39

Chapter 4 Estimation

Use the transformed Sigma-points to predict the measurement

ŷ−
k =

2N+1∑
i=1

w
(m)
i Yi,k|k−1 (4.1.19)

3. Update

In the update phase the Kalman gain K is calculated and used to weigh
the predicted output with the measurement and then update the state
and its covariance. Again the linear algebra methods introduced in the
predict phase will be used.

Calculate the covariance of the measurement residual

Sỹk
= qr{

[√
w

(c)
2 (Y2:2N+1,k|k−1 − ŷ−

k) SR

]
} (4.1.20)

Sỹk
= cholupdate{Sỹk

, Y1,k|k−1 − ŷ−
k , w

(c)
1 } (4.1.21)

Note that Sỹk
is the covariance of ỹk = yk − ŷ−

k . Equation 4.1.20 and
Equation 4.1.21 is the square root version of Equation 4.1.7. Since addi-
tive noise is assumed, SR is also included.

Calculate the cross-covariance between the predicted state and the pre-
dicted measurement

Pxkyk
=

2N+1∑
i=1

w
(c)
i (χi,k|k−1 − x̂−

k)(Yi,k|k−1 − ŷ−
k)T (4.1.22)

Calculate the Kalman gain

Kk = (Pxkyk
/ST

ỹk
)/Sỹk

(4.1.23)

where the “/” operator represents efficient back-substitution and is used
instead of a matrix inversion which would be more costly and less nu-
merically stable. Since the covariance of the measurement residual is in
square root form, two back-substitutions have to be made.

Weigh the predicted output against the real measurement yk by using

40

4.2 Method

the Kalman gain and update the state.

x̂k = x̂−
k + Kk(yk − ŷ−

k) (4.1.24)

Update the estimate covariance

U = KkSỹk
(4.1.25)

Sxk
= cholupdate{S−

xk
, U, −1} (4.1.26)

Again linear algebra is used to make the final update of the state covari-
ance in a square root form. In the standard UKF Equation 4.1.25 and
Equation 4.1.26 is replaced by Equation 4.1.27.

Pxk
= Px−

k
− KkPỹk

KT
k (4.1.27)

4.2. Method

In Sec. 4.1.5 the SRUKF was explained but to use it a filter model describing the
system has to be supplied. The model presented in Equation 4.1.1 will be used but
first it has to be discretized. This is accomplished by first updating the states using
the continuous-time process model and then integrating them using the filter step
size. This way the continuous-time differential equations from Chapter 3 can be
used while measurements are treated as discrete events. In simulation integration
by forward Euler proved to give equal results as integration by the fourth order
Runge-Kutta method so forward Euler will be chosen because of its low complexity.
The process model used for implementation can now be described by

⎧⎨
⎩xk+1 = xk + hf(xk, uk) + vk

yk = h(xk) + nk

(4.2.1)

where h [s] is the step size.

41

Chapter 4 Estimation

4.2.1. Process model

The process model will be a simplified version of Equation 3.2.21 and follows an
approach inspired by [25, 26]. The states consist of position in earth frame, veloc-
ity in body frame, velocity bias, drag force coefficient and thrust from the rotors
according to

x = [xE, yE, zE, u, v, w, bu, bv, bw, μ, Fthrust] (4.2.2)

The reason for having the velocity bias states is that the velocity states can be-
come biased because of imperfections in the angular measurements. The states
bu, bv, bw, μ, Fthrust are modeled as a random walk and the earth frame position esti-
mates are found by multiplying the rotation matrix RE

B with the body frame velocity
estimates and then integrating. The final model for estimation can now be described
by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋE

ẏE

żE

u̇
v̇
ẇ

ḃu

ḃv

ḃw

μ̇
Ḟthrust

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(cψcθ)u
(sψcθ)u
−(sθ)u

gsθ
−gcθsφ
−gcθcφ

0
0
0
0
0

+
+
+
−
−
+

(cψsθsφ − sψcφ)v
(sψsθsφ + cψcθ)v

(cθsφ)v
μ
m

u
μ
m

v
1
m

Fthrust

+
+
+
−
−
−

(cψsθcφ + sψsφ)w
(sψsθcφ − cψsφ)w

(cθcφ)w
bu

bv

bw

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2.3)

4.2.2. Measurement model

The available measurements come from the vision system, sonar, accelerometers and
attitude estimates from the autopilot. This gives the measurement vector presented
in Equation 4.2.4. Since the ArduCopter autopilot already fuses gyro data with ac-
celerometer data to produce attitude estimates they are not used in the measurement
function but instead they are included in the filter separately to save computation
time.

y = [xvision, yvision, zsonar, ax, ay, az] (4.2.4)

42

4.2 Method

To relate the measurements to the states in Equation 4.2.2 the following measure-
ment model is used

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xvision

yvision

zsonar

ax

ay

az

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xE

yE

zE

− μ
m

u
− μ

m
v

Fthrust

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2.5)

A common assumption is that the x- and y-accelerometers give a measurement of
gravity. This is because accelerometers measure the difference in linear acceleration
between the reference frame of the accelerometer (body frame) and the earth frames
gravitational vector. But that is only true if the accelerometer is stationary and
not affected by other forces. The reason for having the μ variable to affect the x-
and y-accelerometer readings is that recent research [25, 21] indicate that assuming
that the x and y accelerometers of a multirotor would measure gravity is not totally
correct. The explanation is that the multirotor is affected by an additional force
identified as rotor drag. Experiments show that that the x- and y-accelerometer
readings instead can give a direct measurement of the linear velocities and that the
μ variable is observable. Fig. 4.2.1 is presented in [8]. Here the red signal is the
measured acceleration and the black signal is the estimated acceleration by using
aB

x = μ
m

u, where u is measured by a motion capture system.

Figure 4.2.1.: Validation of body acceleration measurement model, taken from [8]

Measurements arrive to the filter at different rates so for every iteration the measure-
ment model and measurement covariance matrix is adjusted so that it only contains
the elements that correspond to the available measurements.

43

Chapter 4 Estimation

4.2.3. Noise model

Process noise The process noise covariance matrix Q can be seen as the model
uncertainty and and it is also what drives the system forward. For the states modeled
as a random walk this will be the only term in their update model. In the filter
Qk will be a diagonal matrix mainly to be used as a tuning parameter. Noise is
assumed to enter the system at the highest order differential equation so the process
noise values of position and velocity is set to a low value. The rest of the states are
random-walk states and here the process noise is used to control how fast they can
change. To transform Q into discrete time the approximation described by Equation
4.2.6 is used, where h is the sampling time and Φ is the discrete state transition
matrix of the system.

Qk =
hˆ

0

Φ(τ)QΦT (τ)dτ ≈ Qh (4.2.6)

This first order approximation ignores the terms in Qk that would have been mul-
tiplied with hN , {N∈ Z | N ≥ 2}.

Measurement noise The measurement noise R represents the uncertainty of the
measurements and can be estimated by looking at the data produced by the given
sensors. Data is logged and then the measurement noise covariance is calculated
using off-line analysis. The accelerometer and sonar data are high-pass filtered in
Matlabs System Identification Toolbox to distinguish the noise from the wanted
signal and then the noise covariances and cross-covariances are determined. Since
no ground truth information is available the covariance of the vision estimates will
be hand-tuned without any initial guess. The cross-covariances that involve the
vision measurements are set to zero.

4.2.4. Bias removal of acceleration and angular measurements

The measurements of acceleration and attitude from the ArduCopter autopilot are
biased which needs to be compensated for. This can be done in the SRUKF but
it will increase the computational complexity of the filter and as the biases only
tend to drift slowly within a small range it is removed with a simple low-pass filter
according to Equation 4.2.7 where α is a filter constant with a low value.

biask = biask−1 + α ∗ (measurementk − biask−1) (4.2.7)

44

5. Control

The hexacopter position is controlled by sending attitude and thrust setpoints to the
ArduCopter autopilot. These setpoints are the output of cascaded PID controllers
on the PandaBoard whose structure will be explained in this chapter.

5.1. Theory

5.1.1. PID control

Proportional Integral Derivative (PID) control is explained in [27] and is one of the
most fundamental types of control and also the most frequently implemented in
industry. The great strengths of the PID controller are its simple structure and low
requirements on the system model. The purpose of the PID controller is to minimize
the current error e(t) = r(t) − y(t), where r(t) is a desired value, called reference
or setpoint, and y(t) is a measured value from the process, see Fig. 5.1.1. Since the
output of the process is used by the controller to calculate a control signal that is
fed back into the process a closed loop is formed.

Figure 5.1.1.: PID control, overview

The controller output consists of three terms that give it its name:

Proportional term, P
This term is a direct scaling of the error,

P = Kpe(t) (5.1.1)

where the proportional gain, Kp, is a constant. If Kp is high then the control signal
will be large if the error is large, making the controller more responsive at the cost

45

Chapter 5 Control

of lowered stability and potential overshoot. Since the proportional term is a scaling
of the error it will become smaller and smaller when the error goes to zero, leaving
a steady-state error that depends on the size of Kp. A high value of Kp will give a
smaller steady-state error, in theory, an infinite gain would leave a steady-state error
of zero. In many implementations, the proportional part has the largest influence
on the control signal.

Integral term, I

The I-term depends on the accumulated differences of old errors,

I = Ki

tˆ

0

e(τ)dτ (5.1.2)

where the integral gain, Ki, is a constant. By integrating the error signal the output
will reach the reference faster and the previously mentioned steady-state error is
removed. The downside is that the integral part might increase too fast causing the
control signal to become larger then needed to hold the error at zero and since the
I-term only can become smaller if the error is negative, it will cause overshoot.

Derivative term, D

The D-term is proportional to the derivative of the error,

D = KD
d

dt
e(t) (5.1.3)

where the derivative gain, KD, is a constant. By looking at the derivative it is
possible to predict the future to punish fast changes and by that prevent overshoot
and induce stability into the closed loop system. Since the derivative of the error is
used the D-term is prone to amplifying noise and can therefore be dangerous to use
without the correct filtering.

Total output

The total output of the PID controller is

u(t) = Kpe(t) + Ki

´ t

0 e(τ)dτ + KD
d
dt

e(t)
P I D

(5.1.4)

All three terms of the PID controller do not have to be used, any combination of
the P-, I- and D-term is possible.

46

5.1 Theory

5.1.1.1. Implementation aspects

The basics of the PID controller have been explained but to use it in reality some
extra considerations should be made. The most important issues and their solutions
are described by [27] and are listed below.
Saturation In most cases the absolute value of the control signal |u(t)| is limited

either by the actuators of the system or because a higher value might be
considered dangerous both for the equipment and for stability. To cope with
this the control signal is saturated to fit within a predetermined bound.

Integral windup If the control signal is saturated the integral term will rise (wind
up) and cause a large overshoot when the control signal is not saturated any-
more. This is of course an unwanted effect and can be solved in a few different
ways. In this thesis back-calculation is used which means that that the differ-
ence between the control signal and the saturated control signal is multiplied
with a constant gain and then subtracted from the integral term to lower it
until the control signal is no longer in need of saturation.

Derivative filtering To prevent the derivative term from amplifying noise a first
order low-pass filter is used. This will only be applied for the derivatives that
are not supplied from the SRUKF.

Setpoint scaling If a reference is changed as a step it will have bad effects on the
derivative term. If the reference is constant between the steps the derivative
term can be calculated according to

d

dt
e(t) = d

dt
r(t) − d

dt
y(t) = − d

dt
y(t) (5.1.5)

5.1.1.2. Discrete form

The controller will run on a discrete system with sampling time h and thus a discrete
form needs to be used. This is accomplished by first moving Equation 5.1.4 into
the Laplace domain, see Equation 5.1.6. Note that the derivative term has been
modified to include the low-pass filtering.

U(s) = (Kp + 1
s

Ki + KD
N

1 + N 1
s

)E(s) (5.1.6)

After that the forward-Euler approximation is used for the integral term, see Equa-
tion 5.1.7, and the backward-Euler approximation for the derivative term, see Equa-
tion 5.1.8.

s ≈ z − 1
h

(5.1.7)

s ≈ z − 1
hz

(5.1.8)

47

Chapter 5 Control

The discrete controller is described by

U(z) = KpE(z) + Kih
1

z − 1E(z) + KD
N

1 + Nh z
z−1

E(z) (5.1.9)

5.2. Method

5.2.1. Altitude control

The goal of the altitude controller is to keep the hexacopter at a reference height by
using altitude and altitude-velocity measurements. The output of the controller is
a throttle value that is sent to the motors resulting in an upward thrust.

Model for altitude control

A simplified version of Equation 3.2.21 is used and is presented in Equation 5.2.1.

ẇ = −g cos θ cos φ + Fthrust (5.2.1)

In earth frame this corresponds to

z̈ = −g + cos θ cos φFthrust (5.2.2)

This is a double integrator with an offset caused by gravity. By rearranging Equation
5.2.2 the needed thrust is found as

Fthrust = z̈ + g

cos θ cos φ
(5.2.3)

Since the direction of the thrust vector will not coincide with the earth frame z-axis
if the roll or pitch angle differ from zero, division by cos θ cos φ is made and thus an
angle boost is applied to maintain the needed thrust.

Altitude controller

A cascaded Position → Velocity control structure is implemented according to Fig. 5.2.1,
where the outer loop uses a PID controller that outputs a desired velocity based on
the altitude reference, altitude measurements and velocity measurement,

uz(t) = Kpez(t) + Ki

´ t

0 ez(τ)dτ − KD
d
dt

z(t)

ez(t) = zref (t) − z(t)
(5.2.4)

48

5.2 Method

This desired velocity is used by the inner loop where a PI-controller calculates the
needed change in throttle,

uż(t) = Kpeż(t) + Ki

´ t

0 eż(τ)dτ

eż(t) = żref (t) − ż(t) = uz(t) − ż(t)
(5.2.5)

The throttle offset needed to counter gravity depends on the battery level and this
measurement resets every time the ArduCopter autopilot power is turned off, making
it tricky to estimate. The current solution is that the user sets an approximate base
throttle and then a rather large integral action is used to find the correct throttle
needed for hover. On the first flight on a fresh battery the throttle offset is put to
a rather low value and then the steady state throttle can be used as an initial value
for the next flight. As an alternative, the user can set a throttle with the radio
controller and then when the hexacopter goes into autonomous mode this throttle
is sampled and used as the throttle offset.

Figure 5.2.1.: Altitude controller

5.2.2. Horizontal control

The horizontal controller uses the roll and pitch angles to change the horizontal
position and horizontal velocity.

Model for horizontal control

Again a simplified version of Equation 3.2.21 is used and since the position reference
will be in earth frame the rotation matrix is used to express the linear accelerations

49

Chapter 5 Control

in earth frame. The included forces will be thrust and gravity but in earth frame
gravity will only affect vertical acceleration along the z-axis and is thus not visible
here, see Equation 5.2.6. Note that since only x and y are considered, only the first
to rows of the rotation matrix is used,

[
ẍE

ÿE

]
=RE

B

⎡
⎢⎣

u̇
v̇
ẇ

⎤
⎥⎦ = RE

B

⎡
⎢⎣

g sin θ
−g cos θ sin φ

−g cos θ cos φ + 1
m

Fthrust

⎤
⎥⎦ (5.2.6)

=
[

(cos ψ sin θ cos φ + sin ψ sin φ)Fthrust

m

(sin ψ sin θ cos φ − cos ψ sin φ)Fthrust

m

]
(5.2.7)

To simplify the equations a small angle approximation is used together with the ap-
proximation of the hexacopter operating near a thrust needed for hovering resulting
in [

ẍE

ÿE

]
≈

[
θ Fthrust

m

−φFthrust

m

]
≈

[
θ mg

m−φmg
m

]
=

[
gθ

−gφ

]
(5.2.8)

By inverting 5.2.8 the roll and pitch angles are expressed as a function of desired
linear acceleration,[

φ
θ

]
=

[−1
g
ÿ

1
g
ẍ

]
(5.2.9)

5.2.2.1. Horizontal controller

Again a cascaded Position → Velocity controller is used according to Fig. 5.2.2. This
time the outer position loop uses a PID controller that outputs a desired velocity
based on the current position error and velocity measurement, see Equation 5.2.10.

Figure 5.2.2.: Horizontal controller

[
ux(t)
uy(t)

]
= Kpez(t) + Ki

´ t

0 ez(τ)dτ − KD
d
dt

yxy(t)

ez(t) =
[

xref (t) − x(t)
yref (t) − y(t)

]
, yxy(t) =

[
x(t)
y(t)

] (5.2.10)

50

5.2 Method

The inner velocity loop uses a PD-controller to calculate a desired roll and pitch
angle from the velocity error,

[
uẋ

uẏ

]
= Kpeż(t) + KD

d
dt

eż(t)

eż(t) =
[

ẋref (t) − ẋ(t)
ẏref (t) − ẏ(t)

]
=

[
ux(t) − ẋ(t)
uy(t) − ẏ(t)

] (5.2.11)

The coupling between roll and pitch angle and x- and y-acceleration was presented
in Equation 5.2.9 and is the reason for the “invert” block in Fig. 5.2.2. The position
and velocity control is made in earth frame so the roll and pitch setpoints have to be
rotated by the yaw rotation matrix because the ArduCopter autopilot operates in
body frame. It is possible to reach any position without changing the yaw angle and
since no sensor (camera etc.) that needs a specific yaw angle is used, its setpoint
will always be set to zero.

51

6. Simulink model

Simulink [28] is an extension to Matlab that provides a block diagram environment
used for simulation and model-based design. With the help of different tool-boxes,
the user is provided with a number of blocks that can do anything from a multiplica-
tion to advanced features like computer vision or nonlinear control. Own blocks can
be created and Matlab code can also be included. It is an hierarchical environment
where blocks can be included within other blocks. A support package is available for
the PandaBoard [29]. This makes it possible to run a Simulink model on the board
and also enables the use of special blocks for interacting with other hardware. The
PandaBoard does not run a Matlab Simulink version itself but instead the model is
turned into C-code by automatic code generation.

6.1. Main blocks

Here the blocks on the highest hierarchical level are presented. An overview can be
seen in Fig. 6.1.1.

Figure 6.1.1.: Simulink model overview

• Input: Decodes the messages from the ArduCopter autopilot and also performs
some appropriate scaling and removal of initial signal bias.

• Camera input: Receives camera frames.
• Navigation: Contains the computer vision parts and the unscented Kalman

filter.

53

Chapter 6 Simulink model

• Guidance: User setpoints are sent to the controllers and the block also has a
“brain” that was developed in [1] that can make decisions and set the desired
behavior of the hexacopter.

• Control: Contains the altitude and horizontal controllers.
• Output: Sends the attitude setpoints, throttle setpoints and current status to

the ArduCopter autopilot.

6.2. Scheduling

Different parts of the system have different time constraints and their computational
demand varies. To handle this, the “function-call” block is used which triggers
selected blocks at a user defined rate. Three different rates are used:
40Hz This is the fastest rate and is used by the input block, the unscented

Kalman filter and the controllers.
20Hz This is the medium rate which is used by the vision blocks and the

guidance blocks.
10Hz The slowest rate, used for plotting.
The system only runs in soft real time so there is no guarantee that the desired rates
are held.

54

7. Experiments

To validate the system a number of experiments are carried out both in simulation
and on the real process.

7.1. Simulation

Before performing experiments on the real system, evaluation and tuning of the
estimation and control algorithms were made by simulation. The Simulink model
presented in Chapter 6 is used but the inputs and outputs now are now connected
to a virtual model instead of the real system. This includes:

• Hexacopter model: Here the linear accelerations are calculated as described
in Equation 3.2.21 and the attitude is determined by the system identification
described in Sec. 3.3.1. To simulate battery drop, the generated thrust for a
certain throttle is lowered by time.

• Sensor model: Noise and biases are added to the measured signals to simulate
the sensor outputs of the real system. The noise is band-limited white noise
with covariances chosen according to Sec. 4.2.3. Rather high noise levels are
added to the roll, pitch and yaw to simulate the shaking and vibration of the
hexacopter while flying, this is not only applied to measurements but also
affects the translational acceleration.

• Camera simulator: In [1] a camera simulator was developed that outputs image
frames based on position and attitude. It also adds pixel noise based on
velocity.

Altitude estimation and control are evaluated by looking at a step change.
To illustrate the benefits of sensor fusion, horizontal position estimation and control
are evaluated in simulation by performing a series of steps in horizontal position
where the step signals are used as a reference for the position controller. Note that
step transitions are made in two dimensions simultaneously, one along the x-axis and
one along the y-axis. For each experiment the SRUKF is used for estimation but the
available measurements are changed. First the computer vision input to the filter
is disabled so that the filter only can use the estimated attitude and accelerometer
readings to estimate horizontal position. In the second experiment the filter ignores
the attitude and accelerometers and instead relies entirely on the estimated position
from the computer vision algorithm. In the third and final experiment all available

55

Chapter 7 Experiments

information is used by the filter so that computer vision data is fused with attitude
estimates and accelerometer readings.

7.2. The real system

When a satisfying performance was achieved in simulation, experiments on the real
system were carried out. The hexacopter was switched into autonomous mode stand-
ing on the ground with the goal of trying to hold its current horizontal position at a
reference altitude for a minute. Autonomous take-off and landing were also included
in the tasks.
A comparison was made offline between the SRUKF and the EKF by feeding both
filters with the same logged data, using the same model and the same covariance
matrices.

56

8. Results

This chapter presents the results of the experiments carried out in Chapter 7.

8.1. Simulation

The results of the estimation and control from simulation are presented in the fol-
lowing subsections.

8.1.1. Estimation

The altitude estimation is presented in Fig. 8.1.1 and has a very low deviation from
the truth value thanks to the sonar.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time [s]

po
si

tio
n

[m
]

True position
SRUKF estimated altitude
Reference

Figure 8.1.1.: Altitude estimation

The result of the first horizontal step change experiment is shown in Fig. 8.1.2. The
position controller makes the estimated position follow the reference but the true
position drifts away because of high drift in the position estimation when integrating

57

Chapter 8 Results

velocity estimates based on noisy measurements. Note that there are four curves
representing the position estimation in the plot because step changes are made both
along the x-axis and the y-axis simultaneously.

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time [s]

po
si

tio
n

[m
]

SRUKF estimated position x
SRUKF estimated position y
True position x
True position y
Reference

Figure 8.1.2.: Position estimated based only on IMU data

The second horizontal step change experiment can be seen in Fig. 8.1.3. Again only
the estimated position follows the reference because of drift in estimation, this time
the drift is caused by short blackouts in the vision estimation when a new template
has to be chosen.
The third horizontal step change experiment is presented in Fig. 8.1.4. This time
the drift the has been reduced significantly as the vision algorithm is used but the
short blackouts are taken care of by integrating the estimated velocity.
The estimated velocities are shown in Fig. 8.1.5 and Fig. 8.1.6.

8.1.2. Control

Altitude and horizontal control are evaluated using the plots already presented in
Sec. 8.1.1.
Fig. 8.1.1 shows that the altitude is subject to a small overshoot at the step change
but that it is kept within 3 cm from the reference in steady state conditions. The
integrator is still large enough to counter the simulated battery voltage drop.
The horizontal control is stable and keeps the estimated position in Fig. 8.1.2 to
Fig. 8.1.4 within 5 cm from the reference with a very small overshoot at the step
changes.

58

8.1 Simulation

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

po
si

tio
n

[m
]

Vision x
Vision y
True position x
True position y
Reference

Figure 8.1.3.: Position estimation based only on vision data

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

time [s]

po
si

tio
n

[m
]

SRUKF estimated position x
SRUKF estimated position y
True position x
True position y
Reference

Figure 8.1.4.: Position estimation based on sensor fusion of IMU and vision data

59

Chapter 8 Results

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

ve
lo

ci
ty

 [m
/s

]

SRUKF estimated velocity
True velocity

Figure 8.1.5.: Altitude velocity estimation

5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time [s]

ve
lo

ci
ty

 [m
/s

]

SRUKF estimated velocity x
SRUKF estimated velocity y
True velocity x
True velocity y

Figure 8.1.6.: Horizontal velocity estimation

60

8.2 The real system

8.2. The real system

The results of the estimation and control on the real system is presented in the
following subsections, since no truth data is available some of the estimates are
compared to sensor measurements and vision data to prove the difference. The
hexacopter can now hold its altitude and horizontal position better then before
the work of this thesis and is able to hover in place for a minute without problem
most of the time. The main issues are lags and loss of communication between
the PandaBoard and the ArduCopter autopilot, which might have to do with the
PandaBoard not being able to run all its tasks fast enough. The system still depends
a lot on the vision and is sensitive to fast movement, it can recover but will loose
track of its position.

8.2.1. Estimation

The estimated altitude is presented in Fig. 8.2.1. The sonar measurement is given
a high trust in the SRUKF so the estimated altitude is a smoothed version of the
sonar.

190 195 200 205 210 215
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

po
si

tio
n

[m
]

sonar
SRUKF estimated altitude

Figure 8.2.1.: Altitude position estimate, comparison between SRUKF estimate
and sonar measurement

The altitude velocity estimate is compared to the derivative of the sonar measure-
ment and is shown in Fig. 8.2.2. The SRUKF estimate is much smoother but still
without the delay and dampening that is introduced by using a simple low-pass
filter.

61

Chapter 8 Results

75 80 85 90 95 100 105 110 115

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

ve
lo

ci
ty

 [m
/s

]

sonar derivative
SRUKF estimated velocity

Figure 8.2.2.: Altitude velocity estimate, comparison between SRUKF estimate
and sonar measurement derivative

For horizontal velocity estimation, quite a lot of trust is given to the model and
therefore it is sensitive to the roll and pitch angles. At low velocities the SRUKF
velocity estimates are a smoothed version of the derivative of the vision estimates,
see Fig. 8.2.3 and Fig. 8.2.4 but at high velocities the vision derivatives reacts very
little and the difference is shown in Fig. 8.2.5.
The horizontal position estimation is hard to evaluate but at very low velocities it is
rather stable. As soon as the speed goes up so does the drift, this makes trajectory
following impossible at least in such a tight space as the test location.
As can be seen in Fig. 8.2.6 the filter outputs of the EKF and the SRUKF are almost
identical but the EKF showed to be far from as robust as the SRUKF and would
sometimes diverge.

8.2.2. Control

The altitude controller is able hold the altitude within 5-10 cm from the reference
most of the time but air turbulence causes deviations and it is also problematic to
find the throttle needed for hover since it depends a lot on the battery level. A
plot of the altitude controller performance is shown in Fig. 8.2.7 where it takes off
automatically and tries to hold the altitude at a 65 cm reference. Notice that the
altitude starts at 0.2 m because this is the minimum range of the sonar.
The horizontal position controller performance is presented in Fig. 8.2.8. The posi-
tion usually stays within 15 cm from the reference. It should be noted that this is

62

8.2 The real system

20 30 40 50 60 70 80 90
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time [s]

ve
lo

ci
ty

 [m
/s

]

vision derivative
SRUKF

Figure 8.2.3.: Velocity x estimate, comparison between SRUKF estimate and
derivative of vision estimate

20 30 40 50 60 70 80 90
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time [s]

ve
lo

ci
ty

 [m
/s

]

vision derivative
SRUKF estimated velocity

Figure 8.2.4.: Velocity y estimate, comparison between SRUKF estimate and
derivative of vision estimate

63

Chapter 8 Results

25 30 35 40 45
−1.5

−1

−0.5

0

0.5

1

time [s]

ve
lo

ci
ty

 [m
/s

]

vision derivative
SRUKF estimated velocity

Figure 8.2.5.: Velocity x estimate, comparison between SRUKF estimate and
derivative of vision estimate when performing a fast maneuver

0 10 20 30 40 50 60 70 80 90

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

po
si

tio
n

[m
]

SRUKF estimated position
EKF estimated position

Figure 8.2.6.: Comparison between SRUKF and EKF, estimation of horizontal
position x

64

8.2 The real system

275 280 285 290 295 300 305 310
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time [s]

po
si

tio
n

[m
]

SRUKF estimated altitude

Figure 8.2.7.: Altitude control with a setpoint of 0.6m

estimated position and not true position so if the position estimate drifts it will not
show, but that is a question of estimation and not control.

220 225 230 235 240 245 250 255
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time [s]

po
si

tio
n

[m
]

SRUKF estimated position x
SRUKF estimated position y
Reference

Figure 8.2.8.: Horizontal position control

65

9. Discussion

9.1. General

The hexacopter is able to take off and hover autonomously at a fixed position with
some deviations caused by air turbulence and errors in the position and velocity
estimation. Flights are more stable and position is held better now compared to
before the work that was carried out in this thesis due to improvements in both
estimation and control. Still the estimation is only able to keep the hexacopter in
a hovering state and not follow trajectories. It should be noted that all test flights
are carried out in a very tight space and the hexacopter is only allowed to move
within an area of 1.3x2m so if one would fly over a larger area at a higher altitude
the result might be better.

9.2. Estimation

The SRUKF provides much smoother velocity estimates compared to differentiation
of the raw sensor measurements without infusing the large delay that can be a
problem when using a simple low-pass filter, resulting in an increased controller
performance. For the horizontal position estimation the absence of a more absolute
measurement is still an issue and a major problem that was discovered in late testing
is that the image frames from the camera are affected by a varying time delay of
about 0.1-1 seconds. The delay was approximated by looking at logged data and
comparing the attitude measurement to the camera image for a fast movement. It
is unclear if the time delay is created at the web camera itself or at the input to the
PandaBoard. The vision algorithm has to pick a new template very often because
no good match can be found and even if the velocity is integrated to fill the gaps for
the time when the new template is chosen, estimation is still very sensitive to fast
movement.
The EKF would some times diverge and the main problem seems to be the vision
measurements, perhaps some smoothing of the vision measurements are required to
prevent problems with the calculation of the Jacobian. The SRUKF never diverged
during simulation, real flights or when applied to offline data. The downside with
the SRUKF implementation is that the required computation time is almost five
times the computation time of the EKF with the high computational complexity
being related to the update of the covariance matrices.

67

Chapter 9 Discussion

9.3. Control

The altitude controller shows a more stable performance then the previous Ar-
duCopter autopilot controller, mainly because of improved velocity information from
the SRUKF. Since all testing is done in a very tight space air turbulence causes de-
viations and battery-level dependency makes it difficult to find the correct throttle
needed for hover without using a large integral part in the controller. The large
integral part can induce some fluctuations in the altitude in combination with the
air turbulence but never leads to instability. The alternative would be to map bat-
tery level to the hover throttle but the only battery measurement available resets
every time the power is turned off and to be able to use different batteries without
changing parameters it is more convenient to just have a larger integral part.
The horizontal controller keeps the estimated position within an acceptable range
in a stable manner. The derivative part in the velocity controller showed to be a
very important parameter for stability.

68

10. Conclusion

Improvements have been made without using any additional hardware or modifying
the vision algorithm. The use of SRUKF mainly improved velocity estimates but
also position estimates, both contributing to flights being more stable and with less
drift compared to only using vision data for position estimation. The square root
implementation of the SRUKF is very robust and has never diverged or showed any
strange behavior in either simulation or real test for any combination of parameters.
The EKF on the other hand was not as robust and had some problems with the
vision measurements which sometimes led to divergence when applied to offline data.
When divergence was not a problem, the difference between the EKF output and
the SRUKF output was negligible. With the current implementation the SRUKF
suffers from a high computational complexity compared to the EKF.
The cascaded control structures presented have proved to be working well, ensuring
stability of the closed loop system. Increasing the throttle correctly over time to
compensate for battery loss was one of the most challenging parts since the battery
discharge is nonlinear and its effect on the throttle is very large compared to the
amount of throttle needed for stabilization.
The filter was not able to compensate for the weaknesses in the position estimation of
the vision system when the hexacopter is moving fast and with no absolute horizontal
position measurement drift will always be an issue. As a result the hexacopter can
only hover in a fixed position and tasks like following a designated path is not
possible with the current position estimation, at least not when the space is so
narrow. The system only runs in soft real time and seems to have problems with
processing all the needed tasks, causing lags and communication problems. Large,
varying time delays in the image frames also degrades both estimation and control.
Optimization of the Simulink model and implementation of a hard real-time system
should be seen as future work.

69

A. The extended Kalman filter
algorithm

The algorithm for the extended Kalman filter is presented below [23].

• Initialize, k = 0

x̂0 = E[x0], Px0 = chol{E[(x0 − x̂0)(x0 − x̂0)T]} (A.0.1)

Q = E[(v − v̄)(v − v̄))T], R = E[(n − n̄)(n − n̄))T] (A.0.2)

• For k = 1, ..., ∞
1. Calculate Jacobians

The filter requires linear process and measurement models when pre-
dicting and updating the covariance matrices and Kalman gain Kk. This
is done by using a first order Taylor expansion.

Fk−1 = ∂f
∂x

∣∣∣∣∣∣
x̂k−1|k−1,uk−1

(A.0.3)

Hk = ∂h
∂x

∣∣∣∣∣∣
x̂k|k−1

(A.0.4)

2. Predict

71

Chapter A The extended Kalman filter algorithm

The nonlinear process model is used to predict the state.

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (A.0.5)

And the linearized process model is used to predict the covariance of the
estimate.

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Qk−1 (A.0.6)

3. Update

The predicted state is propagated through the nonlinear measurement
model and this predicted measurement is then compared to the real mea-
surement, forming a measurement residual.

ỹk = zk − h(x̂k|k−1) (A.0.7)

The covariance of the residual is calculated by using the linearized mea-
surement model and the predicted state covariance

Sk = HkPk|k−1HT
k + Rk (A.0.8)

The Kalman gain is formed. If no information had been lost by the lin-
earization, a perfect model is assumed and disturbances are white noise,
this would had been optimal

Kk = Pk|k−1HT
k S−1

k (A.0.9)

The state is updated by using the predicted state and the measurement
weighted by the Kalman gain.

x̂k|k = x̂k|k−1 + Kkỹk (A.0.10)

The covariance is updated

Pk|k = (I − KkHk)Pk|k−1 (A.0.11)

72

Bibliography

[1] N. Ohlsson and M. Stahl, “A Model-Based Approach to Computer Vision and
Automatic Control using Matlab Simulink for an Autonomous Indoor Multiro-
tor UAV,” 2013.

[2] Wikipedia: Unmanned Aerial Vehicle. [Online]. Available: http://en.wikipedia.
org/wiki/UAV

[3] DIY Drones. [Online]. Available: http://diydrones.com/
[4] Aeroquad: The open source quadcopter / multicopter. [Online]. Available:

http://aeroquad.com/
[5] S. Lange, N. Sunderhauf, and P. Protzel, “A vision based onboard approach

for landing and position control of an autonomous multirotor UAV in GPS-
denied environments,” in Advanced Robotics, 2009. ICAR 2009. International
Conference on, year = 2009, pages = 1–6, organization = IEEE.

[6] I. Sa and P. Corke, “System identification, estimation and control for a cost
effective open-source quadcopter,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on, year = 2012, pages = 2202–2209, organi-
zation = IEEE,.

[7] R. W. Beard, “Quadrotor dynamics and control,” Brigham Young University,
2008.

[8] R. C. Leishman, J. Macdonald, R. W. Beard, and T. W. McLain, “Quadrotors
& Accelerometers,” 2013.

[9] J. Macdonald, R. Leishman, R. Beard, and T. McLain, “Analysis of an Im-
proved IMU-Based Observer for Multirotor Helicopters,” Journal of Intelligent
& Robotic Systems, pp. 1–13, 2013.

[10] S. J. Julier and J. K. Uhlmann, “A general method for approximating non-
linear transformations of probability distributions,” Robotics Research Group,
Department of Engineering Science, University of Oxford, Oxford, OC1 3PJ
United Kingdom, Tech. Rep, 1996.

[11] R. Van Der Merwe, “Sigma-point Kalman filters for probabilistic inference in
dynamic state-space models,” Ph.D. dissertation, University of Stellenbosch,
2004.

[12] S. M. Siddiqui, “Integrated navigation and self alignment using Square Root
Unscented Kalman filtering,” in Applied Sciences and Technology (IBCAST),

73

Bibliography

2013 10th International Bhurban Conference on, year = 2013, pages = 73–76,
organization = IEEE,.

[13] R. Kandepu, B. Foss, and L. Imsland, “Applying the unscented Kalman filter
for nonlinear state estimation,” Journal of Process Control, vol. 18, no. 7, pp.
753–768, 2008.

[14] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys,
“PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard
computer vision,” Autonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

[15] DIY Drones: APM:Copter. [Online]. Available: http://copter.ardupilot.com/

[16] S. Bouabdallah, “Design and control of quadrotors with application to au-
tonomous flying,” Ecole Polytechnique Federale de Lausanne, 2007.

[17] N. Guenard, T. Hamel, and R. Mahony, “A practical visual servo control for
an unmanned aerial vehicle,” Robotics, IEEE Transactions on, vol. 24, no. 2,
pp. 331–340, 2008.

[18] 3DR Robotics Website. [Online]. Available: http://3drobotics.com/

[19] PandaBoard ES Website. [Online]. Available: http://pandaboard.org/content/
pandaboard-es

[20] R. M. Murray and S. S. Sastry, A mathematical introduction to robotic manip-
ulation. CRC press, 1994.

[21] P. Martin and E. Salaun, “The true role of accelerometer feedback in quadrotor
control,” in Robotics and Automation (ICRA), 2010 IEEE International Con-
ference on, year = 2010, pages = 1623–1629, organization = IEEE, owner =
fogelberg,.

[22] R. E. Kalman et al., “A new approach to linear filtering and prediction prob-
lems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[23] S. Särkkä et al., Recursive Bayesian inference on stochastic differential equa-
tions. Helsinki University of Technology, 2006.

[24] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[25] R. Leishman, J. Macdonald, T. McLain, and R. Beard, “Relative navigation
and control of a hexacopter,” in Robotics and Automation (ICRA), 2012 IEEE
International Conference on, year = 2012, pages = 4937–4942, organization =
IEEE,.

[26] S. Saripalli, J. M. Roberts, P. I. Corke, G. Buskey, and G. S. Sukhatme, “A
tale of two helicopters,” in Intelligent Robots and Systems, 2003.(IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, vol. 1. IEEE, 2003,
pp. 805–810.

74

Bibliography

[27] K.-E. Årzén, Real-time Control Systems. Department of Automatic Control,
Lund Institute of Technology [Institutionen för reglerteknik, Tekniska högsk.],
2011.

[28] SIMULINK, Simulation and Model-Based Design. [Online]. Available:
http://www.mathworks.se/products/simulink/

[29] MathWorks: PandaBoard Support from Simulink. [Online]. Available:
http://www.mathworks.se/hardware-support/pandaboard.html

75

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS
Date of issue
December 2013
Document Number
ISRN LUTFD2/TFRT--5930--SE

Author(s)

Johan Fogelberg
Supervisor
Simon Yngve, Combine Control Systems
Anders Robertsson, Dept. of Automatic Control, Lund
University, Sweden
Karl-Erik Årzén, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsoring organization

Title and subtitle

Navigation and Autonomous Control of a Hexacopter in Indoor Environments

Abstract

This thesis presents methods for estimation and autonomous control of a hexacopter which is an
unmanned aerial vehicle with six rotors. The hexacopter used is a ArduCopter 3DR Hexa B and the
work follows a model-based approach using Matlab Simulink, running the model on a PandaBoard
ES after automatic code generation. The main challenge will be to investigate how data from an
Internal Measurement Unit can be used to aid an already implemented computer vision algorithm in a
GPS-denied environment.

First a physical representation is created by Newton-Euler formalism to be used as a base when
developing algorithms for estimation and control. To estimate the position and velocity of the
hexacopter, an unscented Kalman filter is implemented for sensor fusion. Sensor fusion is the
combining of data from different sensors to receive better results than if the sensors would have been
used individually. Control strategies for vertical and horizontal movement are developed using
cascaded PID control. These high level controllers feed the ArduCopter with setpoints for low
level control of angular orientation and throttle.

To test the algorithms in a safe way a simulation model is used where the real system is replaced by
blocks containing a mix of differential equations and transfer functions from system identification.
When a satisfying behavior in simulation is achieved, tests on the real system are performed.

The result of the improvements made on estimation and control is a more stable flight performance
with less drift in both simulation and on the real system. The hexacopter can now hold position for
over a minute with low drift. Air turbulence, sensor and computer vision imperfections as well as the
absence of a hard realtime system degrades the position estimation and causes drift if movement
speed is anything but very slow.
Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-75

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

