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1 Introduction to Master’s Thesis Project

Diabetes mellitus: definitions and pathology

There are between 314 and 382 million adults with diabetes mellitus world-wide.!
This group of related conditions are characterized by defects in the produc-
tion and/or response to insulin, leading to an increase in blood glucose lev-
elsthyperglycemia).

Type 1 diabetes mellitus(T1DM) is characterized by the loss of beta cells in
the pancreatic islets, which ceases the production of the hormone insulin. Type
2 diabetes mellitus(T2DM), in contrast, is characterized by a decreased response
to insulin in skeletal muscle, adipose tissue and liver cells of the body.? Both lead
to the decrease of glucose transporter protein 4(GLUT4) mediated transport of
glucose into these cell types,’ resulting in hyperglycemia.

Genetics of Diabetes

Both T1DM and T2DM have polygenetic hereditary components, with at least
20 genes contributing to T1DM and at least 36 contributing to T2DM suscepti-
bility.*> Especially for T2DM, the genetic mechanisms are poorly understood,
with only 10 percent of the hereditary susceptibility being explainable by discov-
ered gene variants.® Identifying and characterizing risk variants is thus impor-
tant for drug development, diagnostics and treatment, and understanding of the
pathogenesis of diabetes. Both T1IDM and T2DM is characterized by endocrine
dysregulation which affects the expression of many genes. As such, studying
gene expression in diabetic and non-diabetic individuals and animal models also
provides valuable insight into the mechanisms behind these highly prevalent dis-
eases.

Lund University Diabetes Center

The Lund University Diabetes Center(LUDC), located within the Clinical Re-
search Center(CRC) in Malmo University Hospital, performs extensive research
to investigate genetic and environmental factors contributing to diabetes melli-
tus and its underlying factors. Several large-scale population studies of diabetic
individuals from Finland, Scania in Sweden and other locations are performed,
in conjunction with iz vitro and animal studies.

A large computational facility, LUDC-calc, is available for researchers to en-
able high-throughput processing of sample data. Here, I have performed two
different studies which involve two important fields in bioinformatics: genomic
variant discovery from high-throughput sequencing data, and comparative gene



expression analysis. The studies provide insight into technological and statistical
considerations for these types of analyses.
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2 Comparison of RNA-seq and Exome Sequencing
Data for Variant Calling

Abstract

This article describes the creation of a pipeline for variant calling from
high-throughput next-generation exome and RNA sequencing data using
commonly used bioinformatics tools. High-throughput sequencing data
from six pancreatic islet cell samples were analyzed using the pipeline, and
the resulting variant calls were validated against chip genotyping data from
the same individuals. The results indicate that variant calling can be ap-
plied to RNA-seq and exome sequencing data to identify genetic variants
in exons and coding regions with high precision, while the recall was rela-
tively low. In other words, identified genotypes seem to have a high proba-
bility of being correct, but only part of the present variants are picked up.
This is especially true for RNA-seq.



Abbreviations

BAM: Binary Alignment Map; BASH: Bourne Again Shell, a command proces-
sor in Linux; BLAST: Basic Local Alignment Search Tool; DNA: deoxyribonu-
cleic acid; FASTA: a commonly used sequence file format; FASTQ: an extension
of FASTA with added sequence qualities; GATK: Genome Analysis Toolkit;
HTS: High-Throughput Sequencing; RNA: ribonucleic acid; SAM: Sequence
Alignment Map; SNP: Single Nucleotide Polymorphism; UCSC: University of
California Santa Cruz; UTR: untranslated region; VCF: Variant Call Format.

3 Introduction

Next generation sequencing

The development of massively parallel, high-throughput sequencing(HTS) has
revolutionized the field of molecular biology, enabling high-coverage sequenc-
ing of samples at the genome, exome or transcriptome level for a relatively low
cost. In genomics, this is a powerful tool which can be used for characterizing
cancer genomes, identifying neutral and disease-causing variants, and studying
population-wide genetic variation.” In transcriptomics, HTS allows for high-
precision differential gene expression analysis and the characterization of known
or novel splicing forms.®

Massively parallel sequencing results in a large number of sequences, referred
to as reads. Attached to each read are base qualities for each nucleotide in the
read, showing the predicted error rate for each base. For paired-end sequencing,
which is used in this project, the sequences come in pairs of two reads sequenced
from opposite ends of a longer sequence of DNA, with a specific amount of
unknown sequence between them. This gives positional information which can
be used to detect small- and large-scale genomic insertions and deletions.’

The reads are typically organized in FASTQ files, a flat file format similar
to the FASTA format, but also including base qualities. The sequences may
originate from several different sources. Exome sequencing is performed on a
library of source DNA from which known exon sequences are captured, using,
for instance, a solid surface with attached exon-specific probes, and sequenced.'®
Additionally, some of the current library preparation kits also capture many 5’
and 3’-untranslated regions(UTRs). RNA sequencing, or RNA-seq, is typically
performed by extracting the cellular RNA, removing rRNAs, potentially iso-
lating the poly-A-tagged mRNA transcripts, and using reverse transcriptase to
construct a DNA library, which is then sequenced.



Alignment

To analyze the output of next-generation sequencing, the reads have to be either
assembled into longer contiguous sequences(de novo assembly) or aligned to a
reference genome or transcriptome. The former is mainly used for characteri-
zation of species without a good reference genome, or for small genomes, such
as those of bacteria. In humans, the latter is typically used, since the human
genome is well-characterized.

The speed of each alignment needs to be very high to match the large num-
ber of reads generated by high-throughput sequencing. Frequently used general-
purpose alignment algorithms, such as the Needleman-Wunsch algorithm and
the BLAST algorithm, are too slow for this purpose. For the alignment of mil-
lions of reads per sample, this would take too long to be of practical use. Instead,
specialized algorithms are used, which radically increase alignment speed. To
achieve the increase in speed, a key method is indexing the reference sequence
in a way which makes it possible to quickly match the reads against the refer-
ence. Other optimizations include usage of efficient low-level instructions, par-
allel computation across multiple processors and speed-efficient memory man-
agement.

Paired-end sequencing provides advantages in alignment. The known ge-
nomic distance between the pairs can be used to identify insertions and deletions
relative to the reference sequence. If two ends map far away from each other on
the reference genome, it can be inferred that a deletion has occurred between
them. Conversely, an insertion has occurred if two reads in a pair map closely
to each other.

For RNA sequencing, splicing hinders mapping reads directly to the
genome. Due to each transcript potentially being derived from several different
discontinuous fragments of a gene, mapping the reads straight to the genome can
potentially introduce error by mapping reads to the wrong regions or discarding
reads due to poor alignment. Thus, programs such as Tophat and STAR have
been developed which take splicing into account. To do this, a splice junction
database is used along with the reference genome; the junction database provides
the programs with the positions of splice junctions across which splicing takes
place. This additional information enables the aligners to detect intra- and in-
tergenic splicing events which have taken place inside reads, and thus correctly
mapping the reads to the reference.

Variant calling

Variant calling is the process of identifying genetic variation in sequencing data,
such as single nucleotide variants, copy number variations, structural variants,



such as indels and inversions, and fusion genes. In this project, we only look at
single nucleotide variants.

After the reads have been mapped to the reference genome, and the results
have been processed to remove alignment errors, special programs, such as the
UnifiedGenotyper in the Genome Analysis Toolkit from Broad Institute,! are
used which iterate through the aligned reads, identifying genomic loci where
reads are aligned with high confidence, but differ from the reference genome.
This way, alternative alleles can be identified. By further inspecting the aligned
reads at these positions, genotypes can be inferred. For instance, if 50 out of
100 reads have a different base at a certain locus, this might indicate that the
individual in question is heterozygous at this locus. If all reads have a different
base, the individual might be homozygous for the allele in question.

The set of SNPs that can be found for a given experiment depends on the
source of DNA. For instance, exome sequencing only targets exons and the un-
translated regions surrounding genes. RNA-seq targets untranslated regions, ex-
ons, and sporadically introns. It has been shown that, on average, 39 percent of
the genome is expressed as primary transcripts,'? which means that a substantial
part of the genome is likely to be inaccessible by RNA-seq without pooling data
from multiple tissues. In addition, sequencing depth or coverage, which is the
number of reads overlapping a specific region of the reference, will vary for dif-
ferent genes based on gene expression levels. Inside genes, depth for each exon
will vary depending on splicing patterns. A previous study of samples from
the 1000 Genomes dataset by Quinn et.al. has shown that RNA-seq data can be
used for variant calling with around 90 percent specificity and sensitivity as com-
pared to whole genome sequencing data.”” That study contained few samples,
however, and only used RNA-seq data.

4 Materials and Methods

Materials

Six human pancreatic islet cell samples which had been sequenced using RNA
sequencing and exome sequencing, and for which chip genotyping had been per-
formed, were selected for analysis. The samples were taken post-mortem and
stored frozen. The read libraries were 101 bp paired-end reads with a fragment
length of 300 bp. For exome sequencing, the average number of reads per sam-
ple was 74,442,454 reads(+ 5,988,360). The average per-sample sequencing depth
across the targeted intervals was 48X (£ 6X) pre-variant calling, for BWA align-
ments. For RNA-seq, the mean number of reads per sample was 65,000,909
reads(+ 5,985,383).



Methods
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Figure 1: Outline of analysis workflow.

A pipeline for aligning and processing the raw FASTQ reads was con-
structed, using BASH shell scripts. The pipeline consists of several modular
scripts which arrange the parallel deployment of calculation jobs, and ensure
that the output files from each step are arranged in a highly organized fash-
ion(figure 1). In each step, several samples are processed in parallel through
Condor, the calculation job management system used on the calculation servers
at Lund University Diabetes Centre(LUDC). When variants are called, all sam-
ples are processed together.



Alignment

For RNA-seq data, the raw reads were aligned with three different align-
ers: Tophat,""'STAR'" and GSNAP,' but due to technical difficulties, vari-
ant calls were only acquired from Tophat(described in the Results section).
For exome data, the raw reads were aligned with four different aligners:
GSNAP,Bowtie2,”” BWA " (using the MEM algorithm) and Novoalign."” All ex-
ome aligners were configured to only report one alignment per read, and where
applicable, fragment and insert sizes were defined. All RNA aligners were con-
figured to only report one alignment per read, to only search for known splice
junctions, and to report only uniquely mapping reads, and were otherwise left
on the default settings. Each alignment was run on 10 cores. The Condor log
files were used to extract performance information, such as peak memory con-
sumption and execution time. All aligners except BWA used hg19 as the refer-
ence sequence. For BWA, b37d5 was used as the reference sequence, since this
index is commonly used in-house. For RNA-seq alignment, splice junctions
were taken from RefGene from the UCSC Genome Table Browser.”

Processing

The alignment files were processed to improve variant calling and to correctly
format the data. Reads with low(<40) mapping quality were filtered out using
the Picard Toolkit for all aligners except Tophat, which does not supply map-
ping qualities. Reads mapping to non-autosomal chromosomes were removed.
This was done to exclude sex-specific SNPs and to remove the effect of varying
numbers of X-chromosomes between samples. The alignment files were then
coordinate-sorted, duplicate reads(reads mapping to the same genomic coordi-
nates) were removed and the files were reordered in the correct order in respect
to chromosomes. Local realignment around indels was performed to remove
mismatches at the edges of indels, and base quality recalibration was performed.
Read reduction(a process which removes extraneous information from align-
ment files before variant calling) was also performed.

Variant Calling

A list of SNPs which are unambiguously annotated as located in exons and 5’
and 3-UTRs in HapMap was acquired through the R package biomaRt.*' In
order to give a fair comparison between exome sequencing and RNA-seq, only
SNPs in this list were used for validation. The reduced aligner output was run
through the UnifiedGenotyper. A variant call format(VCF) file with HapMap
SNPs was used to search for SNPs. The resulting raw calls were filtered to re-
move SNPs with a read depth(DEPTH field in VCF file) below 10 and quality
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score(QUAL field in VCEF file) below 10.

Validation

To make sure that only the most reliable chip genotyping data was used for
validation, the raw chip genotyping file was filtered in several steps using the
PLINK software package’”? and R.* First, the list of SNPs available on the
chip was extracted. The intersecting set of SNPs between this list and the list of
SNPs in gene regions mentioned above was calculated. Data from these SNPs
were extracted from the HapMap VCF annotation file used for variant calling.
The list of SNPs was then filtered to only retain SNPs with a single alternative
allele, thus removing SNPs with multiple alleles. After that, the resulting list of
SNPs was filtered to only retain SNPs which had the same alleles in the VCF file
and the raw chip genotyping file. Chip calls from that list(table 1) was used to
validate the variant calling results.

Coding Untranslated regions
Non-synonymous Synonymous 3’-UTR 5-UTR Total
5,747(31.1%) 4,612(24.9%) 7,117(38.5%) 1,009(5.5%) 18,485

Table 1: Distribution of SNPs used for analysis.

To compare the variant calls produced by each aligner to the reference chip
genotype calls, each VCF(variant call) file was loaded into R. Calls without a
SNP ID were removed, as were all SNPs where any of the calls showed a third
allele. SNP calls with a sample-wise depth below 10 were filtered out. For the
exome sequencing data, calls with a genotype quality below 30 were also filtered
out. SNPs which were in the list in table 1 were then validated against the chip
genotyping data.

To measure the performance of each aligner, precision and recall was calcu-
lated for each genotype.

.o Ntrue positives
Precision = 1)
true positives +Nfalse positives
true positives
Recall = )
true positives +Nfalse negatives
Precision-Recall
F =2 (3)

"Precision + Recall

In this context, precision measures the probability of a call for a certain geno-
type being correct when compared to the chip. Recall, also known as sensitiv-
ity, shows the probability of a correct call being made for a genotype which is
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present on the chip. The harmonic mean of precision and recall gives a com-
bined measurement, known as the F;-score, which can be used to quickly com-
pare different genotypes and aligners.

False and true positives and negatives are defined in table 2. We here use
two different versions of false negatives and call them “global” or “local” recall.
Recall under the local definition is limited to the test space of calls which were
made, while the global definition extends into all calls which are on the chip(in
the list of considered SNPs and samples). As such, global recall is preferable.
However, in order to study how recall changes depending on different factors
related to the calls made, such as sequencing depth and quality, local recall has
to be used.

Call type Definition
True positive  Called,correct genotype
False positive  Called,incorrect genotype
False negative(global) Not called or incorrect call for another genotype
False negative(local) Incorrect call for another genotype

Table 2: How calls from each genotype were classified.

5 Results and Discussion

Aligner Performance
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Figure 2: Peak memory usage and processing speed for exome alignment.
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Memory usage and processing speed varies between programs, with Bowtie
and BWA having both a relatively low memory footprint and high processing
speed(Figure 2). BWA is around twice as fast as the second fastest aligner, Bowtie.

RNA-seq

For RNA sequencing, of the three aligners used, only Tophat produced out-
put which worked for variant calling with GATK. Files produced by GSNAP
with spliced alignment contained a large number of problems or discrepancies
to what GATK accepts as input, resulting in GATK not accepting them as valid
files. STAR alignment files also caused errors when run through the pipeline.
For Tophat, 2 out of 6 samples failed to be processed by GATK, since a GATK
tool which was part of the processing pipeline encountered a fatal error in these
files and terminated.

Variant Calls
Exome

Table 3 shows some general statistics about exome sequencing calls. BWA ap-
pears to be the best aligner, producing more calls with higher F-scores than the
other aligners.

Aligner Multiple alleles

Outside list

Filtered-out calls

Calls analysed SNPs analysed

AW IDN -

bowtie 33 28,251 2,460 70,276
bwa 34 28,965 1,892 71,493
gsnap 34 28,994 1,959 71,322
novo 34 28,569 1,882 70,351

12,063
12,217
12,191
12,025

Table 3: Results of filtering of exome SNP calls for each aligner. "Calls analyzed"
represents the number of calls where data from both platforms were used after
filtering. "SNPs analyzed" represents the number of SNPs which were used for
analysis after filtering.
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Aligner Genotype Precision Recall F1-Score

0/0 0.982 0.454 0.621
bowtie 1/0 0.999 0.889 0.941
1/1 0979 0.837 0.903
0/0 0.982 0.461 0.628
bwa 1/0 0.999 0.904 0.949
1/1 0.979 0.851 0911
0/0 0.982 0.460 0.627
gsnap 1/0 0.999 0.902 0.948
1/1 0.979 0.849 0.909
0/0 0982 0.453 0.620
novo 1/0 0.999 0.891 0.942
1/1 0.980 0.839 0.904

Table 4: Genotype-wise precision and recall(global) for each exome aligner.

RNA-seq

Due to technical issues with Tophat processing, 2 out of 6 samples are excluded
from the analysis of RNA-seq. 4 out of 6 samples aligned using Tophat are used
to represent RNA-seq alignment and variant calling.

Aligner Multiple alleles Outside list  Filtered-out calls  Calls analyzed SNPs analyzed

tophat 21 16,940 4,943 22,277 6,545

Table 5: Results of filtering of RNA-seq SNP calls for each aligner. "Calls ana-
lyzed" represents the number of calls where data from both platforms were used
after filtering. "SNPs analyzed" represents the number of SNPs which were used
for analysis after filtering.

Aligner Genotype Precision Recall F1-Score

0/0 0983 0.183 0.308
tophat  1/0 0.999 0475 0.644
1/1 0.977 0.431 0.598

Table 6: Genotype-wise precision and recall(global) for each RNA-seq aligner.

Comparison of RNA-seq and exome alignments

RNA sequencing generated fewer calls and found fewer SNPs than exome se-
quencing(table 5). In addition, more low-quality calls were made and filtered
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out. Precision was similar for exome sequencing and RNA-seq(table 6), while re-
call was higher for exome sequencing. For both platforms, depth does not have
a clear correlation with precision or (local) recall, but remains quite stable(see
figure 5 and supplementary materials). Higher quality is correlated with higher
accuracy, although a large proportion of the calls have the maximum quality
value, 99, corresponding to an error p-value of 1.259 - 10~'°(data not shown).
Of all SNPs detected by BWA, representing exome sequencing, and Tophat,
representing RNA-seq, 6,302 SNPs are common between the two, while 5,915
are uniquely found in exome sequencing and 243 are found uniquely in RNA-
seq(figure 3). There are slight differences in the distributions of SNPs across
different locations and variant types(figure 4), which may partly explain this.

Figure 3: Overlap between SNPs detected by each platform. BWA represents
exome sequencing, and Tophat represents RNA-seq.
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The calls made from BWA, representing exome sequencing, and Tophat, rep-
resenting RNA-seq, were compared to study differences in calls made. Out of
the 71,493 exome sequencing calls and the 22,277 RNA-seq calls, 21,048 calls
were common for both platforms. Of these, 99.87%(21,020 calls) predicted the
same genotype. 98.94% of these were correct. The relation between RNA-seq
and exome-seq calls is seen in table 7.

RNA-seq
0/0 0/1 1/1
0/0 7,413 0 0
exome 0/1 12 8,315 15
/1 0 1 5292

Table 7: Counts of calls from RNA-seq and exome sequencing in respect to
genotype.

Discussion

This project shows that variant calling can be performed with high precision
from next-generation sequencing data. The precision is the highest for heterozy-
gote calling. The Hardy-Weinberg equilibrium shows that, for biallelic loci with
an allele frequency of 0.5, the proportion of genotypes are 25 percent for each
homozygous genotype, and 50 percent for the heterozygote genotype.”” Thus,
a partial explanation is that calls for heterozygosity may be more likely to be
correct due to chance alone for common alleles.

BWA seems to be the best aligner for exome sequencing data, with more calls
made, higher accuracy and much higher speed. It should be noted that BWA
was used with a slightly different reference genome, which could account for
part of the difference. A likely explanation for the extreme differences in speed
may be that different aligners were more or less able to utilize the multiple cores
assigned to them. That would especially explain the big difference between BWA
and Bowtie, and GSNAP and Novoalign. An important point to mention is that
minimal adjustments to the configuration of each aligner were made. As such,
it is not known to what degree the differences in accuracy and speed are the
result of the underlying algorithms, or due to the default set of parameters used
for alignments being more appropriate for this project. All aligners have many
different options pertaining to, for instance, alignment scoring, read-reference
mismatch tolerance and performance. It is likely that the differences between
aligners shown here would increase or decrease if the parameters of each aligner
were optimized.
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Interestingly, calls for homozygosity for the alternative allele have both
slightly lower precision and higher recall than for other genotypes. The lower
precision might be due to mis-mapped reads which are misinterpreted as vari-
ants, insufficient depth at the variant site, or monoallelic expression. The low
recall for the homozygous reference allele is likely the result of the variant call-
ing program not calling homozygous reference alleles unless another sample has
been called with any alternative allele for that particular SNP.

Apart from some technical difficulties, RNA-seq fared well in this compar-
ison, generally performing as well as exome sequencing in regard to precision.
As expected, the recall is lower, although the difference in sample size makes
it difficult to know how big the real difference would be. Assuming that each
sample contributes with approximately the same amount of calls, the number of
expected calls for Tophat would be around 22,277 - 1.5 = 33,415 calls for all six
samples, which is less than half of the number of calls from exome sequencing
data.

The high agreement between platforms, as discussed in the previous section
shows that the main difference between platforms is not the quality of generated
SNP calls, but their localization. Specifically, around half of the SNPs only
detected in only RNA-seq were from the 3’-UTR. The majority of the regions
targeted by exome sequencing are exons, whereas for RNA-seq, since the cDNA
library was constructed using poly-A-targeted enrichment, every transcript in
the library will carry 5’- and 3>-UTRs. The human 3>-UTR is on average four
times as long(~ 800 bp) as the 5-UTR(~ 200 bp),”® which might explain why a
higher proportion of 3>-UTR SNPs are uniquely found by RNA-seq. For exome
sequencing, the list of uniquely found SNPs are shown to be more uniformly
distributed.

As a technical note, the analysis pipeline is shown to work well for exome
sequencing data, but less well for RNA-seq data, due to alignment data from
spliced alignment not being completely compatible with the Genome Analysis
Toolkit. This has to be fixed for the pipeline to be viable for RNA-seq data.
While feature-rich, well-documented, and built with parallelization in mind,
GATK is very sensitive to the structure of its input, and usually cannot recover
from problems.

In addition, processing the alignments is computation-intensive and takes a
substantial amount of time(data not shown). Most of this time is taken up by
indel realignment and base quality recalibration. Optimization of these steps
would decrease the total processing time.

This project has laid the foundations of a pipeline for variant calling from
exome and RNA-seq data. There is a number of possible extensions of the study:

e Correct the problems encountered with RNA sequencing. Most urgently,

16



the pipeline has to be adjusted so that all samples are properly processed.
Additionally, being able to use STAR for alignment would substantially

decrease alignment time.

e Optimize the sample processing step for speed. In its current state, the
pipeline is very slow.

e Increase the sample size to increase statistical power.
e Attempt to increase the relatively low recall.

e Use the resulting data for -omics studies, for instance of allelic imbalance
of expression and RNA editing.
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7 Supplementary material: detailed operating
characteristics

This section shows the precision and recall for different aligners depending on depth and genotype
quality. The corresponding graph for BWA is shown in Figure 5 .
Please note that in these graphs, recall is calculated differently. Only calls which were made are
considered, which is the reason for the much higher recall values seen here compared to the rest of the
report. As such, recall is defined for each genotype as

NCorrect ) (4)

NCorrect +NCalls for other genotypes

Exome sequencing
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RNA sequencing
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8 Supplementary material: Software commands

This section shows the command parameters used for key programs in the pipeline.
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Alignment

SAMPLE1 and SAMPLE? refer to the two files for each paired-end sample. samplename, lane, and
adapter refer to different designations used for read-group assignments. GSNAP:

gsnap -A sam --pairmax-dna 300 --pairexpect 202 --pairdev 30 \
—--read-group-id=${samplename}_${lanel}_${adapter} --read-group-name=$samplename \
--read-group-platform=$PLATFORM_NAME -n 1 -B 5 -t $N_THREADS -D $GMAP_INDEX \
-d hgl9 $SAMPLE1 $SAMPLE2

BWA:

bwa mem -M -t $N_THREADS \
-R ORG\tID:${samplename}_${lane}_${adapter}\tSM:$samplename\tPL: $PLATFORM_NAME \
$BWA_INDEX $SAMPLE1 $SAMPLE2

Bowtie:

bowtie2 -p $N_THREADS --end-to-end -I 270 -X 330 \

--rg-id ${samplename}_${lane}_${adapter} --rg SM:$samplename \
—--rg PL:$PLATFORM_NAME -S ${samplename}_exome_bowtie.sam \
$BOWTIE_INDEX -1 $SAMPLE1 -2 $SAMPLE2

Novoalign:

novoalign -k -c $N_THREADS -o SAM \
ORG\tID:${samplename}_${lane}_${adapter}\tSM:$samplename\tPL:$PLATFORM_NAME \
-i PE 202,30 -r Random -d $NOVO_INDEX -f $SAMPLE1 $SAMPLE2

Tophat:

tophat --max-multihits 1 --num-threads $N_THREADS \

--rg-id ${samplenamel}_${lane}_${adapter} --rg-sample $samplename \
—--rg-platform $PLATFORM_NAME --mate-inner-dist 98 --mate-std-dev 30 \
—--transcriptome-index=$BOWTIE2_TRANSCRIPTOME --no-novel-juncs $BOWTIE_INDEX \
$SAMPLE1 $SAMPLE2

Post-processing

This portion performs quality-based filtering(MAPQ > 40) and removal of non-autosomal reads.
The awk script portion checks and only prints each record if the RNAME fields in each entry
in the SAM/BAM file is of the form "(one or more digits)"(for BWA alignment files, which
use a reference with chromosomes named 1, 2, etc.), or "chr(one or more digits)" (for all other
aligners). The header lines at the start are always printed. The last portion reads the input stream

of SAM data and encodes it as a BAM file. BWA alignment files:

samtools $viewcommand -q 40 $1 | \

awk *{if($0 '~ /~e/){if($3 ~ /" [[:digit:11+$/){print $0}}else print $0}’ | \
samtools view -Sb - > $PWD/$base.filt.bam

where $viewcommand is "view -h" for BAM files and "view -Sh" for SAM files,
and $1 is the alignment file in question.
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Files from other aligners:

samtools $viewcommand -q $MIN_MAPQ $1 | \

awk {if($0 !~ /7@/){if($3 ~ /~chr[[:digit:]1]1+$/){print $0}}else print $0}’> | \
samtools view -Sb - > $PWD/$base.filt.bam

where $viewcommand is "view -h" for BAM files and "view -Sh" for SAM files,

and $1 is the alignment file in question.

Subsequent filtering:

#Sort, index and convert SAM file to BAM

java -Xmx$JAVA_MEM -jar ~/Picard-Tools/SortSam.jar CREATE_INDEX=true \
INPUT=$PWD/$base.filt.bam OUTPUT=$PWD/$base.sorted.bam \
SORT_ORDER=coordinate

#Use MarkDuplicates to remove duplicate reads.

#Also writes removal info to $base.dedup.info and creates index for output.
java -Xmx$JAVA_MEM -jar ~/Picard-Tools/MarkDuplicates.jar \
CREATE_INDEX=true INPUT=$PWD/$base.sorted.bam \
OUTPUT=$PWD/$base.dedup.bam METRICS_FILE=$base.dedup.info \
REMOVE_DUPLICATES=true

#Reorder contigs to make sure they’re in the correct order for GATK(chrM,chril...
java -Xmx$JAVA_MEM -jar ~/Picard-Tools/ReorderSam.jar \

CREATE_INDEX=true INPUT=$PWD/$base.dedup.bam \
OUTPUT=$PWD/$base.dedup.ordered.bam REFERENCE=$REFERENCE_FASTA

#Create indel realigner targets

java -Xmx$JAVA_MEM -jar ~/GATK/GenomeAnalysisTK.jar \

-nt $N_THREADS -T RealignerTargetCreator -R $REFERENCE_FASTA \

-I $PWD/$base.dedup.ordered.bam -o $PWD/$base.dedup.ordered.intervals

#Realign indels

java -Xmx$JAVA_MEM -jar ~/GATK/GenomeAnalysisTK.jar \
-compress O -T IndelRealigner -R $REFERENCE_FASTA \
-I $PWD/$base.dedup.ordered.bam -targetIntervals \
$PWD/$base.dedup.ordered. intervals \

-o $PWD/$base.realigned.bam

#Base quality recalibration(calculation)

java -Xmx$JAVA_MEM -jar ~/GATK/GenomeAnalysisTK.jar \

-nct $N_THREADS -T BaseRecalibrator -I $PWD/$base.realigned.bam \

-R $REFERENCE_FASTA -knownSites $DBSNP_VCF -o $PWD/$base.realigned.table

#Base quality recalibration(applying changes)

java -Xmx$JAVA_MEM -jar ~/GATK/GenomeAnalysisTK.jar -nct $N_THREADS \
-T PrintReads -R $REFERENCE_FASTA -I $PWD/$base.realigned.bam \

-BQSR $PWD/$base.realigned.table -o $PWD/$base.recalibrated.bam

#reduce reads
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java -Xmx$JAVA_MEM -jar ~/GATK/GenomeAnalysisTK.jar -T ReduceReads \
-R $REFERENCE_FASTA -I $PWD/$base.recalibrated.bam -o $PWD/$base.reduced.bam

Variant calling

samples=’"~

#Create a long string with the path of each reduced BAM file in the directory
for samfile in $(1s *.reduced.bam) ;do

echo "Found sample $samfile."
samples="$samples-I $PWD/$samfile
done

#Use UnifiedGenotyper to call variants

#The data is downsampled to 1000 reads/position.

#0nly SNPs in hapmap(3.3) are considered.

java -Xmx$JAVA_MEM -Djava.io.tmpdir=$0UT_DIR/tmp -jar $GATK_BIN \

-nt 2 -nct 5 --genotyping_mode GENOTYPE_GIVEN_ALLELES --alleles $VCF_HAP \

-T UnifiedGenotyper -R $REFERENCE_FASTA $samples --dbsnp $VCF_HAP \

-o $0UT_DIR/${aln}_${tech} _raw.vcf -dcov 1000

#Filter vcf file

#vcf-annotate does the filtering, while the awk script removes

#all variants which did not pass filtering.

cat $0UT_DIR/${aln}_${tech} raw.vcf|vcf-annotate --filter MinDP=10/Qual=10 | \
awk *{if($0 ~ "“#"){print $0}telse{if($7 ~ "PASS")print $0}}’> > \
$0UT_DIR/${aln}_${tech}_filt.vct

9 Software tools and versions

The following tools were used in the analysis:
e Picard-Tools? 1.58
e samtools®® 0.1.19
vcftools?” 0.1.9
Genome Analysis Toolkit(GATK)!! 2.2-16
PLINK** % 1.07

Sequence aligners:

- BWA0.7.52

- Bowtie!” 2.0.6

- Tophat'* 2.0.7
GSNAP'® 2013-06-27
STAR'™ 2.3.0e
Novoalign'? 3.00.05

e R language environment?* 2.15.1

e R packages:
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- reshape2’° 1.2.2
- ggplot2*1 0.9.3.1
- VennDiagram® 1.6.5
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10 Cross-platform comparison of array gene ex-
pression data

Abstract

The Affymetrix GeneChip microarray and the Illumina Human Bead-
Chip array have big differences on both the technological and analytical
level. The aim of this project was to investigate the level of correspondence
between these two platforms. Expression data from three different sources,
Affymetrix, lllumina and RNA sequencing, were processed and compared
using expression values, linear models and gene set enrichment analysis for
12 islet cell samples. While the two array platforms show big differences
at the raw intensity level, it is shown that the differences between the plat-
forms decrease with higher levels of analysis. This gives support for the
possibility of combining microarray results across platforms.
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Abbreviations

BMI: body mass index; DNA: deoxyribonucleic acid; FFPE: Formalin-fixed
paraffin-embedded; GSEA: gene set enrichment analysis; MDS: multidimen-
sional scaling; PAGE: parametric analysis of gene set enrichment; RMA: robust
multiarray average; RNA: ribonucleic acid; SNP: single nucleotide polymor-
phism; VST: variance-stabilizing transformation.

11 Introduction

Microarrays

DNA microarrays are an established technology for genetic analysis of biolog-
ical samples with many uses, including single nucleotide polymorphism(SNP)
analysis, differential gene expression analysis, and transcript splicing studies,
among many other(see Plomin et al.” for a brief review of the technology).
Because of the low cost, the availability of well-established analysis tools and the
extensive body of knowledge from many years of use as a primary tool in labs,
the microarray is a useful technology in research.

The typical microarray, exemplified by the commonly used GeneChip ar-
rays manufactured by Affymetrix, consists of a flat surface on which oligonu-
cleotide probes specific to a genomic or transcriptomic target sequence are im-
mobilized in a specific pattern. Complementary DNA (cDNA) fragments tagged
with fluorescent molecules are applied to the microarray and bind to their anti-
sense target probes. The array is then scanned, and the fluorescence measured
at each spot reflects the amount of target sequence in the sample. Probes can be
used to target different features, most prominently SNPs as used in chip geno-
typing, and transcripts as used in gene expression profiling.

The raw scans have to be processed in order to make between-array com-
parisons of expression levels possible and to inspect the quality of each array.
A commonly used method for between-array normalization of Affymetrix data
is the robust multi-array average(®RMA)** method. This includes background
correction, log,-transformation and quantile normalization. The goal is to nor-
malize the mean expression values and variances to put all intensities on the same
scale.

The BeadArray technology, manufactured by Illumina, in contrast, puts the
probes on microscopic beads, which are then put in wells arranged in a hexago-
nal grid. The arrangement of beads and the number of replicate beads per probe
is random and varies between arrays. As with standard high-density DNA mi-
croarrays, the resulting raw data consists of measures of signal strengths mapped
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to specific probe sequences, but the different design affects how the data is ana-
lyzed.

In order for data to be used across different platforms, it is important to
know the level of correspondence between results from different platforms. A
previous study by Zhang et al. performed on a mitochondrial disease model in
mice showed a relatively good agreement between Affymetrix and Illumina ex-
pression arrays,” although the correlation between platforms on the raw probe
intensity level was non-linear.

RNA-seq

Massively parallel high-throughput sequencing, commonly known as next-
generation sequencing, is a very powerful tool for genetic analysis. In tran-
scriptome sequencing’® (also known as RNA-seq), all RNA or a subset of RNA
types from a sample are sequenced. This allows for the study of transcript iso-
forms resulting from alternative splicing, fusion transcripts resulting from trans-
splicing(between genes) events, and gene expression profiling with a higher dy-
namic range and sensitivity than expression microarrays. This method is more
expensive than microarrays, however, and is more complicated and computa-
tionally intensive to analyze.

Goals of this project

Twelve samples for which Affymetrix, Illumina and RNA-seq data was available
were analyzed. Differences between Affymetrix and Illumina were identified by
examining the raw signal intensities, through differential expression analysis by
comparing different patient groups, and through gene set enrichment analysis.

12 Materials and Methods

Materials

Islet cell samples from twelve individuals were profiled using Affymetrix
HuGene ST microarray GeneChips, one 12-sample HumanHT-12 bead-array
BeadChip, and transcriptome sequencing. The sample group included both
sexes, all patients were non-diabetic, and had a mean BMI of 26.8(S.D. 3.5). The
mean age(measured as the date difference between the birth date and the date of
isolation) was 51.8(S.D. 10.9). For Affymetrix arrays, raw CEL-files were used as
the starting point of analysis. For Illumina, non-normalized, non-background-
corrected probe-level summary data, produced using GenomeStudio 2011.1, was
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Figure 10: The preprocessing steps performed on the raw microarray data.

used. For RNA-seq data, gene-level, length-normalized counts produced using
Tophat and Cufflinks transcriptome assembly were used.

Methods

All calculations were performed using the statistics software R* and the bioin-
formatics framework Bioconductor.*® Plots were generated using the packages
ggplot2,*! reshape2,* and VennDiagram.®

Microarray Preprocessing

The raw Affymetrix data was RMA-normalized using the affy** package, while
the raw Illumina data was transformed using the variance-stabilizing transforma-
tion method(VST)* from the /umi*® package, followed by quantile normaliza-
tion, as recommended by Ritchie et al.*” Affymetrix and Illumina data was then
filtered in two steps. First, probes without Entrez ID annotation were removed,
and all probes mapping to the same Entrez ID’s were reduced to the probes with
the highest variance. The resulting set of probe intensities were used for expres-
sion level comparisons between platforms. Affymetrix data was annotated using
the annotation databases hugenel0Ostcdf** and hugenelOsttranscriptcluster.db.* 1l-
lumina data was annotated using the annotation database lumiHumanAllLdb.”®
In a second filtering step, probes were variance-filtered, only retaining probes
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Figure 11: The per-section signal to noise ratio was calculated from the metrics
file produced from raw data. In addition, multi-dimensional scaling@MDS) plots

of log,-transformed data from each platform were used to identify potential clus-
tering factors between samples.

with variance above the median. The motivation for this is that low variabil-
ity across samples indicates non-expressed probes. The resulting data was used

for gene expression profiling(table 8). Quality assessment plots were made to
compare the signal intensities before and after filtering(figure 12).

Platform Before Duplicates No annotation Low variance  Left
Affymetrix = 32321 1364 11072 9943 9942
[llumina 47230 10406 15998 10413 10413

Table 8: Results of nonspecific probe filtering.
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Figure 12: Boxplots of log,-transformed data before and after filtering.
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Cross-platform expression level correlation

As a measurement of within-platform correlation of log,-transformed data, the
Spearman correlations between each sample and all other samples were calcu-
lated and visualized using boxplots(figure 13).

To measure between-platform correlations, the Spearman correlations be-
tween Affymetrix versus Illumina, Affymetrix versus RNA-seq and Illumina
versus RNA-seq per sample for all common genes were calculated and visualized
with scatterplots(see figure 14 and appendix).
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Figure 13: Within-platform intensity correlations for the three platforms. Each
sample was compared to every other sample, resulting in 11 data points per sam-
ple.
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Affymetrix/lllumina correlation
r=0.639
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Figure 14: The mean log,-scale intensities per Entrez gene ID were calculated
for each platform. In the above scatterplot, each dot represents one Entrez ID.
The size of the dot corresponds to the mean of the standard deviations for both
platforms for the Entrez ID in question. Scatterplots for each individual sample
can be found in the appendix of this paper.

Differential expression analysis
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Figure 15: Differential expression workflow. Each array platform was analyzed
using the same statistical model, and the correlation and overlap between array
platforms was compared.
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Figure 16: Overlap between Entrez IDs targeted by each platform before and
after variance filtering.
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As preparation for analysis of differential expression, the overlap be-
tween the Entrez IDs targeted by each raw and processed dataset was calcu-
lated,resulting in a list of 5,574 Entrez IDs targeted by both platforms after pro-
cessing(figure 16).

For the purpose of evaluating the correlation between and inside platforms,
3 unpaired, two-class comparisons were made using the R package limma:!

e males and females(8 versus 4 samples),

e samples above and below the median BMI(26.25) in the dataset(6 versus 6
samples), and

e age > 60 and < 60(8 versus 4 samples).

The different groups were chosen with the aim of giving measurable differ-
ences in gene expression: for the gender comparison, mainly Y-linked genes; for
BMI, genes affected by body mass and food intake,such as genes associated with
metabolism; and for age, potential age-related differences in gene expression. In
addition, between-platform fold-change correlation plots were constructed from
all overlapping genes.

RNA-seq analysis

The duplicate-filtered array data was remapped to gene symbols in order to en-
able comparison to the RNA-seq counts, which were mapped to gene symbols
rather than Entrez gene identifiers. MDS plots were made from the normalized
RNA-seq counts using the plotMDS function in edgeR.>* Between-platform cor-
relations were calculated between log,-scale counts from each sequencing plat-
form and the log,-scale RNA-seq counts, with a pseudocount of 1 added to all
counts to set values on the same scale as the array data.

For each group comparison, RNA-seq counts were variance-normalized us-
ing the voom® function in limma. Linear model fits were then performed in the
same way as for microarray data. Between-platform log, fold-change correlation
plots of the gene symbols common between each platform and RNA-seq were
created for each group design.

Gene set enrichment analysis

Gene set enrichment was analysed for the BMI and age comparison using para-
metric analysis of gene set enrichment(PAGE) from the PGSEA®* package. The
linear fits for both array platform created earlier were used to perform gene set
enrichment analysis on the age and BMI comparisons. In the PGSEA analy-
sis, high-significance(p < 0.01) enriched gene sets in the high-age and high-BMI
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groups were calculated for each platform. The Spearman correlation coefficients
for pairs of Z-scores common between platforms were calculated, and the over-
lap of the sets of enriched gene sets between platforms were calculated.

13 Results and Discussion

Affymetrix versus Illumina comparison
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Figure 17: Results of sex comparison. Left side: Volcano plots for each platform.
Right side, top: Number of overlapping genes in the highest fold-change list of
genes from each platform. Right side, bottom: Fold-change correlation of the
1,880 genes common between the lists of the 3,000 highest fold-change genes of

each platform.
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Affymetrix by age Overlap,top 1000 genes
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Figure 18: Results of age comparison. Left side: Volcano plots for each platform.
Right side, top: Number of overlapping genes in the highest fold-change list of
genes from each platform. Right side, bottom: Fold-change correlation of the
1,899 genes common between the lists of the 3,000 highest fold-change genes of
each platform.
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Affymetrix by BMI Overlap,top 1000 genes
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Figure 19: Results of BMI comparison. Left side: Volcano plots for each plat-
form. Right side, top: Number of overlapping genes in the highest fold-change
list of genes from each platform. Right side, bottom: Fold-change correlation of
the 1,876 genes common between the lists of the 3,000 highest fold-change genes
of each platform.
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Between-platform correlations show a strong skewness in the distribution
of Illumina log,-scale values towards the lower end, with a mean Affymetrix-
Illumina per-probe correlation of 0.639. The skewness seen is similar to results
seen in a study by Zhang et al.”’ Experimental error may have an additional
negative influence on correlation, which is supported by the mean signal-to-
noise ratio being below 10 for the array, whereas a ratio of 10 is recommended
as a threshold for what should be considered to be a good-quality array.”

All three comparisons show an overlap for the top 1000 highest fold-change
genes of slightly below 50%, and with fold-change correlations between the plat-
forms for high-ranking genes ranging from 0.808 to 0.821. In other words, a
gene with a high fold-change on one platform is likely to show a high fold-
change on another, while the internal ranking of even the highest fold-change
genes differs between platforms, and some genes will be shown as highly differ-
entially expressed on only one of the two platforms. This is in agreement with
the findings of a study by Cheadle et al., which found a low overlap between
high-scoring genes between platforms, while results from gene set enrichment
analyses such as GSEA and PAGE are largely consistent between platforms.

There are important limitations in regard to what conclusions can be drawn
from this comparison:

e The sample size is small, resulting in a lack of statistical power to detect
differential expression, and overall high adjusted and unadjusted p-values.

e The group designs used may be limited in regard to truly differentially
expressed genes, which would introduce noise in the top-ranking tables.
This seems especially to be the case for the sex comparison.

e The annotation available and the imposed limitation to genes detectable
on both platforms causes a loss of information, since genes unique to each
platform and poorly annotated genes cannot be fully compared. It is also
likely that some probes are mismapped.

e Quality assessment suggests that the array had a relatively low signal-to-
noise ratio.

Several studies directly map the probe sequences to current versions of the
genome, which might improve the stability of results across platforms by re-
moving the effect of incorrect annotations.

RNA-seq analysis
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Figure 20: Overlap between gene symbols in the top 100 highest average-
expression genes for all platforms.
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Figure 21: MDS plot for RNA-seq.
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Figure 22: RNA-seq/array fold-change correlations for sex comparison.
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Figure 23: RNA-seq/array fold-change correlations for age comparison.
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Figure 24: RNA-seq/array fold-change correlations for BMI comparison.
The comparisons between RNA-seq and microarrays show bigger differ-

ences than those which are found when comparing microarrays(figure 22 to 24).
Between-platform correlations versus RNA-seq for Affymetrix vary from 0.273
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to 0.642, while correlations for Illumina vary from 0.329 to 0.529. Both plat-
forms show the highest correlation to RNA-seq for the BMI comparison.

Gene set enrichment analysis

lllumina vs RNAseq,BMI

Affymetrix vs RNAseq,BMI
r=0.885

Affymetrix vs lllumina,BMI
r=0.652

r=0.658

RNAseq
RNAseq

lllumina

Affymetrix Affymetrix lllumina

Figure 25: Enrichment score correlation for BML

RNA-seq
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Figure 26: Overlap between enriched gene sets, BML.
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Gene set

ribosome

oxidative phosphorylation
parkinsons disease
spliceosome

huntingtons disease
proteasome

purine metabolism
aminoacyl trna biosynthesis
alzheimers disease

rna degradation

Affymetrix Illumina RNA-seq
-3.363 -10.623

-4.651 -6.447

-3.830 -5.768

-2.877 -2.988 -5.577
-4.293

-4.127

-4.127 -4.252 -3.723
-2.927 -3.130
-2.996

-2.725

Table 9: Top ten downregulated gene sets according to RNA-seq data, in BMI

comparison.

Affymetrix vs lllumina,age
r=0.702

lllumina
RNAseq

- Affymetrix

Affymetrix vs RNAseq,age

r=0.592 r=0.614

RNAseq

Affymetrix ) ‘ lllumina ‘

Figure 27: Enrichment score correlation for age.

lllumina vs RNAseq,age

Gene set

Affymetrix Illumina RNA-seq

complement and coagulation cascades
metabolism of xenobiotics by cytochrome p450
drug metabolism cytochrome p450

cytokine cytokine receptor interaction
chemokine signaling pathway 4.172

nod like receptor signaling pathway

intestinal immune network for iga production
glutathione metabolism  2.941

systemic lupus erythematosus

8.798 8.589

10.239 7.778

9.854 6.835

5.577 4.909

5.474

5.562 4.486

4.595 4.415

3.567

apoptosis  3.272 2.792

10.065
7.506
6.073
5.784
5.576
5.051
4.747
4.649
4.033
3.942

Table 10: Top ten downregulated gene sets according to RNA-seq data, in BMI

comparison.
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Affymetrix

RNA-seq

Figure 28: Overlap between enriched gene sets, age.

Geneset Affymetrix Illumina RNA-seq

metabolism of xenobiotics by cytochrome p450 -9.296 -8.630 -7.605
steroid hormone biosynthesis -8.401 -7.460 -5.795

propanoate metabolism  -2.769 -3.152 -5.039

pathogenic escherichia coli infection -2.673 -4.186

arthythm. right ventr. cardiomyop. -4.536 -3.596 -4.144

tight junction  -4.319 -4.481 -4.030

leukocyte transendothelial migration -4.048 -4.866 -3.984

valine leucine and isoleucine degradation -2.705 -3.909

drug metabolism cytochrome p450 -7.535 -6.247 -3.889

starch and sucrose metabolism  -7.993 -5.128 -3.869

Table 11: Top ten downregulated gene sets according to RNA-seq data, in age
comparison.
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Gene set  Affymetrix Illumina RNA-seq

ribosome 4.273 5.030 15.526

oxidative phosphorylation  3.328 4.522 12.603
parkinsons disease 3.564 8.810
huntingtons disease 7.805
alzheimers disease 3.155 7.312

lysosome 6.117

type i diabetes mellitus 2.976 6.089
graft versus host disease 5.409
allograft rejection 5.347
autoimmune thyroid disease 4.760

Table 12: Top ten downregulated gene sets according to RNA-seq data, in age
comparison.

PAGE analysis shows between-platform correlations between 0.592 and
0.885. Illumina detects two additional "true positive" enriched gene sets(i.e.
gene sets which are shown to be enriched for RNA-seq) for the BMI compari-
son(figure 26). In the age comparison(figure 28), Illumina detects two additional
true positives as well, while also getting one additional false positive. False posi-
tive rates are consistent between Illumina and Affymetrix. The combined num-
ber of true positives is roughly equal to the combined number of false positives.

14 Conclusion

The results show that fold-change correlation is moderately high(~0.8) although
ranks of top genes are relatively discordant(less than 50% overlap). Gene set
enrichment analysis seems to show a moderate agreement between platforms,
but there is a substantial number of gene sets which show enrichment uniquely
for each array platform. As such, it seems like data from the two platforms is
comparable, although it is probably a good idea to conduct additional studies
and develop methods to adjust for the differences.
There are some interesting extensions of this work that could be made:

e Refinements can be made to the analytical procedure. An example would
be to improve the mapping between probes and genes, for instance by
mapping probe sequences to current versions of the reference transcrip-
tome.

e The main goal of this project was to investigate how well data from the II-
lumina and Affymetrix array platforms correspond. Attempting to com-
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bine data across platforms is a natural step forward.

e Earlier studies, and this project, show a non-linear relationship between
signal intensities for each gene. It is possible that the data from the two
microarray platforms and the RNA-seq data could be used as the basis
for approximating a function which converts intensities from one array
platform to equivalent intensities on another array platform.
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16 Supplementary material:Between-Platform cor-

lations
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17 Software tools and versions

The following tools were used in the analysis:

e Biobase* 2.18.0

Array loading and processing:

- lumi* 2.10.0
- affy* 1.36.1

e limma’! 3.14.4

Annotation:

- lumiHumanAlLdb* 1.18.0
- hugene10sttranscriptcluster.db*’ 8.0.1
- hugene10stvicdf*® 2.11.0

PGSEA>* 1.32.0

Plotting:

- VennDiagram® 1.6.5
- reshape2* 1.2.2
- ggplot2*1 0.9.3.1
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Corrections
o Table 1 has been recalculated.
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