








Abstract

This Master’s thesis project concerns developing statistical methods to exam-
ine sea level data provided by the Swedish Meteorological and Hydrological
Institute (SMHI). The data comes from sea level gauges located in the har-
bours of Uddevalla, Ängelholm and Åhus along the Swedish coast. These
three gauges are mobile, as compared to the permanent sea level gauges
used by the SMHI at various points along the coast. The mobile gauges
were placed during 2010 and the goal of this project is to analyse the data
they have provided. This is done in several steps as outlined below.

Initially, a comparison is performed between the extreme sea levels at
the three mobile gauge locations and permanent gauges placed nearby. This
analysis results in estimates of five-year return levels for the differences be-
tween the mobile and nearby permanent gauges. It turns out that the differ-
ence is roughly 50 cm. The second analysis involves studying the relationship
between the sea levels at the paired stations using linear regression. As a fi-
nal analysis these models are diagnosed and extended to include parameters
for wind speed, wind direction and atmospheric pressure.

The largest single objection to the validity of the regression models is
arguably the natural temporal dependence in the data which indicates that
time series models could be more suitable. Such models are fitted to the
dataset where fractional integration is applied to handle long-term memory
and GARCH models are implemented for conditional heteroscedasticity. In
addition, harmonic tidal analysis is also performed.
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1 Introduction

Through experience, the on duty oceanographers (Vakthavande Oceanografer)
at the Swedish Meteorological and Hydrological Institute (SMHI) knows that
at certain points along the Swedish coast the models used for forecasting sea
levels sometimes predict less extreme values than are later observed. These
points of interest tend to lie in bays, where factors such as water depth,
wind speed and wind direction can make for significantly different sea level
behaviour, compared to nearby points along the coast but outside the bays
(Strömberg 2012). This pertains to both high and low sea water levels.

SMHI has 23 permanent sea level gauges placed along the coast, from
Kalix, close to the Finnish border, to Kungsvik, right along the border to
Norway. The longest still active gauging position is Stockholm, where sea
level data have been recorded from 1889 onwards (smhi.se 2013f). In ad-
dition to these gauges, SMHI also has three mobile sea level gauges placed
at Uddevalla, Ängelholm and Åhus, all positions that SMHI consider to be
oceanographically interesting areas. These mobile gauges were placed during
2010 and are still operational.

Now, SMHI wish to relate the sea level data from the mobile gauges with
the sea level data from nearby permanent stations in order to eventually be
able to increase the reliability of the oceanographic forecasting and warning
service. The permanent stations that have been chosen for comparison are
for Uddevalla: Smögen, for Ängelholm: Viken and for Åhus: Simrishamn
and also (possibly) Kungsholmsfort. They also wish to study the effects of
wind speed, wind direction and atmospheric pressure on the sea levels.

The report is structured into six sections besides the introduction, as well
as an appendix, which is divided into three sections. Section 2 details the
geographical locations of the gauges in question, provides a brief overview of
some factors that affect sea levels along the Swedish coast, and defines the
warning levels used by the Oceanographic Warning & Forecasting Service
at SMHI. In Section 3, an initial analysis is done on the data provided by
SMHI. It details information regarding missing data, some statistical charac-
teristics, and correlations between the data sets. Section 4 is theoretical and
in it, an outline of extreme value theory is given, with a focus on the GEV
distribution, as well as regression analysis, including model design and diag-
nostics. Finally, the theory section also outlines time series analysis models,
focusing on variations of the ARMA model, including fractional integration
and autoregressive conditional heteroscedastic models. A brief account of
tidal harmonic analysis is also given.

In Section 5, the results of applying the theory and methods described in

1



Section 4 to the sea level data sets are presented. The extreme value theory
is applied to the differences between the paired stations. This is done with
the goal of estimating how large the differences could get, with confidence
bounds. The regression analysis is used to study the relationships between
the data sets for the mobile gauges and their permanent counterparts. These
regression models are diagnosed and then extended to include the wind speed,
wind direction and atmospheric pressure data. The largest objection to the
validity of a regression model is the natural temporal dependence in the data.
Thus, time series models are built for the data. These are initially quite
large and contain structures to handle long term memory and conditional
heteroscedasticity. Harmonic tidal analysis is performed, in order to reduce
the size of the models.

The Results section is followed by Section 6, which gives details regarding
the programming languages and packages used in the project. Section 7 is
Summary and Discussion, in which the results are summarised and possible
future steps concerning the data from the mobile gauges are suggested.
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2 Background

2.1 Locations of the mobile gauges

The mobile gauges that are the focus of this project are, as stated in the In-
troduction, located in Uddevalla (in decimal degrees c. N 58◦.34’ E 11◦.89’),
Ängelholm (c. 56.27 12.82) and Åhus (c. 55.93 14.33). They are marked in
Figure 1.

Figure 1: The locations of the three mobile gauges are marked with red. The
green dots represent permanent sea level gauges as well as a few points that
only represent model values. Image from Strömberg 2012, p. 4.

For technical specifications regarding the gauges, see Strömberg 2012.

2.2 Locations of the permanent gauges

The three mobile gauging stations have each been paired with a permanent
station, as described in the Introduction. These permanent stations are all
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located close to their respective mobile gauges. In Figure 1 it can be seen
that Smögen, Viken and Simrishamn lie close to Uddevalla, Ängelholm and
Åhus, respectively.

2.3 Reference frames

Sea water level data from SMHI are given in the reference frame RH2000
(Rikets höjdsystem 2000) which is the national Swedish vertical reference
frame since 2005. In order to make the different gauging stations comparable,
the sea level data needs to be corrected for relative sea level changes, i.e. for
isostasy and eustasy (Swe., "landhöjning" and "havsnivåhöjning") (smhi.se
2013c).

The annual Mean Sea Level (MSL) is a value that is calculated through
a regression of many annual average sea levels. To be able to calculate the
regression line to a good enough precision, at least 30 years of data is needed
(Strömberg 2012; smhi.se 2013a).

The aforementioned correction is done by adding a constant that rep-
resents the MSL for the current year and gauging station to the RH2000
data. Since the time series for the mobile stations are too short to accu-
rately determine the MSL, the corrections for the mobile stations are done
by using the MSL for the nearest gauging station that has at least 30 years
of observations. For the equations that describe the MSL, see Appendix A.

All sea level data in this project, from both mobile and permanent sta-
tions, have been corrected for mean sea level changes according to Appendix
A.

2.4 Factors that affect sea levels along the Swedish coast

Of course, several factors influence the sea water levels along the Swedish
coast. Examples are atmospheric pressure, wind direction, wind speed, lunar
and solar tides, water density, depth of the basin, isostasy and eustasy. The
last two have been corrected for in the data used in this project, as described
in Section 2.3. Along the Swedish coast the most influential factors are the
wind over the North Sea and the Baltic Sea as well as atmospheric pressure
conditions (smhi.se 2013b).

The geography of the coast can naturally influence the sea levels a lot.
One example of this is the gauge station in Uddevalla harbour, seen in Figure
2. It is not far-fetched to assume that the water levels in Uddevalla harbour
can differ greatly from the water levels measured in Smögen, located further
out, due to for example water stowage in Havstensfjorden during certain
wind/atmospheric pressure conditions.
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Figure 2: There is a mobile gauge station in Uddevalla harbour, near the
upper right corner of the map. The location of Smögen, where the corre-
sponding permanent station is, is marked by the red pin on the map. Image:
c© OpenStreetMap contributors (openstreetmap.org).

The sea levels along the Swedish coast often exhibit clear seasonality as
the winds and atmospheric pressure changes with the seasons. The sea levels
can vary very much between different points along the coast over short time
periods, but at but half-year scale averages are roughly equal at all of SMHI’s
gauging stations.

Due to predominantly southwesterly winds during autumn, which press
water towards the west coast, sea levels are typically high. During winter
the sea levels exhibit stronger variation due to stronger winds. The most
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common case during winter is that the season is dominated by low atmo-
spheric pressure and southwesterly winds, causing high sea levels. During
spring and summer the sea levels typically drop and have smaller variations,
due to higher pressure and weaker winds. Southwesterly winds can cause
high sea water levels along the west coast and the northern Baltic Sea coast
while low water levels are recorded in Öresund (smhi.se 2013d).

Higher atmospheric pressure generally leads to lower water levels. Accord-
ing to calculations done by SMHI, an increase of the atmospheric pressure
by 1 hPa gives a 1 cm drop in sea water levels. Since the atmospheric pres-
sure in Sweden typically lies between 950 and 1050 hPa, pressure causes sea
water level variations between +63 and −37 cm, though this effect is hard
to observe in practice (smhi.se 2013e).

Finally, the sea levels are also influenced by deterministic tides. In the
Baltic, the tide is barely noticeable with an effect of only a few centimetres.
This is due to its small size and narrow entrance at Öresund. In Kattegatt
and Skagerack, on the other hand, the amplitude of the tides can reach 40 cm,
under the right conditions. The tide along the Swedish coast is semidiurnal
with a dominating period of 12 hours and 25 minutes, which is caused by the
moon’s gravitational pull on Earth. Of course, the tide is also affected by
other factors such as the gravitational pull of the sun, the earths rotation,
variations in the slope of their orbits and the local geography (smhi.se 2013g).

In analysis of oceanographical data, it is common to separate the tidal
signal from the non-deterministic noise signal. The tidal signal can then
either be studied by itself or discarded(Pawlowicz, Beardsley, and Lentz
2002).

2.5 The Oceanographic Warning & Forecasting Service

One of the responsibilities of the Oceanographic Warning & Forecasting Ser-
vice at SMHI is to issue and convey warnings when sea levels along the
Swedish coast are predicted to be especially high or low. These warnings are
divided into two classes, Class 1 and Class 2, with Class 2 being more severe.
The exact warning levels for the locations of interest are given in Table 1.

Generally, warnings of Class 1 are considered to have much informative
value, pose some risk to the public and may disrupt some public services.
Class 2 warnings indicate an oceanographic development that could pose a
danger to the public, as well as major property damage and major disruptions
of important public services. Warnings for high sea levels are of interest since
buildings, roads and quays risk being flooded. Also, installations such as
water treatment plants can experience problems. Low sea levels are mainly
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Class 1 Class 2
Low High Low High

Uddevalla 80 −100 120
Ängelholm −60 80 −100 120
Åhus 80 −100 120

Table 1: Warning levels for the three locations of interest, in cm. They are
the same for all of the locations, except the Class 1 warning for low sea level
in Ängelholm, which is −60, but does not exist for the other two locations.

of interest to the maritime industry, as they can result in groundings and
ships having problems entering certain harbours (Jönsson and Olsson 2013).

A warning should cover an area of 1000 m2 and reach within 10 cm of the
warning level (as defined in Table 1) to be regarded as correct.

Throughout this report, whenever warning levels are mentioned, these
will be the levels in question unless stated otherwise.
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3 Data

3.1 Initial data analysis

3.1.1 Quality of data

In contrast to the data from the permanent gauges, the data from the mobile
gauges has not been quality controlled by SMHI. Thus, there are instances
of both missing data and clear measurement error.

In the Ängelholm data series, one obviously incorrect measurement has
been found, on the 15th of March 2013. This is shown in Figure 3. In the
Ängelholm data there are 1787 hourly values missing (including the one ob-
viously incorrect measurement found). Of these, 63 % come from a period of
46 days in April and May 2012, when the gauge was apparently not working.

In the Uddevalla data there are 945 hourly measurements missing, of
which 92% come from a period of 36 days during the summer of 2012 when
the gauge was not working. Also, one obviously incorrect measurement has
been found. It is also marked as missing.

In the Åhus data, there are 29 hourly measurements missing and in the
data series from the permanent gauging stations, no data is missing.

Figure 3: Sea levels in Ängelholm (red line) plotted together with sea levels
in Viken (blue line) on the 15th of March 2013.
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3.1.2 Characteristics of the data

The minimum, mean, maximum and standard deviation of each of the time
series studied in this project are shown in Table 2. Looking at the three
pairs of stations separately; one can see that the range of the datasets is
larger for the mobile stations than for their paired permanent stations, in all
three cases. Also, the standard deviations are similar in all cases, though it
is somewhat higher in Uddevalla than in the other locations.

Minimum: Mean: Maximum: Standard
deviation:

Uddevalla (mob.) -80.15 2.01 150.65 26.91
Smögen -65.1 4.32 122.9 22.82
Ängelholm (mob.) -108.1 -4.35 178 23
Viken -98.3 -1.15 156.1 20.80
Åhus (mob.) -125.3 -9.76 88.72 21.26
Simrishamn -113.9 -13.18 89.62 20.72

Table 2: Mean, maximum, minimum and standard deviation for the three
datasets from the mobile gauges (Uddevalla, Ängelholm and Åhus) as well
as from the three permanent ones (Smögen, Viken and Simrishamn). All
values in the table are in cm.

All three of the time series from the mobile gauges are shown in Figure 4,
together with the nearby permanent stations. In all three plots, the mobile
data is shown in red, while the data from the nearby permanent gauges is
plotted in blue. Looking closer at the two topmost plots, one can easily see
the two longer periods where data is missing; in Uddevalla from the summer
of 2012, in Ängelholm from the spring of 2012. All the plotted datasets are
clearly heteroscedastic (i.e. the data lacks homogeneity of variance).

The Åhus and Simrishamn time series exhibit quite different general be-
haviours compared to the other two locations. This difference is assumed
to be due to the lack of pronounced tides in the Baltic Sea, as discussed in
Section 2.4.

The yellow and orange lines in Figure 4 show where the Class 1 and Class
2 warning levels are, for both high and low water levels. The warning levels
are given in Section 2.5.

Another way of visualising the influence of the tide along the west coast
is to look at the autocorrelation plots in Figure 5. The maximum lag in the
plots is a week.
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Figure 4: Top: data from Uddevalla in red, ovarlayed with data from Smögen
in blue. Middle: data from Ängelholm in red with data from Viken in blue.
Bottom: data from Åhus in red with data from Simrishamn in blue. The
yellow and orange lines show Class 1 and Class 2 warning levels respectively,
for both high and low water levels, where applicable.

Looking at the histograms and qq-plots presented in Figure 6, it can be
seen that none of the three data sets from the mobile stations appear to come
from a normal distribution. The two topmost plots (Uddevalla) show that
the data is slightly skewed to the right. The four lower plots, corresponding
to Ängelholm and Åhus, show that the data has longer tails than would be
expected if it had been normally distributed, possibly suggesting a Student’s
t-distribution.

3.1.3 Correlations

There are strong correlations between the data from the mobile gauges and
their paired permanent gauges. For Uddevalla-Smögen the (Pearson’s) cor-
relation is ρU,S = 0.971, for Ängelholm-Viken it is ρÄ,V = 0.982 and for
Åhus-Simrishamn it is ρÅ,S = 0.991. Since the relationships are all linear, as
can be seen in Figure 7, Pearson’s correlation coefficient describes the rela-
tionship between the data sets well and more robust dependence measures,
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Figure 5: Autocorrelation plots for Uddevalla and Åhus. The semidiurnal
influence of the tide is clearly visible in the topmost plot. The lags are hours
and the maximum lag is one week.

such as Kendall’s τ or Spearman’s ρ, are not needed.
Looking closer at at, for example, the Uddevall-Smögen plot, it can be

seen that there are a few instances where the water level in Uddevalla lies
above the Class 2 warning level, even though the water levels in nearby
Smögen have not exceeded the warning level.

3.2 Wind and atmospheric pressure data

Also available is data concerning the wind speed, wind direction and air
pressure at Uddevalla, Ängelholm and Åhus. Figure 8 shows a wind rose
plot for Uddevalla. It is clear that a large proportion of the wind in Udde-
valla comes from southwest. The wind roses for Ängelholm and Åhus show
predominantly southerly and westerly winds, respectively. The atmospheric
pressure data is also hourly and is given in hPa.
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Figure 6: The rows correspond to Uddevalla, Ängelholm and Åhus. The two
columns show histograms and normal probability plots, respectively.
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Figure 7: Scatterplots for the three pairs of datasets studied. The data
from the mobile gauges are on the y-axes while the data from the permanent
gauges are on the x-axes. The yellow and orange lines show Class 1 and
Class 2 warning levels respectively, for both high and low water levels, where
applicable.
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Figure 8: A wind rose plot for Uddevalla. The plot shows the frequency
of winds blowing from eight different directions (clock-wise: N, NE, E, SE,
..., NW). The length of each spoke shows the frequency of each of these
directions. The colour bands inside each spoke show wind speed ranges, in
m/s. The longest spoke shows that roughly 27 % of the wind in Uddevalla
comes from the southwest.
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4 Theory

This Section is divided into three main parts: extreme value analysis in 4.1,
regression analysis in 4.2 and time series analysis in 4.3. The extreme value
part covers classical extreme value theory and defines return levels and return
periods. The regression analysis part outlines simple linear regression and
also covers multiple linear regression and regression diagnostics. Finally, the
time series analysis section describes the autoregressive (AR) and the moving
average (MA) models, as well as their combination, the ARMA model. The
section also contains a method for dealing with non-constant variance, the
generalised autoregressive conditional heteroskedasticity (GARCH) model,
and long term memory, the autoregressive fractionally integrated moving
average (ARFIMA) model.

4.1 Extreme value analysis

The main objective of extreme value analysis is to quantify the behaviour of
a process at extreme levels. What is considered extreme has to be decided,
subjectively, for every case studied. Extreme value theory is a framework
that makes it possible to make extrapolations about the characteristics of a
process beyond the most extreme observations that have been made.

4.1.1 Generalised Extreme Value (GEV) distribution

The classical extreme value theory focuses on the distribution of block max-
ima. Block maxima are defined asMn = max (X1, . . . , Xn). Here,X1, . . . , Xn

is a sequence of independent and identically distributed (iid) random vari-
ables. E.g. if the Xi’s are hourly measurements, M168 would be the weekly
maximum. Since the population distribution is usually not known in practi-
cal applications, but needs to be estimated in order to describe the behaviour
of the block maxima.

The extremal types theorem (also known as the Fisher-Tippett-Gnedenko
theorem, the extreme value theorem or the convergence of types theorem)
was first formalised by Gnedenko in 1948. It states that ifMn can be rescaled
with a sequence of constants {an > 0} and {bn} so that its distribution does
not converge to a point mass, the distribution must belong to one of only
three possible families. In the words of Coles (2001),

Theorem 4.1.1. If there exist sequences of constants {an > 0} and {bn}
such that

P{(Mn − bn)/an ≤ z} → G(z) as n→∞,
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where G is a non-degenerate distribution function, then G belongs to one of
the following families:

I : G(z) = exp

{
− exp

[
−
(
z − b
a

)]}
, −∞ < z <∞

II : G(z) =

0, z ≤ b,
exp

{
−
(
z−b
a

)−α}
, z > b,

III : G(z) =

exp
{
−
[
−
(
z−b
a

)α]}
, z < b,

1, z ≥ b,

for parameters a > 0, b and, in the case of families II and III, α > 0.

The three families are called Gumbel, Fréchet and Weibull, respectively.
Unfortunately, the extremal types theorem leaves the possibly very difficult
choice of which distribution family to choose for the problem at hand. To
get around this choice, von Mises in 1954 and Jenkins in 1955 independently
designed a new family, the Generalised Extreme Value (GEV) distribution,

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/σ}
.

The GEV distribution has three parameters, a location parameter, −∞ <

µ < ∞, a scale parameter σ > 0, and a shape parameter, −∞ < ξ < ∞. It
is defined on {z : 1+ξ(z−µ)/σ > 0}. This distribution has all three families
described in Theorem 4.1.1 as special cases. The GEV distribution is equal
to the three different distribution families for values of the shape parameter
that are, ξ = 0, ξ > 0 and ξ < 0, respectively. For a sketched proof of the
extremal types theorem, see Coles (2001) and for a more formal justification,
see Leadbetter, Lindgren, and Rootzén (1983).

The apparent need of knowing the normalizing constants bn and an makes
estimating the parameters of G a difficult problem. But this problem can be
avoided in practice, by estimating the parameters of an equivalent distribu-
tion. Since

P{(Mn − bn)/an ≤ z} ≈ G(z),

is equivalent to

P{Mn ≤ z} ≈ G{(z − bn)/an} = G∗(z).

Thus, the parameters of G∗ can be estimated instead of the parameters
of G and the distribution of Mn will be approximated (Coles 2001).
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As previously stated,Mn is a sequence of block-maxima, where each block
is an observational sequence of length n. The typical block-size to use is one
year, chosen for the simplicity of interpretating the results and because data
is very often available annualy, but the theory works equally well for other
block-sizes.

4.1.2 Return levels and return periods for GEV distributions

Return levels, zp are quantiles of the extreme value distribution, i.e. levels
at which G(zp) = 1 − p. The return level zp is a level such that it will be
exceeded on average once every 1/p periods (here, the period can be e.g. one
year, six months or one week). rp = 1/p is called the return period (Coles
2001).

If, for example, the return level of interest is the five year return level and
the data involved are divided into two-week blocks, the return period will
be rp = 5 · 52/2 = 130 and p will be 0.0077. Hence, zp will be smaller than
the two-week maximum with a probability of 0.0077 and zp will be exceed
on average once every 130 periods, i.e. once every 130/26 = 5 years.

Expressions that estimate zp can be acquired from the GEV definition
through algebra. They are

zp =

{
µ− σ

ξ [1− {− log(1− p)}−ξ], ξ 6= 0,

µ− σ log{− log(1− p)}, ξ = 0.

In order to create confidence intervals for the return levels, the variance
of ẑp needs to be estimated. As described in e.g. Coles (2001), the delta
method estimate of this variance is

V ar(ẑp) ≈ ∇zTp V∇zp.
Here, V is the variance-covariance matrix of the estimated GEV parameters
and

∇zTp =

[
∂zp
∂µ

,
∂zp
∂σ

,
∂zp
∂ξ

]
=
[
1, −ξ−1(1− y−ξp ), σξ−2(1− y−ξp )− σξ−1y−ξp log(yp)

]
,

evaluated using the estimated GEV parameters.

4.2 Regression analysis

The goal of linear modelling is to describe how the mean of a dependent
variable, denoted by Y , changes with varying conditions. These conditions
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are described by independent variables, also called predictor or explanatory
variables, denoted by Xi.

This Section of the report is divided into five subsection, each either
describing an extension to the simple linear model, as it will be described in
Subsection 4.2.1, or a methodology to diagnose the fitted models.

4.2.1 Simple linear regression

The simplest linear regression model only has one independent variable,
X. The linear regression describes how the mean of the dependent variable
changes linearly with the independent variable,

E(Yi) = β0 + β1Xi.

To compensate for the fact that the observation that we have available
deviates from the population mean, random errors εi, are added. This gives
the classic simple linear model,

Yi = β0 + β1Xi + εi. (1)

Some assumptions have been made at this stage: the observed values of
X are assumed to be known and the observations of the dependent vari-
able are assumed to be random observations from populations of random
variables with means E(Yi). Also, the errors, εi, are identically and indepen-
dently distributed (i.i.d.) with variance σ2. Thus, also the Yi’s are pairwise
independent and have a common constant variance, σ2.

In order to estimate the values of the two parameters β0 and β1 using the
two data sets Y and X a method is needed. The most common method is
called least squares estimation. The least squares solution gives the smallest
possible sum of squared deviations between the observations and the esti-
mated line. I.e., least squares estimation finds the numerical estimates β̂0
and β̂1 that minimise the sum of squares of the residuals:

SS(Residual) =

n∑
i=1

(Yi − Ŷ1)2,

where Ŷi = β̂0 + β̂1Xi. The expressions that describe β̂0 and β̂1 can be
acquired using calculus or looking at a statistics or regression textbook, such
as Rawlings, Pantula, and Dickey (2001) or Blom et al. (2005). Each point
on the regression line, Ŷi, has two interpretations. They can be seen as either
predictions of the values of the dependent value that can be obtained for a
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future observation of the independent variable or as least squares estimates
of the population mean for a specific value of X.

4.2.2 Multiple linear regression

The simple linear regression model, as stated in section 4.2.1, can be extended
to include more than one independent variable:

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + εi.

Now, instead of two parameters, p′ = p + 1 parameters need to be es-
timated using p independent data sets. Using the same assumptions as in
the case with only one dependent variable, the SS(Res) can be minimised,
giving p′ β̂j estimates.

This notation quickly becomes tedious with many parameters. The linear
model can written more conveniently using a matrix notation,

Y = Xβ + ε. (2)

Here, X is an (n× p′) matrix:
1 X11 X12 X13 · · · X1p

1 X21 X22 X23 · · · X2p
...

...
...

...
. . .

...
1 Xn1 Xn2 Xn3 · · · Xnp


while Y, ε and β are (n× 1), (n× 1) and (p′ × 1) vectors, respectively. As
in the one independent variable case, the X matrix contains values that are
assumed to be known constants and ε is a random vector of independent
random variables where each εi ∈ N(0, σ2). Thus, the elements of Y are
assumed to be independent and normally distributed and Y ∈ N(Xβ, Iσ2).
Similarly to the one independent variable case, the fitted values are Ŷ = Xβ̂

and the model residuals are e = Y − Ŷ.

4.2.3 Analysis of variance

The total, uncorrected, sum of squares of the observed values is defined as
SS(Totaluncorr) =

∑n
I=1 Y

2
i = . . . =

∑n
I=1 Ŷi

2
+
∑n

I=1 e
2
i . The first sum is

called SS(Model) and the second SS(Residual). As their names indicate,
they describe a division of the total uncorrected sum of squares into two
parts, one that accounts for the model (Xβ) and one that accounts for the
residual that the model fails to describe. SS(Model) can be further divided,
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SS(Model) = nȲ +β̂21
∑

i=1 n(X1i−X̄1)
2+. . .. The first term, nȲ , is the sum

of squares correcting for the mean, SS(µ). Removing it from SS(Totaluncorr)

gives the expression for the total, corrected, sum of squares: SS(Totalcorr) =

SS(Regr) + SS(Residual). SS(µ) is the sum of squares of a model only
containing a constant term β0, without any independent variables. Since the
question at hand is usually how much the added regression terms can explain
the variation of Y compared to a model that is only a mean, SS(Regr) is
of interest. It expresses the information given by including the independent
variables in the model.

4.2.4 Variable selection

Once the parameter estimates β̂0 and β̂1 have been found, the next question
is: is the linear dependence significant, i.e. is β̂1 significantly different from
zero? The typical method for answering this question is the t-test. It test
the null hypothesis, H0, that β1 = 0 against H1 : β1 6= 0. If H0 is true,

β̂1 − 0

σ/
√∑n

1=1(Xi − X̄)2
∈ N(0, 1)

and since the true value of σ is unknown in practice,

t =
β̂1 − 0

s/
√∑n

1=1(Xi − X̄)2
∈ t(n− 2).

The test rejects the null hypothesis at significance level α if |t| > |tα/2(n−2)|
(Rawlings, Pantula, and Dickey 2001). Here, s2 is an estimate of σ2:

s2 =

∑n
i=1(Yi − Ŷi)2

n− 2
.

The design of the test is based on the assumption of normality for εi, which
necessitates that any linear function of Yi will also be normally distributed,
thus β̂1 will also follow a normal distribution. The assumptions of linear
regression will be briefly discussed in Section 4.2.5.

One very common way of describing how much information the indepen-
dent variables add to the model is the coefficient of determination, usually
denoted R2. It is a number between zero and one (closer to one is prefer-
able). R2 is defined as the fraction between the regression sum of squares
and the total sum of squares:

R2 =
SS(Regr)

SS(Totalcorr)
.
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The usefulness of R2 is diminished by the fact that it increases with every
added independent variable, regardless of the real significance of the variable.
Thus, an adjusted coefficient of determination, R2

adj , is often used instead,
that punishes larger models more than R2 does. R2 is adjusted by creating
a ratio of mean squares instead of sums of squares,

R2
adj = 1−

SS(Residual)
n−p+1

SS(Totalcorr)
n−1

=
MS(Residual)
MS(Totalcorr)

Two other often used criteria used when developing a model are the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC).
The AIC was defined in Akaike (1974) and in the linear regression framework
it is

AIC(p′) = n ln(SS(Residual)p) + 2p′ − n ln(n). (3)

The first two terms of (3) work against each other; as the first increases with
added independent variables, the second decreases as the model gets larger.

The AIC tends to indicate too large models, therefore the BIC is some-
times preferred. The BIC was defined in Schwartz (1978) and in the linear
regression framework it is

BIC(p′) = n ln(SS(Residual)p) + ln(n)p′ − n ln(n). (4)

The two expressions, (3) and (4), are very similar, but the BIC punishes
larger models more, sometimes indicating a smaller model than the AIC
(Rawlings, Pantula, and Dickey 2001).

Any statistical test where the test statistic has an F-distribution under the
null hypothesis is called an F-test. In regression, F-tests most commonly test
the hypothesis that the underlying data is better described by the smaller
of two nested models. Thus, the null hypothesis is that several of the β
parameters in the model are zero, e.g. β2 = β3 = 0, where the smaller model
is Yi = β0+β1X1i+εi and the full model is Yi = β0+β1X1i+β2X2i+β3X3i+εi
and εi ∈ N(0, σ2). All the parameters of both the models are estimated and
their residual sums of squares are calculated. Using these, the test statistic
is defined as

F =

SS(Residual)reduced−SS(Residual)full
n−(p′−k)−(n−p′)
SS(Residual)full

n−p′
=

SS(Residual)reduced−SS(Residual)full
k

SS(Residual)full
n−p′

.

If F is larger than Fα(k, n − p′), H0 can be rejected in favour of H1: that
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at least one of the k β parameters are 6= 0, at significance level α (Rawlings,
Pantula, and Dickey 2001).

4.2.5 Regression diagnostics

This part of the regression overview is aimed at studying the underlying
assumptions of linear regression and how the validity of the model may be
tested. The basic assumptions are, as have been stated in Section 4.2.1,
that the columns (except for the first column of ones) of X contain n known
constants, each. The random errors ε are assumed to have a common variance
σ2, zero mean and to be pairwise independent. This, together with the design
of the linear model (expressions (1) and (2)), necessitates that the dependent
variable, Y, also follows these assumptions. Usually, the random errors and
the dependent variable are also assumed to be normally distributed, for the
sake of confidence and prediction intervals and test of significance (Rawlings,
Pantula, and Dickey 2001).

In time series data, the errors tend to be correlated over time, for natural
reasons. When the assumption that the errors are pairwise independent is
broken the least squares estimates are unbiased, but might no longer be
the best possible. Violating this assumption could also cause the variance
estimates to be biased, making confidence and prediction intervals either too
wide or to narrow. Also, test of significance could become less trustworthy,
depending on the nature of the correlations.

The errors can also have non-constant variance. This problem can be
solved in many ways, depending on the way the variance of the errors is
heterogenous, e.g. by different transformations of the dependent data. Het-
erogenous variance makes the idea of equal weighting of each data point in
the least squares estimator less optimal, since not all data points contain the
same amount of information under heteroscedasticity.

Normality is not required for the least-squares estimator, nor for estimat-
ing the variance. Insofar as the other assumptions are not violated, the least
squares estimates of the parameters are the best linear unbiased estimates
possible. Confidence and prediction intervals, on the other hand, need the
normality assumption in order to be correct. Also, test of significance, such
as F- and t-test require normality. It should be noted that the F-test is
quite robust to departures from the normality assumption (see Tiku (1971)).
For large n, the t-test is also approximately valid, despite non-normality
(Rawlings, Pantula, and Dickey 2001).

Another possible major problem with least squares linear regression is
called the collinearity problem. It arises when a linear combination of some
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of the columns in X (i.e. one or more of the independent variables) equals
one of the other columns. This is the same as saying that the information
contained in one of the independent variables is superfluous. Two cases can
arise: if a linear combination of some of the columns exactly equals one
of the other columns, a unique least squares solution cannot be found. If,
on the other hand, the X matrix is only nearly singular, a unique solution
can be found. If this situation arises, the β parameter estimates become
unstable and small variations in the independent variable-space can lead to
very different regression parameters (Rawlings, Pantula, and Dickey 2001).
One common way to measure the effects of collinearity is to compute the so
called variance inflation factor (VIF). The VIF is defined as

V IFj =
1

1−R2
j

,

where R2
j is the coefficient of determination corresponding to a regression

where the independent variableXj is used as dependent variable on the other
independent variables. Thus, there is oneV IFj for each of the independent
variables. The V IFj is proportional to the variance of the βj parameter.
There are several recommendations for when the problems of collinearity
become serious. Rawlings, Pantula, and Dickey (2001) recommends a higher
bound for the VIF of 10.

Another problem area of linear regression is the existence of outliers and
influential points. As will be shown in Section 5, the problems with outlying
points in the data at hand in this project are slight. Thus, the theory
regarding outlying and influential points will not be overly discussed here.
One commonly used method to study the influence of individual points on
the regression is called Cook’s Distance, developed by R. Dennis Cook in
Cook (1977). It measures the effect that removing one specific observation
has on β̂. Consequently, there are as many Cook’s Distances as there are
observations. It is defined as

Di =
(β̂(i) − β̂)′(X′X)(β̂(i) − β̂)

(p+ 1)s2
.

Cook’s Distance can also be interpreted as the Euclidean distance between
the original regression hyperplane, Ŷ, and the regression hyperplane for the
regression without data point i, Ŷ(i) (Rawlings, Pantula, and Dickey 2001).

4.2.6 Categorical variables

In contrast to quantitative variables, that describe e.g. volume, speed or tem-
perature, qualitative (or categorical) variables contain information regarding
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classes or types, such as sex, colour or location. To be able to handle these
in a regression analysis special care needs to be taken.

There is usually no good way to translate categorical variables to nu-
merical values, so that they can be used in the X matrix in the previously
mentioned linear regression models. If, for example, the categories are Ap-
ple, Banana, Orange, there is no good way to represent them as numerical
values.

One solution is to introduce dummy (or indicator) variables that take the
values 0 or 1. Dummy variables to describe the fruit classification above
could be

XApple =

{
1, if Xfruit = Apple,

0, otherwise
XBanana =

{
1, if Xfruit = Banana,

0, otherwise

XOrange =

{
1, if Xfruit = Orange,

0, otherwise.

Columns containing zeros or ones could then be introduced into a X

matrix, indicating which rows in the data belonged to which fruit class.
This introduces problems for models that only contain categorical variables,
since the matrix X′X is singular (see Section 4.2.5). This can be solved by
removing a column (i.e. a fruit) or by removing the intercept. This kind
of reparamertisation is still used, but after the advent of computers it has
largely been replaced by the generalised inverse approach, which uses one
of the non unique solutions to the normal equations, despite there being no
one unique solution. Details regarding the two approaches can be found in
Rawlings, Pantula, and Dickey (2001).

4.3 Time series analysis

The following subsections will outline time series modelling theory, focusing
on the classical AR, MA and ARMA models, that all let the current data
point depend linearly on preceding data points, as well as some extensions
to these.

4.3.1 AR, MA, ARMA and ARIMA models

The moving average (MA(q)) process of order q is defined in Jakobsson
(2013) p. 58 and 62 as
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Definition 1.

yt = et + c1et−1 + . . .+ cqet−q = C(z)et,

where C(z) is a monic polynomial of order q, i.e.,

C(z) = 1 + c1z
−1 + c2z

−2 + . . .+ cqz
−q,

where cq 6= 0, et is a zero-mean white noise process with constant variance
σ2 and z−1 is the unit delay operator, defined as,

z−1xt = xt−1.

As can be seen from Definition 1, the MA process can be interpreted as a
linear regression with the current time series value as dependent variable and
both the q previous and current white noise terms as independent variables.

The second common linear process is the atoregressive (AR(p)) process
of order p. It describes time-varying processes where the output variable
depends linearly on its own previous values. It is defined in Jakobsson (2013),
p. 67, as

Definition 2.

A(z)yt = yt + a1yt−1 + . . .+ apy(t−p) = et,

where A(z) is a monic polynomial of order p, i.e.,

A(z) = 1 + a1z
−1 + . . .+ apz

−p,

where ap 6= 0 and et is a zero-mean white noise process with constant variance
σ2.

The two processes defined above can be merged into the autoregressive
moving average (ARMA(p, q)) process, defined in Jakobsson (2013), p. 77,
as

Definition 3.
A(z)yt = C(z)et,

where A(z) and C(z) are the monic polynomials defined in Definitons 2 and
1, respectively. As in the previous definitions, et is a zero-mean white noise
process with variance σ2.

Finally, the autoregressive integrated moving average (ARIMA(p, d, q))
model is used in the case when the data to be modelled is not stationary but
instead exhibits a trend. It is defined in Jakobsson (2013), p. 112, as
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Definition 4.
A(z)(1− z−1)dyt = C(z)et,

where A(z), et and C(z) are defined as previously and d denotes the number
of differentiations.

The most common value for d is one, and only very seldom is it above two.
In practice, ARIMA models are used by first forming a new, differentiated
time series, which is then used to build an ARMA model.

For details regarding e.g. estimation of the process parameters, predic-
tion, or other parts of the theory, see Jakobsson (2013) or other introductions
to time series modelling.

4.3.2 Model structure identification

Identifying a times series model structure is not a straightforward process.
Generally, it involves choosing a model structure and order, validating that
choice and then returning to change the structure/order again, until accept-
able results are attained (Jakobsson 2013).

Two common tools used for modelling are the auto-covariance function
(ACF), ρ(k), and the partial auto-correlation function (PACF), φ(k). To-
gether they can indicate a reasonable initial model for the time series in
question. An MA(q) process should have a decaying sine and/or exponential
behaviour in the PACF, and ρ(k) = 0 for lags greater than the MA order,
q. An AR(p) process exhibits a decaying sine and/or exponential function
in the ACF, instead, and φ(k) = 0 for lags greater than the AR order of the
process, p. Finally, an ARMA(p, q) process will have a damped sine and/or
exponential behaviour in both the ACF and PACF, as is summarised in a
table on p.101 in Jakobsson (2013).

ARIMA(p, d, q) models are used when the process to be modelled is not
stationary, i.e. when it has some kind of trend. Indications of this can be
seen in the ACF, as it decays very slowly (Jakobsson 2013).

4.3.3 Non-constant variance - GARCH models

The autoregressive conditional heteroscedastic (ARCH) models were intro-
duced in Engle (1982). ARCH models are used to model processes whose
conditional variances change as a function of past squared values of the pro-
cess. The ARCH(q) model is defined as
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Definition 5.
yt =σtεt,

σ2t =ω +

q∑
i=1

αiy
2
t−i,

where αi > 0, ω > 0,
∑q

i=1 αi < 1 and the εt are a sequence of zero mean
unit variance i.i.d. r.v..

As the previously defined time series models, the ARCHmodel can be seen
as a regression model. The ARCH model was expanded into the generalised
ARCH (GARCH) model in Bollerslev (1985). It adds a sum of conditional
variances to the model in Definition 5,

σ2t = ω +

q∑
i=1

αiy
2
t−i +

p∑
i=1

βiσ
2
t−i.

This can be rewritten as,

β(z)σ2t = ω + α(z)y2t ,

where β(z) = 1 − β1z−1 − . . . − βpz−p and α(z) = αz−1 + . . . + αqz
−q. We

see that a GARCH model can be described as assuming an ARMA model
for the error variance.

The GARCH model for the error variance can be combined with an
ARMA model for the mean structure as (Cryer and Chan 2008)

A(z)yt = C(z)εt,

εt = σtεt,

β(z)σ2t =ω + α(z)ε2t .

ARMA-GARCHmodels are built by first modelling the ARMA-part based
on yt and then using the residuals from the ARMA model to model the
GARCH-part. The order of a GARCH model can be decided in much the
same way as an ARMA model, by looking at ACF and PACF of the squared
residuals (Cryer and Chan 2008). The presence of ARCH/GARCH effects
can also be studied by using a so called McLeod-Li test, described in McLeod
and Li (1983). (Baum 2013)

4.3.4 Long term memory - ARFIMA models

Long term memory is a term used to describe time series that exhibit de-
pendence between temporally distant observations. Such dependence has
been shown to exist in various time series, coming from many applications,
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such as meteorology, finance and hydrology (Vasilev 2007). In the time do-
main, a tong term memory time series is characterised by the fact that its
autocorrelation decays very slowly.

Non-stationary time series are modelled using ARIMA models, as defined
in (4). There are several tests for non-stationarity. One common such is the
Elliott-Rothenberg-Stock test, which has non stationarity as null hypothesis.
Often, time series for which unit root tests, such as the Elliott-Rothenberg-
Stock test, indicate non stationarity are modelled using an ARIMA model
(Baum 2013). Unit root tests can be complemented by test that have sta-
tionarity as null hypothesis, such as the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test. Using two such tests together makes it possible to discern if
a time series is more likely to be best described as non stationary (has a
unit root, I(1), stationary I(0), or if it might exhibit long memory, since long
memory series are neither I(1) nor I(0) (Baum 2013).

ARFIMA models can be defined in much the same way as ARIMA models
where in Definition 4., with the difference that the order of the differencing,
d, is allowed not only to take integer values, but also fractional ones. Then,
(1− z−1)d is redefined as the fractional differencing operator

(1− z−1)d =
∞∑
k=0

Γ(k − d)z−k

Γ(−d)Γ(k + 1)
,

where Γ(·) denotes the generalised factorial function (Baum and Wiggins
2000). The value of d describes the behaviour of the process. A process
with d ∈ (−0.5, 0) demonstrates negative long memory, a process with d ∈
(0, 0.5) demonstrates long term memory, a process with d = 0 is a stationary
ARMA process and a process with d ∈ (0.5, 1) exhibits no long term temporal
dependence. A process with d = 1 is, of course, an ARIMA(p, 1, q) process
(Baum and Wiggins 2000).

4.3.5 Tidal harmonic analysis

As is briefly described in Section 2.4, oceanographic data can be partly
described by deterministic tidal components. That is, they can be divided
into a tidal signal and a non-deterministic noise signal. One method for
estimating the components of the tidal signal is classical harmonic analysis,
in which the tide is defined as the sum of specific sinusoids, whose frequencies
are related to different astronomical parameters. There are six fundamental
frequencies which are used to specify the frequencies of the sinusoids. They
are: the rotation of the earth (24.8 h), the orbit of the moon (27 days), the
orbit of the earth (tropical year), the lunar perigee (8.85 years), lunar orbit
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tilt (18.6 years) and the parihelion (21000 years) (Pawlowicz, Beardsley, and
Lentz 2002).

Arthur Thomas Doodson was a British oceanographer who designed a
practical system for specifying the different harmonic components of the
tide, in Doodson (1921). The system makes use of Doodson numbers, which
is a six digit number that can be used to describe every tidal constituent.
The tidal constituents are named according to a system developed by George
Darwin. For example, the principal lunar semidiurnal constituent is named
M2 and the solar annual constituent is Sa. In classical harmonic tidal analy-
sis, least squares fitting is used to estimate the phase and amplitude of each
frequency (Pawlowicz, Beardsley, and Lentz 2002).

The tidal response is modelled as

x(t) = b0 + b1t+
∑

k=1,...,N

Ak cos(σkt) +Bk sin(σkt). (5)

Here, there are N tidal constituents (with a unique Doodson number each),
with known frequencies and unknown amplitudes. The first two terms in (5)
are optional in the package used in this project and handle offset and drift.

One possible problem with the classical harmonic analysis method is that
the tidal response in coastal regions can be influenced by such factors as geog-
raphy and water salinity. Also, if the water depth is shallow compared to the
tidal wave height, non-linear effects can be present. Problems such as these
can be partly remedied by including so called shallow-water constituents in
the harmonic analysis. The Matlab package used in this projects makes
use of a maximum of 45 astronomical and 101 shallow-water constituents.
This package also improves the classical harmonic tidal analysis method by
calculating confidence intervals for the analysed components. Details about
how these confidence intervals are estimated, as well as more theory regard-
ing the harmonic analysis can be found in Pawlowicz, Beardsley, and Lentz
(2002).
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5 Results

The results section is divided into three main parts - extreme value analysis
(Section 5.1), regression analysis (5.2) and time series analysis (5.3). Some
results are also presented in the Appendix, especially when the results for
different locations are very similar. As a rule of thumb, the Uddevalla results
will be the results that are primarily presented in the text.

5.1 Extreme value analysis

As is discussed briefly in the Introduction (Section 1), the on duty oceanog-
raphers at SMHI know through experience that certain locations along the
Swedish coast sometimes exhibit more extreme sea level behaviours than
other locations. Three such locations are the locations of the mobile sea
level gauges at Uddevalla, Ängelholm and Åhus. One way of motivating
their placement, i.e. studying if the sea level behaviour merits placing ex-
tra gauges, is to study the distribution of the differences between the mo-
bile gauges and their paired permanent stations: Smögen, Viken and Simr-
ishamn.

When comparing two different gauging locations, a natural goal is to be
able to say how big the difference between the sea levels at the two positions
can become on a long time scale. To this effect, extreme value theory can be
used. The method used in this project goes as follows: divide the complete
data set into equally sized blocks, create a new time series of the block
maxima, fit a GEV distribution to the block maxima and evaluate the fit.

As is discussed in Section 4.1, extreme value analysis is useful for describ-
ing the behaviour of extremes of data sets. Here, the differences between
the data from the mobile gauges and their permanent counterparts will be
studied. In order for the assumptions of the GEV distribution to hold, the
data need to be independent. Thus, the data need to be separated into
blocks of such sizes that the block maxima will form a time series that is
independent enough for the GEV distribution to fit well and the extreme
value analysis to work. When choosing the block sizes, there is a trade-off
between bias and variance (Coles 2001). Choosing few data points (maxima
of large blocks) can increase the variance of parameter estimates and thus
make extrapolation very uncertain. On the other hand, choosing to include
many data points (maxima of small blocks) may induce bias, as the fit of the
data to the GEV model may be bad due to dependence in the underlying
data.

In order to find a good block size two methods are used. To check the
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independence of the block maxima for specific block sizes autocorrelation
plots are used, since they can be utilised to examine the similarity of the
data to a white process (Jakobsson 2013). To check how the variance of the
estimates change with block size, plots of five-year return levels together with
95 % confidence intervals are plotted. The return levels and their confidence
intervals are calculated as described in Section 4.1.2.

Figure 9: The five year return levels corresponding to GEV distributions
fitted to block maxima of the difference between the Uddevalla measurements
and the measurements from Smögen are shown by the red line. The block
sizes are on the x axis, in multiples of 24 hours. A 95 % confidence band for
the return levels is also shown, calculated by the delta method.

Five-year return levels for the difference between the Uddevalla and Smö-
gen time series are shown together with their corresponding confidence in-
tervals in Figure 9. The return levels appear to converge to approximately
55 cm and for block sizes above 10 days they stay roughly constant, indi-
cating that the assumptions are met well enough to avoid bias. For block
sizes above 22 days, the variance increases, as is expected considering the
aforementioned trade-off between bias and variance.

In Figure 10 the autocorrelation of the block maxima series for one specific
block size is shown. The data is divided into 65 two-week blocks. The block
size choice is based on the results presented in Figure 9. The ACF further
implies that the data used to fit the GEV distribution is stationary.
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Figure 10: Top: an autocorrelation plot for the Uddevalla - Smögen two-
week block maxima series. Bottom: a plot showing the 65 block maxima
(red dots) over the difference data.

The GEV distribution fit is diagnosed in Figure 11. Four diagnostic plots
are presented: a probability plot, a quantile-quantile plot, a density plot
and a return level plot. They all imply a good GEV distribution fit for the
two-week block maxima series. The GEV distribution for this block size
has a location parameter µ that is 12.6337 (standard error 0.81764), a scale
parameter σ that is 5.8407 (standard error 0.62377) and a shape parameter
ξ that is 0.1375 (standard error 0.09111). The positive value of the shape
parameter implies a concave return level function. This is not physically
reasonable and therefore using the GEV fit to calculate return levels for very
long return periods might not be wise.

For Uddevalla and Smögen, the most extreme differences can be found in
the cases where the sea levels are higher in Uddevalla than in Smögen. For
the sake of completeness, the inverted case is also studied, i.e. the extremes
of the Smögen - Uddevalla data. This is the same as studying the minima
of the difference between Uddevalla and Smögen. Plots corresponding to
Figures 9 – 11 are presented for this case in Appendix B.1.

The same analysis has also been made for the differences between the sea
levels in Ängelholm – Viken and Åhus – Simrishamn. The results for these
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Figure 11: Diagnostic plots for the GEV fit to the Uddevalla - Smögen dif-
ference data. Left-to-right and top-to-bottom: 1) A probability plot. The
data points follow a straight line reasonably well, considering the 95% confi-
dence band. 2) A quantile-quantile plot further implies that the fitted model
suits the data, since the model-based estimate of the quantile function fits
the data well, considering the confidence bands. 3) The density of the fitted
distribution is plotted (solid line), together with a non-parametric estimate
(dashed line) and a rug plot of the data. The fit is quite good, but has to low
an upper tail to account for the largest block maximum. 4) The return level
plot also shows that the fit is reasonably good, since the data points lie close
to the return level line. The x-axis shows return levels (in multiples of two
weeks) plotted on a logarithmic scale. The line is concave (and thus has no
finite bound), which corresponds to the positive value of ξ in the GEV-fit.

locations are plotted in the same manner as the Uddevalla – Smögen results
in Appendices B.2 and B.3.

The different five year return levels are presented together with 95 %
confidence intervals in Table 3. As would be expected, the largest return
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level is found for the Uddevalla – Smögen case - just over half a meter. Also
not entirely unexpected, considering the bad GEV fit to the Simrishamn –
Åhus data presented in Appendix B.3, the widest confidence interval by far
is the one for the Simrishamn – Åhus case.

Lower zp Upper

Uddevalla – Smögen 34.04 53.10 73.67
Smögen – Uddevalla 24.51 29.12 33.73
Ängelholm – Viken 23.76 35.38 47.00
Viken – Ängelholm 22.89 38.36 47.70
Åhus – Simrishamn 18.35 25.34 32.26
Simrishamn – Åhus 6.65 49.11 91.56

Table 3: Five year return levels for the different cases studied in this Section
(and in Appendices B.1 to B.3). Also, the upper and lower points of their
respective 95 % confidence intervals are given.

5.2 Regression analysis

Now that the differences between the mobile gauges and their permanent
counterparts have been studied, an attempt is made at relating the sea levels
at the mobile gauges with the sea level data from the permanent gauges,
according to the interests of SMHI, as stated in the Introduction, Section 1.

The relations between the data sets will be studied through regression
analysis. Initially, simple linear regression models are designed, in Section
5.2.1. These regression models are diagnosed and extended into multiple
linear regression models in Sections 5.2.2 – 5.2.4. In the same manner as
for the extreme value result, the regression analysis results from Uddevalla –
Smögen are primarily presented in the text while the results from Ängelholm
– Viken and Åhus – Simrishamn/Kungsholmsfort are partly presented in
Appendix C. Throughout this section (and Appendix C) the data is divided
into parametrisation and validation data. The parametrisation data make
up three-quarters of the complete data set and the validation data make up
the remaining quarter.

5.2.1 Initial linear regression

To relate the sea levels in the paired locations, linear regression models are
used, according to the theory presented in Section 4.2.1. Four simple linear

37



regression models are built, one each for Uddevalla – Smögen and Ängel-
holm – Viken and two for Åhus (Åhus – Simrishamn and Åhus – Kung-
sholmsfort). They are summarised in Table 4. The β-parameter for the
Uddevalla–Smögen regression is clearly larger than the other three, corre-
sponding to a steeper regression line. Also, both the BIC and adjusted R2

indicate that the Simrishamn data set is preferred as independent variable
for the Åhus regression. All four regressions have very high adjusted R2

values, as might be expected, considering the correlations given in Section
3.1.3 and the clear linear relationships shown in Figure 7.

α̂ (S.E.): β̂ (S.E.): Adj. R2: BIC:

Uddevalla – Smögen −2.9913

(0.0522)
1.1269
(0.0022)

0.9423 104226

Ängelholm – Viken −3.1544

(0.0380)
1.0730
(0.0018)

0.9634 78185.75

Åhus – Simrishamn 3.6451

(0.0336)
1.0165
(0.0014)

0.9829 46505.6

Åhus – Kungsholmsfort −0.2545

(0.0515)
1.0243
(0.0023)

0.9533 56057.13

Table 4: Regression parameter values for the four initial linear regressions
together with their standard errors. The adjusted R2 and Bayesian Informa-
tion Criteria values are also given. The model parametrisation data points
are included in this regression.

Figure 12 shows the linear regression line Ŷi,Udd. = α̂+β̂Xi,Smö. = −2.99+

1.13Xi,Smö.. 95.7 % of the validation data points fall within the theoretical
prediction band, as is shown in the figure. For Ängelholm and Åhus (with
Simrishamn as independent variable) the same quotient is 95.4 % and 95.1
%, respectively. The root mean square errors (RMSEs) of the four linear
models are for Uddevalla: 6.45 cm, for Ängelholm: 4.29 cm and for Åhus:
2.80 cm (Simrishamn) or 5.00 cm (Kungsholmsfort). Thus, the RMSE for
the validation data also indicates that the Simrishamn data is better as
independent variable in the Åhus regression.

5.2.2 Initial regression diagnostics

Diagnosing a regression model can be done in many ways. Here, some diag-
nostic plots and methods are used, though there are many more. Diagnostic
plots for the Uddevalla – Smögen regression are shown in Figure 13. Starting
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Figure 12: A linear regression line between the Uddevalla and Smögen data is
shown in blue. It has, α = −2.991 (0.052), β = 1.127(0.002), with standard
errors in the brackets. The line was calculated using the data point shown
in black. The red points indicate validation data. 95.7 % of the validation
points are within the theoretical 95 % prediction band, shown in green.

with the quantile-quantile plot, it shows that the normality assumption is
not met completely, as there are some points quite clearly diverging from the
straight line, indicating a distribution with a thicker upper tail than the nor-
mal distribution. Considering the effects of non-normality on the regression,
as discussed in Section 4.2.5, this violation of the regression assumptions is
not regarded as problematic, especially since the prediction intervals are very
nearly correct (95.7 % instead of 95 %).

The Cook’s distance plot does not indicate any large problems with regard
to influential points. The largest Cook’s distance is 0.01, indicating that the
change in the regression line, Ŷ , would be small if the most influential point
is removed.

Two other aspects stand out when analysing the diagnostic plots in Fig-
ure 13. The first is potentially problematic: all three plots indicate the same
three data points as being the most extreme. They are both outliers (in the
residual) and the most influential according to the Cook’s distance. Closer
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inspection of the Y - and X-values that correspond to these residual outliers
show that they are outliers in neither the Y - nor X-spaces. Furthermore,
they are not obviously faulty measurements, as the points indicated in Sec-
tion 3.1.1 are. Thus, they are left in the data set and may hopefully be
better explained as the initial regression model is extended, in the following
sections.

The second aspects that stands out is the (slight) quadratic trend in the
plots of the regression residuals ei versus the fitted values, Ŷi. This will be
dealt with in the following section.
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Figure 13: Top-to-bottom and left-to-right: a plot of regression residuals vs.
the fitted values, a normal quantile-quantile plot, and a plot showing Cook’s
distance.

The diagnostic plots for the other two regressions are shown in Appendix
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C. The same slight curve is visible in their plots regression residuals ei versus
the fitted values, Ŷi as it is in Figure 13.

One other obvious problem with these regressions is the temporal depen-
dence between the errors. Correlated errors can bias the variance estimates,
making confidence and prediction intervals incorrect, as mentioned in Sec-
tion 4.2.5. This appears to not be the case, as the prediction intervals fit the
validation data quite well, for all three regression models. Nonetheless, this
calls the validity of the regression model into question, since the regression
assumptions are not met.

5.2.3 Extension of the initial linear regression

The initial linear regressions are extended to polynomial regression models,
as described in Section 4.2.2. This is done in order to compensate for the
(slight) curve visible in the plots of the regression residuals ei versus the
fitted values, Ŷi for all three models. The slightly curved structure of the
residuals implies that there is some structure in the data that is not captured
by the initial linear regression. Different polynomial regression models are
tested. These models, up to the third order, are summarised in Table 5.
Also, BIC values are given. These, together with two-way F-tests are used
to determine what model fits the given data best, in all three cases. In the
Uddevalla–Smögen case, the best fitting model is y = α+β1x+β3x

3. In the
Ängelholm–Viken case, the best fitting model is y = α+β1x+β2x

2. Finally,
in the Åhus-Simrishamn case, it is also y = α+ β1x+ β2x

2. The Uddevalla
case necessitates some more attention. Considering the recommendation in
e.g. Faraway (2004) to never remove a lower order term in a model, in
order to avoid adding additional terms to the model under a scale change,
the y = α+ β1x+ β3x

3 model is discarded. Also, considering the very small
differences between the two remaining models, the more parsimonious model
y = α+ β1x+ β2x

2 is chosen. Looking at plots of the residuals versus fitted
values for these models, the curved structure that is visible in the plots for
the smaller models is no longer evident.

Figure 14 shows the difference between the initial linear regression model,
and the model including a quadratic term, for the Uddevalla – Smögen re-
gression. The difference is very slight, except for the highest and lowest
X-values. The regression line confidence intervals do not overlap, for X
values over 70 cm.

Another possible extension is to include both the data from Simrishamn
and Kungsholmsfort in the Åhus regression: Yi, Åh. = α + β1Xi, Sim. +

β2Xi, Kung. + εi. This increases the R2
Adj., but the variance inflation factor is
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α̂ (S.E.): β̂1 (S.E.): β̂2 (S.E.): β̂3 (S.E.): BIC:

U–S −3.1280

(0.0595)

1.1217
(2.451e-03)

2.880e-04
(6.057e-05)

– 104213.1

−3.0067

(0.0522)
1.1146
(2.981e-03)

– 5.779e-06
(9.347e-07)

104197.5

−3.0289

(0.0645)
1.1148
(3.013e-03)

4.976e-05
(8.500e-05)

5.250e-06
(1.312e-06)

104206.8

Ä–V −3.3637

(0.0416)

1.0690
(1.824e-03)

4.625e-04
(3.879e-05)

– 78053.78

−3.1694

(0.0380)
1.0664
(2.191e-03)

– 2.461e-06
(4.688e-07)

78167.73

−3.3771

(0.0245)
1.0711
(2.222e-03)

5.044e-04
(4.663e-05)

-9.086e-07
(5.612e-07)

78060.67

Å–S 3.8141

(0.0357)

1.0070
(0.0015)

4.9127e-04
(3.710e-05)

– 46340.96

3.6040

(0.0345)
1.0088
(2.039e-03)

– 3.750e-06
(7.294e-07)

46488.36

3.8273

(0.0388)
1.0082
(2.024e-03)

-5.074e-04
(4.153e-05)

-6.9996e-07
(8.103e-07)

46349.38

Table 5: For all three pairs of stations, three different polynomial models
have been fitted. They are of the form y = α+β1x+β2x

2 +β3x
3. Each row

of the table corresponds to a model.

24.15, indicating that collinearity has a large effect. This is not surprising,
since the linear correlation between the Simrishamn and Kungsholmsfort
data is 0.98. Thus, to keep the β parameter estimates stable, this regression
model is discarded.

5.2.4 Multiple linear regression

Wishing to see whether the wind and atmospheric pressure data can make a
significant difference to the previous regression, a multiple regression model
is designed. All of the different models presented in this section have been
designed using the training data, as previously discussed. As stated in Sec-
tion 3.2, the directional wind data is given in degrees. Thus, in order to
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Figure 14: Two different linear regression lines for Uddevalla-Smögen are
plotted together. In red: y = α + β1x + β2x

2. In green: y = α + β1x. The
semi-transparent red and green bands are 95% prediction intervals and the
gray bands are 95% confidence bands for the regression lines. As in previous
plots, the black points are training data and the red ones are validation.

capture the directional nature of the data, the wind data is structured into
eight directions, as shown in Figure 8. Initially, a model without interactions
is designed. Using BIC and stepwise F-tests, the following model is found to
be the best fit for the Uddevalla data:

yUdd = α+β1xSmö +β2x
2
Smö +β3xws +β4xNE +β5xE +β6xSE +β7xS +β8xW.

(6)
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Here, xNE, . . . , xW correspond to dummy-variables that represent the eight
different directions and xws is the wind speed. All of the included coefficients
are significant at a 0.0001% significance level. The signs of the regression
coefficients show that both the Smögen coefficient as well as the squares
Smögen parameter have a positive effect on the sea level in Uddevalla. The
same goes for the westerly winds. The winds from NE, E, SE and S, on the
other hand, all have a negative effect on the sea levels in Uddevalla. This
makes a lot of sense considering the geography of the Skagerrak coastline, as
discussed in Section 2.4. Observe that some wind directions as well as the
pressure data have been discarded as not significant, both when using BIC
and F-tests. The BIC value of the best Uddevalla model is 103483.2 and the
adjusted R2 is 0.9452. The RMSE on the validation data set is 6.26 cm. The
largest of the variance inflation factors in this model is 1.60, indicating low
levels of collinearity between the independent variables.

Using the same notation, the best fitting model for the Ängelholm data
is:

yÄng =α+ β1xVik + β2x
2
Vik + β3xws + β4xN + β5xNE + β6xE + β7xSE + β8xS

+ β9xSW + β10xW + β9xpr..

Here, the same notation is used as in (6), but the pressure data has been
added, xpr.. Again, all of the included coefficients are significant at a 0.0001%

significance level. As for Uddevalla, the β-parameters corresponding to the
data from Viken, and their squares, are positive, as are the wind speed,
SW and W parameters. The parameter corresponding to N, NE, E, SE, S
and atmospheric pressure are negative. Looking at the map in Figure 1,
this makes sense as winds pushing water into Skälderviken from west should
make the sea levels in Ängelholm harbour rise, while winds pushing water
out of the bay should make the sea levels fall. As was mentioned in Section
2.4, atmospheric pressure tends to lower sea levels. The BIC value of the
best Ängelholm model is 76010.36 and the adjusted R2 is 0.9691. The RMSE
on the validation data set is 3.95 cm. The largest of the variance inflation
factors in this model is 2.44, indicating low levels of collinearity between the
independent variables, though not as low as for the Uddevalla regression.

For Åhus, the best fitting model is:

yÅh = α+ β1xSim + β2x
2
Sim + β3xws + β4xN + β5xE + β6xSE + β7xS

+ β8xSW + β9xpr..
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Again, all of the included coefficients are significant at a 0.0001% significance
level. Here, the parameters corresponding to the sea water levels in Simr-
ishamn, E, SE, S and SW are positive while the squares of the Simrishamn
sea levels, the winds speed, N and the atmospheric pressure parameters are
negative. Again, looking at the map in Figure 1, this makes sense as winds
pushing water into the part of Hanöbukten where Åhus harbour is located
from the east, south-east and south should make the sea levels in Åhus har-
bour rise. The BIC value of the best Åhus model is 45346.52 and the adjusted
R2 is 0.9849. The RMSE on the validation data set is 2.62 cm. All of the
variance inflation factors in this model are below 1.4, indicating low levels
of collinearity between the independent variables.

The parameter values for all of these regression models are presented in
Appendix C, Table 9.

Fo two of these models, Uddevalla and Ängelholm, the β-parameters for
wind speed are positive, while it is negative for the Åhus model. It makes
sense that the interactions between wind speeds and wind directions might
better explain the sea levels, than wind speeds and directions do separately.
Models with interactions can be estimated using the same methods as models
without interactions. They may add some predictive power, but interpreta-
tion of the parameters is not a straightforward and the models are much less
parsimonious. This, together with the generally high R2 values of the mod-
els presented so far indicate that they might not add much to the current
models. The problems with interaction models are discussed in e.g. Faraway
(2004).

5.3 Time series analysis

As is mentioned in Section 5.2, the temporal dependence in the regression
errors casts the validity of a regression model into some doubt. One possible
next step is to analyse the data with time series analysis. That is, build
AR/MA/ARMA... models to describe the behaviour of the time series in
question. In Section 5.3.1, initial time series models are designed for the
three mobile sea level gauge data sets. They are reexamined in 5.3.3 after
deterministic tidal structures in the data are studied in 5.3.2. Also, time
series models are built for the data from the paired permanent stations, after
which the joint behaviour of the time series model residuals are studied.

5.3.1 Initial models

Using the tests and visual methods described in Section 4.3, ARFIMA-
GARCH models are built for the three data sets from the mobile gauges. As
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previously, the results for Uddevalla are presented in the main text, while
the results for Ängelholm and Åhus are mainly presented in the appendix.

Initially, a parsimonious model is sought after to describe the mean be-
haviour of the Uddevalla data set. Unfortunately, no such model could be
found. Since both tests as well as information criteria and visual inspections
of ACF and PACF for the residuals indicated that a fractionally integrated
model is preferred to a model with an integer valued integration for the data,
an ARFIMA(p, d, q) model is chosen. The McLeod-Li test, as well as vi-
sual inspections of the ACF of the squared standardised residuals indicate
the presence of ARCH/GARCH effects. Thus, an ARFIMA-GARCH model
structure is chosen.

Using visual inspections of the ACF and PACF as well as the BIC, an
ARFIMA-GARCH(27,d,10)-(1,2) model is chosen for the Uddevalla data.
Most of the ARMA parameters in this model are set to zero. The parameters
that are included and estimated are: a1−a5, a11−a13, a18, a24, a26, a27, c4,
c5, c8 − c10. Thus, 12 ARMA parameters are included, together with four
GARCH parameters and a degree d for the fractional integration. The resid-
uals exhibit more kurtosis (heavier tails) than the normal distribution, thus
a student’s t-distribution is chosen for the model innovations. The fractional
integration order, d, is estimated to 0.15. This indicates the presence of long
memory. Despite the large number of parameters, not all structure in the
data is accounted for by the model, as is shown in Figure 15.

The empirical density and qq-plots show that the student’s t-distribution
is a good choice for the data at hand. The ACF-plot of the squared resid-
uals does not indicate problems, either, indicating that the GARCH part
of the model succeeds at modelling the variance structure. The ACF-plot
for the standardised residuals, on the other hand, shows that there is still
undescribed structure left in the data. It should be noted that the autocor-
relation for some lags is large compared to the confidence intervals, but still
quite small, considering the scale on the y-axis.

The choice to halt the size of the model here is largely due to two facts.
The first is that the optimisation algorithm fails to converge when certain
parameters are introduced to the model, especially MA-parameters. The
second is parsimony – smaller models might be fitted if the data are pre-
processed.

5.3.2 Tidal harmonic analysis

It is clear from Section 5.3.1 that quite large time series models are needed to
describe the sea water levels at the locations in question, also after long-term
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Figure 15: Diagnostic plots for the initial time series model fit to the Udde-
valla data.

dependencies and heteroscedasticity are accounted for. One possible way to
decrease the complexity of the model is to apply more pre-processing to the
data, prior to modelling. There are clearly trends in the data that require
more care. Trends and seasonality can either be modelled as deterministic
or stochastic. In Section 5.3.1, the trend was treated as being stochastic,
through the use of integrated ARMA models.

Based on the knowledge that the data in question is oceanographical,
there should be a deterministic tidal seasonality in the data, as mentioned
in Section 2.4. Estimating the tidal signal and subtracting it from the data
prior to determining the time series model structure could lead to a more
parsimonious model.

Classical tidal harmonic analysis is performed, as briefly described in Sec-
tion 4.3.5. The t_tide package in Matlab uses the Rayleigh resolution limit
to decide which of 45 astronomical and 101 shallow-water tidal constituents
to include in a least-squares fit. Also, nodal corrections are computed using
the latitudes of the mobile gauges in question (see Section 2.1). For more
details regarding the features of the package and the theory behind it, see
Pawlowicz, Beardsley, and Lentz (2002).

Amplitudes and phases of the included constituents (as well as their re-
spective errors) are computed, but not all are significant and should be used
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to predict future tides. Pawlowicz, Beardsley, and Lentz (2002) suggest con-
sidering the tidal constituents with a signal to noise ratio (SNR) greater than
two as significant. The SNR is computed as the squared ratio of the ampli-
tude and the amplitude error for each constituent. Tables detailing which
constituents that are significant for each of the three mobile gauge locations
are presented in Tables 6, 7 and 8, together with their respective amplitude
and phase estimates.

Tide Freq. Amp. Amp_err. Pha. Pha_err SNR

Sa 1.141·10−4 13.6937 7.273 279.61 29.31 3.5
O1 0.0387 2.0616 0.568 298.29 15.14 13
EPS2 0.0762 0.9706 0.606 257.67 34.21 2.6
2N2 0.0775 1.0225 0.650 5.41 30.66 2.5
MU2 0.0777 2.7050 0.599 291.64 11.52 20
N2 0.0790 2.7192 0.509 84.94 12.00 29
NU2 0.0792 1.3501 0.474 104.01 27.46 8.1
H1 0.0804 1.0487 0.513 265.89 31.01 4.2
M2 0.0805 13.8079 0.579 128.02 2.40 570
LDA2 0.0818 0.8105 0.547 213.68 44.18 2.2
L2 0.0820 1.8890 0.630 214.98 18.65 9
T2 0.0832 0.8303 0.578 51.76 41.43 2.1
S2 0.0833 3.1601 0.577 68.02 10.31 30
MO3 0.1192 0.3949 0.230 339.66 33.47 2.9
MN4 0.1595 0.4463 0.171 343.51 22.75 7.4
M4 0.1610 1.7761 0.208 20.29 5.84 73
MS4 0.1638 0.7974 0.189 93.66 14.80 18
2MK5 0.2028 0.1248 0.051 118.14 29.74 5.9
2MN6 0.2400 0.0986 0.034 24.17 21.26 8.6
M6 0.2415 0.2139 0.037 56.92 9.42 34
2MS6 0.2443 0.1835 0.038 135.85 10.56 24
M8 0.3220 0.0751 0.023 182.61 18.92 11

Table 6: The significant (according to a cut-off rule at SNR < 2) tidal con-
stituents for the Uddevalla data. The columns give the constituents names,
frequencies (known), amplitude estimates and their errors, phase estimates
and their errors, as well as their signal to noise ratio.

A trained oceanographer can most likely read more out of these tables,
but three features stand out. The first is that there are a lot more significant
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Tide Freq. Amp. Amp_err. Pha. Pha_err SNR

Sa 1.141·10−4 17.8811 5.359 253.31 18.91 11
O1 0.0387 2.6841 0.960 306.74 20.55 7.8
2N2 0.0775 0.8913 0.411 170.31 30.11 4.7
MU2 0.0777 1.5163 0.354 28.27 13.50 18
N2 0.0790 1.9728 0.390 171.73 12.11 26
NU2 0.0792 0.6746 0.380 213.93 34.10 3.2
H1 0.0804 0.5570 0.393 6.94 28.85 2
M2 0.0805 7.4853 0.374 222.63 2.84 400
L2 0.0820 0.4820 0.294 285.62 36.80 2.7
S2 0.0833 2.0251 0.368 173.59 10.93 30
M4 0.1610 0.3430 0.102 162.81 19.02 11
2MN6 0.2400 0.1724 0.069 130.77 18.62 6.3
M6 0.2415 0.3488 0.066 146.56 11.72 28
2MS6 0.2444 0.3590 0.073 231.74 10.20 38
2MK6 0.2446 0.1358 0.073 234.98 31.85 3.5
M8 0.3220 0.0619 0.043 327.61 44.51 2.1

Table 7: The significant (according to a cut-off rule at SNR < 2) tidal
constituents for the Ängelholm data. The columns give the constituents
names, frequencies (known), amplitude estimates and their errors, phase
estimates and their errors, as well as their signal to noise ratio.

constituents for the Uddevalla and Ängelholm data sets than for the Åhus
data, as might be predicted considering the differences in their ACF plots in
Figure 5. The second is that the annual solar constituent Sa is significant in
the Uddevalla and Ängelholm analyses, but not the Åhus analysis. The third
is that both the amplitudes and SNRs of the constituents are generally higher
for the Uddevalla and Ängelholm analyses than for the Åhus analysis. E.g.
the amplitude of the principal lunar semidiurnal constituent, M2 is nearly
14 cm in Uddevalla while it is only 1 cm in Åhus, which is consistent with
information given by SMHI at smhi.se (2013g).

This becomes very visible when tidal predictions based on the significant
constituents are plotted. In Figure 16 four time series are plotted. The first
two plots show tidal predictions over the time periods uses as modelling data
for the time series models, for Uddevalla and Åhus. Comparing these two
plots shows the impact of the annul solar constituent Sa on the tidal structure
in Uddevalla clearly. Also, the heights of the tidal waves in Uddevalla and
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Tide Freq. Amp. Amp_err. Pha. Pha_err SNR

O1 0.0387 0.9595 0.605 279.39 38.00 2.5
K1 0.0418 1.1040 0.605 269.15 38.77 3.3
2N2 0.0775 0.2475 0.171 232.22 42.06 2.1
MU2 0.0777 0.2649 0.166 152.82 38.92 2.6
M2 0.0805 0.9953 0.188 54.14 8.70 28
S2 0.0833 0.2677 0.182 57.26 33.10 2.2

Table 8: The significant (according to a cut-off rule at SNR < 2) tidal
constituents for the Åhus data. The columns give the constituents names,
frequencies (known), amplitude estimates and their errors, phase estimates
and their errors, as well as their signal to noise ratio.

Åhus are noticeably different. The range of the Uddevalla tidal signal is
slightly over 70 cm, while it is only 6.3 cm for the tidal signal in Åhus. This
range difference can also be seen in the lower two plots, which show the first
four days of each of these tidal time series. Here, another difference between
the two tidal structures becomes apparent. Here, again, the findings of
this tidal analysis are consistent with the information from SMHI at smhi.se
(2013g), as the tide in Uddevalla is semidiurnal (Swe. halvdagligt). In Åhus,
on the other hand, the tidal signal is a so called mixed semidiurnal tide, since
there are two high tides of different heights per day.

5.3.3 Models for the post-tidal signal

With the aim of being able to diminish the complexity of the time series
models designed in Section 5.3.1, the tidal signals calculated in the previous
section are removed from the three data sets. These pre-processed data sets
are used to build new time series models. Again, the Uddevalla series will
be presented in the main text.

There are some differences to the model built to the pre-processed Ud-
devalla series, compared to the earlier model. One difference is that even
though the tests used to study the presence of long-term memory in the
data (the Elliott-Rothenberg-Stock test for unit roots and the Kwiatkowski-
Phillips-Schmidt-Shin test for stationarity) still indicate that fractional in-
tegration could be helpful, neither the BIC nor visual inspections of the
ACF/PACF of the model residuals indicate that a fractionally integrated
model is preferable to a model with an integer valued d parameter. Both
test and ACF-plots still show the presence of ARCH/GARCH effects. This
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Figure 16: A comparison between the tides in Uddevalla and Åhus. The first
two plots show tidal predictions over the time periods uses as modelling data
for the time series models, for Uddevalla and Åhus. The lowest two show
the first four days of each of these tidal time series.

indicates that a suitable model has an ARIMA-GARCH structure.
The final model for the pre-processed data is an ARIMA-GARCH(14,1,13)-

(1,2) model. Once more, most of the ARMA parameters are set to zero.
The included parameters are a1, a3, a4, a6, a7, a10, a12, a14, c9, c12, c13.
Clearly, this is a smaller model than the initial model previously presented,
though still large. The largest simplification achieved is the removal of the
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fractional integration. Figure 17 shows some diagnostics for the fit. Unfor-
tunately, the ACF plot is very similar to Figure 15.
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Figure 17: Diagnostic plots for the time series model fit to the pre-processed
Uddevalla data.

To connect the time series models to the problems with temporal de-
pendence in the data presented in the regression results section, time series
models are also built for the data from the permanent gauges. Using the
residuals from the Uddevalla and Smögen models the correlation between
the two data sets can be compared, after the mean structure has been ac-
counted for by the time series models.

The residuals have a linear correlation of 0.18. This can be compared
to the correlation between the raw sea levels from Uddevalla and Smögen,
0.97. Clearly, a lot of the correlation between the data sets came from the
mean structure. This is quite natural since the tidal signals are very similar
for the two locations, given their geographical closeness. A linear regression
model can be built using the residuals, instead of the raw data, removing the
problems with temporal dependence in the data. Using BIC and stepwise
F-tests, a multiple regression model is built:

ŷUdd,res =α̂+ β̂1xSmö,res + β̂3xws + β̂4xS + β̂5xW

=− 0.16 + 0.14xSmö,res + 0.05xws + 0.18xS − 0.18xW.
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The signs of the β parameters once more make sense, considering the
geography of the locations, but the R2 is only 0.038, indicting that quite
a small amount of the variability in the residuals can be explained by the
independent variables, regardless of them being significant in a regression
model. Also, fewer parameters are included in this model than the previous
regression models. Time series models and similar regression models can be
found in Appendix D
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6 Implementation

The analysis in this project has been done using the free statistical computing
and graphics language R (R Core Team 2013). The basic R environment can
be extend by installing user-written packages. Besides the packages that
are distributed with the standard R download, several other packages have
been used in this project. Some of the plots in the report have been produced
using the graphical package ggplot2 which is inspired by Leland Wilkinson’s
Grammar of Graphics (Carslaw and Chang 2013). The wind rose plot, Figure
8, was created using the openair package, which provides tools to analyse,
interpret and understand meteorological data (Wickham and Ropkins 2013).
The extreme value theory part of the project was made using the evd package
(Stephenson and Ferro 2012). One alternative to the evd package is called
extRemes. Both packages have their advantages, but the evd package was
chosen for its ability to handle missing data.

In the time series analysis part of the project, the main package used is
called rugarch. rugarch provides a large set of methods to fit, forecast and
diagnose a huge variety of univariate ARFIMAX-GARCH models (Ghalanos
2013). The tests used for indicating the existence of long-term memory in the
data (the Elliott-Rothenberg-Stock test for unit roots and the Kwiatkowski-
Phillips-Schmidt-Shin test for stationarity) as well as the test for Arch/Garch
effects (the McLeod-Li Test for conditional heteroscedascity) can be found in
the fUnitRoots, TSA and tseries packages (Wuertz 2013; Chan and Ripley
2012; Trapletti and Hornik 2013).

One part of the time series analysis was done in Matlab, namely the
harmonic tidal analysis. This was done with the t_tide package which is
based on the FORTRAN IOS Tidal package by Mike Foreman from 1977-78
(Pawlowicz, Beardsley, and Lentz 2002). There are a few Matlab pack-
ages that compute harmonic analysis, the t_tide package was chosen for its
simplicity and ability to handle missing values.
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7 Summary and discussion

As was stated in Section 1, the Swedish Meteorological and Hydrological In-
stitute (SMHI) placed mobile sea level gauges at places that were potentially
oceanographically interesting. They wished to perform an extended statis-
tical study of the results from these gauges. They also wished to relate the
sea level data from the mobile gauges with the sea level data from nearby
permanent stations in order to eventually be able to increase the reliability
of the oceanographic forecasting and warning service. Also, they have an in-
terest in combining sea level data with wind and atmospheric pressure data
to better understand what factors affect the sea levels at the three locations
of interest.

A statistical study of the data at hand was performed in Sections 3.1–
3.2 as well as Section 5.1, where extreme value theory was used to study
how large the differences between the three paired locations were likely to
become. More specifically, five-year return levels were studied. In Table 3
these five-year return levels are presented. It can be seen that the return
levels all roughly fall between 30 and 53 cm, indicating that the possible
sea level differences between the paired locations can become quite large.
It should be noted that the 95 % confidence intervals have varying sizes,
depending on the quality of the GEV distribution fit, but some of them
indicate that the five-year return levels could actually be as large as 70-80
cm. As is pointed out in Ch. 3 of Coles (2001), the use of GEV models
for extrapolation is based on unverifiable assumptions, and thus return level
confidence intervals should be regarded as lower bounds of the uncertainty,
if model correctness could be accounted for. With this in mind, whether the
sizes of the possible differences between the permanent and mobile sea level
gauges are large enough to merit further attention is left to SMHI to judge.
They are better equipped to conclude if these differences are larger than can
be accepted, and thus if the mobile gauges are to be kept where they are, or
moved.

One possible objection to the methodology of applying GEV models to
the difference data is the possibility that the largest differences could be due
to the tides at the paired locations being out-of-phase – that is that the sea
level in e.g. Uddevalla could be at high tide (the peak of a sine movement)
while the se level in Smögen is at low tide (the bottom of a sine movement).
Thorough visual inspections of the points that correspond to the largest
differences show that this is not the case. The tidal signals at the paired
stations are similar enough not to cause large differences by being out-of-
phase. Another possible objection is that it is not certain that the extremes
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of e.g. Uddevalla – Smögen are really points where the Uddevalla sea level is
higher than the Smögen sea level – it might just as well be points where the
both sea levels are negative, and Smögen sea level is more extreme. While
this is certainly possible, and probably true for some points, a thorough
visual inspection of the most extreme (both negative and positive) points
shows that this is not the case for the most extreme, and thus important,
points.

A possible way to improve on the extreme value analysis could be to fit
a Generalised Pareto Distribution, instead of the GEV distribution. The
GPD has some positive aspects, when compared to GEV models, but since
the GEV fits where generally good, a GPD fit was not attempted during this
project.

Relating the sea levels from the mobile gauges with their permanent coun-
terparts was done with linear regression in Section 5.2. It was largely success-
ful, as shown by both diagnostic plots and quite correct prediction intervals,
when the regressions were applied to validation data. The initial regression
results were summarised in Table 4. It can be seen that the regression line
for the Uddevalla – Smögen regression is the steepest of the four regressions
and Åhus – Simrishamn is the flattest. Also, the Adj. R2 was lowest for
Uddevalla – Smögen and highest for Åhus-Simrishamn. This indicates that
there is more behaviour in the Uddevalla data that cannot be explained by
the sea levels in Smögen, than there is in the Åhus data that cannot be
explained by the Simrishamn data. A slight quadratic structure in the rela-
tionship between the mobile stations and their permanent counterparts was
also found. Additionally, the data from Kungsholsmfort was found to add
some predictive power to the Åhus regression, but was discarded due to very
high collinearity.

In order to examine the importance and influence of wind speeds, wind
directions and atmospheric pressure on the behaviour of sea levels at the
three locations, the linear regression was extended. The results were largely
consistent with what was expected, considering the geography of the three lo-
cations. One interesting point is that the parameter representing the squared
data from the permanent gauges are still significant after the meteorological
data are added to the regression model. The largest breach of the regression
assumptions was considered to be the temporal dependence in the residuals.
This indicated that a time series model might be advantageous in describing
the sea level behaviour. This is natural, since the data are structured as
time series.

Thus, time series models were designed to describe the data in another
manner, with the hope of gaining more information. Initially, ARMA models
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where extended by adding GARCH structures to handle heteroscedasticity
and fractional integration structure was added to better model long term
memory in the time series. Unfortunately, very large ARFIMA-GARCH
models were needed in order to get the residuals to be nearly white. This
indicated the presence of a lot of structure in the data, which might be better
handled with some sort of pre-processing. The oceanographical nature of
the data indicated that suitable pre-processing might be the removal of tidal
signals from the sea level data.

In studying the tidal signals, some structures stood out. The largest was
the difference between the tidal signals on the west and east coasts. The tides
in Åhus did not have a significant annual structure, in contrast to Uddevalla
and Ängelholm. After removal of the tidal signals from the data, new time
series models were built. One immediate effect of this pre-processing was
that there no longer was as strong an indication for long-term memory as
previously, possibly indicating that the long temporal structures handled by
the fractional integration were in fact tidal patterns in the data.

One objective with building time series models was initially to be able
to describe the mean structures of both the mobile and permanent gauge
data sets and then use the residuals from their respective time series models
to examine the relationships between the residuals from the paired stations.
This could have been done using both regression theory again, or copula
theory. Due to time constraints, the copula approach was not attempted.
The copula approach could possibly have been more interesting, considering
the lack of linear correlation between the residuals. This lack of correlation
indicates that a lot of the similarities between the paired stations might be
due to tidal structures and other men structures in the data captured by the
time series models.

Another possible, and interesting, continuation of the time series mod-
elling would be to combine the regression models with the time series mod-
els. This could be done through the use of exogenous regressors in so-called
ARMAX models or by building a Generalised Least Squares model, which
compensates for the correlation between the observations.

Deciding the future use of the mobile sea level gauge data is of course
left to SMHI. This project has studied the differences between the paired
data sets, as well as how they are related, though extreme value analysis and
regression. The next step forward hinges on how the warning and forecasting
work is done in practice at SMHI, when it comes to gauge data contra model
data. One possible way to continue this study is to perform statistical post-
processing on the model output from the models currently being used by the
Oceanographic Warning & Forecasting Service, with the results presented

59



in this report as basis. Another possible next step could be to do model
validation on the current models in use based on the findings in this project,
but that hinges on the grid sizes used in the models, i.e. if they have fine
enough grids to make a difference between e.g. Smögen and Uddevalla.
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Appendices

A Mean Sea Level Equations

EKVATIONER FÖR
MEDELVATTENSTÅNDET I RH2000 2013
Beräknat medelvattenstånd i RH2000

2013-06-04 cm

NR STATION EKVATION
2157 KALIX Wyy=30.5-(0.73)*(yy-1986)
2055 FURUÖGRUND Wyy=29.0-(0.82)*(yy-1986)
2056 RATAN Wyy=30.3-(0.80)*(yy-1986)
2321 SKAGSUDDE Wyy=27.1-(0.80)*(yy-1986)
2061 SPIKARNA Wyy=24.6-(0.68)*(yy-1986)
2179 FORSMARK Wyy=24.6-(0.64)*(yy-1986)
2069 STOCKHOLM Wyy=21.5-(0.38)*(yy-1986)
2507 LANDSORT NORRA Wyy=18.2-(0.29)*(yy-1986)
2076 MARVIKEN Wyy=15.5-(0.18)*(yy-1986)
2080 VISBY Wyy=13.4-(0.12)*(yy-1986)
2083 ÖLANDS NORRA UDDE Wyy=15.8-(0.12)*(yy-1986)
2085 OSKARSHAMN Wyy=15.0-(0.12)*(yy-1986)
2088 KUNGSHOLMSFORT Wyy=13.5-(0.01)*(yy-1986)
2543 ÅHUS mobil Wyy=12.9-(-0.08)*(yy-1986)
2320 SIMRISHAMN Wyy=12.9-(-0.08)*(yy-1986)
30488 SKANÖR Wyy=12.7-(-0.08)*(yy-1986)
2095 KLAGSHAMN Wyy=11.3-(-0.06)*(yy-1986)
2099 BARSEBÄCK Wyy=9.8-(-0.06)*(yy-1986)
2228 VIKEN Wyy=4.7-(-0.10)*(yy-1986)
2542 ÄNGELHOLM mobil Wyy=4.7-(-0.10)*(yy-1986)
2105 RINGHALS Wyy=7.3-(0.10)*(yy-1986)
2109 GÖTEBORG-TORSHAMNEN Wyy=8.1-(0.16)*(yy-1986)
2110 STENUNGSUND Wyy=4.1-(0.17)*(yy-1986)
2541 UDDEVALLA mobil Wyy=4.1-(0.17)*(yy-1986)
2111 SMÖGEN Wyy=1.7-(0.18)*(yy-1986)
2130 KUNGSVIK Wyy=1.8-(0.20)*(yy-1986)

där yy är årtalet
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B GEV fits

B.1 Smögen – Uddevalla
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Figure 18: The five year return levels corresponding to GEV distributions
fitted to block maxima of the difference between the Smögen measurements
and the measurements from Uddevalla are shown by the red line. The block
sizes are on the x axis, in multiples of 24 hours. A 95 % confidence band for
the return levels is also shown, calculated by the delta method.

Choosing an appropriate block size for the Smögen - Uddevalla data is
not as obvious as for the Uddevalla - Smögen case. Looking at Figure 18 it
can be seen that the estimate of the five year return level is quite unstable
for blocks smaller than two weeks. For block sizes larger than two weeks,
the five year return level estimates seem to fall between 28 and 30 cm and
the 95 % confidence intervals are more or less constant, covering the area
between 24 and 34 centimetres. As can be seen in the ACF plot in Figure
19, the block maxima series (two-week blocks) appears white.

Looking at diagnostic plots for the GEV fit with two-week blocks, Figure
20, it can be seen that the fit is not as good as the previous Uddevalla -
Smögen fit in Figure 11. One noticeable difference is that the negative value
of the shape parameter ξ in this fit leads to a convex return level function,
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Figure 19: Bottom: a plot showing block maxima for the difference between
the Smögen measurements and the Uddevalla measurements, with two-week
blocks. Top: an autocorrelation plot for the same block maxima series.

which is more physically reasonable than a concave functions, since it implies
a finite bound to the return levels. The GEV distribution parameters for
this fit are location: µ = 16.61 (0.50), scale: σ = 3.55 (0.36) and shape:
ξ = −0.15 (0.10). The values in parentheses are standard errors. The length
of the block maxima series used is 65.

63



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Probability Plot

Empirical

M
od

el

10 15 20 25

10
15

20
25

30

Quantile Plot

Model
E

m
pi

ric
al

10 15 20 25 30

0.
00

0.
04

0.
08

Density Plot

Quantile

D
en

si
ty

0.2 0.5 2.0 5.0 20.0 100.0

10
15

20
25

30

Return Level Plot

Return Period

R
et

ur
n 

Le
ve

l

Figure 20: Diagnostic plots for the GEV fit to the Smögen - Uddevalla differ-
ence data. Left-to-right and top-to-bottom: 1) A probability plot. The data
point follow a straight line reasonably well, considering the 95% confidence
band. 2) A quantile-quantile plot. The plot further implies that the fitted
model suits the data, since the model-based estimate of the quantile function
fits the data well, considering the confidence bands. 3) The density of the
fitted distribution is plotted (solid line), together with a non-parametric es-
timate (dashed line) and a rug plot of the data. The fit is not quite as good
as the previous Uddevalla -Smögen fit. 4) The return level plot also shows
that the fit is reasonably good, since the data points lie close to the return
level line. The x-axis shows return levels (in multiples of 14 days) plotted on
a logarithmic scale. The line is convex (and thus has a finite bound), which
corresponds to the negative value of ξ in the GEV-fit.
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B.2 Ängelholm - Viken and Viken - Ängelholm

A GEV distribution is fitted to the Ängelholm – Viken difference data, in
the same manner as for the Uddevalla – Smögen case. The five year return
level plot is shown in Figure 21. Using it together with ACF plots, a block
size of one week is chosen. The block maxima autocorrelation is shown
in Figure 22. 82 one-week block maxima are used for the fit. The GEV
distribution parameters are location, µ = 4.54 (0.46), scale, σ = 4.34 (0.34)
and shape ξ = 0.092 (0.062). The shape parameter is positive, if not by
much, indicating that the return level function has no finite bound. This
should be considered before using this fit for very long return periods.
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Figure 21: The five year return levels corresponding to GEV distributions
fitted to block maxima of the difference between the Ängelholm measure-
ments and the measurements from Viken are shown by the red line. The
block sizes are on the x axis, in multiples of 24 hours. A 95 % confidence
band for the return levels is also shown, calculated by the delta method.

All four diagnostic plots in Figure 23 show that the GEV fit is good.
Especially the density plot is very promising.

A GEV distribution is fitted to the Viken – Ängelholm difference data
(min of Ängelholm – Viken). The five year return level plot is shown in
Figure 24. Using it together with ACF plots, a block size of 12 days is
chosen. The block maxima autocorrelation is shown in Figure 25. 68 12-
day block maxima are used for the fit. The GEV distribution parameters

65



−
0.

3
0.

1

Lag

A
C

F
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

−40

−20

0

20

40

2011−07 2012−01 2012−07 2013−01 2013−07
TimeD

iff
er

en
ce

: Ä
ng

el
ho

lm
 −

 S
m

ög
en

, c
m

Figure 22: Bottom: a plot showing block maxima for the difference between
the Ängelholm measurements and the Viken measurements, with seven-day
blocks. Top: an autocorrelation plot for the same block maxima series.

are location, µ = 11.98 (0.41), scale, σ = 3.00 (0.32) and shape ξ = 0.16

(0.09). The shape parameter is positive, again indicating that the return
level function has no finite bound.

Again, four diagnostic plots are presented in Figure 26. They show that
the GEV fit is good, though not quite as good as the one present in Figure
23.
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Figure 23: Diagnostic plots for the GEV fit to the Ängelholm - Viken differ-
ence data. Left-to-right and top-to-bottom: 1) A probability plot. The data
point follow a straight line reasonably well, considering the 95% confidence
band. 2) A quantile-quantile plot. The plot further implies that the fitted
model suits the data, since the model-based estimate of the quantile func-
tion fits the data well, considering the confidence bands. 3) The density of
the fitted distribution is plotted (solid line), together with a non-parametric
estimate (dashed line) and a rug plot of the data. The fit is very good. 4)
The return level plot also shows that the fit is good, since the data points lie
close to the return level line. The x-axis shows return levels (in multiples of
7 days) plotted on a logarithmic scale. The line is concave (and thus has no
finite bound), which corresponds to the positive value of ξ in the GEV-fit.
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Figure 24: The five year return levels corresponding to GEV distributions
fitted to block maxima of the difference between the Viken measurements
and the measurements from Ängelholm are shown by the red line. The block
sizes are on the x axis, in multiples of 24 hours. A 95 % confidence band for
the return levels is also shown, calculated by the delta method.
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Figure 25: Bottom: a plot showing block maxima for the difference between
the Viken measurements and the Ängelholm measurements, with 12-day
blocks. Top: an autocorrelation plot for the same block maxima series.
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Figure 26: Diagnostic plots for the GEV fit to the Viken - Ängelholm differ-
ence data. Left-to-right and top-to-bottom: 1) A probability plot. The data
point follow a straight line reasonably well, considering the 95% confidence
band. 2) A quantile-quantile plot. The plot further implies that the fitted
model suits the data, since the model-based estimate of the quantile func-
tion fits the data well, considering the confidence bands. 3) The density of
the fitted distribution is plotted (solid line), together with a non-parametric
estimate (dashed line) and a rug plot of the data. The fit is quite good, but
has to low an upper tail to account for the largest block maximum. 4) The
return level plot also shows that the fit is reasonably good, since the data
points lie close to the return level line. The x-axis shows return levels (in
multiples of 12 days) plotted on a logarithmic scale. The line is concave (and
thus has no finite bound), which corresponds to the positive value of ξ in the
GEV-fit.
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B.3 Åhus - Simrishamn and Simrishamn - Åhus

0

40

80

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Days

5 
ye

ar
 r

et
ur

n 
le

ve
l (

cm
)

Figure 27: The five year return levels corresponding to GEV distributions
fitted to block maxima of the difference between the Åhus measurements and
the measurements from Simirishamn are shown by the red line. The block
sizes are on the x axis, in multiples of 24 hours. A 95 % confidence band for
the return levels is also shown, calculated by the delta method.

As previously, a GEV distribution is fitted to the Åhus – Simrishamn
difference data. The five year return level plot is shown in Figure 27. Using
it together with ACF plots in the same manner as before, a block size of one
week is chosen. The block maxima autocorrelation is shown in Figure 28.
The five year return level plot is quite different, visually, from the previous
return level plots. It appears to not be especially biased, ever for small block
sizes, and it is quite stable up to block sizes of nearly a month.

75 one-week block maxima are used for the fit. The GEV distribution
parameters are location, µ = 7.84 (0.36), scale, σ = 2.83 (0.26) and shape
ξ = 0.03 (0.07). The shape parameter is positive, again indicating that the
return level function has no finite bound. It should be observed that the
standard error of the ξ parameter indicates that this is very uncertain. The
return level function shown in Figure 29 is very nearly linear.

Once more, a GEV distribution is fitted to the minima of the difference
data, in this case Simrishamn – Åhus. The five year return level plot is shown
in Figure 30. Using it together with ACF plots in the same manner as before,
a block size of one week is again chosen. The block maxima autocorrelation
is shown in Figure 31. The five year return level plot is once morequite
different, visually, from the previous return level plots. This time it is a lot
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Figure 28: Bottom: a plot showing block maxima for the difference between
the Åhus measurements and the Simrishamn measurements, with one-week
blocks. Top: an autocorrelation plot for the same block maxima series.

more unstable, and appears to not centre around a small interval.
75 one-week block maxima are used for the fit. The GEV distribution

parameters are location, µ = 1.16 (0.38), scale, σ = 2.81 (0.33) and shape
ξ = 0.33 (0.12). The shape parameter is positive, again indicating that the
return level function has no finite bound, this time quite clearly.

The diagnostic plots in Figure 32 show that this is (possibly as expected,
considering Figure 30) the least good fit of all. Especially the density plot is
clearly not on par with those of the previous fits.

71



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability Plot

Empirical

M
od

el

5 10 15 20

5
10

15
20

25
30

35

Quantile Plot

Model
E

m
pi

ric
al

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

0.
12

Density Plot

Quantile

D
en

si
ty

0.2 0.5 2.0 5.0 20.0 50.0

5
10

15
20

25
30

Return Level Plot

Return Period

R
et

ur
n 

Le
ve

l

Figure 29: Diagnostic plots for the GEV fit to the Åhus - Simrishamn differ-
ence data. Left-to-right and top-to-bottom: 1) A probability plot. The data
point follow a straight line reasonably well, considering the 95% confidence
band. 2) A quantile-quantile plot. The plot further implies that the fitted
model suits the data, since the model-based estimate of the quantile func-
tion fits the data well, considering the confidence bands. 3) The density of
the fitted distribution is plotted (solid line), together with a non-parametric
estimate (dashed line) and a rug plot of the data. The fit is very good. 4)
The return level plot also shows that the fit is reasonably good, since the
data points lie close to the return level line. The x-axis shows return lev-
els (in multiples of one week) plotted on a logarithmic scale. The line is
nearly straight, and only slightly concave compared to the other fits, which
corresponds to the lower, but still positive, value of ξ in the GEV-fit.
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Figure 30: The five year return levels corresponding to GEV distributions
fitted to block maxima of the difference between the Simrishamn measure-
ments and the measurements from Åhus are shown by the red line. The
block sizes are on the x axis, in multiples of 24 hours. A 95 % confidence
band for the return levels is also shown, calculated by the delta method.
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Figure 31: Bottom: a plot showing block maxima for the difference between
the Simrishamn measurements and the Åhus measurements, with one-week
blocks. Top: an autocorrelation plot for the same block maxima series.
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Figure 32: Diagnostic plots for the GEV fit to the Simrishamn - Åhus differ-
ence data. Left-to-right and top-to-bottom: 1) A probability plot. The data
point follow a straight line reasonably well, considering the 95% confidence
band. 2) A quantile-quantile plot. The plot further implies that the fitted
model suits the data, since the model-based estimate of the quantile function
fits the data well, considering the confidence bands. 3) The density of the
fitted distribution is plotted (solid line), together with a non-parametric es-
timate (dashed line) and a rug plot of the data. The fit is not nearly as good
as for the Åhus - Simrishamn fit in Figure 29. 4) The return level plot also
shows that the fit is reasonably good, since the data points lie close to the
return level line. The x-axis shows return levels (in multiples of one week)
plotted on a logarithmic scale.
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C Linear regression models

C.1 Regression diagnostics

Here, regression diagnostics for Ängelholm, C.1.1, and Åhus, C.1.2, are pre-
sented. In C.2, parameter estimates for the three best multiple regression
models are given.

C.1.1 Ängelholm

As for the Uddevalla diagnostics presented in the main text, there is a
quadratic trend visible in the plot of the regression residuals ei versus the
fitted values Ŷi in Figure 34. The Cook’s distance values for the residuals of
the initial regression residuals for Ängelholm are not overly large. In con-
trast to the diagnostics for Uddevalla, the same data points are not both
residual outliers and influential points (according to Cook’s distance) for the
Ängelholm regression.
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Figure 33: Top-to-bottom and left-to-right: a plot of regression residuals vs.
the fitted values, a normal quantile-quantile plot, and a plot showing Cook’s
distance.

In the same manner as for the Uddevalla regression, the points indicated
by the diagnostic plots are studied in more detail. From visual inspection of
them, the same conclusions are drawn as for the indicated data points in the
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Uddevalla regression. They are not obviously faulty measurements, as the
points indicated in Figure 3.1.1 are, and are kept in the data set, hopefully
to be better described in extended models.

C.1.2 Åhus

The slight curved structure of the regression residuals is the same for this fit
as for the previous initial regression models. Also as previously, the normal
quantile-quantile plot is not perfect, but this does not appear to cause the
confidence and prediction intervals to be too biased, as is discussed in Section
5.2.1. As previously, closer inspections of the possibly troublesome points in
the data set indicates that they should be left as they are.
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Figure 34: Top-to-bottom and left-to-right: a plot of regression residuals vs.
the fitted values, a normal quantile-quantile plot, and a plot showing Cook’s
distance.
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C.2 Multiple regression parameter estimates

U–S Ä–V Å–S

α̂ −2.935 (0.1312) 32.89 (4.226) 22.02 (2.659)
β̂Perm. 1.093 (0.0027) 1.021 (2.107·10−3) 1.011 (1.518·10−3)
β̂Perm.2 −3.035·10−4

(6.069·10−5)
−3.322·10−4

(3.852·10−5)
−3.412·10−4

(3.661·10−5)
β̂Ws. 0.3061 (0.0327) 0.4522 (0.0234) −0.0751 (0.0126)
β̂N −1.434 (0.1705) −4.378 (0.1168)
β̂NE −2.777 (0.1542) −3.025 (0.1589)
β̂E −2.896 (0.1851) −2.293 (0.1691) 1.681 (0.0945)
β̂SE −2.852 (0.2235) −1.102 (0.1565) 1.657 (0.0939)
β̂S −1.224 (0.1449) −0.6652 (0.1353) 1.925 (0.0896)
β̂SW 1.403 (0.1395) 1.441 (0.0731)
β̂W 1.026 (0.1725) 1.173 (0.1418)
β̂NW

β̂Press. −0.0368

(4.139·10−3)
−0.0185

(2.605·10−3)

Table 9: Parameter estimates for the three regression models. The standard
error of the estimates are given in brackets.

77



D Time series models for Ängelholm and Åhus

Time series models are built for the data from Ängelholm and Åhus in the
same way as for Uddevalla. After the tidal signals are removed, the model
found for Ängelholm is an ARMA(3,0,25)-GARCH(1,1) model where the
chosen ARMA parameters are: µ, a1, a3, c3, c4, c9, c12, c13, c24, c25.
Observe that an an ARMA model was preferred by both BIC and visual in-
spections of ACF/PACF plots to an ARIMA or ARFIMA model. Diagnostic
plots for this fit are very similar to the plots for the Uddevalla fit, shown
in Figure 17. Once again, a Student’s-t distribution fits the residuals better
than a Normal distribution. The residuals from this model have a linear
correlation of 0.38 with the residuals from a time series model for Smögen.
The best fitting linear regression model for the residuals has an R2

Adj of 0.15
and is

ŷÄng,res =α̂+ β̂1xVik,res + β̂2xE + β̂3xPr.

=16.39 + 0.35xVik,res − 0.25xE − 0.02xPr..

For the Åhus data, the chosen model is slightly larger. It is an ARIMA(1,1,20)-
GARCH(1,1) model with these chosen ARMA parameters: µ, a1, a2, a3, a4, a5,
c7, c9, c10, c11, c14, c16, c18, c19, c20. The residuals from this model have
a linear correlation of 0.45 with the residuals from a time series model for
Smögen. The best fitting linear regression model for the residuals has an
R2
Adj of 0.20 and is simpler than the previous models:

ŷÅh,res =α̂+ β̂1xShamn,res

=0.004 + 0.51xShamn,res.

There appears to still be some structure left in the data for Åhus and
Simrishamn, even after the tidal signals have been removed and time series
models have been applied.
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