
Department of Automatic Control

Cool-down and Warm-up of the Cryogenic
Distribution Line at ESS

Riccard Andersson

MSc Thesis
ISRN LUTFD2/TFRT--5939--SE
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2014 by Riccard Andersson. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2014

Abstract

The European Spallation Source, ESS, is a joint collaboration of 17 European coun-
tries, where the world’s most powerful neutron source will be built for future re-
search within a vast variety of fields. In order to deliver the highly energetic neu-
trons, protons are accelerated to energies in the GeV range and then collided with a
spallation target. This acceleration process requires superconducting cavities cooled
down to slightly over 2 K, and this cooling is done through the cryogenic system
using helium.

In this project, the cryogenic system at ESS has been modeled in Dymola. Simula-
tions have been made of the cool-down and warm-up of the superconducting part
of the accelerator. This was done in separate simulations for the cryogenic distribu-
tion line and for an individual cryomodule. Additionally, a model was created for
the helium discharge system, in order to size the vent line leading rapidly expanded
helium from the cold masses back to the cryoplant. The mathematical tools and
structure of the modeling are described in a separate chapter.

3

Acknowledgements

First of all, I would like to thank Dr. John G. Weisend II for taking on the role of
being my supervisor at ESS and giving me the opportunity to dig into the subject
of cryogenics, together with letting me take part in a large-scale European science
project. I have received many valuable comments on my work and on the world of
science and engineering in general.

Prof. Rolf Johansson, who has been my academic supervisor, has been very support-
ive in his comments on the progress of my work, the structure of scientific writing,
and key points of developing useful results. In addition, Rolf has been quick at re-
sponding to my requests and considerations, which has made the development of
this thesis as smooth as possible.

I want to thank Dr. Jaroslaw Fydrych for his helpful attitude towards guiding me
in the field of accelerator physics and cryogenics. His expertise and pedagogical
abilities have been a key pillar in my learning and this Master thesis. Without his
helpful attitude, my work at ESS would not have reached the same level.

Other co-workers that have been helpful in creating this thesis are Wolfgang Hees,
Philipp Arnold, and Dr. Xilong Wang, whose knowledge within cryogenics has been
very useful inputs in the development of my work. I have also received a great
amount of support from Dr. Carl Wilhelmsson at Modelon AB, who has helped me
in the development of models in Dymola.

5

Contents

1. Introduction 9
1.1 The European Spallation Source 9
1.2 The Cryogenic System at ESS 11

2. Problem Formulation 15
2.1 Helium Discharge to Relief System 15
2.2 Cool-down and Warm-up of the Distribution Line 16
2.3 Cool-down and Warm-up of One Cryomodule 17
2.4 Model Comparisons . 20

3. Methods 23
3.1 Dymola and Modelica . 23
3.2 Matlab . 25

4. Models 28
4.1 Theory . 28
4.2 Modelica Components . 38
4.3 Specification of Pipes and Components 41

5. Results 46
5.1 Helium Discharge to Relief System 46
5.2 Cool-down of the Cryogenic Distribution Line 46
5.3 Warm-up of the Cryogenic Distribution Line 48
5.4 Cool-down of One Cryomodule 48
5.5 Warm-up of One Cryomodule 49
5.6 Model Comparisons . 50

6. Discussion 61
6.1 Conclusions . 61
6.2 Future Work . 63

7. References 65
Bibliography 65

7

Contents

8. Appendices 69
8.1 Appendix I - Dymola Components, Graphical Layer 69
8.2 Appendix II - Dymola Components, Modelica Code 73

8

1
Introduction

1.1 The European Spallation Source

The European Spallation Source, ESS, is a high-power neutron source that will be
built in Lund. It is a European project involving 17 countries, of which Sweden
and Denmark are the host countries. The actual facility will be in Lund, while the
data management center will be located at the Niels Bohr Institute in Copenhagen.
Sweden and Denmark also hold a large portion of the company stock: 35% and
12.5%, respectively. To reach the 50% limit for the Scandinavian countries, Norway
holds the remaining 2.5%, while the rest is shared by the other fourteen European
countries involved. In 2013, ESS went into the construction phase of the project,
being preceded by the pre-construction phase since its start. The current phase will
continue until all of the construction is finished, which is planned to occur in 2025.
First delivery of neutrons, however, is planned already in 2019. Even though full
power has not been reached and all instruments have not been completed at that
time [1, 2, 3].

Background
Since the construction of ISIS in Oxfordshire, UK, in 1985, there has been a clear
need for a stronger neutron source to perform experiments in the front line of sci-
ence. This made the European Neutron Scattering Association, ENSA, convince
the Organisation for Economic Cooperation and Development, OECD, in 1999 that
powerful neutron sources were necessary tools for the future, and that one facility
should be placed in each of the continents of Europe, Asia, and America. The lat-
ter two already had such sources, and the turn had now come to Europe. In 2009,
Lund was decided to be the place to build it. The year after, the company ESS AB
formed, having Sweden as the owner of 75% of the stock and Denmark holding the
remaining 25% [1].

9

Chapter 1. Introduction

Neutron Spallation
The process of neutron spallation was first discovered in 1937 by Glenn Seaborg.
The process is performed by accelerating protons into a target, which in the case of
ESS is made of tungsten. Upon being hit, the tungsten target then scatters some 20-
30 neutrons per proton, and the neutrons are guided to their respective experiments
using so called reflectors. The word spallation refers to the same spallation that
can be seen on brick walls with peeled-off layers of concrete, or by knocking of
small splinters from a rock using another rock. Just as neutrons are spalled off of
the tungsten target by the protons.

Research
Within the partner countries, there are over 60 partner labs associated. In addition
to the partner labs and their visits to the neutron source, there will be some 2000 to
3000 guest researchers coming each year. The research at ESS will be carried out
within multiple disciplines and it will span fields such as life science, energy, envi-
ronmental technology, culture and archeology, plastics, pharmaceuticals, molecular
science, fundamental physics, engine technology, and more [3]. The power of the
source will be up to 5 MW, and the brightness will surpass the second greatest neu-
tron source, SNS in Oak Ridge, Tennessee [4], by 30 times. This is seen in Fig.
1.1, where the integral of the brilliance over time yields the brightness [5]. Another
curious fact is that ESS will use long proton pulses, with a pulse length of 2.86 ms -
something that has not been used before. With this technology, objects of size 10−11

to 10−6 meters can be resolved in time frames of 10−9 to 10−3 seconds. This makes
it possible to study smaller, more complex objects in real time in the 22 instru-
ments that will be available. As neutrons do not carry any charge, they only interact
through the strong nuclear force. This means that they will leave the samples intact,
and studies of bulky materials does not become a limitation [1].

Technical Details
The production of neutrons is done through a series of steps. The first step is to heat
a hydrogen gas, which produces a plasma of free protons and electrons. The protons
and electrons are separated in an electromagnetic field, and the protons are collected
and pre-accelerated through 40 meters of normal conducting acceleration devices.
Now the protons have gained enough energy to enter into the superconducting [7]
part of the accelerator. This part consists of radio frequency niobium cavities, cooled
to 2 Kelvin. After having been accelerated through these, which makes up about 305
meters, the protons have gained 2.5 GeV of energy. This means a velocity of 96%
that of the speed of light at the point of hitting the spallation target. The target
consists of neutron rich tungsten (110

74 W) [3] divided into 33 radial sections, which
is rotating at a frequency of 1/33

1/14 = 0.42 revolutions per second [1, 2].

10

1.2 The Cryogenic System at ESS

Figure 1.1 The brilliance of various neutron sources, as a function of time. ISIS in
UK, SNS in U.S., ILL in France, and J-PARC in Japan are displayed together with
ESS. Note the pulse length of ESS (orange), together with the high brilliance peak.
Source: [6].

When the protons hit the target, neutrons are ”knocked off” of the tungsten material.
The produced neutrons then have a very high energy, and a velocity of about 10%
of the speed of light. This is too high for usage within experiments, and the neutrons
have to be slowed down to about the speed of sound using hydrogen moderators,
and then guided to the right experimental hall. When the neutrons have been guided
to their experiments, they scatter off of the sample in various directions and give
rise to large amounts of data which is used for 3D image production and further
analysis [1, 2].

There will be a maximum proton energy of 2.5 GeV and the current corresponds for
50 mA. The frequency of the proton pulse is 14 Hz, with a previously mentioned
pulse length of 2.86 ms. The peak beam power is 125 MW, and the average is 5 MW.
In total, the whole machine is 442.7 meters, with an allowance of 159.2 meters of
extra space for future upgrades [2].

1.2 The Cryogenic System at ESS

The cryogenic distribution system for the linear accelerator at ESS has the main
purpose to deliver the cooling medium to the superconducting cavities used in the
acceleration of the proton beam. This is done by cold helium which is transported
to the different parts of the accelerator [8]. The system consists of four major parts,
including the accelerator cryoplant, the transfer line, the cryomodules, and the dis-

11

Chapter 1. Introduction

tribution line. A schematic view of the distribution line with the cryoplant and the
transfer line can be seen in Fig. 1.2. Further, the distribution line contains a spoke
cavity section, a medium-β section, and a high-β section, and can be divided into
a modular setup where each module includes a valve box and jumper connection,
further described below.

Figure 1.2 An overview of the cryogenic system for the superconducting accel-
erator part. The cryoplant, transfer line, and distribution line are named. The spoke
cavity section is in light blue color, the medium-β is in green, and the high-β is in
orange. Courtesy of Jaroslaw Fydrych.

The Cryoplant
In the cryoplant, the helium is being cooled and liquefied for the purpose of cooling
the superconducting parts of the accelerator. It consists of a number of heat ex-
changers, compressors, and valves to yield the necessary amount and temperature
of the helium. The cryoplant is aimed to work at an efficiency of at least 26% of the
Carnot efficiency [9], and is expected to operate for at least 25 years. The cooling
power will be specified as 3.3 kW at 2 K and 11.8 kW at 4.5 K equivalent [10, 11].

The Distribution Line
The cryogenic distribution line will stretch along the entire superconducting part
of the accelerator and deliver and distribute the cold helium to the cryomodules.
It has a total length of 305 meters, and will be placed in the accelerator tunnel.
As there will be a total number of 43 cryomodules, the distribution line can be
divided into 43 modules, or sections, each being of a similar structure. A sketch
of a section and its structure with the distribution line, a valve box, and a jumper
connection can be seen in Fig. 1.3. In addition, there will be an end box placed at the
turnaround of the pipes at the very end of the distribution line. This end box contains
connectors where the helium supply pipe connects to the vapor low pressure pipe
and the thermal shield supply pipe connects to the thermal shield return pipe. There
will also be a second choice of path for the cold helium circuit, where an electric
heater is placed that will be used to add heat to the cold helium during steady-state
operation, to increase the pressure of the returning helium vapor. A picture of the
three sections of the distribution line, with its valve boxes, is seen in Fig. 1.4.

12

1.2 The Cryogenic System at ESS

Figure 1.3 One section of the distribution line with the valve box and the jumper
connection. Courtesy of Piotr Tereszkowski.

Figure 1.4 Three connected sections of the distribution line with the valve box and
the jumper connection. Courtesy of Piotr Tereszkowski.

The Transfer Line
The cryogenic transfer line has the purpose of leading the helium from the cryoplant
to the distribution line, and back again after the helium has passed through the
system. The transfer line will have a length of 50 meters.

13

Chapter 1. Introduction

Figure 1.5 A transparent picture of an elliptical cryomodule with four cavities.
Taken from [2].

Cryogenic Piping
Both the distribution line and the transfer line contain four process pipes. These
are named the helium supply pipe (HS), the vapor low pressure return pipe (VLP),
the thermal shield supply pipe (TSS) and the thermal shield return pipe (TSR).
These process pipes are surrounded by a thermal shield, which absorbs radiation
from the surroundings in order to minimize the heat loads to the pipes. This is
then surrounded by the external envelope, sometimes referred to as the vacuum
jacket, which keeps a high vacuum inside to avoid convective heat transfer. In the
specifications for the distribution and transfer lines, the vacuum is of some 10−5

(at 300 K) to 10−6 (at 4.5 K) mbar [11]. While the TSR pipe is thermodynamically
connected to the the thermal shield and thus keeps the same temperature, the other
three pipes are only attached to occasional supports for keeping the pipes in place.
In this way, these pipes will stay at lower temperatures and to a large extent be
protected from heat loads.

The Cryomodules
The cryomodules are the advanced containers where the accelerating cavities are
immersed in a bath of liquid helium to benefit from superconduction. The cryomod-
ules are attached to the distribution line via jumper connections, and will have a
constant inflow and outflow of helium. The incoming helium has a temperature of
about 4.5 K, whereas the cryomodules keep an operating temperature of 2 K (he-
lium liquefies at 2.18 K [12]). This means that each cryomodule has a process of
lowering the helium temperature, where a so called Joule-Thomson cycle (see for
example Reference [13]) is carried out. From the properties of cavities and the dy-
namics of the proton beam, the superconducting acceleration will be done in both
spoke cavities and elliptical cavities. There will be a total number of 13 spoke cav-
ity cryomodules, containing two cavities each, and 30 elliptical cavity cryomodules
(9 medium-β and 21 high-β) containing four cavities each. A picture of such an
elliptical cryomodule can be seen in Fig. 1.5.

14

2
Problem Formulation

This chapter describes the problems that have been elaborated and set up in this
project. This has been divided into four main parts. The first part deals with helium
being discharged into a relief system, and the arising pressures and possible mass
flow rates have been studied to determine an appropriate sizing of the pipe. In the
second part, the cool-down and warm-up have been modeled and simulated for the
cryogenic distribution line excluding the cryomodules. The third part has been ded-
icated to the modeling and simulation of individual cryomodules, being both spoke
and elliptical cryomodules. The simulations here have taken different mass flow
rates into account in order to find a relation between cool-down and warm-up times
and the rate of which helium has been supplied. Finally, there is a section on model
comparisons between the Dymola models developed in this project and experimen-
tal and analytical results from published papers on the helium relief system for the
LHC at CERN. The comparison section starts off with a comparison to a simulation
in Excel with the HePak macro.

2.1 Helium Discharge to Relief System

The helium relief system is a common safety feature in large scale accelerator facil-
ities, where a sudden temperature increase in the cold mass would be transferred to
the helium contained in the system. Such a temperature increase could for instance
be due to a quench [14], where the accelerating cavities lose their superconductiv-
ity and become normally conducting, which generates a large amount of resistive
heat. The heated helium then undergoes a rapid expansion and pressure rise. To
avoid unfortunate damages to the piping and other parts, there is typically one or
more safety valves installed, where a pressure increase above a certain threshold
causes the valve to open. The helium then discharges into the relief system where
it is collected, and losses of helium into the environment is avoided. The procedure
of helium inflow into the relief piping is simulated in order to find the appropriate
dimensions.

15

Chapter 2. Problem Formulation

The simulation was carried out by setting up a model of the relief system, as can be
seen in Fig. 2.1. The simulations covered a span of pipe dimensions between DN50
and DN200 and was run for two different cases. The first case considers an inflow
at one end of the pipe. For a predefined maximum pressure that arises, here 1.1 or
1.2 bar, the maximum mass flow rate is plotted against the pipe diameter to find for
what flow a certain pipe dimension is suitable. For comparison reasons, as a second
case, the flow was also simulated as divided between an inflow point at one end of
the pipe, and another inflow point 10 m from the boundary between the insulated
distribution line and the non-insulated transfer line.

Figure 2.1 The relief system as set up in the Dymola graphical layer.

The pipes had a thickness of 3 mm and were made of stainless steel. The friction
losses were found through the Darcy-Weisbach formulation with a friction loss co-
efficient found to be λ = 0.03. The heat flow at the boundary of the flowing helium
and the pipe wall was solved with the Dittus-Bölter equation. Further, the first part
with a length of 320 consisted of vacuum insulation where the heat flow from the
ambience to the pipe was presumed to be 1 W/m2K, while the last part of 80 m
was non-insulated and had a heat flow of 68000 W/m2K. The initial and ambient
conditions are 300 K at a pressure of 1.05 bar.

2.2 Cool-down and Warm-up of the Distribution Line

Cool-down
In order to allow for the accelerating cavities to benefit from superconductivity, the
entire cryogenic distribution line needs to be cooled down to the working temper-
ature of 4.5 K. This will be studied for a few different cases. The task description

16

2.3 Cool-down and Warm-up of One Cryomodule

for this Master thesis states that the model should involve cryogenic engineering,
material properties, fluid properties of the cooling medium (helium), and be based
on the current cryogenic system design. There should be an emphasis on consider-
ations of the changing material and fluid properties from 300 K down to 4.5 K. In
addition, the developed models should be designed so that materials, flow rates, and
component designs can be easily used in new analyses.

The first problem is to simulate the cool-down of only the distribution line, meaning
that no cryomodules or jumper connections are cooled at this point. The valves in
the valve boxes connecting to the jumper connections and cryomodules are hence
closed. These results are found in the second section of the results chapter, and are
specified according to the pipe and component dimensioning below. Furthermore,
the heat loads from radiation and conduction of the supports have been considered,
while the conduction along the pipe walls themselves is not used in the simulations,
due to the small temperature differences at every time instant of adjacent pipe sec-
tions. The helium inflow in the cold helium circuit is specified to be 99.3 g/s at an
inflow temperature of 5.2 K. The thermal shield circuit has an inflow of 75.5 g/s at
40 K [15].

The cool-down is considered to be finished when the thermal shield has reached
40.5 K at its warmest point, and the cold helium circuit has reached 5.1 K at its
warmest point. For the simulation, each component used n = 100 nodes, the time
step size was set to tstep = 2000, and the tolerance was 10−8.

Warm-up
This is also done in reverse, where the complete distribution system is at operating
temperature, and it is then, using warmer helium, warmed back up to ambient tem-
perature (300 K). The helium inflow is kept at 49.0 g/s for the cold helium circuit
and maintained at 75.5 g/s in the thermal shield circuit [15].

The distribution system is considered warm when the temperature has reached 295
K at the coldest point. The node number, step size, and tolerance were set to the
same numbers as for the cool-down.

The warm-up procedure is also simulated for static conditions, where the continuous
helium supply is stopped for some reason. This causes a warm-up of the cryogenic
system due to the so called static heat leaks, meaning radiation and to some extent
conduction from the supports and connections to vacuum barriers.

2.3 Cool-down and Warm-up of One Cryomodule

Here, the cool-down is simulated for an individual cryomodule, with the masses and
dimensions according to the section below. The helium inflow into the cryomodule

17

Chapter 2. Problem Formulation

is varied between 1.0 g/s and 3.0 g/s to find how the cool-down time changes with
the supply of helium. Just as with the simulations of the distribution system, this
is also run in reverse to find the warm-up times of the cryomodules when warmer
helium is flowing in.

The superconducting cryomodules have four main components. The stainless steel
piping, the helium tank made of titanium, the niobium cavities immersed in the
helium tanks, and the thermal shields made from copper. A schematic figure of a
cryomodule and how it is attached to the cryogenic distribution line is seen in Fig.
2.2. As is shown, each cryomodule contains four helium tanks with one cavity in
each, and the thermal shield and helium supply pipes run once along the short side
and then along the long side of the module. For the 13 spoke cryomodules, each
module only contains two tanks with cavities.

The masses of the different materials for the four main components in an individual
cryomodule are found in Table 4.5. The piping in the helium and thermal shield
circuits has the dimension specified for the jumper connections in Table 4.3; that is,
DN10.

Cool-down
Initially, the cryomodule is at 300 K and ambient pressure. Helium flows in ac-
cording to the mass flow rates mentioned above, causing the components inside the
cryomodule to cool with different rates. The inflow to the thermal shield circuit has
a temperature of 40 K and the inflow to the cold helium circuit the temperature was
set to 5 K. The cryomodule is considered cool when the temperature of the niobium
cavities have reached 7 K.

A similar but less detailed study of the cool-down of a single spoke cryomodule
has been carried out by the manufacturer at Institut Physique Nucléaire in Orsay,
France. The helium mass needed for this process is seen in Fig. 2.3 and is given as
at least 37.7 kg [16]. This is used as a comparison with the results given in the result
chapter.

Warm-up
For this simulation, the cryomodule has an initial temperature of 5 K for the helium
supply pipe, the titanium tank, and the niobium cavity. The thermal shield and its
piping is at 40 K. Warm helium at a temperature of 300 K enters into both circuits
and gradually warms the cryomodule up. The inflows are varied in the same fashion
as for the cool-down, between 1.0 g/s and 3.0 g/s. The module is considered warm
when it has reached a temperature of 290 K in the coldest point.

18

2.3 Cool-down and Warm-up of One Cryomodule

Figure 2.2 An elliptical cryomodule with its component and attachment to the dis-
tribution line. Note the fours titanium tanks containing the superconducting cavities
immersed in liquid helium. Courtesy of Dr. John G. Weisend II.

19

Chapter 2. Problem Formulation

Figure 2.3 The helium mass needed to cool down one spoke cavity. Source: [16]

2.4 Model Comparisons

In order to be able to trust the results generated from the simulations in this project,
and to benchmark the models as valid, a robust cross-check has been made between
the Dymola results and controlled calculations using Excel with the HePak [17]
macro and two published papers with experimental results and simulations of the
helium relief system for the Large Hadron Collider (LHC) at CERN. The Model-
ica components that were created and used in this section are all described in the
Models chapter under Modelica Components while the descriptions of the standard
Modelica components are found in [18].

Validation with Excel and HePak
The model for the Excel calculations consisted of a CryoPipeDWReynolds

attached to a Modelon.ThermoFluid.Sources.Environment_Q for a con-
stant heat inflow of 1 W/m2K (vacuum insulation). On one side there was a
Modelon.ThermoFluid.Sources.MassFlowBoundary with a helium mass flow
of 0.5 kg/s, 5 K, and on the other side there was a Modelon.ThermoFluid.Source-
s.PressureBoundary with the exit pressure of 1.05 bar. A picture of the Dymola
component is seen in Fig. 2.4. The initial temperature and pressure in the pipe were
300 K and 1.05 bar, respectively. The pipe dimension was DN150 (168.28 mm), the
pipe thickness was 3 mm, and it had a total length of 50 m. The simulation was then
run for 250 seconds in Dymola. The pipe was modeled with n = 50 sections, each
then corresponding to one meter of pipe, and the time discretization was tstep = 0.05
seconds per step.

For the Excel calculations, the same parameters have been used. It should also be
pointed out that to find the velocity and properties of helium at a certain point, the
pressure difference and absolute pressure of helium was taken from the Dymola
simulations, in addition to the instantaneous temperature. This was then used to
derive the other properties.

20

2.4 Model Comparisons

Figure 2.4 The Dymola graphical layer of the set-up used for the Excel validation
simulations.

Comparison with Experimental Data from Nitrogen Experiment
This experiment was set up at the Wroclaw University of Technology with the pur-
pose to validate a numerical model for the simulation of the helium relief system
at LHC. A detailed description is found in [19], and it consists of a quick-opening
valve and a copper pipe of length 25 m. The pipe has an inner diameter of 10 mm
and is spiraled (for saving space) 13 laps in a coil with a diameter about 70 times
that of the pipe’s inner diameter. The friction losses due to the bent pipe are then
not drastic, but still need to be considered [19]. The other side of the pipe is open to
the atmosphere (1.05 bar, 300 K).

The experimental procedure is carried out by opening the valve, which connects
the copper pipe to a pressurized nitrogen tank. Nitrogen is then flowing into the
system with a temperature of 130 K and an initial pressure of 10 bar. This causes
a decrease of the system pressure and pipe wall temperature as time passes. The
attached sensors in the experiment also allow for measurements of the mass flow
rate, and the three mentioned system properties are compared interchangeably in
this validation. Due to the rapid cooling of the copper pipe, there will appear frosting
on the outside of the copper, causing the heat transfer to go down from a value of
1700 W/m2K at time t = 0 s to 500 W/m2K at time t = 80 s. This procedure is
given in [19]. The friction losses due to the spiraling of the pipe was found to have
a Darcy-Weisbach friction loss coefficient (see Eq. (4.2)) of λ = 0.5.

Comparison with Experimental Data from Helium Relief System
The second paper that has been used for validation is also considering the LHC
relief system, and is found in [20]. This one is a numerical simulation of a fast-
moving situation where the magnet sector of the accelerator experiences a resistive
transition, a so called quench, going from superconductivity to normal conduction,

21

Chapter 2. Problem Formulation

which causes large amounts of heat to be transfered to the cold helium stored in the
system. The helium is heated up and flows through a pressure valve to the quench
line, which is a 400 m long DN200 (219.08 mm) stainless steel pipe leading to four
buffer volumes of 250 m2 each. Initial values in the quench line and buffer volumes
are 300 K and 1.3 bar. The helium inflow starts at 6 bar at 9 K, and while the inflow
temperature decreases by a mere 0.3 K over the simulation time of 10 s, the inflow
pressure gradually goes down to 4 bar after 10 s. These in-parameters for pressure
and temperature are used for the Dymola simulation. Also in this simulation, the
Dittus-Bölter equation is used for the heat transfer and the Darcy-Weisbach formu-
lation is applied to the friction losses, with a friction coefficient value of λ = 0.06.
The insulation of the pipe was taken to be vacuum insulation with a heat flow of 1
W/m2.

22

3
Methods

The primary tools used for the modeling and simulations in this project are Dy-
mola, which is a modeling tool for the Modelica language, Matlab, an environment
for numerical computation and visualization, and Excel. While the modeling and
main simulations were done in Dymola, Matlab has been used for additional side
scripts and numerical calculations as well as for plotting some of the results. Excel
was used for validation of the Dymola models, and has also been used for retrieving
material properties and collective plotting of several results at the same time. Dy-
mola, Modelica, and Matlab are described below, while it is assumed that Excel is
known to the reader of this report and the seeker of more information is pointed to
Refs. [21] and [22].

3.1 Dymola and Modelica

Dymola
Dymola is the simulation environment used as the main software in this project. It
is maintained and developed by Dassault Systèmes AB, which is a small software
company located in Lund. Dymola started off as a PhD project in 1978, which was
later developed into the company Dynasim AB in 1991. Dynasim AB was bought
by the French company Dassault Systèmes in 2006 and the idea was to implement
Dymola as a tool within the multi-platform CAD software suite CATIA. It is now
available both through the integration with CATIA and as a standalone product [23,
24]. For the project described in this thesis, the latter choice was used.

Dymola is a multi-engineering software, meaning that it can be used for modeling
within a variety of different engineering fields, and even combining them into mod-
els that seamlessly connect the different areas into each other. It uses the Modelica
modeling language, described below, and has combined the basic code (text) layer
with a graphical modeling tool [25]. This allows for easy and quick modeling where
the graphical layer gives an overview of the model or component and connections

23

Chapter 3. Methods

and flow schemes are visible, while the text layer allows for code writing and equa-
tion manipulation. This is a strong feature of the software, where the two layers are
typically used interchangeably.

Modeling with Dymola typically involves drag-and-drop modeling with custom-
made components from one or more of the available libraries. This is combined with
setting the parameters and initial values of the components and connecting them in
the way of choice. The added components then also appear in the text layer, where
more detailed manipulation can be made together with the addition of features or
equations. A picture of the modeling environment in Dymola is seen in Figs. 3.1
and 3.2, where the graphical layer is displayed in the first one and the text layer is
seen in the second one.

Modelica
Modelica is an object-oriented modeling language. Its main feature, that also sepa-
rates it from most other modeling languages, is that it is acausal. This means that
the order of equations, and what variable is on which side of the equal sign, is ir-
relevant. Simulations are started by setting the initial values and then letting the
simulation engine solve for the appropriate variables and calculate how the behav-
ior of the system proceeds. This is also called that the language is declarative. The
structure of the code is oriented so that individual components and their properties
are written as separate objects within the more complex systems [26].

It should be noted that Modelica is a modeling language, rather than a traditional
programming language. Models (programs) created are therefore first translated into
standard C code, which is then being executed to obtain the results [27].

The Modelica language is free and is being maintained by the Modelica Associa-
tion, which is a non-profit organization. It started in 1996 as an attempt by Hilding
Elmqvist [24] to create a modeling language that was object-oriented and at the
same time had the possibility of reusing code and find a more generic standard to
model technical systems.

Dymola and Modelica
Using Dymola and Modelica together allows for an efficient way to build models
and to create systems where much of the code can be reused for other components
than the original one. In Modelica, the components are built, default parameters
are set, and the equations specifying the behavior are given. This is done either
graphically in the Dymola environment, in Modelica code, or combining both of
them.

In Dymola, the parameters for the specific simulation, the initial values, and the
simulation setup - meaning simulation time, step size, numerical solver method,

24

3.2 Matlab

and tolerance - are set. Plotting of the results is then made in the Dymola simulation
environment, but the results can also easily be exported to other software, such as
Matlab, for analysis and treatment.

Figure 3.1 The Dymola graphical layer in the modeling environment.

The choice of Dymola and Modelica as the main simulation tools was based on pre-
vious development of similar models at the Target Division at ESS using these soft-
wares. In addition, as Modelon AB is located in Lund, only a few hundred meters
from the offices of ESS, the help and support provided was viewed as an advantage
that could expand into future modeling tasks for ESS. The quick interfacing with
Matlab, described below, was also a feature that supported the use of Dymola.

3.2 Matlab

Matlab is an environment for numerical computation and programming. It is a high
level language and its strength is within vector and matrix algebra, together with
an extensive visualization toolbox. The name is an acronym for matrix laboratory
and is developed by MathWorks Inc., which is an American company specialized
in mathematical computing [28, 29].

Matlab was first started to be developed in the ’70s by Cleve Moler at the Univer-
sity of New Mexico. He used it as a tool to be able to use Fortran packages without
having to learn Fortran itself, but after a visit by Moler to Stanford University, its
possibilities as a commercial software was pointed out. Moler was joined by Jack

25

Chapter 3. Methods

Little and Steve Bangert and together they formed MathWorks in 1984. The soft-
ware was rewritten in C and the libraries have been updated since then [29].

Matlab has a wide possibility to be interfaced with other software and can call C or
Fortran functions. IT can also call a variety of libraries written in e.g. Java or Ac-
tiveX [28, 29]. In this project, Matlab has been used to analyse data from Dymola,
and for plotting some of the results. It has also served as a practical environment for
developing scripts and functions who’s results have been copied into some of the
Dymola components.

For this project, it was chosen as an easy-to-use tool for quikc scripting at the same
time as it could be interfaced with Dymola. Matlab has been a returning software
within the course work in the studies at Lund Institute of Technology and is there-
fore also passed the initial adjustment and learning process for new software.

26

3.2 Matlab

Figure 3.2 The Dymola text layer in the modeling environment.

27

4
Models

Here, the background of the modeling is introduced. The major theoretical concepts
are first presented, followed by the specifications of the Dymola models. The last
section of the chapter specifies the dimensions of the main components as well as
the pipes for the different parts of the system that has been modeled. The theory
section gives an insight in how flow and heat transfer are dealt with in the models
and how the material properties vary with changing temperature. In addition, the
radiation models and the concept of multi-layer insulation are described. The Mod-
elica component section gives a brief description of every component that has been
used for the simulation of the results.

4.1 Theory

In this section, the physical equations behind the different models are described. As
the models require attention to be paid to thermodynamics, material properties, and
fluid dynamics, this theory section will comment on the assumptions and physical
behavior that are not by default implemented into similar simulations as these per-
formed here. All the approaches mentioned below will be applied where applicable
unless stated differently for the models.

Friction Coefficient and Pressure Characteristics
It is known that the possible mass flow rate of helium from pressure differences
is not arbitrary. It is rather highly dependent on the pressure difference together
with the temperature of the helium. As it gets colder, the density rises and thus the
mass that can flow through the pipes is increased. To explore the possibilities for
mass flow rates given by this relation, the use of pressure characteristics were con-
sidered [30, 31, 32]. From a discretely increased mass flow rate, together with the
inflow temperature and pressure, the arising pressure drop could be determined for
a certain pipe geometry. The appearing characteristics could then be studied to find
the possible mass flow rate for a specific pressure drop of interest. The procedure

28

4.1 Theory

uses the Colebrook-White equation [33], which is an iterative procedure to find the
Darcy-Weisbach friction coefficient for a flow in the turbulent regime [34], given by
[35]

1√
λ

=−2 · ln
(

2.51

Re ·
√

λ
+

r
3.72 ·dh

)
(4.1)

where λ is the dimensionless Darcy-Weisbach coefficient, Re is the dimensionless
Reynold’s number, r is the roughness of the pipe surface in m, and dh is the (hy-
draulic) diameter in m. By iterating with Eq. (4.1) to find the appropriate λ , and
then plug it into the friction modified Bernoulli equation, sometimes referred to as
the Darcy-Weisbach equation for friction loss [35, 36],

∆P = λ · L
dh
· v

2

2
·ρ (4.2)

the necessary pressure drop, ∆P, is found. In Eq. 4.2, L is the pipe length in m, v
is the flow velocity in m/s, and ρ is the density in kg/m3. The pressure drop can
then be plotted against the mass flow rate to yield the characteristics for selected
temperatures, as seen can be as an example in Fig. 4.1 for a 300 m long DN65
pipe. The maximum mass flow rate as a function of temperature, as derived by the
pressure characteristics, is seen in Fig. 4.2. The Colebrook-White equation, (4.1),

Figure 4.1 Characteristics for helium pressure drop as a function of mass flow rate
for various temperatures and a pipe of nominal diameter DN65 and length 300 m.

together with the Bernoulli equation, (4.2), are implemented in the friction loss
models in the pipes developed in Dymola for this project, and the mass flow rate
and pressure relations make use of this relation for all applicable cases.

29

Chapter 4. Models

Figure 4.2 Possible mass flow rate as a function of helium temperature. Derived
from the characteristics in Fig. 4.1. The red line shows points from the different
curves in Fig. 4.1, and the blue line is a curve fit for these.

Choked Flow
Together with the pressure characteristics approach to verify possible mass flow
rates, the phenomenon of choked flow was also examined. This was done using the
following formula [37, 38, 39]

ṁ =
A ·P√

T

√
γ

RHe
·
(

γ +1
2

) γ+1
2(γ−1)

(4.3)

where

γ =
CP

CV
(4.4)

Here A is the pipe area in m2, P is the pressure in Pa, T is the temperature in K,
and RHe = 2077 J/kg·K is the gas constant for helium. CP and CV are the specific
heat capacities in J/kg·K with constant pressure and constant volume, respectively.
A plot for this, also using a DN65 pipe, can be seen in Fig. 4.3.

Heat Transfer Between Pipe Wall and Helium
For describing the heat flow that takes place on the boundary between the pipe
walls and the flowing medium, the commonly accepted explicit equation of Bittus-
Bölter [40, 12, 41] for finding the Nusselt number is implemented into the pipe
models whenever there is flow present. This is motivated by the presence of forced

30

4.1 Theory

Figure 4.3 Maximum mass flow rate possible to avoid choked flow in a DN65
pipe, as a function of helium temperature.

convection in the pipe [9], and the equation used is the following

Nu = 0.0023 ·R0.8
e ·P0.4

r (4.5)

where Nu is the Nusselt number, Re is the Reynold’s number, and Pr is the Prandtl
number [41]. All three variables are dimensionless. This is applicable in the case
where the lateral heat fluxes are dominant over the streamlined ones, which is the
case in the pipe flow in these models [34]. In addition, the following inequalities
need to hold [41]

Re > 104

0.7 < Pr < 160
L/D > 60

(4.7)

L and D are the length and diameter of the pipe in arbitrary units.

Solid Material Properties
For the vast temperature interval that is spanned in the cooling process, the solid
materials show some noticeable change in material properties. In order to create a
realistic model of the heat transfer from fluid to solid and solid to solid, the temper-
ature dependence of specific heat capacity and thermal conductivity was taken into
account.

31

Chapter 4. Models

Stainless Steel
For the stainless steel used in the cryogenic piping (SS304L), the data was taken
from an Excel program called Cryocomp, created by Cryodata Inc. [42]. It is found
that the specific heat capacity, in J/kg·K, of SS304L as a function of temperature
has the following appearance

Css
P =−0.00000000115115 ·T 5 +0.00000112374 ·T 4

−0.000392079 ·T 3 +0.0522538 ·T 2 +0.141301 ·T
(4.9)

The thermal conductivity (W/m·K) of stainless steel obtained from the same pro-
gram is given by the formula

kss = 8 ·10−7 ·T 3−0.0006 ·T 2 +0.1477 ·T −0.4952 (4.10)

In the equations in this and the following section, T denotes the (average) tempera-
ture of the material.
Aluminum, Copper, Titanium, and Niobium
For the specific heat capacities of aluminum, copper, titanium, and niobium, the
Selected Cryogenic Data Notebook from Brookhaven National Laboratory [43] was
consulted, and from the tabulated values, appropriate formulae were obtained using
a polynomial curve fit in Excel. The formulae obtained were:

CAl
P =−5.0858382990 ·10−9 ·T 5 +4.4933166438 ·10−6 ·T 4

−0.0014348060969 ·T 3 +0.18473605304 ·T 2

−3.4580884187 ·T +10.842981412

(4.12)

CCu
P =1.2682110150 ·10−11 ·T 6−1.4399163352 ·10−8 ·T 5

+6.3296511850 ·10−6 ·T 4−1.3291319283 ·10−3 ·T 3

+0.12535751222 ·T 2−1.8004787189 ·T
+5.2456099913

(4.14)

CTi
P =−3.5147820378 ·10−9 ·T 5 +3.0057506888 ·10−6 ·T 4

−9.2045002329 ·10−4 ·T 3 +0.11191552397 ·T 2

−1.7076312852 ·T +4.3306205877

(4.16)

and

CNb
P =2.0226423917 ·10−11 ·T 6−2.0451534634 ·10−8 ·T 5

+7.9550021963 ·10−6 ·T 4−0.0014601740994 ·T 3

+0.11758205083 ·T 2−1.2495904095 ·T
+3.0875766442

(4.18)

32

4.1 Theory

The thermal conductivities for aluminum, copper, and titanium were found through
the NIST website [44]. They are are obtained through the following general function

km =10a+b(log10T)+c(log10T)2+d(log10T)3+e(log10T)4+ f (log10T)5

+g(log10T)6+h(log10T)7+i(log10T)8 (4.20)

and the values for constants a - i are tabulated in Table 4.1 below.

Constant Aluminum Copper Titanium
a 23.39172 1.8743 -2.398794842
b -148.5733 -0.41538 8.970743802
c 422.1917 -0.6018 -29.19286973
d -653.6664 0.13294 54.87139779
e 607.0402 0.26426 -59.67137228
f -346.152 -0.0219 38.89321714
g 118.4276 -0.051276 -14.94175848
h -22.2781 0.0014871 3.111616089
i 1.770187 0.003723 -0.270452768

Table 4.1 Table with the constants used in Eq. 4.20 for the different materials.

The thermal conductivity for niobium was not available through NIST, and was
instead derived from tabulated values in [43]. Due to the curious behavior of the
curve, it was split up into a low-temperature part up to 30 K, and a high-temperature
part above 30 K. This was done for simplicity of the curve fitting, and the turn-over
point of 30 K was chosen arbitrarily after inspection by eye. The formulae are stated
below, in respective order of temperature region.

klowT
Nb =−0.11689520760 ·T 2 +6.4368583162 ·T +1.9644659451 (4.21)

and

khighT
Nb =−3.8984111598 ·10−10 ·T 5 +3.9537530644 ·10−7 ·T 4

−1.5506337607 ·10−4 ·T 3 +0.029268800879 ·T 2

−2.6465534609 ·T +141.29752365

(4.23)

The Radiation Model
The thermal radiation that takes place between the different pipes in the cryogenic
distribution line, together with that between pipes and the thermal shield, is quite
a complicated problem that needs some special attention. The radiation model uses
the Stefan-Boltzmann law of gray-body radiation [45, 46, 47],

Q̇wc = AwEw =
1

1
εw

+ 1
εc
−1

Awσ(T 4
w −T 4

c) (4.24)

33

Chapter 4. Models

where Q̇wc is the heat flow in W/m2 from the warm (w) to the cold (c) body, Aw is
the area of the radiating body in m2, εw is the emissivity of the warm (radiating)
body and is dimensionless, εc is the emissivity of the cold (receiving) body, σ is the
Stefan-Boltzmann constant in W/m2·K4, Tw is the temperature of the warm body in
K, and Tc is the temperature of the cold body in K. In addition to the formula above,
a combination of view factors (also known as F factors, shape factors, configuration
factors, or form factors) have been used that take into account the geometric situa-
tion of the distribution pipe [46, 48, 49]. This means that certain bodies only "see"
certain sections of the other bodies, whereas some sections are invisible and hence
do not take part in the interacting thermal radiation. By including the view factors
into Eq. (4.24), we have that [50]

Q̇wc = AW FwcEw =
1

1
εw

+ 1
εc
−1

AwFwcσ(T 4
w −T 4

c) (4.25)

The geometric situations that arise are those calling for the following view factor
approximations [48, 51, 52, 46]

(a) Concentric cylinders of infinite length

(b) A long cylinder to itself when interior cylinders are present

(c) An infinitely long cylinder to non-concentric cylindrical enclosure

(d) Infinite (very long) parallel cylinders of different radii

The different geometries are displayed in Fig. 4.4. For all formulae stated below,
subscript 1 refers to the emitting body while subscript 2 refers to the receiving body.

Approximation (d) is used for the radiation between the internal pipes of the dis-
tribution line. That is, between the helium supply, vapor low pressure (VLP), and
thermal shield supply and return pipes. The formula used for this is [51]

F12 =
1

2π

[
C2− (R+1)2]1/2−

[
C2− (R−1)2]1/2

+(R−1) · arccos
(

R−1
C

)
− (R+1) · arccos

(
R+1

C

) (4.27)

where R = r2/r1, C = 1+R+ S, and the r refer to radii. Approximations (b) and
(c) were used for the thermal shield radiating to the four internal pipes. It should
be noted, however, that the default (c) view factor is for the inner pipe radiating to

34

4.1 Theory

Figure 4.4 The four different cases for radiation in the distribution and transfer
lines. The top left drawing corresponds to case (a), top right to (b), bottom left to (c),
and the bottom right drawing corresponds to (d).

an enclosing pipe. The situation here is the opposite, and the formulae will take the
following form, respectively [51],

F11 = 1− 2
π

[
(1−R2)1/2 +R · arcsin(R)

]
(4.28)

where R = r1/r2, and

F12 =
1

2π

[
α2−α1

2
+ arctan

(
1+E
1−E

· tan(α2/2)
)

−arctan
(

1+E
1−E

· tan(α1/2)
)] (4.30)

where E = e/r, e is the distance between center points, r is the radius of the en-
closing cylinder, α1 is the angle from the internal pipe’s horizontal position to the
start of the enclosing cylinder, and α2 is the total surrounding angle of the enclosure
[51]. Note that for an entirely surrounding cylindrical enclosure, which is the case
here, the term α2−α1

2 = α2/2 = π , and tan(α1/2) = tan(0) = 0.

35

Chapter 4. Models

Approximation (a) calls for a slightly different treatment due to the character of the
geometry. The view factor equations are as follows [47, 48]

F22 = 1−D1/D2

F12 = 1
F21 = D1/D2

(4.32)

with D1 being the inner diameter and D2 the outer diameter, which further yields
the following formula for the complete form of A1F1 including emissivity [47, 48]

Ã1F̃1 =
2πr1L

1
ε1
+(1

ε2
−1) · r1

r2

(4.33)

However, the case in the cryogenic system is opposite the standard form in the
literature, which means that the index number of the radii are switched to adjust
to that the outer cylinder is emitting to the inner cylinder. Thus, the formula in the
models has the form

A1F1 =
2πr2L

1
ε2
+(1

ε1
−1) · r2

r1

(4.34)

It is assumed that all internal pipes see half of all the other pipes, according to the
placements in Fig. 4.5. In addition, the radiation of the thermal shield to itself and
the radiation from the thermal shield to the internal pipes consider that all pipes are
visible and affect the thermal shield radiation. A more detailed discussion on how
complex geometries affect the view factors and radiative heat transfer can be found
in [53].

Multi-Layer Insulation
The thermal radiation between two parallel plates is given by the formula [54]

q =
ε1ε2

ε1 + ε2− ε1ε2
(4.35)

If both plates are of the same material, and the emissivity is low (ε1 = ε2 << 1),
this reduces to simply

q =
ε

2
(4.36)

To make use of this relationship, it is common practice to wrap the process pipes
with Multi-Layer Insulation (MLI) [12, 55, 47]. This drastically reduces the radia-
tive heat loads, and an example of what this wrapping can look like is seen in Fig.
4.6. In the case of MLI of the pipes, repeated use of the formula above shows how
the radiated heat transfer between the walls is efficiently reduced, and the following
factor needs to be added to Eq. (4.25) [12, 56, 49]

q =
ε

2(N +1)
(4.37)

where N is the number of insulation layers [12].

36

4.1 Theory

Figure 4.5 The placement of the four process pipes inside the distribution and
transfer lines. Courtesy of Piotr Tereszkowski.

Figure 4.6 A cryostat wrapped with Multi-Layer Insulation. Source: [54].

The Conduction Calculations of Supports and Vacuum barriers
Even if relatively small, the heat loads from conduction through the fixed and sliding
supports together with the vacuum barriers are still a non-negligible parameter in the
calculations for the cool-down. Due to the similar appearance of all the supports and
vacuum barriers, only a small set of equations will be used to define the heat loads
from conduction through these solid attachments.

So called thermal conductivity integrals [12] in one dimension have been used,

37

Chapter 4. Models

where the strong temperature dependence of the material properties is taken well
into account. The conduction heat transfer is here described as

Q =
−1∫ x2

x1
dx

A(x)

[∫ T2

T1

K(T)dT
]
=−G · (θ2−θ1) (4.38)

where G is referred to as the geometry factor, A(x) is the cross-sectional area, and
θ1 and θ2 are the thermal conductivity integrals, defined as

θi =
∫ Ti

0
K(T)dT (4.39)

K(T) is here the temperature dependent thermal conductivity. It should be noted
that for the uniform geometries in this report, the geometry factor simply becomes
G = A/L, where A is the cross-sectional area and L is the length of the section.

4.2 Modelica Components

For all components mentioned below, pipe geometries and initial parameters can
be specified in the top component to allow for a high flexibility in the design and
simulations. Further, the components are made independent of the others, and can
be used, checked, tested, and simulated individually as well as collectively. The
standard built-in components of the Dymola and Modelica libraries are explained
in [57]. The components that were created in this project are found in the hierarchy
diagram in Fig. 4.7. All components are displayed as pictures from the Dymola
graphical layer in Appendix I. The Modelica source code is found in Appendix II.

CryoPipeDWReynolds
This component consists of a Modelon.ThermoFluid.FlowChannels.Distrib-
utedPipe, with a DynamicWallSS attached to simulate the pipe wall with its cor-
responding properties, such as mass, heat capacity, and thermal conductivity in the
metal. The CryoPipe is included in all components that contain stainless steel pip-
ing, and the dimensions can be set through propagated parameters of the component.
There is one inflow port and one outflow port for the medium, together with a heat
port for thermal connections.

DynamicWallSS (...Nb/Ti/Al/Cu)
In order to obtain a temperature dependent specific heat capacity, Cp, and heat resis-
tance, Rw, in the pipe walls in the CryoPipe component, the standard component
Modelon.ThermoFluid.Solids.DynamicWall was modified in the equation

section. The stainless steel component was then built upon to create correspond-
ing components for modeling the niobium mass in the cavities, the titanium in the
cryomodule helium tanks, the aluminum in the thermal shields, and copper for the

38

4.2 Modelica Components

usage in one of the validation models. The equations for Cp and Rw as given by Eqs.
(4.9) and (4.10) were implemented for the DynamicWallSS, taking the instant tem-
perature for each lump as an in-parameter. A corresponding procedure was made
to find the modifications of the Cp and Rw of the other materials mentioned above,
which makes use of Eqs. (4.12)-(4.12).

DistributionPipe
A component called DistributionPipe was written to model the entire dis-
tribution line, including the external envelope, or vacuum jacket, with the ther-
mal shield and the four internal process pipes. This structure is seen in Fig.
4.8. The main problem here is to find a model which closely resembles the
thermal radiation between the pipes and walls. The mathematical model of this
is found in the theory section. The DistributionPipe component consists
of four CryoPipe components, together with six RadiationParallelPipes,
four RadiationPipesInsidePipe, one RadiationConcentricPipes, one
DynamicWallSS, and one DynamicWallAl. The wall and pipe components cor-
respond to the thermal shield and external envelope, and the four internal pipes,
respectively. The radiation components model the thermal radiation in between
them. In addition, the DistributionPipe is made available and adjustable within
higher hierarchical structures by four flow ports, four volume ports, and one heat
port.

TransferLine
The TransferLine is only a revision of the DistributionPipe. The component
is adjusted to fit the specifications of the transfer line, that transports the helium from
the cryoplant to the distribution line and back to the cryoplant with the liquefier,
after the helium and thermal shield circuits are completed. As the dimensions of the
pipes are the same as those for the distribution line, the main difference are the heat
loads from the fixed and sliding supports together with the vacuum connections,
that are now modified to be a total of 16, 16, and 8 respectively.

RadiationParallelPipes (...ConcentricPipes/PipesInsidePipe)
For the modeling of the radiation between the pipes and walls in the Distributi-
onPipe, three different components are necessary to meet the requirements of
the three different cases of thermal radiation. That is, between the internal pipes
(...ParallelPipes), the thermal shield and the pipes (...PipesInsidePipe),
and the external envelope and the thermal shield (...ConcentricPipes). The
mathematics behind these cases is explained in the theory section, and the imple-
mentation into the radiation components is discretized and straight-forward. These
components extend the Modelica.Thermal.HeatTransfer.Components.Body-
Radiation with the additional necessary geometries of the pipes and the formulae
for the radiation.

39

Chapter 4. Models

EndBox
The end box is where the internal process pipes ”turn around” and the sup-
ply pipes become return pipes. Further, there are a set of valves and cir-
cuits that can be adjusted for the different situations of cool-down, warm-
up, or steady-state cooling of the cryogenic system. This component is mod-
eled with one circuit for the thermal shield pipes, containing two 90 de-
gree Modelon.ThermoFluid.FlowResistances.FrictionLoss and one
Modelon.ThermoFluid.Valves.ValveCompressible. There are two circuits
for the helium supply and VLP line pipes. The first circuit, used for initial cool-
down, is similar to the thermal shield circuit and only takes friction losses and the
on/off valve into account. The second circuit, on the other hand, also contains a heat
exchanger, modeled by a Modelon.ThermoFluid.FlowModifiers.SetTemper-
ature, that is used to increase the enthalpy of the returning helium. In addition, it
also contains two friction loss components and an on/off valve. For the valves, there
are two Modelica.Blocks.Sources.RealExpression to set the opening of the
valves. Typically, one of the RealExpression is set to 1.0 for the two open valves,
and the other is connected to the closed valve with a value of 0. There are also four
flow ports for the helium inflow and outflow of the two circuits of the end box.

SimpleEndBox
The EndBoxSimple component is a simplified EndBox, where only the helium
supply and VLP circuit for cool-down is present, and the valves are removed
for numerical robustness in more complex cool-down and warm-up simulations.
The thermal shield and cold helium circuits then only contain two 90 degree
Modelon.ThermoFluid.FlowResistances.FrictionLoss in addition to the
four flow ports.

CryoPlant
The CryoPlant component simply simulates the inflow from the cryoplant’s lique-
fiers and the outflow of the cryogenic system back into the cryoplant. It contains one
Modelon.ThermoFluid.Sources.MassFlowBoundary for setting the mass flow
rate and the temperature of the incoming helium into the thermal shield supply pipe.
There is a VaporCycle.Sources.TwoPhaseFlowSource for setting the outflow
enthalpy and mass flow rate of the helium supply pipe, which the allows for two-
phase flow. It also contains a Modelon.ThermoFluid.Sources.PressureBoun-
dary and a VaporCycle.Sources.TwoPhasePressureSource to simulate the
outflow environment in terms of pressure and temperature. In addition, there are
two volume ports (one for one-phase and one for two-phase) connected to the mass
flow boundaries and two flow ports (one for one-phase and one for two-phase) con-
nected to the pressure boundaries.

40

4.3 Specification of Pipes and Components

Cryomodule
This component simulated a cryomodule containing two loops: the cold he-
lium loop and the thermal shield loop. Whereas the thermal shield loop con-
tains two Modelon.ThermoFluid.FlowResistances.FrictionLoss and one
CMSteelPipingTwoPhase and only considers one-phase flow (thermal shield
stays above 40 K), the cold helium loop includes two-phase components.
These are primarily a CMSteelPipingTwoPhase, a TitaniumTankPipe, and
a NiobiumCavity. In between the piping and the thermal shield there are
also one RadiationParallelPipes and two RadiationPipesInsidePipe

to simulate the radiation between the different components. As the nio-
bium cavity is immersed in the titanium tank, the heat port is connected di-
rectly to the fluid port in the titanium tank. For external connection, there
are also one of each of Modelon.ThermoFluid.Interfaces.FlowPort,
Modelon.ThermoFluid.Interfaces.VolumePort, Modelon.ThermoFluid.
Interfaces.ApplicationSpecific.TwoPhaseFlowPort, and Modelon.The-

rmoFluid.Interfaces.ApplicationSpecific.TwoPhaseVolumePort.

TitaniumTankPipe
The TitaniumTankPipe is used within the cryomodule component. It has two
Modelon.ThermoFluid.Interfaces.ApplicationSpecific.TwoPhaseFlo-

wPort, one Modelon.ThermoFluid.FlowChannels.DistributedTwoPhase to
act as the volume and helium container, one DynamicWallTi being the titanium
wall of the tank, one Modelica.Thermal.HeatTransfer.Interfaces.HeatPo-
rt_a to connect to the outside radiation components, and one Modelon.ThermoFl-
uid.Interfaces.FlowHeatPort being attached to the fluid on one end.

CMSteelPipingTwoPhase
This component is similar to a DistributedPipeDWReynolds in terms
of components. The difference is that the CMSteelPipingTwoPhase has a
Modelon.ThermoFluid.FlowChannels.DistributedTwoPhase pipe instead
of a regular distributed channel. This allows for two-phase flow through the pipes,
which occurs in the cryomodule where the component is used.

CMThermalShields / Niobium Cavity
These two components simply contain one DynamicWallAl (or Nb) and one
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a. This is to sim-
ulate the cold mass of the thermal shields in the cryomodule, or the niobium cavity.

4.3 Specification of Pipes and Components

By implementing the features and equations in the theory section into the compo-
nents in the component section, the models are then given the parameters described

41

Chapter 4. Models

in this section. It should be noted, however, that the final decision has not been made
on the exact dimensions of all the pipes, valves, cavities, tanks, shields, and so on,
when this project was finalized. The development of the technical specifications has
reached far into the process though, and only minor changes can be expected [8].
The pipe dimensions are given as both mm and using the European designation of
nominal diameters, DN (diamètre nominal). More about the DN convention can be
found in [58], for example.

Piping
The piping in the transfer line and distribution line have the same dimensions, and
will be of the kind specified in Table 4.2. All process pipes will be made of SS304
stainless steel. In addition, the thermal shield surrounding the internal process pipes

Pipe Nominal Diameter Outer Diameter (mm) Thickness (mm)
Helium Supply DN65 76.1 2.3
VLP Return DN250 273.05 3.0
TS Supply DN50 60.33 2.3
TS Return DN50 60.33 2.3

Table 4.2 Table of pipe dimensions used in the transfer and distribution lines.

has a diameter of FI430 (Outer Diameter: 430 mm) and a thickness of 2 mm. This
thermal shield is made from Al6060 aluminum. The external envelope, also called
vacuum jacket, will have a diameter of DN550, corresponding to 558.8 mm.

In the jumper connections, which connects the individual cryomodules to the distri-
bution line, the following dimensions are used, as seen in Table 4.3.

Pipe Nominal Diameter Outer Diameter (mm) Thickness (mm)
Helium Supply DN10 17.15 1.4
VLP Return DN50 60.33 1.6
TS Supply DN10 17.15 1.4
TS Return DN10 17.15 1.4

Table 4.3 Table of pipe dimensions used in the jumper connections.

Valves
The cryogenic valves, used to control the helium flow in the distribution system, are
placed in the valve boxes and have the properties stated in Table 4.4.

42

4.3 Specification of Pipes and Components

Valve Connection Valve Name Nominal Diameter Kv Value
Helium Supply CV8 DN10 1.77
VLP Return CV9 DN50 66
TS Supply CV11 DN10 0.9
TS Return CV12 DN10 1.0

Table 4.4 Table of valve dimensions and Kv values for the control valves in the
valve boxes. The flow coefficient value, Kv, is described briefly in e.g. [59].

Cryomodules
The cryomodules have been modeled as components with specific masses and their
behaviors in the cool-down and warm-up processes are modeled through the ba-
havior of the materials that they contain. From [10], one obtains the mass setup
for the three kinds of superconducting cryomodules seen in Table 4.5. The cavities
are made from niobium, the helium tanks from titanium, the thermal shields from
aluminum, and the piping from stainless steel.

Cryomodule Type Cavities Helium Tanks Thermal Shields Piping
Spoke 150 74 61 89
Medium-β 240 132 120 48
High–β 220 134 120 46

Table 4.5 Table of specified masses for the different components in the cryomod-
ules. All masses in kg.

Conduction from Supports
The heat conduction from solid supports that keep the pipes in place have been
calculated separately in [60] using Eq. (4.38). The results from this are seen in
Table 4.6, and the mathematical description of the calculation procedure is found in
the theory section.

Support Type Fixed Sliding Vacuum Barrier
Number in TL 10 20 2
Number in DL 34 55 3
Heat load HS 0.486 0.162 0.648
Heat load VLP 1.5148 0.505 2.02
Heat load TSS 0.317 0.106 0.422
Heat load TSR 15.133 5.044 20.18

Table 4.6 Table of heat transfer through fixed and sliding supports and the supports
for the vacuum barrier. The results are taken from [60]. Heat loads are given in W
per support.

43

Chapter 4. Models

Figure 4.7 The component hierarchy for the cryogenic distribution system.

44

4.3 Specification of Pipes and Components

Figure 4.8 The structure of the distribution pipe with the external envelope (outer),
the thermal shield (orange), and the four process pipes inside.

45

5
Results

In this chapter, the results from the primary simulations are presented. The first sec-
tion deals with the helium discharge into a relief system, and the sizing of the vent
line used in this system. This is followed by the cool-down and warm-up procedures
for the distribution line without jumper connections and cryomodules; that is, with
the valves going out of the distribution line closed. Then the results for the cool-
down and warm-up of one cryomodule are presented. Finally, there is a comparison
of the models used in this project with calculations in Excel and two published arti-
cles. These results do not have any other purpose than comparing and validating the
other results, together with showing on some limitations for the other models.

5.1 Helium Discharge to Relief System

The results from the different simulations for the helium discharge into the relief
system are seen in Fig. 5.1. It is found that the inflow at two separate points (red
line) allows for a much higher mass flow rate. The green line gives the allowed
mass flow rates for an allowed pressure of 1.2 bar, while the blue line allows for a
pressure rise up to 1.1 bar. For an expected mass flow rate of 180 g/s at a maximum
pressure of 1.2 bar, it is found that a DN150 pipe should be sufficient.

5.2 Cool-down of the Cryogenic Distribution Line

The total cool-down time of the distribution system with the jumper connections
and cryomodules disconnected is 6.93 hours, or 416 minutes. If one only considers
the cold helium circuit to reach 5.1 K, the cool-down time is 6.04 hours, or 362
minutes. The cool-down plot of some pipe sections, including the coldest one, is
seen in Fig. 5.2.

46

5.2 Cool-down of the Cryogenic Distribution Line

Figure 5.1 The maximum allowed mass flow rates (y axis) as functions of the pipe
diameter (x axis). It should be noted that the red line, showing the inflow from two
different points, allows for a higher mass flow rate than inflow from only one edge
of the pipe.

Figure 5.2 Cool-down of the distribution line, with jumper connections and cry-
omodules deattached. The plot shows the time evolution of the temperature (y axis
in K) in the pipe wall of the VLP pipe (blue and red) and the thermal shield return
pipe (green and black). The x axis displays time in minutes.

47

Chapter 5. Results

5.3 Warm-up of the Cryogenic Distribution Line

With Helium Flow
The warm-up time with 300 K helium flowing through the distribution system is
19.87 hours, or 1192 minutes. These results are found in Fig. 5.3.

Figure 5.3 Warm-up of the distribution line without jumper connections and cry-
omodules for flowing helium of 300 K. The plot shows the temperature in K (y axis)
as a function of time for the transfer line’s first and last section in the outer pipe wall
of the VLP pipe (blue and red) and the thermal shield return pipe (green and pink).
The x axis displays time in hours.

Without Flow and Only Static Heat Loads
For the warm-up with only static heat loads present, the warm-up time is way be-
yond two weeks (336 hours), and the temperature plot is seen in Fig. 5.4.

5.4 Cool-down of One Cryomodule

The cool-down time for one spoke cryomodule was between 5.96 (3 g/s) and 15.68
(1 g/s) hours. The process of the cool-down for the 1 g/s simulation is seen in Fig.
5.5. For an elliptical cryomodule, the cool-down time is between 9.76 (3 g/s) and
21.84 (1 g/s) hours. The simulated cool-down times for both the spoke and the
elliptical cryomodules for four different inflow rates are collected in Table 5.1, and
the results are plotted in Fig. 5.6. The total amount of helium needed for cooling a
spoke cryomodule with an inflow of 3 g/s is then found to be mHe = ṁHe · tcool =
3 ·10−3 ·5.96 ·3600 = 64.4 kg.

48

5.5 Warm-up of One Cryomodule

Figure 5.4 Warm-up of the distribution line without jumper connections and cry-
omodules with only the static heat leaks present. These include radiation between
the process pipes and thermal shield and the conduction from fixed, sliding, and vac-
uum barrier supports. The plot shows the temperature (y axis in K) as a function of
time for the transfer line’s first and last section in the outer pipe wall of the VLP pipe
(blue and red) and the thermal shield return pipe (green and pink). The x axis shows
time in hours.

Figure 5.5 The time evolution of the cool-down of one cryomodule. The y axis
shows temperature in K and the x axis shows time in hours.

5.5 Warm-up of One Cryomodule

The warm-up time for one spoke cryomodule was between 9 and 25 hours for a
mass flow rate of 3 g/s and 1g/s, respectively. The warm-up for the simulation of

49

Chapter 5. Results

Mass Flow Rate Spoke Elliptical
1.0 g/s 15.68 h 21.84 h
1.3 g/s 12.12 h 17.52 h
2.0 g/s 8.20 h 12.80 h
3.0 g/s 5.96 h 9.76 h

Table 5.1 Cool-down times for a spoke and an elliptical cryomodule for different
mass flow rates.

Figure 5.6 The cool-down times of one cryomodule as functions of mass flow rates
into the module. The calculations are made for both spoke and elliptical cryomod-
ules.

the 1 g/s case is seen in Fig. 5.7. For an elliptical cryomodule, the warm-up time is
instead between 14.64 (3 g/s) and 37.68 (1 g/s) hours. The simulated warm-up times
for both the spoke and the elliptical cryomodules for four different inflow rates are
collected in Table 5.2, and the results are plotted in Fig. 5.8.

5.6 Model Comparisons

Validation with Excel and HePak
The results from the Dymola simulations for the helium and pipe wall temperatures
are seen in Figs. 5.9 and 5.10, respectively. In Figs. 5.11 and 5.12, the mass flow rate
and the heat flow between the helium and the pipe wall are seen. For these figures

50

5.6 Model Comparisons

Mass Flow Rate Spoke Elliptical
1.0 g/s 25.0 h 37.68 h
1.3 g/s 19.65 h 29.92 h
2.0 g/s 13.15 h 20.56 h
3.0 g/s 9.0 h 14.64 h

Table 5.2 Warm-up times for a spoke and an elliptical cryomodule for different
mass flow rates.

Figure 5.7 The time evolution of the warm-up of one cryomodule. The y axis
shows temperature in K and the x axis shows time in hours.

below, the evolutions are displayed from the inlet of the pipe (first line) with even
10 m steps through the end of the pipe (bottom or rightmost line).

The Excel calculations give an inflow velocity of 48.9 m/s, which means that the
entire length of the pipe is filled in just over one second. This can be viewed and
compared in the Dymola simulation in Fig. 5.11, where the steep and quick rises
in mass flow rate for all the sections are seen. Given the inflow temperature (5 K)
and pressure (1.05195 bar, seen in Fig. 5.13), the speed of sound in the medium
is given by HePak to be 967.3 m/s, and the helium velocity is by that safely under
0.05 Mach, meaning that it can be modeled as an incompressible flow. This makes it
reasonable to use the models described above for friction and medium propagation
[61, 18, 62]. In the top graph of Fig. 5.15 it is shown that the helium temperature in
the first pipe section decreases to 28.7 K in 0.1 seconds. Given the enthalpy differ-
ences between the stationary helium at 300 K and 1.05 bar and the flowing helium
of 5 K and 1.1 bar, assuming a pressure of 1.1 bar, gives the helium temperature
26.1 K in close accordance to the Dymola results. In addition, it was given that the
heat transfer coefficient from the Dittus-Bölter equation for the first time instants

51

Chapter 5. Results

Figure 5.8 The warm-up times of one cryomodule as functions of mass flow rates
into the module. The calculations are made for both spoke and elliptical cryomod-
ules.

Figure 5.9 Helium temperature for the simulation. The inlet is the leftmost blue
line and the outlet is the blue crossed line to the right. The y axis shows temperature
in K and the x axis shows time in seconds.

equals 215 W/m2K. Using this value and the pipe area, heat flow after the first 0.1
seconds, where the temperature difference amounts to 276 K, is according to the

52

5.6 Model Comparisons

Figure 5.10 Pipe wall temperature for the simulation. Inlet is blue, and the outlet
is blue with crosses. The y axis shows temperature in K and the x axis shows time in
seconds.

Figure 5.11 Helium mass flow rate. The inlet is shown in blue with only a small
bump at 75 s, and the outlet has the last jump to steady-state at 0.5 kg/s. The y axis
shows mass flow rate in kg/s and the x axis shows time in seconds.

Excel calculations 15.7 kJ. By looking at Fig. 5.12, one sees that this agrees with
the Dymola simulation.

Comparison with Experimental Data from Nitrogen Experiment
The experimental results as given in the paper are seen in Fig. 5.16. The correspond-
ing plots for the Dymola simulation, which used the pressures as in/parameters, are

53

Chapter 5. Results

Figure 5.12 Heat flow between helium and the pipe wall. The inlet is the blue top
line, and the outlet is the bottom blue crossed line. The y axis shows heat flow in W
and the x axis shows time in seconds.

Figure 5.13 Pressure (top, Pa) and density (bottom, kg/m3) at the inlet for the first
five seconds. The x axis shows time in seconds.

seen in Figs. 5.17, 5.18, and 5.19. In Fig. 5.16, it is shown how the pressure starts
with an even distribution from 9 bar down to slightly over 2 bar. This appearance
and slope is then maintained and lowered as time passes and after 80 seconds the
pressures in the extremes are between 4 and about 1.8 bar. The temperature distribu-
tion is initially quite concave and spans between about 215 K to 280 K. It gradually
becomes more linear and after 80 seconds it resembles a linear graph, with mini-
mum at 130 K and maximum at 270 K. The mass flow rate starts off just below 40

54

5.6 Model Comparisons

Figure 5.14 Helium mass flow rate for the first 1.5 seconds, where the rapid rise
in mass flow rate in the last section (blue crossed line, rightmost) can be seen, as
predicted by the calculated velocity. The y axis shows mass flow rate in kg/s and the
x axis shows time in seconds.

Figure 5.15 Some helium properties for the first two seconds of the simulation. In
the top graph, the helium temperature is seen in K, the second graph shows the mass
flow rate in kg/s, and the last graph shows the helium density in kg/m3. The x axis
displays time in seconds. For the three plots, blue is at the inlet, red is after 5 m, and
green is at the outlet (at 400 m).

kg/s at the beginning and declines down to 18 kg/s after 80 seconds.

The pressure in the Dymola simulation also gradually lowers but keeps the same
shape of the curve. The values in the beginning and end of the pipe go from 9 to 4

55

Chapter 5. Results

bar and 2.5 to 2.1 bar, respectively. The temperature distribution is initially concave
and gradually becomes convex, where the temperature of the first section of the pipe
goes from 215 K to 130 K while the last section starts at 270 K and reaches 180 K.
The mass flow rate has a slightly concave shape, starts at slightly below 40 kg/s,
and ends at 20 kg/s.

Figure 5.16 The results for pressure drops (top left) and temperature (top right)
increases as functions of the pipe position, together with the mass flow rate versus
time (bottom). Source: [19].

Comparison with Experimental Data from Helium Relief System
The results from the paper are seen in Fig. 5.23. These are compared to the sim-
ulated results in Dymola which yield the plots in Figs. 5.20, 5.21, and 5.22. The
analysis of the quench line in the refered paper gives a declining pressure in the
entire line, with a maintained, slightly concave curve dropping about 1.5 bar over
the whole simulation of 10 seconds. The temperature has initially an increase in the
pipe end due to the compression and the maximum temperature is about 350 K. This
then goes down to 30 K after 10 seconds and the distribution is an almost straight
line from 8.7 to 30 K. The velocities in the quench line stay very high throughout
the first 10 seconds, and the maximum velocity is reached after one second being a
little bit over 600 m/s in the pipe end. After 10 seconds, the maximum velocity has
gone down to about 170 m/s.

The Dymola results for the pressure distribution shows on a similar appearance,
where the pressure in the end of the pipe stays somewhere between 2 and 3 bar
during the ten seconds of simulation. The pressure in the beginning of the pipe goes
down from 5.5 bar to 4 bar. The temperature distributions maintain the straight slope
line, and go from a value of about 335 K in the end of the pipe at one second, to

56

5.6 Model Comparisons

Figure 5.17 Results from the Dymola simulation for the pressure drop.

Figure 5.18 Results from the Dymola simulation for the temperature increase.

slightly above 100 K at the same place, whereas the initial lump of the pipe stays
around 10 K. The velocity profile for one second goes high up to over 600 m/s at one
second, while the curves for five and ten seconds are concave reaching somewhat
above 200 m/s at five seconds and about 120 m/s after ten seconds.

57

Chapter 5. Results

Figure 5.19 Results from the Dymola simulation for the mass flow rate develop-
ment.

Figure 5.20 Results from the Dymola simulation for the distribution of pressures
in the quench line.

58

5.6 Model Comparisons

Figure 5.21 Results from the Dymola simulation for the distribution of tempera-
tures in the quench line.

Figure 5.22 Results from the Dymola simulation for the velocity distribution in
the quench line.

59

Chapter 5. Results

Figure 5.23 The results for pressure drops (left), temperature increases (center),
and velocity (right) as functions of the position in the pipe, as given in the experi-
mental article of comparison. Source: [20].

60

6
Discussion

6.1 Conclusions

Helium Discharge to Relief System
The result for this simulation shows that the worst case scenario of peak pressures
appear when all of the helium inflow appears in one place. A design where the
maximum pressure can be 1.2 bar can then allow for at least 180 g/s of helium to
flow into the discharge system and vent line with a DN150 pipe. This will save time
and effort in the installation, since the initial design was for a DN200 pipe, at the
same time as money will be saved due to the smaller material costs.
Cool-down and Warm-up of the Cryogenic Distribution System
The cool-down of the non-dynamic part of the cryogenic system meets any require-
ments to reach operating temperature in less than a day. Even if the thermal shields
need to be at their coldest temperatures, the cool-down is less than seven hours.
If one also takes the cryomodules into account, the cool-down will be less than 24
hours given that the helium flow into the cryomodules can be kept steady at 1 g/s for
all 43 of them. The cool-down of one single cryomodule takes 15.68 hours, which is
an important time scale for the downtime of the machine due to a need of warming
a module for maintenance, replacements or repairs.

The warm-up of the distribution line is almost three times longer than the cool-down
and is therefore the most important feature in the downtime of the accelerator, in the
case of a complete shut-down and warm-up. Including the cryomodules, this warm-
up takes 25 hours. For the warm-up of one single cryomodule, the downtime due to
warming it up is also 25 hours, which is notably longer than the cool-down.

For the combined downtime for warming a cryomodule up, repairs and mainte-
nance, and then cooling it down, the warm-up procedure is the most time consum-
ing. The same goes for the entire distribution line. The combined downtime only
due to warming and cooling using flowing helium is given as 41 hours for a single
cryomodule.

61

Chapter 6. Discussion

Cool-down and Warm-up of One Cryomodule
The simulations for the cool-down of a single cryomodule shows how the total
cool-down time is strongly dependent on the inflow rate. This has an almost linear
behavior for the mass flow rates considered in this project, thus suggesting that
the aim should be to have as a high of a flow as possible in the transient cool-down
period. By calculating the total mass of helium needed for the cool-down, it is found
that it agrees with the specifications provided by the manufacturer in Fig. 2.3.

The warm-up is also for an individual cryomodule a more time demanding process
than the cool-down. The total time is strongly dependent on the mass flow rate into
the module, and this should be considered at the manufacturing of the cryomodules,
if downtime is an important factor.

Validations
As mentioned in the results for the Excel validation, the results between Excel with
HePak and the Dymola simulation agree well for all variables. The simulation shows
on an important event where the initialization of rapid inflow of cold helium into a
warm pipe can be handled well. This validation is helpful to support the results for
the helium discharge calculations.

For the validation with the nitrogen flow through a copper pipe, the pressure and
mass flow plots lie within a 10% difference between the experimental results and the
Dymola simulation. The temperature differs more, however. In the first sections of
the pipe, the Dymola simulation closely resembles that of the experimental results.
However, as time passes, the end sections differ more and more in temperature.
The Dymola simulation gives a final temperature of 180 K, while the experimental
results yield only a minor decrease down to 270 K. This means that there is a dif-
ference of 90 K, or an absolute error of 33%. This error must be due to some factor
in the heat transfer that has not been taken care of. A reasonable guess would be
that the heat transfer between the pipe wall and the surrounding air is less promi-
nent than in the Dymola model, most likely due to frosting on the outside of the
pipe wall. Another reason could be that the Dymola model does not take the exact
geometry of the piping into account in the Dittus-Bölter friction model. Finally, the
measurement of temperature in the experiment was performed with a thermometer
placed in the nitrogen flow. This causes a slight pressure increase on the upstream
part of the thermometer and a possible registration of a higher temperature.

The comparison of the helium discharge into a relief system for ten seconds receives
a similar result as the nitrogen simulation above. While the pressures stay closely
the same, the appearance of the temperature distributions become more and more
different as time passes. Once again, this should be due to a different modeling of
the heat transfer between the ambient and the pipe wall, as the heat transfer between
the pipe wall and the flowing helium follows the Dittus-Bölter procedure and is a
lesser subject of discussion. One likely reason for the temperature differences is

62

6.2 Future Work

simply that the insulation in reality differs from that received by word-of-mouth for
the Dymola simulation. Since the modeling in the paper was done some years ago
and the paper did not specify the specific type insulation used, discussions lead to
using standard vacuum insulation, which seems to have been too conservative.

The results from the validations show that the pressure and flow of the helium (and
nitrogen) follow the same evolutions as for the benchmarked models, and lie within
10% for all of the simulations. The heat transfer has a larger difference at times,
most likely due to that the heat transfer between the pipe and the surroundings has
not been outlined in detail in the papers and therefore show a different behavior
for the Dymola models and the results. For the actual simulations of the cryogenic
distribution line, however, the convective heat transfer is already considered in the
inflow of heat from the Dymola components, and the appearing errors in the valida-
tions models should not affect the other simulations to a large extent. In addition, the
cool-down and warm-up simulations of the piping occur within vacuum insulation,
causing a possible erroneous convective heat flow to be of negligible importance.

6.2 Future Work

The work that has been carried out in this Master thesis has involved setting up
a simulation environment for cryogenic models, creating cooperation and contact
with Modelon AB as a delivery firm for libraries, medium properties, and assis-
tance in the modeling process, and running simulations using Dymola. The models
created are available for individual or composite use for simulations of cryogenic
situations that might arise. It should be noted that there have been additional Dymola
components created that have not been used in the primary simulations presented in
this report, that could be integrated into future models as well.

The idea within the cryogenic group at ESS is to maintain a cryogenic student
project over time. The foundation for this has been laid in this project, and the
models can very well be developed further and expanded into more sophisticated
tools. There are still many problems to be set up and solved within the scope of
cryogenics, and Dymola will be used for this to a large extent. The personnel in the
Specialized Technical Services Group at ESS has come into contact with Modelica
and Dymola, and these tools will be used for detailed simulations in the near and far
future. The models created here together with the additional work input from future
engineers and students will be part of creating the ESS cryogenic system.

Suggestions for future work is to expand on the model of the cryomodules, and
perform more detailed simulations of the cool-down and warm-up process thereof.
As was seen in the results, the cool-down times depend heavily on the mass flow rate
of helium into the modules, and a rigorous analysis of possible flow rates would be
of great importance. Even though the cool down of the major parts of the cryogenic

63

Chapter 6. Discussion

system has been simulated in this project, a detailed simulation of all cold masses
at once is yet to be performed. This is an advanced task numerically, in terms of
modeling, and when it comes to initialisation. The effort should therefore be based
on the models created but taking system considerations into account in order to be
able to carry out the simulations.

64

7
References

[1] European Spallation Source ESS AB. URL: http://europeanspallation-
source.se (visited on 10/07/2013).

[2] Peggs, Steve (ed.) ESS Technical Design Report. ESS-doc-274. April 23,
2012.

[3] Lundh, Emil and Jonathan Moberg. Fatigue analysis of the ESS target wheel
in accordance with RCC-MRx. Degree Project. Media-Tryck, Lund, 2013.

[4] Oak Ridge National Laboratory. URL: http://netrons.ornl.gov (visited
on 10/07/2013).

[5] Pynn, Roger. An introduction to neutron scattering. Presentation at Indiana
University and Oak Ridge National Lab. URL: http://neutrons.ornl.
gov/conf/nxs2010/pdf/lectures/IntroductoryLectures_Pynn_

ORNL.pdf.
[6] URL: http : / / europeanspallationsource . se / sites / default /

files/ess_pulse_1.png.
[7] Hott, Roland, et.al. “Review on superconducting materials”. Handbook of

Applied Superconductivity (2013). URL: http://arxiv.org/abs/1306.
0429.

[8] Fydrych, Jaroslaw and Piotr Tereszkowski. Ess cryogenic infrastructure - dis-
tribution system for the ess linac. ESS Presentation. November, 2013.

[9] Böckh, Peter von and Thomas Wetzel. Heat Transfer - Basics and Practice.
Springer-Verlag Berlin Heidelberg, 2012.

[10] Wang, Xilong L. et.al. Heat load estimates of the ess accelerator cryogenic
plant. Doc.nr. ESS/AD/TN0052. November, 2013.

[11] Wang, Xilong. Cryogenics Engineer, ESS AB. Private discussions.
2013/2014.

[12] Weisend II, John G. Handbook of Cryogenic Engineering. Taylor & Francis,
USA, 1998.

65

http://europeanspallation-source.se
http://europeanspallation-source.se
http://netrons.ornl.gov
http://neutrons.ornl.gov/conf/nxs2010/pdf/lectures/IntroductoryLectures_Pynn_ORNL.pdf
http://neutrons.ornl.gov/conf/nxs2010/pdf/lectures/IntroductoryLectures_Pynn_ORNL.pdf
http://neutrons.ornl.gov/conf/nxs2010/pdf/lectures/IntroductoryLectures_Pynn_ORNL.pdf
http://europeanspallationsource.se/sites/default/files/ess_pulse_1.png
http://europeanspallationsource.se/sites/default/files/ess_pulse_1.png
http://arxiv.org/abs/1306.0429
http://arxiv.org/abs/1306.0429

Bibliography

[13] Princeton University. Joule-thomson effect. URL: http://www.princeton.
edu/~achaney/tmve/wiki100k/docs/Joule%E2%80%93Thomson_

effect.html.
[14] Fydrych, Jaroslaw, Bartosz Zajaczkowski, and Maciej Chorowski. Helium

flows from the tf coils to the cold quench tank after the fast energy discharge.
Presentation at Wroclaw University of Technology. 2011.

[15] Weisend II, John G. Flow Specifications. 2014.
[16] IPN Orsay. Cryogenic distribution aspects of the Spoke cryomodule - Sizing.

Technical Note IPNO-DA-ESS-NT-20140217, 2014.
[17] HePak. URL: http://www.htess.com/hepak.htm.
[18] Modelica Language Specification, Version 3.2. 2010.
[19] Chrowski, M., et.al. “Experimental validation of the lhc helium relief system

flow modeling”. In: CEC-ICMC, Keystone, Colorado, USA. 2005.
[20] Chrowski, M., et.al. “Flow and thermo-mechanical analysis of the lhc sector

helium relief system”. In: ICEC20, Beijing, China. 2004.
[21] Microsoft Office, Excel. URL: http://office.microsoft.com/en-

001/excel/.
[22] Wikipedia. Microsoft excel. URL: http://en.wikipedia.org/wiki/

Microsoft_Excel.
[23] Dymola: Environment for Object-oriented Modeling of Physical Systems.

2005. URL: http://www.inf.ethz.ch/personal/fcellier/Res/
Soft/Dymola_engl.html (visited on 11/18/2013).

[24] Dynasim. URL: http://www.ida.liu.se/labs/pelab/realsim/
dynasim.php3.

[25] Dassault Systèmes. URL: http://www.3ds.com/.
[26] Wikipedia. Modelica. URL: http://en.wikipedia.org/wiki/Modelica

(visited on 11/18/2013).
[27] Wilhelmsson, Carl. Product Manager and Senior simulation engineer, Mod-

elon AB. Private discussions. 2013/2014.
[28] MathWorks. Matlab - the language of technical computing. URL: http://

www.mathworks.se/products/matlab/.
[29] Wikipedia. Matlab. URL: http://en.wikipedia.org/wiki/MATLAB.
[30] The Engineering Toolbox. Dynamic pressure. URL: http : / / www .

engineeringtoolbox.com/dynamic-pressure-d_1037.html (vis-
ited on 01/24/2014).

[31] Tritton, D.J. Physical Fluid Dynamics. 2nd ed. Oxford University Press,
1988.

[32] Landau, L.D. and E.M. Lifshitz. Fluid Mechanics. 2nd ed. Pergamon Press,
1987.

66

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Joule%E2%80%93Thomson_effect.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Joule%E2%80%93Thomson_effect.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Joule%E2%80%93Thomson_effect.html
http://www.htess.com/hepak.htm
http://office.microsoft.com/en-001/excel/
http://office.microsoft.com/en-001/excel/
http://en.wikipedia.org/wiki/Microsoft_Excel
http://en.wikipedia.org/wiki/Microsoft_Excel
http://www.inf.ethz.ch/personal/fcellier/Res/Soft/Dymola_engl.html
http://www.inf.ethz.ch/personal/fcellier/Res/Soft/Dymola_engl.html
http://www.ida.liu.se/labs/pelab/realsim/dynasim.php3
http://www.ida.liu.se/labs/pelab/realsim/dynasim.php3
http://www.3ds.com/
http://en.wikipedia.org/wiki/Modelica
http://www.mathworks.se/products/matlab/
http://www.mathworks.se/products/matlab/
http://en.wikipedia.org/wiki/MATLAB
http://www.engineeringtoolbox.com/dynamic-pressure-d_1037.html
http://www.engineeringtoolbox.com/dynamic-pressure-d_1037.html

Bibliography

[33] The Engineering Toolbox. Colebrook equation. URL: http : / / www .

engineeringtoolbox.com/colebrook-equation-d_1031.html (vis-
ited on 01/24/2014).

[34] Libby, Paul A. Introduction to Turbulence. Taylor & Francis, Washington,
1996.

[35] Idelchik, I.E. Hanbook of Hydraulic Resistance. 3rd ed. Jaico Publishing
House, Mumbai, 2003.

[36] White, Frank M. Fluid Mechanics. 7th ed. McGraw Hill, NY, 2008.
[37] The Engineering Toolbox. Individual universal gas constant. URL: http:

//www.engineeringtoolbox.com/individual- universal- gas-

constant-d_588.html (visited on 09/12/2013).
[38] Benson, Tom. Beginner’s guide to aerodynamics. URL: http://www.grc.

nasa . gov / WWW / k - 12 / VirtualAero / BottleRocket / airplane /

mflchk.html (visited on 10/17/2013).
[39] T. Benson.
[40] Annaratone, Donatello. Engineering Heat Transfer. Springer, 2010.
[41] Sundén, Bengt. Värmeöverföring. Sudentlitteratur, Lund, 2006.
[42] Horizon Technologies. Cryodata inc. URL: http : / / www . htess . com /

cryodata.htm.
[43] Jensen, J.E., et.al. Brookhaven National Laboratory Selected Cryogenic Data

Notebook, Volume I. Brookhaven National Laboratory, 1980.
[44] NIST Cryogenics Technologies Group. Material properties. URL: http://

cryogenics.nist.gov/MPropsMAY/materialproperties.htm (visited
on 12/09/2013).

[45] The Engineering Toolbox. Radiation heat transfer. URL: http : / / www .
engineeringtoolbox.com/radiation- heat- transfer- d_431.

html (visited on 10/10/2013).
[46] Modest, Michael F. Radiative Heat Transfer. Elsevier Inc., 2013.
[47] Flynn, Thomas M. Cryogenic Engineering. 2nd ed. CRC Press, 2004.
[48] Leuenberger, H., et.al. Compilation of radiation shape factors for cylindrical

assemblies. The American Society of Mechanical Engineers, 1957.
[49] Basiński, Paweł. Model Obliczeniowy Konfiguracji Wielowarstwowej Izo-

lacji Próżniowej MLI Wielokanałowych Linii Kriogenicznych. Politechnika
Wrocławska, 2012.

[50] Massachusetts Institute of Technology. Radiation heat transfer between
black surfaces of arbitrary geometry. URL: http://web.mit.edu/16.
unified/www/FALL/thermodynamics/notes/node137.html (visited
on 09/12/2013).

67

http://www.engineeringtoolbox.com/colebrook-equation-d_1031.html
http://www.engineeringtoolbox.com/colebrook-equation-d_1031.html
http://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html
http://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html
http://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html
http://www.grc.nasa.gov/WWW/k-12/VirtualAero/BottleRocket/airplane/mflchk.html
http://www.grc.nasa.gov/WWW/k-12/VirtualAero/BottleRocket/airplane/mflchk.html
http://www.grc.nasa.gov/WWW/k-12/VirtualAero/BottleRocket/airplane/mflchk.html
http://www.htess.com/cryodata.htm
http://www.htess.com/cryodata.htm
http://cryogenics.nist.gov/MPropsMAY/materialproperties.htm
http://cryogenics.nist.gov/MPropsMAY/materialproperties.htm
http://www.engineeringtoolbox.com/radiation-heat-transfer-d_431.html
http://www.engineeringtoolbox.com/radiation-heat-transfer-d_431.html
http://www.engineeringtoolbox.com/radiation-heat-transfer-d_431.html
http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node137.html
http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node137.html

Bibliography

[51] Howell, John R. A catalog of radiation heat transfer configuration factors.
URL: http://www.engr.uky.edu/rtl/Catalog/tablecon.html
(visited on 03/06/2014).

[52] Martinez, Isidoro. Radiative View Factors. 1995.
[53] Byun, Do Yung. “Investigation of radiative heat transfer in complex geome-

tries using blocked-off, multiblock, and embedded boundary treatments”.
Numerical Heat Transfer, Part A: Applications (2003). URL: http://dx.
doi.org/10.1080/713838148.

[54] Weisend II, John G. Cryogenics lectures at michigan state univesity. 2012.
[55] Hofman, A. “The thermal conductivity of cryogenic insulation materials and

its temperature dependence”. Elsevier Cryogenics 46:11 (2006).
[56] Xie, J.G. “Study on the heat transfer of high-vacuum-multilayer-insulation

tank after sudden, catastrophic loss of insulating vacuum”. Elsevier Cryo-
genics (2010).

[57] Modelica Association. Modelica Language Specification, Version 3.3. 2012.
[58] Wikipedia. Nominal pipe size. URL: http://en.wikipedia.org/wiki/

Nominal_Pipe_Size.
[59] Valvias. Flow coefficient definition. URL: http://www.valvias.com/

flow-coefficient.php.
[60] Fydrych, Jaroslaw. Preliminary heat load estimations for the Cryogenic

Distribution System of the ESS accelerator. ESS Technical Note ES-
S/AD/TN/0051, 2013.

[61] Aksel, Haluk and Cahit Eralp. Gas Dynamics. Prentice Hall International,
1994.

[62] Williamson Jr., K.D. and Frederick J. Edeskuty. Liquid Cryogens. CRC Press
Inc., Boca Raton, Florida, 1983.

68

http://www.engr.uky.edu/rtl/Catalog/tablecon.html
http://dx.doi.org/10.1080/713838148
http://dx.doi.org/10.1080/713838148
http://en.wikipedia.org/wiki/Nominal_Pipe_Size
http://en.wikipedia.org/wiki/Nominal_Pipe_Size
http://www.valvias.com/flow-coefficient.php
http://www.valvias.com/flow-coefficient.php

8
Appendices

8.1 Appendix I - Dymola Components, Graphical Layer

Figure 8.1 CryoPipeDWReynolds.

Figure 8.2 DistributionPipe.

69

Chapter 8. Appendices

Figure 8.3 TransferLine.

Figure 8.4 EndBox.

Figure 8.5 SimpleEndBox.

70

8.1 Appendix I - Dymola Components, Graphical Layer

Figure 8.6 Cryoplant.

Figure 8.7 Cryomodule.

Figure 8.8 TitaniumTankPipe.

71

Chapter 8. Appendices

Figure 8.9 CMSteelPipingTwoPhase.

Figure 8.10 CMThermalShields and NiobiumCavity.

72

8.2 Appendix II - Dymola Components, Modelica Code

8.2 Appendix II - Dymola Components, Modelica Code

CryoPipeDWReynolds

model CryoPipeDWReynolds

"Simple pipe with heat capacitance through the DynamicWall

component."

parameter Integer n=10 "Number of control volumes";

parameter Modelica.SIunits.Length L "Pipe length";

parameter Modelica.SIunits.Length OD "Outer pipe diameter";

parameter Modelica.SIunits.Length thk "Thickness of pipe , used

for Rw";

parameter Modelica.SIunits.Density rho=7900 "Density of the

pipe wall";

parameter Modelica.SIunits.HeatFlowRate Q_vb=Q_vb

"Heat load from vaccum barrier";

parameter Modelica.SIunits.HeatFlowRate Q_fs=Q_fs

"Heat load from fixed supports";

parameter Modelica.SIunits.HeatFlowRate Q_ss=Q_ss

"Heat load from sliding supports";

parameter Modelica.SIunits.Temp_K T_start_in = 300

"Initial temperature for inflow";

parameter Modelica.SIunits.Temp_K T_start_out = 300

"Initial temperature for outflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_in = 1e5

"Initial pressure for inflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_out = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.MassFlowRate m_flow = 0.3

"Mass flow rate in the system";

parameter Real zeta=0.03*L/n/OD;

parameter Modelica.SIunits.CoefficientOfHeatTransfer

alpha0=200;

replaceable package Medium =

VaporCycle.Media.Naturals.HydrogenMbwr;

final parameter Modelica.SIunits.Mass m =

rho*((OD/2)^2-((OD-2*thk)/2)^2)*Modelica.Constants.pi*L/n;

Modelon.ThermoFluid.FlowChannels.DistributedPipe

distributedPipe(n=n,

redeclare package Medium = Medium ,

L=L,

T_start_in(displayUnit="K") = T_start_in ,

T_start_out(displayUnit="K") = T_start_out ,

p_start_out=p_start_out ,

p_start_in=p_start_in ,

useHeatTransfer=true ,

D=(OD - 2*thk),

redeclare model Friction =

Modelon.ThermoFluid.FlowChannels.PipeResistances.

VariableZeta (zeta=zeta),

73

Chapter 8. Appendices

redeclare model HeatTransfer =

Modelon.ThermoFluid.FlowChannels.HeatTransfer.

DittusBoelterAdjustable)

annotation (Placement(

transformation(extent={{-10,-10},{10,10}})));

WallComponents.DynamicWallSS dynamicWall(

n=n,

Q_vb=Q_vb ,

Q_fs=Q_fs ,

Q_ss=Q_ss ,

T0(displayUnit="K") = linspace(

T_start_in ,

T_start_out ,

n),

thk=thk ,

A=Modelica.Constants.pi*OD*L/n,

m=fill(m, n))

annotation (Placement(transformation(extent=

{{-10,30},{10,50}})));

Modelon.ThermoFluid.Interfaces.FlowPort

portA(redeclare package Medium =

Medium , m_flow(start=m_flow))

annotation (Placement(transformation(extent={{-112,-12},

{-88,12}}),

iconTransformation(extent={{-110,0},{-70,40}})));

Modelon.ThermoFluid.Interfaces.FlowPort portB(redeclare package

Medium = Medium , m_flow(start=-m_flow))

annotation (Placement(transformation(extent={{88,-12},{112,

12}}),

iconTransformation(extent={{90,0},{130,40}})));

Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a[n]

PipeHeatPort

annotation (Placement(transformation(extent={{-10,62},

{10,82}}),

iconTransformation(extent={{-10,62},{10,82}})));

equation

connect(portA , distributedPipe.portA) annotation (Line(

points={{-100,0},{-10,0}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(distributedPipe.portB , portB) annotation (Line(

points={{10,0},{100,0}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(dynamicWall.qa , PipeHeatPort) annotation (Line(

points={{0,50},{0,72}},

color={191,0,0},

smooth=Smooth.None));

connect(distributedPipe.q , dynamicWall.qb) annotation (Line(

points={{0,5},{0,30}},

74

8.2 Appendix II - Dymola Components, Modelica Code

color={191,0,0},

thickness=0.5,

smooth=Smooth.None));

annotation (Diagram(coordinateSystem(preserveAspectRatio=false ,

extent={{-100,-100},{100 ,100}}), graphics), Icon(

coordinateSystem(

preserveAspectRatio=false , extent={{-100,-100},

{100 ,100}}),

graphics={

Rectangle(

extent={{-70,60},{90,-20}},

lineColor={0,0,0},

fillColor={215 ,215 ,215},

fillPattern=FillPattern.HorizontalCylinder),

Line(

points={{-50,-36},{70,-36}},

color={255,128,0},

thickness=0.5,

smooth=Smooth.None),

Polygon(

points={{70,-36},{34,-24},{34,-48},{70,-36}},

lineColor={255 ,128 ,0},

lineThickness=0.5 ,

fillPattern=FillPattern.HorizontalCylinder ,

smooth=Smooth.None ,

fillColor={255 ,128 ,0}),

Text(

extent={{-90,-40},{110,-80}},

lineColor={0,0,0},

textString="%name"),

Ellipse(

extent={{-48,28},{-32,12}},

lineColor={0,0,0},

fillPattern=FillPattern.Solid ,

fillColor={0,0,0}),

Ellipse(

extent={{52,28},{68,12}},

lineColor={0,0,0},

fillPattern=FillPattern.Solid ,

fillColor={0,0,0}),

Text(

extent={{-10,30},{30,10}},

lineColor={0,0,0},

fillColor={0,0,0},

fillPattern=FillPattern.Solid ,

textString="%n"),

Rectangle(

extent={{-70,62},{90,40}},

lineColor={255,0,0},

fillColor={255,0,0},

fillPattern=FillPattern.Solid)}));

end CryoPipeDWReynolds;

75

Chapter 8. Appendices

DynamicWallSS

model DynamicWallSS "Dynamic wall with heat resistance"

extends Modelon.ThermoFluid.Solids.Interfaces.Wall(

qa(T(start=T0)),

qb(T(start=T0)));

extends Modelon.ThermoFluid.Icons.WallDyn;

parameter Modelica.SIunits.Mass[n] m "Metal mass per lump";

parameter Modelica.SIunits.SpecificHeatCapacity Cp0=494

"Initial metal heat capacity";

parameter Modelica.SIunits.ThermalResistance Rw0=thk/(A*16)

"Initial heat resistance in metal";

DistributionSystem.Units.Temp_K[n] Tm(start=T0)

"Metal mean temperature , direction along n as on side qa";

parameter Modelica.SIunits.Temperature[n] T0=ones(n)*300.0

"Metal start temperature , direction along n as on side qa";

parameter Modelica.SIunits.Length thk "Thickness of the pipe

wall";

parameter Modelica.SIunits.Length A "Area of _one lump_ of the

pipe wall";

parameter Modelica.SIunits.HeatFlowRate Q_vb=Q_vb

"Heat load from vaccum barrier";

parameter Modelica.SIunits.HeatFlowRate Q_fs=Q_fs

"Heat load from fixed supports";

parameter Modelica.SIunits.HeatFlowRate Q_ss=Q_ss

"Heat load from sliding supports";

Modelica.SIunits.SpecificHeatCapacity[n] CpVar

"Elementwise Cp from temperature";

Modelica.SIunits.ThermalResistance[n] RwVar

"Elementwise Rw from inverse thermal conductivity based on

temperature";

equation

for i in 1:n loop

CpVar[i]=-0.00000000115115*((qa[i].T+qb[i].T)/2)^5+

0.00000112374*((qa[i].T+qb[i].T)/2)^4-0.000392079*(

(qa[i].T+qb[i].T)/2)^3+0.0522538*((qa[i].T+qb[i].T)/2)^2+

0.141301*((qa[i].T+qb[i].T)/2);

RwVar[i]=thk/(A*(0.0000008*((qa[i].T+qb[i].T)/2)^3-0.0006*(

(qa[i].T+qb[i].T)/2)^2+0.1477*((qa[i].T+qb[i].T)/2)-0.4952));

m[i]*CpVar[i]*der(Tm[i]) = qa[i].Q_flow + qb[i].Q_flow;

qa[i].Q_flow = (qa[i].T - Tm[i])*2/ RwVar[i] +

(Q_vb+Q_fs+Q_ss)/n; // Added support and vacuum

barrier heat loads

qb[i].Q_flow = (qb[i].T - Tm[i])*2/ RwVar[i] +

(Q_vb+Q_fs+Q_ss)/n; // Added support and vacuum

barrier heat loads

end for;

annotation(Evaluate=true ,

Diagram(coordinateSystem(preserveAspectRatio=false ,

extent={{-100,-100},{100 ,100}}), graphics));

76

8.2 Appendix II - Dymola Components, Modelica Code

end DynamicWallSS;

DynamicWallNb

model DynamicWallNb "Dynamic wall with conduction heat

resistance."

extends Modelon.ThermoFluid.Solids.Interfaces.Wall(

qa(T(start=T0)), qb(T(start=T0)));

extends Modelon.ThermoFluid.Icons.WallDyn;

parameter Modelica.SIunits.Mass[n] m "Metal mass per lump";

parameter Modelica.SIunits.SpecificHeatCapacity Cp0=494

"Initial metal heat capacity";

parameter Modelica.SIunits.ThermalResistance Rw0=thk/(A*16)

"Initial heat resistance in metal";

DistributionSystem.Units.Temp_K[n] Tm(start=T0)

"Metal mean temperature , direction along n as on side qa";

parameter Modelica.SIunits.Temperature[n] T0=ones(n)*300.0

"Metal start temperature , direction along n as on side qa";

parameter Modelica.SIunits.Length thk "Thickness of the pipe

wall/specimen";

parameter Modelica.SIunits.Length A "Area of _one lump_ of the

pipe wall";

Modelica.SIunits.SpecificHeatCapacity[n] CpVar

"Elementwise Cp from temperature";

Modelica.SIunits.ThermalResistance[n] RwVar

"Elementwise Rw from inverse thermal conductivity based on

temperature";

equation

for i in 1:n loop

if Tm[i] > 20 then

CpVar[i]=2.0226423917e -11*Tm[i]^6-2.0451534634e -8*Tm[i]^5+

7.9550021963e -6*Tm[i]^4-0.0014601740994*Tm[i]^3+

0.11758205083*Tm[i]^2-1.2495904095*Tm[i]+3.0875766442;

else

CpVar[i]=0.0009*Tm[i]^3 + 0.0076*Tm[i]^2 + 0.0449*Tm[i]

+0.0422;

end if;

if Tm[i] >= 30 then

RwVar[i]=thk/(A*(-3.8984111598e -10*Tm[i]^5+3.9537530644e -

7*Tm[i]^4-1.5506337607e -

4*Tm[i]^3+0.029268800879*Tm[i]^2-2.6465534609*Tm[i]+

141 .29752365));

else

RwVar[i]=thk/(A*(-0.11689520760*Tm[i]^2+6.4368583162*Tm[i]

+1.9644659451));

end if;

m[i]*CpVar[i]*der(Tm[i]) = qa[i].Q_flow + qb[i].Q_flow;

qa[i].Q_flow = (qa[i].T - Tm[i])*2/ RwVar[i];

77

Chapter 8. Appendices

qb[i].Q_flow = (qb[i].T - Tm[i])*2/ RwVar[i];

end for;

end DynamicWallNb;

DynamicWallTi

model DynamicWallTi "Dynamic wall with heat resistance"

extends Modelon.ThermoFluid.Solids.Interfaces.Wall(

qa(T(start=T0)), qb(T(start=T0)));

extends Modelon.ThermoFluid.Icons.WallDyn;

parameter Modelica.SIunits.Mass[n] m "Metal mass per lump";

parameter Modelica.SIunits.SpecificHeatCapacity Cp0=494

"Initial metal heat capacity";

parameter Modelica.SIunits.ThermalResistance Rw0=thk/(A*16)

"Initial heat resistance in metal";

DistributionSystem.Units.Temp_K[n] Tm(start=T0)

"Metal mean temperature , direction along n as on side qa";

parameter Modelica.SIunits.Temperature[n] T0=ones(n)*300.0

"Metal start temperature , direction along n as on side qa";

parameter Modelica.SIunits.Length thk "Thickness of the pipe

wall/specimen";

parameter Modelica.SIunits.Length A "Area of _one lump_ of the

pipe wall";

Modelica.SIunits.SpecificHeatCapacity[n] CpVar

"Elementwise Cp from temperature";

Modelica.SIunits.ThermalResistance[n] RwVar

"Elementwise Rw from inverse thermal conductivity based on

temperature";

constant Real a = -2.398794842;

constant Real b = 8.970743802;

constant Real c = -29 .19286973;

constant Real d = 54 .87139779;

constant Real e = -59 .67137228;

constant Real f = 38 .89321714;

constant Real g = -14 .94175848;

constant Real h = 3.111616089;

constant Real k = -0.270452768;

equation

for i in 1:n loop

if Tm[i] > 20 then

CpVar[i]=-3.5147820378e -9*Tm[i]^5+3.0057506888e -6*Tm[i]^4-

9.2045002329e -4*Tm[i]^3+0.11191552397*Tm[i]^2-

1.7076312852*Tm[i]+4.3306205877;

else

CpVar[i] = 0.0008*Tm[i].^3 - 0.0029*Tm[i].^2 + 0.0742*Tm[i]

+ 0.005;

end if;

RwVar[i]=thk/(A*10^(a+b*(log10(Tm[i]))+c*(log10(Tm[i]))^2+

78

8.2 Appendix II - Dymola Components, Modelica Code

d*(log10(Tm[i]))^3+e*(log10(Tm[i]))^4+f*(log10(Tm[i]))^5+

g*(log10(Tm[i]))^6+h*(log10(Tm[i]))^7+k*(log10(Tm[i]))^8));

m[i]*CpVar[i]*der(Tm[i]) = qa[i].Q_flow + qb[i].Q_flow;

qa[i].Q_flow = (qa[i].T - Tm[i])*2/ RwVar[i];

qb[i].Q_flow = (qb[i].T - Tm[i])*2/ RwVar[i];

end for;

end DynamicWallTi;

DynamicWallAl

model DynamicWallAl "Dynamic wall with heat resistance"

extends Modelon.ThermoFluid.Solids.Interfaces.Wall(

qa(T(start=T0)), qb(T(start=T0)));

extends Modelon.ThermoFluid.Icons.WallDyn;

parameter Modelica.SIunits.Mass[n] m "Metal mass per lump";

parameter Modelica.SIunits.SpecificHeatCapacity Cp0=494

"Initial metal heat capacity";

parameter Modelica.SIunits.ThermalResistance Rw0=thk/(A*16)

"Initial heat resistance in metal";

DistributionSystem.Units.Temp_K[n] Tm(start=T0)

"Metal mean temperature , direction along n as on side qa";

parameter Modelica.SIunits.Temperature[n] T0=ones(n)*300.0

"Metal start temperature , direction along n as on side qa";

parameter Modelica.SIunits.Length thk "Thickness of the pipe

wall/specimen";

parameter Modelica.SIunits.Length A "Area of _one lump_ of the

pipe wall";

Modelica.SIunits.SpecificHeatCapacity[n] CpVar

"Elementwise Cp from temperature";

Modelica.SIunits.ThermalResistance[n] RwVar

"Elementwise Rw from inverse thermal conductivity based on

temperature";

constant Real a = 23 .39172;

constant Real b = -148 .5733;

constant Real c = 422 .1917;

constant Real d = -653 .6664;

constant Real e = 607 .0402;

constant Real f = -346 .152;

constant Real g = 118 .4276;

constant Real h = -22 .2781;

constant Real k = 1.770187;

equation

for i in 1:n loop

if Tm[i] > 20 then

CpVar[i]=-5.0858382990e -9*Tm[i]^5+4.4933166438e -6*Tm[i]^4-

0.0014348060969*Tm[i]^3+0.18473605304*Tm[i]^2-

3.4580884187*Tm[i]+10 .842981412;

else

79

Chapter 8. Appendices

CpVar[i]=0.0011*Tm[i]^3-0.0029*Tm[i]^2+0.0622*Tm[i]-0.011;

end if;

RwVar[i]=thk/(A*10^(a+b*(log10(Tm[i]))+c*(log10(Tm[i]))^2+

d*(log10(Tm[i]))^3+e*(log10(Tm[i]))^4+

f*(log10(Tm[i]))^5+g*(log10(Tm[i]))^6+h*(log10(Tm[i]))^7+

k*(log10(Tm[i]))^8));

m[i]*CpVar[i]*der(Tm[i]) = qa[i].Q_flow + qb[i].Q_flow;

qa[i].Q_flow = (qa[i].T - Tm[i])*2/ RwVar[i];

qb[i].Q_flow = (qb[i].T - Tm[i])*2/ RwVar[i];

end for;

end DynamicWallAl;

DynamicWallCu

model DynamicWallCu "Dynamic wall with heat resistance"

extends Modelon.ThermoFluid.Solids.Interfaces.Wall(

qa(T(start=T0)), qb(T(start=T0)));

extends Modelon.ThermoFluid.Icons.WallDyn;

parameter Modelica.SIunits.Mass[n] m "Metal mass per lump";

parameter Modelica.SIunits.SpecificHeatCapacity Cp0=494

"Initial metal heat capacity";

parameter Modelica.SIunits.ThermalResistance Rw0=0.003/(A*16)

"Initial heat resistance in metal";

DistributionSystem.Units.Temp_K[n] Tm(start=T0)

"Metal mean temperature , direction along n as on side qa";

parameter Modelica.SIunits.Temperature[n] T0=ones(n)*300.0

"Metal start temperature , direction along n as on side qa";

parameter Modelica.SIunits.Length thk "Thickness of the pipe

wall";

parameter Modelica.SIunits.Length A "Area of _one lump_ of the

pipe wall";

parameter Modelica.SIunits.HeatFlowRate Q_vb=Q_vb

"Heat load from vaccum barrier";

parameter Modelica.SIunits.HeatFlowRate Q_fs=Q_fs

"Heat load from fixed supports";

parameter Modelica.SIunits.HeatFlowRate Q_ss=Q_ss

"Heat load from sliding supports";

Modelica.SIunits.SpecificHeatCapacity[n] CpVar

"Elementwise Cp from temperature";

Modelica.SIunits.ThermalResistance[n] RwVar

"Elementwise Rw from inverse thermal conductivity based on

temperature";

constant Real a = 1.8743;

constant Real b = -0.41538;

constant Real c = -0.6018;

constant Real d = 0.13294;

constant Real e = 0.26426;

constant Real f = -0.0219;

constant Real g = -0.051276;

80

8.2 Appendix II - Dymola Components, Modelica Code

constant Real h = 0.0014871;

constant Real k = 0.003723;

equation

for i in 1:n loop

CpVar[i]=1.2682110150e -11*Tm[i]^6-1.4399163352e -8*Tm[i]^5+

6.3296511850e -6*Tm[i]^4-1.3291319283e -3*Tm[i]^3+

0.12535751222*Tm[i]^2-1.8004787189*Tm[i]+5.2456099913;

RwVar[i]=thk/(A*10^(a+b*(log10(Tm[i]))+c*(log10(Tm[i]))^2+

d*(log10(Tm[i]))^3+e*(log10(Tm[i]))^4+f*(log10(Tm[i]))^5+

g*(log10(Tm[i]))^6+h*(log10(Tm[i]))^7+k*(log10(Tm[i]))^8));

m[i]*CpVar[i]*der(Tm[i]) = qa[i].Q_flow + qb[i].Q_flow;

qa[i].Q_flow = (qa[i].T - Tm[i])*2/ RwVar[i] +

(Q_vb+Q_fs+Q_ss)/n;

qb[i].Q_flow = (qb[i].T - Tm[i])*2/ RwVar[i] +

(Q_vb+Q_fs+Q_ss)/n;

end for;

end DynamicWallCu;

DistributionPipe

model DistributionPipe

parameter Integer n=10;

parameter Modelica.SIunits.Length L=50 "Pipe length";

parameter Modelica.SIunits.Density rhoSS=rhoSS

"Density of the stainless steel pipes";

parameter Modelica.SIunits.Length ODHS=ODHS

"Outer diameter of helium supply pipe";

parameter Modelica.SIunits.Length ODVLP=ODVLP

"Outer diameter of VLP return pipe";

parameter Modelica.SIunits.Length ODTSS=ODTSS

"Outer diameter of thermal shield supply pipe";

parameter Modelica.SIunits.Length ODTSR=ODTSR

"Outer diameter of thermal shield return pipe";

parameter Modelica.SIunits.Length thkHS=thkHS

"Thickness of helium supply pipe";

parameter Modelica.SIunits.Length thkVLP=thkVLP

"Thickness of VLP return pipe";

parameter Modelica.SIunits.Length thkTSS=thkTSS

"Thickness of thermal shield supply pipe";

parameter Modelica.SIunits.Length thkTSR=thkTSR

"Thickness of thermal shield return pipe";

parameter Real eSS=eSS "Emissivity of stainless steel (0.07)";

parameter Real eAl=eAl "Emissivity of aluminum or copper

(same 0.04)";

parameter Modelica.SIunits.Length ODTS=ODTS

"Outer diameter of thermal shield ";

parameter Modelica.SIunits.Length tTS=tTS "Thickness of thermal

shield";

parameter Modelica.SIunits.Density rhoTS=rhoTS

81

Chapter 8. Appendices

"Density of thermal shield material";

parameter Modelica.SIunits.Length ODEE=ODEE

"Outer diameter of external envelope";

parameter Modelica.SIunits.Length tEE=tEE "Thickness of

external envelope";

parameter Modelica.SIunits.Density rhoEE=rhoEE

"Density of external envelope material";

parameter Modelica.SIunits.CoefficientOfHeatTransfer zeta

"Heat transfer coefficient for constant heat transfer between

pipe and medium";

parameter Modelica.SIunits.Pressure p_start_inHS = 1e5

"Initial pressure for inflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_outHS = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_inTSS = 1e5

"Initial pressure for inflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_outTSS = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_inTSR = 1e5

"Initial pressure for inflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_outTSR = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_inVLP = 1e5

"Initial pressure for inflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_outVLP = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.Temp_K T_startHS = 300

"Start temperature of the helium supply pipe";

parameter Modelica.SIunits.Temp_K T_startVLP = 300

"Start temperature of the vapor low pressure pipe";

parameter Modelica.SIunits.Temp_K T_startTSS = 300

"Start temperature of the thermal shield supply pipe";

parameter Modelica.SIunits.Temp_K T_startTSR = 300

"Start temperature of the thermal shield return pipe";

parameter Modelica.SIunits.MassFlowRate m_flow = 0.3

"Mass flow rate in the system";

replaceable package Medium =

VaporCycle.Media.Naturals.HydrogenMbwr;

final parameter Modelica.SIunits.Mass mTS = ((ODTS/2)^2-

((ODTS-2*tTS)/2)^2)*Modelica.Constants.pi*L/n*rhoTS;

final parameter Modelica.SIunits.Mass mEE = ((ODEE/2)^2-

((ODEE-2*tEE)/2)^2)*Modelica.Constants.pi*L/n*rhoEE;

CryoPipeDWReynolds HeSupply(

redeclare package Medium = Medium ,

L=L,

thk=thkHS ,

OD=ODHS ,

rho=rhoSS ,

Q_vb=3*0.648/n,

Q_fs=34*0.486/n,

Q_ss=55*0.162/n,

p_start_in(displayUnit="Pa") = p_start_inHS ,

82

8.2 Appendix II - Dymola Components, Modelica Code

p_start_out(displayUnit="Pa") = p_start_outHS ,

T_start_in=T_startHS ,

T_start_out=T_startHS ,

n=n,

m_flow=m_flow ,

zeta=zeta*L/ODHS ,

alpha0=220) annotation (Placement(transformation(

extent={{-150,

-140},{-130,-120}})));

CryoPipeDWReynolds VLPreturn(

redeclare package Medium = Medium ,

L=L,

thk=thkVLP ,

OD=ODVLP ,

rho=rhoSS ,

p_start_in(displayUnit="Pa") = p_start_inVLP ,

p_start_out(displayUnit="Pa") = p_start_outVLP ,

T_start_in=T_startVLP ,

T_start_out=T_startVLP ,

n=n,

m_flow=m_flow ,

zeta=zeta*L/ODVLP ,

Q_vb=3*0.648/n,

Q_fs=34*0.486/n,

Q_ss=55*0.162/n,

alpha0=20)

annotation (Placement(transformation(extent=

{{16,-52},{-4,-32}})));

CryoPipeDWReynolds TSsupply(

redeclare package Medium = Medium ,

L=L,

thk=thkTSS ,

OD=ODTSS ,

rho=rhoSS ,

Q_vb=3*0.648/n,

Q_fs=34*0.486/n,

Q_ss=55*0.162/n,

p_start_in(displayUnit="Pa") = p_start_inTSS ,

p_start_out(displayUnit="Pa") = p_start_outTSS ,

T_start_in=T_startTSS ,

T_start_out=T_startTSS ,

n=n,

m_flow=m_flow ,

zeta=zeta*L/ODTSS ,

alpha0=500)

annotation (Placement(transformation(extent=

{{-82,-96},{-62,-76}})));

CryoPipeDWReynolds TSreturn(

redeclare package Medium = Medium ,

L=L,

thk=thkTSR ,

OD=ODTSR ,

rho=rhoSS ,

Q_vb=3*0.648/n,

83

Chapter 8. Appendices

Q_fs=34*0.486/n,

Q_ss=55*0.162/n,

p_start_in(displayUnit="Pa") = p_start_inTSR ,

p_start_out(displayUnit="Pa") = p_start_outTSR ,

T_start_in=T_startTSR ,

T_start_out=T_startTSR ,

n=n,

m_flow=m_flow ,

zeta=zeta*L/ODTSR ,

alpha0=500)

annotation (Placement(transformation(extent=

{{66,-6},{46,14}})));

WallComponents.DynamicWallSS ThermalShield(

n=n,

thk=tTS ,

m=fill(mTS , n),

Q_vb=0,

Q_fs=0,

Q_ss=0,

A=Modelica.Constants.pi*L*ODTS/n,

T0(displayUnit="K") = ones(n)*T_startTSR)

annotation (Placement(transformation(extent=

{{46,100},{66,80}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInHS(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{-248,-36},{-228,-16}}),

iconTransformation(

extent={{-248,-36},{-228,-16}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInTSS(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{-246,-94},{-226,-74}}),

iconTransformation(

extent={{-246,-94},{-226,-74}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInVLP(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{230 ,14},{250,34}}),

iconTransformation(extent={{230 ,14},

{250,34}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInTSR(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{230 ,68},{250,88}}),

iconTransformation(extent={{230 ,68},

{250,88}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutTSR(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{-248 ,70},{-228 ,90}}),

iconTransformation(extent={{-248,70},

{-228,90}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutVLP(

84

8.2 Appendix II - Dymola Components, Modelica Code

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{-248 ,12},{-228 ,32}}),

iconTransformation(extent={{-248,12},

{-228,32}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutTSS(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{230,-94},{250,-74}}),

iconTransformation(extent={{230,-94},

{250,-74}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutHS(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{230,-36},{250,-16}}),

iconTransformation(extent={{230,-36},

{250,-16}})));

Radiation.RadiationParallelPipes RadiationVLPtoHS[n](

r1=ODVLP/2,

r2=ODHS/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-140,-102})));

Radiation.RadiationParallelPipes RadiationTSStoVLP[n](

r1=ODTSS/2,

r2=ODVLP/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-72,-60})));

Radiation.RadiationParallelPipes RadiationTSRtoVLP[n](

r1=ODTSR/2,

r2=ODVLP/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={6,-18})));

Radiation.RadiationParallelPipes RadiationTSStoHS[n](

r1=ODVLP/2,

r2=ODHS/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

85

Chapter 8. Appendices

extent={{-10,-10},{10,10}},

rotation=90,

origin={2,-100})));

Radiation.RadiationParallelPipes RadiationTSRtoHS[n](

r1=ODTSR/2,

r2=ODHS/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={62,-104})));

Radiation.RadiationParallelPipes RadiationTSRtoTSS[n](

r1=ODTSR/2,

r2=ODTSS/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={60,-62})));

Radiation.RadiationPipesInsidePipe RadiationHSout[n](

r1=ODTS/2,

r2=ODHS/2,

L=L,

e=eSS ,

s=0.12) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-158,44})));

Radiation.RadiationPipesInsidePipe RadiationTSSout[n](

r1=ODTS/2,

r2=ODTSS/2,

L=L,

e=eSS ,

s=0.11) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-104,44})));

Radiation.RadiationPipesInsidePipe RadiationVLPout[n](

r1=ODTS/2,

r2=ODVLP/2,

L=L,

e=eSS ,

s=0.3) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-52,44})));

Radiation.RadiationPipesInsidePipe RadiationTSRout[n](

r1=ODTS/2,

r2=ODTSR/2,

L=L,

86

8.2 Appendix II - Dymola Components, Modelica Code

e=eSS ,

s=0.11) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-4,42})));

Modelon.ThermoFluid.Interfaces.FlowHeatPort AmbiencePort[n]

annotation (Placement(transformation(extent=

{{-94,106},{-74,126}})));

WallComponents.DynamicWallSS ExternalEnvelope(

n=n,

thk=tEE ,

m=fill(mEE , n),

Q_vb=0,

Q_fs=0,

Q_ss=0,

A=Modelica.Constants.pi*L*ODEE/n,

T0(displayUnit="K") = ones(n)*T_startTSR)

annotation (Placement(transformation(extent=

{{-56,92},{-36 ,112}})));

Radiation.RadiationConcentricPipes RadiationTStoEE[n](

e2=eSS ,

r1=ODTS/2,

r2=ODEE/2,

L=L/n,

e1=eAl) annotation (Placement(transformation(extent=

{{6,90},{-14,110}})));

equation

connect(PortInHS , HeSupply.portA) annotation (Line(

points={{-238,-26},{-162,-26},{-162,-128},{-149,-128}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(HeSupply.portB , PortOutHS) annotation (Line(

points={{-129,-128},{158,-128},{158,-26},{240,-26}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(TSsupply.portB , PortOutTSS) annotation (Line(

points={{-61,-84},{38,-84},{38,-88},{136,-88},

{136,-84},{240,-84}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(VLPreturn.portA ,PortInVLP) annotation (Line(

points={{15,-40},{128.5,-40},{128.5 ,24},{240 ,24}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(TSreturn.portA ,PortInTSR) annotation (Line(

points={{65,6},{136.5 ,6},{136.5 ,78},{240,78}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(PortOutTSR , TSreturn.portB) annotation (Line(

87

Chapter 8. Appendices

points={{-238,80},{-74,80},{-74,6},{45,6}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(PortOutVLP , VLPreturn.portB) annotation (Line(

points={{-238,22},{-114,22},{-114,-40},{-5,-40}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(PortInTSS , TSsupply.portA) annotation (Line(

points={{-236,-84},{-178,-84},{-178,-66},{-130,-66},

{-130,-84},{-81,

-84}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(HeSupply.PipeHeatPort ,RadiationTSStoHS. port_a)

annotation (Line(

points={{-140,-122.8},{-140,-110},{2,-110}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSStoHS.port_b , TSsupply.PipeHeatPort)

annotation (Line(

points={{2,-90},{2,-76},{-72,-76},{-72,-78.8}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSStoVLP.port_b , VLPreturn.PipeHeatPort)

annotation (Line(

points={{-72,-50},{-72,-32},{6,-32},{6,-34.8}},

color={191,0,0},

smooth=Smooth.None));

connect(HeSupply.PipeHeatPort ,RadiationVLPtoHS. port_a)

annotation (Line(

points={{-140,-122.8},{-84,-122.8},{-84,-118},

{-100,-118},{-100,-116},

{-140,-116},{-140,-112}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRtoHS.port_a , HeSupply.PipeHeatPort)

annotation (Line(

points={{62,-114},{62,-122.8},{-140,-122.8}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRtoVLP.port_b , TSreturn.PipeHeatPort)

annotation (Line(

points={{6,-8},{6,11.2},{56,11.2}},

color={191,0,0},

smooth=Smooth.None));

connect(TSsupply.PipeHeatPort ,RadiationTSRtoTSS. port_a)

annotation (Line(

points={{-72,-78.8},{-40,-78.8},{-40,-78},{-6,-78},

{-6,-76},{60,-76},{60,-72}},

color={191,0,0},

smooth=Smooth.None));

88

8.2 Appendix II - Dymola Components, Modelica Code

connect(TSsupply.PipeHeatPort , RadiationTSStoVLP.port_a)

annotation (Line(

points={{-72,-78.8},{-72,-70}},

color={191,0,0},

smooth=Smooth.None));

connect(VLPreturn.PipeHeatPort ,RadiationTSRtoVLP. port_a)

annotation (Line(

points={{6,-34.8},{6,-28}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationVLPtoHS.port_b , VLPreturn.PipeHeatPort)

annotation (Line(

points={{-140,-92},{-140,-72},{30,-72},{30,-34.8},

{6,-34.8}},color={191,0,0},smooth=Smooth.None));

connect(RadiationTSRtoHS.port_b , TSreturn.PipeHeatPort)

annotation (Line(

points={{62,-94},{62,-82},{82,-82},{82,11.2},{56,11.2}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRtoTSS.port_b , TSreturn.PipeHeatPort)

annotation (Line(

points={{60,-52},{60,-12},{34,-12},{34,11.2},{56,11.2}},

color={191,0,0},

smooth=Smooth.None));

connect(HeSupply.PipeHeatPort , RadiationHSout.port_a)

annotation (Line(

points={{-140,-122.8},{-150,-122.8},{-150,-120},

{-158,-120},{-158 ,34}},

color={191,0,0},

smooth=Smooth.None));

connect(TSsupply.PipeHeatPort , RadiationTSSout.port_a)

annotation (Line(

points={{-72,-78.8},{-88,-78.8},{-88,-76},

{-104,-76},{-104 ,34}},

color={191,0,0},

smooth=Smooth.None));

connect(VLPreturn.PipeHeatPort , RadiationVLPout.port_a)

annotation (Line(

points={{6,-34.8},{-14,-34.8},{-14,-22},{-52,-22},

{-52,34}},

color={191,0,0},

smooth=Smooth.None));

connect(TSreturn.PipeHeatPort , RadiationTSRout.port_a)

annotation (Line(

points={{56,11.2},{28,11.2},{28,14},{-4,14},{-4,32}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRout.port_b , ThermalShield.qa)

annotation (Line(

points={{-4,52},{56,52},{56,80}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationVLPout.port_b , ThermalShield.qa)

annotation (Line(

89

Chapter 8. Appendices

points={{-52,54},{-52,76},{38,76},{38,80},{56,80}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSSout.port_b , ThermalShield.qa)

annotation (Line(

points={{-104,54},{-104,84},{24,84},{24,84},

{34,84},{34,80},{56,80}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationHSout.port_b , ThermalShield.qa)

annotation (Line(

points={{-158,54},{-158,66},{-166 ,66},{-166 ,76},

{-56,76},{-56,80},{56,80}},

color={191,0,0},

smooth=Smooth.None));

connect(ThermalShield.qb , RadiationTStoEE.port_a)

annotation (Line(

points={{56,100},{6,100}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTStoEE.port_b , ExternalEnvelope.qb)

annotation (Line(

points={{-14,100},{-30,100},{-30,92},{-46,92}},

color={191,0,0},

smooth=Smooth.None));

connect(ExternalEnvelope.qa , AmbiencePort)

annotation (Line(

points={{-46,112},{-66,112},{-66,116},{-84,116}},

color={191,0,0},

smooth=Smooth.None));

connect(TSreturn.PipeHeatPort , ThermalShield.qa)

annotation (Line(

points={{56,11.2},{56,42},{74,42},{74,80},{56,80}},

color={191,0,0},

smooth=Smooth.None));

annotation (Diagram(coordinateSystem(preserveAspectRatio=false ,

extent={{-240,

-180},{240 ,140}}), graphics), Icon(coordinateSystem(

preserveAspectRatio=false , extent=

{{-240,-180},{240 ,140}}), graphics={

Text(

extent={{-258,-78},{266,-154}},

lineColor={0,0,127},

lineThickness=0.5 ,

fillColor={0,0,0},

fillPattern=FillPattern.Solid ,

textString="%name"),

Rectangle(

extent={{-224,74},{226,-84}},

lineColor={0,0,0},

fillColor={215 ,215 ,215},

fillPattern=FillPattern.HorizontalCylinder),

Rectangle(

extent={{-168 ,106},{-74,74}},

90

8.2 Appendix II - Dymola Components, Modelica Code

lineColor={165,0,0},

fillPattern=FillPattern.HorizontalCylinder ,

fillColor={168,0,0})}));

end DistributionPipe;

TransferLine

model TransferLine

parameter Integer n=10;

parameter Modelica.SIunits.Length L=50 "Pipe length";

parameter Modelica.SIunits.Density rhoSS=rhoSS

"Density of the stainless steel pipes";

parameter Modelica.SIunits.Length ODHS=ODHS

"Outer diameter of helium supply pipe";

parameter Modelica.SIunits.Length ODVLP=ODVLP

"Outer diameter of VLP return pipe";

parameter Modelica.SIunits.Length ODTSS=ODTSS

"Outer diameter of thermal shield supply pipe";

parameter Modelica.SIunits.Length ODTSR=ODTSR

"Outer diameter of thermal shield return pipe";

parameter Modelica.SIunits.Length thkHS=thkHS

"Thickness of helium supply pipe";

parameter Modelica.SIunits.Length thkVLP=thkVLP

"Thickness of VLP return pipe";

parameter Modelica.SIunits.Length thkTSS=thkTSS

"Thickness of thermal shield supply pipe";

parameter Modelica.SIunits.Length thkTSR=thkTSR

"Thickness of thermal shield return pipe";

parameter Real eSS=0.07 "Emissivity of stainless steel";

parameter Real eAl=0.04 "Emissivity of aluminum or copper

(same)";

parameter Modelica.SIunits.Length ODTS=ODTS

"Outer diameter of thermal shield ";

parameter Modelica.SIunits.Length tTS=tTS "Thickness of thermal

shield";

parameter Modelica.SIunits.Density rhoTS=rhoTS

"Density of thermal shield material";

parameter Modelica.SIunits.Length ODEE=ODEE

"Outer diameter of external envelope";

parameter Modelica.SIunits.Length tEE=tEE "Thickness of

external envelope";

parameter Modelica.SIunits.Density rhoEE=rhoEE

"Density of external envelope material";

parameter Modelica.SIunits.CoefficientOfHeatTransfer zeta

"Heat transfer coefficient for constant heat transfer between

pipe and medium";

parameter Modelica.SIunits.Pressure p_start_inHS = 1e5

"Initial pressure for inflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_outHS = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_inTSS = 1e5

"Initial pressure for inflow and in pipe walls";

91

Chapter 8. Appendices

parameter Modelica.SIunits.Pressure p_start_outTSS = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_inTSR = 1e5

"Initial pressure for inflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_outTSR = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_inVLP = 1e5

"Initial pressure for inflow and in pipe walls";

parameter Modelica.SIunits.Pressure p_start_outVLP = 1e5

"Initial pressure for outflow and in pipe walls";

parameter Modelica.SIunits.Temp_K T_startHS = 300

"Start temperature of the helium supply pipe";

parameter Modelica.SIunits.Temp_K T_startVLP = 300

"Start temperature of the vapor low pressure pipe";

parameter Modelica.SIunits.Temp_K T_startTSS = 300

"Start temperature of the thermal shield supply pipe";

parameter Modelica.SIunits.Temp_K T_startTSR = 300

"Start temperature of the thermal shield return pipe";

parameter Modelica.SIunits.MassFlowRate m_flow = 0.3

"Mass flow rate in the system";

replaceable package Medium =

VaporCycle.Media.Naturals.HydrogenMbwr;

final parameter Modelica.SIunits.Mass mTS = ((

ODTS/2)^2-((ODTS-2*tTS)/2)^2)*Modelica.Constants.pi*L/n*rhoTS;

final parameter Modelica.SIunits.Mass mEE = ((

ODEE/2)^2-((ODEE-2*tEE)/2)^2)*Modelica.Constants.pi*L/n*rhoEE;

CryoPipeDWReynolds HeSupply(

redeclare package Medium = Medium ,

L=L,

thk=thkHS ,

OD=ODHS ,

rho=rhoSS ,

p_start_in(displayUnit="Pa") = p_start_inHS ,

p_start_out(displayUnit="Pa") = p_start_outHS ,

m_flow=m_flow ,

n=n,

T_start_in(displayUnit="K") = T_startHS ,

T_start_out(displayUnit="K") = T_startHS ,

zeta=zeta*L/ODHS ,

Q_vb=2*0.648/n,

Q_fs=10*0.486/n,

Q_ss=20*0.162/n,

alpha0=220)

annotation (Placement(transformation(extent=

{{-150,-140},{-130,-120}})));

CryoPipeDWReynolds VLPreturn(

redeclare package Medium = Medium ,

L=L,

thk=thkVLP ,

OD=ODVLP ,

rho=rhoSS ,

Q_vb=2*0.648/n,

Q_fs=10*0.486/n,

92

8.2 Appendix II - Dymola Components, Modelica Code

Q_ss=20*0.162/n,

p_start_in(displayUnit="Pa") = p_start_inVLP ,

p_start_out(displayUnit="Pa") = p_start_outVLP ,

m_flow=m_flow ,

n=n,

T_start_in(displayUnit="K") = T_startVLP ,

T_start_out(displayUnit="K") = T_startVLP ,

zeta=zeta*L/ODVLP ,

alpha0=20)

annotation (Placement(transformation(extent=

{{16,-52},{-4,-32}})));

CryoPipeDWReynolds TSsupply(

redeclare package Medium = Medium ,

L=L,

thk=thkTSS ,

OD=ODTSS ,

rho=rhoSS ,

Q_vb=2*0.648/n,

Q_fs=10*0.486/n,

Q_ss=20*0.162/n,

p_start_in(displayUnit="Pa") = p_start_inTSS ,

p_start_out(displayUnit="Pa") = p_start_outTSS ,

m_flow=m_flow ,

n=n,

T_start_in(displayUnit="K") = T_startTSS ,

T_start_out(displayUnit="K") = T_startTSS ,

zeta=zeta*L/ODTSS ,

alpha0=500)

annotation (Placement(transformation(extent=

{{-82,-96},{-62,-76}})));

CryoPipeDWReynolds TSreturn(

redeclare package Medium = Medium ,

L=L,

thk=thkTSR ,

OD=ODTSR ,

rho=rhoSS ,

Q_vb=2*0.648/n,

Q_fs=10*0.486/n,

Q_ss=20*0.162/n,

p_start_in(displayUnit="Pa") = p_start_inTSR ,

p_start_out(displayUnit="Pa") = p_start_outTSR ,

m_flow=m_flow ,

n=n,

T_start_in(displayUnit="K") = T_startTSR ,

T_start_out(displayUnit="K") = T_startTSR ,

zeta=zeta*L/ODTSR ,

alpha0=500)

annotation (Placement(transformation(extent=

{{66,-6},{46,14}})));

WallComponents.DynamicWallSS ThermalShield(

n=n,

thk=tTS ,

m=fill(mTS , n),

Q_vb=0,

93

Chapter 8. Appendices

Q_fs=0,

Q_ss=0,

A=Modelica.Constants.pi*ODTS*L/n,

T0(displayUnit="K") = ones(n)*T_startTSR)

annotation (Placement(transformation(extent=

{{46,100},{66,80}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInHS(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{-248,-36},{-228,-16}}),

iconTransformation(

extent={{-248,-36},{-228,-16}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInTSS(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{-246,-94},{-226,-74}}),

iconTransformation(

extent={{-246,-94},{-226,-74}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInVLP(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{230 ,14},{250,34}}),

iconTransformation(extent={{230 ,14},

{250,34}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInTSR(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{230 ,68},{250,88}}),

iconTransformation(extent={{230 ,68},

{250,88}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutTSR(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{-248 ,70},{-228 ,90}}),

iconTransformation(extent={{-248,70},

{-228,90}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutVLP(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{-248 ,12},{-228 ,32}}),

iconTransformation(extent={{-248,12},

{-228,32}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutTSS(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{230,-94},{250,-74}}),

iconTransformation(extent={{230,-94},

{250,-74}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutHS(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{230,-36},{250,-16}}),

iconTransformation(extent={{230,-36},

{250,-16}})));

94

8.2 Appendix II - Dymola Components, Modelica Code

Radiation.RadiationParallelPipes RadiationVLPtoHS[n](

r1=ODVLP/2,

r2=ODHS/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-134,-94})));

Radiation.RadiationParallelPipes RadiationTSStoVLP[n](

r1=ODTSS/2,

r2=ODVLP/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-72,-54})));

Radiation.RadiationParallelPipes RadiationTSRtoVLP[n](

r1=ODTSR/2,

r2=ODVLP/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={6,-16})));

Radiation.RadiationParallelPipes RadiationTSStoHS[n](

r1=ODVLP/2,

r2=ODHS/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={8,-102})));

Radiation.RadiationParallelPipes RadiationTSRtoHS[n](

r1=ODTSR/2,

r2=ODHS/2,

s=0.2,

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={62,-104})));

Radiation.RadiationParallelPipes RadiationTSRtoTSS[n](

r1=ODTSR/2,

r2=ODTSS/2,

s=0.2,

95

Chapter 8. Appendices

L=L,

e1=eSS ,

e2=eSS) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={60,-62})));

Radiation.RadiationPipesInsidePipe RadiationHSout[n](

r1=ODTS/2,

r2=ODHS/2,

L=L,

e=eSS ,

s=0.12) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-158,44})));

Radiation.RadiationPipesInsidePipe RadiationTSSout[n](

r1=ODTS/2,

r2=ODTSS/2,

L=L,

e=eSS ,

s=0.11) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-104,44})));

Radiation.RadiationPipesInsidePipe RadiationVLPout[n](

r1=ODTS/2,

r2=ODVLP/2,

L=L,

e=eSS ,

s=0.3) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-52,44})));

Radiation.RadiationPipesInsidePipe RadiationTSRout[n](

r1=ODTS/2,

r2=ODTSR/2,

L=L,

e=eSS ,

s=0.11) annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-4,42})));

Modelon.ThermoFluid.Interfaces.FlowHeatPort AmbiencePort[n]

annotation (Placement(transformation(extent=

{{-94,106},{-74,126}})));

WallComponents.DynamicWallSS ExternalEnvelope(

n=n,

thk=tEE ,

m=fill(mEE , n),

Q_vb=0,

Q_fs=0,

Q_ss=0,

A=Modelica.Constants.pi*ODEE*L/n,

T0(displayUnit="K") = ones(n)*T_startTSR)

96

8.2 Appendix II - Dymola Components, Modelica Code

annotation (Placement(transformation(extent=

{{-56,92},{-36 ,112}})));

Radiation.RadiationConcentricPipes RadiationTStoEE[n](

e2=eSS ,

r1=ODTS/2,

r2=ODEE/2,

L=L/n,

e1=eAl) annotation (Placement(transformation(extent=

{{6,90},{-14,110}})));

equation

connect(PortInHS , HeSupply.portA) annotation (Line(

points={{-238,-26},{-162,-26},{-162,-128},{-149,-128}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(HeSupply.portB , PortOutHS) annotation (Line(

points={{-129,-128},{158,-128},{158,-26},{240,-26}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(TSsupply.portB , PortOutTSS) annotation (Line(

points={{-61,-84},{38,-84},{38,-88},{136,-88},

{136,-84},{240,-84}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(VLPreturn.portA ,PortInVLP) annotation (Line(

points={{15,-40},{128.5,-40},{128.5 ,24},{240 ,24}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(TSreturn.portA ,PortInTSR) annotation (Line(

points={{65,6},{136.5 ,6},{136.5 ,78},{240,78}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(PortOutTSR , TSreturn.portB) annotation (Line(

points={{-238,80},{-74,80},{-74,6},{45,6}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(PortOutVLP , VLPreturn.portB) annotation (Line(

points={{-238,22},{-114,22},{-114,-40},{-5,-40}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(PortInTSS , TSsupply.portA) annotation (Line(

points={{-236,-84},{-178,-84},{-178,-66},{-130,-66},

{-130,-84},{-81,

-84}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(HeSupply.PipeHeatPort ,RadiationTSStoHS. port_a)

97

Chapter 8. Appendices

annotation (Line(

points={{-140,-122.8},{-140,-112},{8,-112}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSStoHS.port_b , TSsupply.PipeHeatPort)

annotation (Line(

points={{8,-92},{8,-72},{-72,-72},{-72,-78.8}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSStoVLP.port_b , VLPreturn.PipeHeatPort)

annotation (Line(

points={{-72,-44},{-72,-30},{6,-30},{6,-34.8}},

color={191,0,0},

smooth=Smooth.None));

connect(HeSupply.PipeHeatPort ,RadiationVLPtoHS. port_a)

annotation (Line(

points={{-140,-122.8},{-84,-122.8},{-84,-120},

{-134,-120},{-134,-104}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRtoHS.port_a , HeSupply.PipeHeatPort)

annotation (Line(

points={{62,-114},{62,-122.8},{-140,-122.8}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRtoVLP.port_b , TSreturn.PipeHeatPort)

annotation (Line(

points={{6,-6},{6,11.2},{56,11.2}},

color={191,0,0},

smooth=Smooth.None));

connect(TSsupply.PipeHeatPort ,RadiationTSRtoTSS. port_a)

annotation (Line(

points={{-72,-78.8},{-4,-78.8},{-4,-80},{60,-80},{60,-72}},

color={191,0,0},

smooth=Smooth.None));

connect(TSsupply.PipeHeatPort , RadiationTSStoVLP.port_a)

annotation (Line(

points={{-72,-78.8},{-72,-64}},

color={191,0,0},

smooth=Smooth.None));

connect(VLPreturn.PipeHeatPort ,RadiationTSRtoVLP. port_a)

annotation (Line(

points={{6,-34.8},{6,-26}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationVLPtoHS.port_b , VLPreturn.PipeHeatPort)

annotation (Line(

points={{-134,-84},{-134,-68},{42,-68},{42,-34.8},

{6,-34.8}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRtoHS.port_b , TSreturn.PipeHeatPort)

annotation (Line(

points={{62,-94},{62,-82},{82,-82},{82,11.2},{56,11.2}},

98

8.2 Appendix II - Dymola Components, Modelica Code

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRtoTSS.port_b , TSreturn.PipeHeatPort)

annotation (Line(

points={{60,-52},{60,-12},{34,-12},{34,11.2},{56,11.2}},

color={191,0,0},

smooth=Smooth.None));

connect(HeSupply.PipeHeatPort , RadiationHSout.port_a)

annotation (Line(

points={{-140,-122.8},{-150,-122.8},{-150,-120},

{-158,-120},{-158 ,34}},

color={191,0,0},

smooth=Smooth.None));

connect(TSsupply.PipeHeatPort , RadiationTSSout.port_a)

annotation (Line(

points={{-72,-78.8},{-88,-78.8},{-88,-76},{-104,-76},

{-104,34}},color={191,0,0},smooth=Smooth.None));

connect(VLPreturn.PipeHeatPort , RadiationVLPout.port_a)

annotation (Line(

points={{6,-34.8},{-26,-34.8},{-26,-16},{-52,-16},

{-52,34}},color={191,0,0},smooth=Smooth.None));

connect(TSreturn.PipeHeatPort , RadiationTSRout.port_a)

annotation (Line(

points={{56,11.2},{6,11.2},{6,14},{-4,14},{-4,32}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSRout.port_b , ThermalShield.qa)

annotation (Line(

points={{-4,52},{56,52},{56,80}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationVLPout.port_b , ThermalShield.qa)

annotation (Line(

points={{-52,54},{-52,74},{46,74},{46,80},{56,80}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTSSout.port_b , ThermalShield.qa)

annotation (Line(

points={{-104,54},{-104,84},{24,84},{24,64},{36,64},

{36,80},{56,80}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationHSout.port_b , ThermalShield.qa)

annotation (Line(

points={{-158,54},{-158,70},{30,70},{30,80},{56,80}},

color={191,0,0},

smooth=Smooth.None));

connect(ThermalShield.qb , RadiationTStoEE.port_a)

annotation (Line(

points={{56,100},{6,100}},

color={191,0,0},

smooth=Smooth.None));

connect(RadiationTStoEE.port_b , ExternalEnvelope.qb)

annotation (Line(

99

Chapter 8. Appendices

points={{-14,100},{-30,100},{-30,92},{-46,92}},

color={191,0,0},

smooth=Smooth.None));

connect(ExternalEnvelope.qa , AmbiencePort) annotation (Line(

points={{-46,112},{-66,112},{-66,116},{-84,116}},

color={191,0,0},

smooth=Smooth.None));

connect(TSreturn.PipeHeatPort , ThermalShield.qa) annotation

(Line(points={{56,11.2},{56,42},{74,42},{74,80},{56,80}},

color={191,0,0},

smooth=Smooth.None));

annotation (Diagram(coordinateSystem(preserveAspectRatio=false ,

extent={{-240,

-180},{240 ,140}}), graphics), Icon(coordinateSystem(

preserveAspectRatio=false , extent=

{{-240,-180},{240 ,140}}), graphics={

Rectangle(

extent={{-168 ,106},{-74,74}},

lineColor={165,0,0},

fillPattern=FillPattern.HorizontalCylinder ,

fillColor={168,0,0}), Rectangle(

extent={{-218,74},{228,-64}},

lineColor={0,0,0},

fillColor={255 ,255 ,255},

fillPattern=FillPattern.Forward),

Text(

extent={{-192,-54},{214,-136}},

lineColor={0,0,127},

fillPattern=FillPattern.HorizontalCylinder ,

fillColor={215 ,215 ,215},

textString="%name")}));

end TransferLine;

RadiationParallelPipes

model RadiationParallelPipes

extends Modelica.Thermal.HeatTransfer.Components.BodyRadiation(

Gr=F*A*MLI*e);

parameter Modelica.SIunits.Length r1 "Radius of emitting pipe";

parameter Modelica.SIunits.Length r2 "Radius of receiving

pipe";

parameter Modelica.SIunits.Length s "Distance between pipes";

parameter Modelica.SIunits.Length L "Pipe length";

parameter Real e1 "Emissivity of emitting pipe material";

parameter Real e2 "Emissivity of receiving pipe material";

parameter Integer Nmli=10 "Number of MLI layers around pipes";

final parameter Real e=1/(1/e1+1/e2-1);

final parameter Real MLI=2*1/(2*(Nmli+1)) "For MLI around both

pipes";

final parameter Modelica.SIunits.Area A =

r1*2*Modelica.Constants.pi*L;

final parameter Real R = r2/r1;

100

8.2 Appendix II - Dymola Components, Modelica Code

final parameter Real S = s/r1;

final parameter Real C = 1+R+S;

final parameter Real F = -1/(2*Modelica.Constants.pi)*((C^2-

(R+1)^2)^(1/2)-(C^2-(R-1)^2)^(1/2)+(R-1)*acos((R-1)/C)-

(R+1)*acos((R+1)/C));

end RadiationParallelPipes;

RadiationConcentricPipes

model RadiationConcentricPipes

extends Modelica.Thermal.HeatTransfer.Components.BodyRadiation(

Gr=FeA*MLI);

parameter Modelica.SIunits.Length r1 "Radius of inner

(receiving) pipe";

parameter Modelica.SIunits.Length r2 "Radius of outer

(emitting) pipe";

parameter Modelica.SIunits.Length L "Pipe length";

parameter Real e1 "Emissivity of receiving pipe material";

parameter Real e2 "Emissivity of emitting pipe material";

parameter Integer Nmli=40

"Number of MLI layers around pipe or thermal shield";

final parameter Real MLI=1/(2*(Nmli+1));

final parameter Real FeA = 2*Modelica.Constants.pi*r2*L/(1/e2+

(1/e1-1)*(r2/r1));

end RadiationConcentricPipes;

RadiationPipesInsidePipe

model RadiationPipesInsidePipe

extends Modelica.Thermal.HeatTransfer.Components.BodyRadiation(

Gr=F*A*e);

parameter Modelica.SIunits.Length r1 "Radius of thermal

shield";

parameter Modelica.SIunits.Length r2 "Radius of inner pipe";

parameter Modelica.SIunits.Length s

"Distance between centers of TS and the inner pipe";

parameter Modelica.SIunits.Length L "Pipe length";

parameter Real e "Emissivity of emitting pipe material";

parameter Integer Nmli = 10 "Layers of MLI around inner pipe";

final parameter Modelica.SIunits.Area A =

r1*2*Modelica.Constants.pi*L;

final parameter Real MLI=1/(2*(Nmli+1));

final parameter Real R = r1/r2;

final parameter Real F1 = 1-1/(2*Modelica.Constants.pi)*

(Modelica.Constants.pi -atan((1+s/r1)/(1-s/r1)*tan(

Modelica.Constants.pi)));

final parameter Real F = F1*MLI;

end RadiationPipesInsidePipe;

EndBox

101

Chapter 8. Appendices

model EndBox

replaceable package Medium=

VaporCycle.Media.Naturals.HydrogenMbwr;

parameter Modelica.SIunits.MassFlowRate m_flow = 0.3

"Mass flow rate in the system";

Modelon.ThermoFluid.Interfaces.VolumePort

TSreturn(redeclare package Medium = Medium)

annotation (Placement(transformation(extent=

{{-110 ,48},{-90,68}})));

Modelon.ThermoFluid.Interfaces.VolumePort

VLPline(redeclare package Medium = Medium)

annotation (Placement(transformation(extent=

{{-110 ,10},{-90,30}})));

Modelon.ThermoFluid.Interfaces.FlowPort

HeSupply(redeclare package Medium =

Medium)

annotation (Placement(transformation(extent=

{{-110,-30},{-90,-10}})));

Modelon.ThermoFluid.Interfaces.FlowPort

TSsupply(redeclare package Medium =

Medium)

annotation (Placement(transformation(extent=

{{-110,-70},{-90,-50}})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

FrictionHSTransient1(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

QuadraticOperatingPointLoss ,

mflow_start=m_flow - 0.01)

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-44,-24})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

FrictionHSTransient2(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

QuadraticOperatingPointLoss ,

mflow_start=m_flow - 0.02)

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-44,24})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss FrictionTS1(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

102

8.2 Appendix II - Dymola Components, Modelica Code

QuadraticOperatingPointLoss ,

mflow_start=m_flow)

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={40,-40})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss FrictionTS2(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

QuadraticOperatingPointLoss ,

mflow_start=m_flow)

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={40,-4})));

Modelon.ThermoFluid.Valves.ValveCompressible ValveTS(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

positiveFlow=true ,

Av=0.1,

redeclare model FlowCharacteristic =

Modelon.ThermoFluid.Valves.Characteristics.Quadratic(

minimumOpening=0.01),

flowCoeff=Modelon.ThermoFluid.Choices.CvTypes.Kv ,

Kv=66,

x(fixed=false , start=0.46),

xs(fixed=false , start=0.46),

mflow_start=m_flow ,

p(start=150000 , fixed=false))

annotation (Placement(transformation(

extent={{-10,10},{10,-10}},

rotation=90,

origin={40,32})));

Modelica.Blocks.Sources.RealExpression realExpression(y=1.0)

annotation (

Placement(transformation(

extent={{10,-10},{-10,10}},

rotation=0,

origin={82,32})));

Modelon.ThermoFluid.Valves.ValveCompressible ValveHSTransient(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

positiveFlow=true ,

redeclare model FlowCharacteristic =

Modelon.ThermoFluid.Valves.Characteristics.Quadratic ,

flowCoeff=Modelon.ThermoFluid.Choices.CvTypes.Kv ,

Kv=66,

x(fixed=false , start=0.46),

xs(fixed=false , start=0.46),

p(start=150000 , fixed=false),

103

Chapter 8. Appendices

mflow_start=m_flow - 0.01)

annotation (

Placement(transformation(

extent={{-10,10},{10,-10}},

rotation=90,

origin={-44,0})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

FrictionHSHeater1(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

QuadraticOperatingPointLoss ,

mflow_start=0.01)

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={8,-24})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

FrictionHSHeater2(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

QuadraticOperatingPointLoss ,

mflow_start=0.01)

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={8,24})));

Modelon.ThermoFluid.Valves.ValveCompressible ValveHSHeater(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

positiveFlow=true ,

Av=0.1,

redeclare model FlowCharacteristic =

Modelon.ThermoFluid.Valves.Characteristics.Quadratic ,

flowCoeff=Modelon.ThermoFluid.Choices.CvTypes.Kv ,

Kv=66,

x(fixed=false , start=0.46),

xs(fixed=false , start=0.46),

p(start=150000 , fixed=false),

mflow_start=0.01) annotation (

Placement(transformation(

extent={{-10,10},{10,-10}},

rotation=90,

origin={8,0})));

Split split(

redeclare package Medium = Medium ,

redeclare model FrictionB =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

LinearOperatingPointLoss ,

104

8.2 Appendix II - Dymola Components, Modelica Code

redeclare model FrictionC =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

LinearOperatingPointLoss)

annotation (Placement(transformation(extent=

{{-54,-64},{-34,-84}})));

Modelon.ThermoFluid.SplitsAndJoins.Join

join(

redeclare package Medium = Medium ,

T_start(displayUnit="K"))

annotation (Placement(transformation(extent=

{{-54,58},{-34,38}})));

Modelon.ThermoFluid.FlowModifiers.SetFlowRate

setFlowRate(redeclare package

Medium = Medium ,

flowDefinition=Modelon.ThermoFluid.Choices.FlowDefinition.

m_flow ,m_flow=0.29)

annotation (Placement(transformation(extent=

{{-10,-10},{10,10}},

rotation=90,

origin={-44,-48})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

FrictionHSTransient3(

redeclare package Medium = Medium ,

T_start(displayUnit="K") = 300,

mflow_start=m_flow ,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

LinearOperatingPointLoss

(dp0(displayUnit="Pa"), m_flow0=m_flow))

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={-74,34})));

equation

connect(TSsupply , FrictionTS1.portA) annotation (Line(

points={{-100,-60},{40,-60},{40,-50}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(ValveTS.opening , realExpression.y)

annotation (Line(

points={{49,32},{71,32}},

color={0,0,127},

smooth=Smooth.None));

connect(ValveTS.portB , TSreturn) annotation (Line(

points={{40,42},{40,58},{-100,58}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(ValveTS.portA , FrictionTS2.portB)

annotation (Line(

points={{40,22},{40,6}},

color={255,128,0},

105

Chapter 8. Appendices

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(FrictionTS1.portB , FrictionTS2.portA)

annotation (Line(

points={{40,-30},{40,-14}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(FrictionHSTransient1.portB , ValveHSTransient.portA)

annotation (

Line(

points={{-44,-14},{-44,-10}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(FrictionHSTransient2.portA , ValveHSTransient.portB)

annotation (

Line(

points={{-44,14},{-44,10}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(FrictionHSHeater1.portB , ValveHSHeater.portA)

annotation (Line(

points={{8,-14},{8,-10}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(ValveHSHeater.portB , FrictionHSHeater2.portA)

annotation (Line(

points={{8,10},{8,14}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(ValveHSTransient.opening , realExpression.y)

annotation (Line(

points={{-35,-4.44089e -016},{-6,-4.44089e -016},

{-6,70},{58,70},{58,32},{71,

32}},

color={0,0,127},

smooth=Smooth.None));

connect(FrictionHSTransient2.portB , join.portB)

annotation (Line(

points={{-44,34},{-44,38}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(join.portA , FrictionHSHeater2.portB)

annotation (Line(

points={{-34,48},{8,48},{8,34}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(split.portA , HeSupply) annotation (Line(

106

8.2 Appendix II - Dymola Components, Modelica Code

points={{-54,-74},{-74,-74},{-74,-20},{-100,-20}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(ValveHSHeater.opening , realExpression.y)

annotation (Line(

points={{17,-4.44089e -016},{28,-4.44089e -016},

{28,14},{58,14},{58,32},{71,

32}},

color={0,0,127},

smooth=Smooth.None));

connect(join.portC , FrictionHSTransient3.portB)

annotation (Line(

points={{-54,48},{-74,48},{-74,44}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(FrictionHSTransient3.portA , VLPline)

annotation (Line(

points={{-74,24},{-74,20},{-100,20}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(split.portC , setFlowRate.portA)

annotation (Line(

points={{-44,-64},{-44,-58}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(setFlowRate.portB , FrictionHSTransient1.portA)

annotation (Line(

points={{-44,-38},{-44,-34}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(split.portB , FrictionHSHeater1.portA)

annotation (Line(

points={{-34,-74},{8,-74},{8,-34}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

annotation (Diagram(coordinateSystem(

preserveAspectRatio=false , extent={{-100,

-100},{100 ,100}}), graphics), Icon(graphics={

Rectangle(

extent={{-82,100},{80,-74}},

lineColor={255 ,255 ,255},

fillColor={255 ,255 ,255},

fillPattern=FillPattern.VerticalCylinder),

Text(

extent={{-164,-122},{158,-64}},

textString="%name",

lineColor={0,0,255}),

Polygon(

107

Chapter 8. Appendices

points={{54,76},{54,-66},{174,-36},{174,44},{54,76}},

lineColor={0,0,127},

smooth=Smooth.None ,

fillColor={66 ,132 ,197},

fillPattern=FillPattern.Solid)}));

end EndBox;

SimpleEndBox

model SimpleEndBox

parameter Modelica.SIunits.Length ODHS "He supply diameter";

parameter Modelica.SIunits.Length ODTS "TS diameter";

parameter Modelica.SIunits.Length thkHS "Thickness of HS

wall";

parameter Modelica.SIunits.Length thkTS "Thickness of TS

walls";

parameter Modelica.SIunits.Length L=3 "Lengths of bend

sections";

parameter Modelica.SIunits.Temp_K T_i = 300

"Initial temperature of components";

parameter Real zeta_90bend=0.5 "90 degree bend friction loss

coefficient";

replaceable package Medium =

VaporCycle.Media.Naturals.HydrogenMbwr;

Modelon.ThermoFluid.Interfaces.FlowPort HeSupply(

redeclare package Medium =

Medium)

annotation (Placement(transformation(extent=

{{-110,-52},{-90,-32}})));

Modelon.ThermoFluid.Interfaces.FlowPort VLPline(

redeclare package Medium = Medium)

annotation (Placement(transformation(extent=

{{-110 ,34},{-90,54}})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

frictionLossHS(

redeclare package Medium = Medium ,

positiveFlow=true ,

T_start=T_i ,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

VariableZeta (

zeta=zeta_90bend*L/ODHS ,

A=Modelica.Constants.pi*ODHS ^2/4))

annotation (Placement(transformation(

extent={{-10,-11},{10,11}},

rotation=90,

origin={-33,-12})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

frictionLossVLP(redeclare

108

8.2 Appendix II - Dymola Components, Modelica Code

package Medium = Medium ,

positiveFlow=true ,

T_start=T_i ,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

VariableZeta (

zeta=zeta_90bend*L/ODHS ,

A=Modelica.Constants.pi*ODHS ^2/4)) annotation(

Placement(transformation(

extent={{-10,-11},{10,11}},

rotation=90,

origin={-33,20})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

frictionLossTS1(redeclare

package Medium = Medium ,

positiveFlow=true ,

T_start=T_i ,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

VariableZeta (

zeta=zeta_90bend*L/ODTS ,

A=Modelica.Constants.pi*ODTS ^2/4)) annotation(

Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={32,-18})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss

frictionLossTS2(redeclare

package Medium = Medium ,

positiveFlow=true ,

T_start=T_i ,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

VariableZeta (

zeta=zeta_90bend*L/ODTS ,

A=Modelica.Constants.pi*ODTS ^2/4)) annotation(

Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={32,28})));

Modelon.ThermoFluid.Interfaces.FlowPort TSsupply(

redeclare package Medium =

Medium)

annotation (Placement(transformation(extent=

{{-110,-98},{-90,-78}})));

Modelon.ThermoFluid.Interfaces.FlowPort TSreturn(

redeclare package Medium =

Medium)

annotation (Placement(transformation(extent=

{{-110 ,80},{-90,100}})));

equation

109

Chapter 8. Appendices

connect(HeSupply , frictionLossHS.portA)

annotation (Line(

points={{-100,-42},{-33,-42},{-33,-22}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(TSsupply , frictionLossTS1.portA)

annotation (Line(

points={{-100,-88},{32,-88},{32,-28}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(frictionLossTS1.portB , frictionLossTS2.portA)

annotation (Line(

points={{32,-8},{32,18}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(frictionLossVLP.portB , VLPline)

annotation (Line(

points={{-33,30},{-32,30},{-32,44},{-100,44}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(frictionLossHS.portB , frictionLossVLP.portA)

annotation (Line(

points={{-33,-2},{-33,10}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(frictionLossTS2.portB , TSreturn)

annotation (Line(

points={{32,38},{32,90},{-100,90}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

annotation (Diagram(coordinateSystem(preserveAspectRatio=false ,

extent={{-100,

-100},{100 ,100}}), graphics), Icon(coordinateSystem(

preserveAspectRatio=false , extent=

{{-100,-100},{100 ,100}}),graphics={Text(

extent={{-90,-58},{102,-124}},

lineColor={0,0,127},

lineThickness=0.5 ,

fillColor={0,0,0},

fillPattern=FillPattern.Solid ,

textString="%name"),

Rectangle(

extent={{-86,100},{76,-74}},

lineColor={255 ,255 ,255},

fillColor={255 ,255 ,255},

fillPattern=FillPattern.VerticalCylinder),

Polygon(

points={{50,76},{50,-66},{170,-36},{170,44},{50,76}},

110

8.2 Appendix II - Dymola Components, Modelica Code

lineColor={0,0,127},

smooth=Smooth.None ,

fillColor={66 ,132 ,197},

fillPattern=FillPattern.Solid)}));

end SimpleEndBox;

Cryoplant

model Cryoplant

replaceable package

Medium=VaporCycle.Media.Naturals.HydrogenMbwr;

parameter Modelica.SIunits.Temp_K T_inHS = 5.2

"Inflow temperature";

parameter Modelica.SIunits.Temp_K T_inTS = 40

"Inflow temperature";

parameter Modelica.SIunits.MassFlowRate m_flow_He = 0.0993

"Mass flow rate for cold helium circuit";

parameter Modelica.SIunits.MassFlowRate m_flow_TS = 0.0775

"Mass flow rate for thermal shield circuit";

parameter Modelica.SIunits.Pressure P_outVLP = 27e2

"Outflow pressure";

parameter Modelica.SIunits.Pressure P_outTS = 19e5

"Outflow pressure";

Modelon.ThermoFluid.Sources.PressureBoundary OutflowVLP(

T(displayUnit="K") = 100,

redeclare package Medium = Medium ,

N=1,

p=P_outVLP) annotation (Placement(transformation(extent=

{{0,10},{20,30}})));

Modelon.ThermoFluid.Sources.PressureBoundary OutflowTS(

N=1,

T(displayUnit="K") = 100,

redeclare package Medium = Medium ,

p=P_outTS) annotation (Placement(transformation(extent=

{{0,50},{20,70}})));

Modelon.ThermoFluid.Sources.MassFlowBoundary MassFlowHeCircuit(

m_flow=m_flow_He ,

T(displayUnit="K") = T_inHS ,

redeclare package Medium = Medium ,

flowDefinition=

Modelon.ThermoFluid.Choices.FlowDefinition.m_flow)

annotation (Placement(transformation(extent=

{{0,-30},{20,-10}})));

Modelon.ThermoFluid.Sources.MassFlowBoundary

MassFlowTScircuit(m_flow=m_flow_TS , T(

displayUnit="K") = T_inTS ,

redeclare package Medium = Medium ,

flowDefinition=

Modelon.ThermoFluid.Choices.FlowDefinition.m_flow)

annotation (Placement(transformation(extent=

111

Chapter 8. Appendices

{{0,-70},{20,-50}})));

Modelon.ThermoFluid.Interfaces.FlowPort

PortInTSR(redeclare package Medium = Medium

annotation (Placement(

transformation(extent={{90,50},{110,70}}),

iconTransformation(extent={{92,70},

{112,90}})));

Modelon.ThermoFluid.Interfaces.FlowPort PortInVLP(

redeclare package Medium =

Medium) annotation (Placement(

transformation(extent={{90,10},{110,30}}),

iconTransformation(extent={{92,16},

{112,36}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutHS(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{90,-30},{110,-10}}),

iconTransformation(extent={{92,-34},

{112,-14}})));

Modelon.ThermoFluid.Interfaces.VolumePort PortOutTSS(

redeclare package Medium

= Medium) annotation (Placement(

transformation(extent={{90,-70},{110,-50}}),

iconTransformation(extent={{92,-92},

{112,-72}})));

equation

connect(OutflowTS.fluidPort[1], PortInTSR) annotation (Line(

points={{19,60},{100,60}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(OutflowVLP.fluidPort[1], PortInVLP) annotation (Line(

points={{19,20},{100,20}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(MassFlowHeCircuit.fluidPort , PortOutHS) annotation

(Line(

points={{19,-20},{100,-20}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(MassFlowTScircuit.fluidPort , PortOutTSS) annotation

(Line(

points={{19,-60},{100,-60}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

annotation (Diagram(coordinateSystem(preserveAspectRatio=false ,

extent={{-100,-100},{100 ,100}}), graphics),

Icon(coordinateSystem(

preserveAspectRatio=false , extent=

{{-100,-100},{100 ,100}}),

graphics={

112

8.2 Appendix II - Dymola Components, Modelica Code

Ellipse(

extent={{-100,-56},{100,-98}},

lineColor={0,0,0},

fillPattern=FillPattern.VerticalCylinder ,

fillColor={215 ,215 ,215}),

Rectangle(

extent={{-100,44},{100,-76}},

lineColor={0,0,0},

fillPattern=FillPattern.VerticalCylinder ,

fillColor={215 ,215 ,215}),

Ellipse(

extent={{-100,84},{100,8}},

lineColor={0,0,0},

fillColor={255 ,255 ,255},

fillPattern=FillPattern.Solid),

Ellipse(

extent={{-60,68},{58,-44}},

lineColor={0,0,0},

fillPattern=FillPattern.Sphere ,

fillColor={215 ,215 ,215}),

Ellipse(

extent={{8,22},{-10,4}},

lineColor={156,0,0},

fillColor={156,0,0},

fillPattern=FillPattern.Solid ,

visible=internalHeatResistance),

Text(

extent={{-236,-90},{240,-154}},

lineColor={0,0,127},

lineThickness=0.5 ,

fillColor={0,0,0},

fillPattern=FillPattern.Solid ,

textString="%name")}));

end Cryoplant;

Cryomodule

model Cryomodule

replaceable package Medium=

DistributionSystem.Media.Helium_RefProp;

parameter Integer n=2;

parameter Modelica.SIunits.Temp_K T0=300;

parameter Modelica.SIunits.Temp_K T0_TS=300;

parameter Modelica.SIunits.Pressure p_start_inHe=1e5;

parameter Modelica.SIunits.Pressure p_start_outHe=1e5;

parameter Modelica.SIunits.Pressure p_start_inTS=1e5;

parameter Modelica.SIunits.Pressure p_start_outTS=1e5;

parameter Modelica.SIunits.Length L=8 "Length of the

cryomodule";

parameter Modelica.SIunits.Length OD=0.01715

"Diameter of the helium supply pipe";

parameter Real zeta_bend=0.5

113

Chapter 8. Appendices

"Friction loss coefficient for the pipe bends in the module";

parameter Modelica.SIunits.Length D_TS = 0.5;

parameter Modelica.SIunits.Length D_tank = 0.3;

parameter Modelica.SIunits.Mass m_Ti = 134;

parameter Modelica.SIunits.Mass m_Nb = 220;

parameter Modelica.SIunits.Mass m_Al = 120;

parameter Modelica.SIunits.Mass m_SS = 46;

parameter Modelica.SIunits.Mass m_SS_TS = 0;

final parameter Real eSS = 0.07;

final parameter Real eTi = 0.19;

final parameter Real eAl = 0.04;

Modelon.ThermoFluid.Interfaces.ApplicationSpecific.

TwoPhaseFlowPort HeInflowPort(redeclare package Medium

=Medium) annotation (Placement(transformation(extent=

{{-110,-30},{-90,-10}}),

iconTransformation(extent={{-106,-30},

{-86,-10}})));

Modelon.ThermoFluid.Interfaces.ApplicationSpecific.

TwoPhaseVolumePort VLPport(redeclare package Medium =

Medium) annotation (Placement(transformation(

extent={{-110,10},{-90,30}}),

iconTransformation(extent={{-106,8},{-86,28}})));

CryomoduleComponents.CMSteelPipingTwoPhase

cMSteelPiping(

thkSS=0.003 ,

m_SS=m_SS ,

T0=T0,

L_CMpipe=L,

D_CMpipe=OD ,

redeclare package Medium = Medium ,

p_start_in=p_start_inHe ,

p_start_out=p_start_outHe ,

n=n)

annotation (Placement(transformation(extent={{-42,-8},

{-22,12}})));

CryomoduleComponents.CMThermalShields cMThermalShields(

thkAl=0.003 ,

m_Al=m_Al ,

T0=T0_TS ,

L_TS=L)

annotation (Placement(transformation(extent={{44,-10},

{64,10}})));

CryomoduleComponents.NiobiumCavity niobiumCavity(

thkNb=0.002 ,

m_Nb=m_Nb ,

T0=T0) annotation (Placement(transformation(extent={{-6,38},

{14,58}})));

CryomoduleComponents.TitaniumTankPipe

titaniumTank(

thkTi=0.003 ,

m_Ti=m_Ti ,

T0=T0,

114

8.2 Appendix II - Dymola Components, Modelica Code

redeclare package Medium = Medium)

annotation (Placement(transformation(extent={{-74,4},

{-54,24}})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss frictionLoss(

redeclare package Medium = Medium ,

positiveFlow=true ,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

VariableZeta

(A=Modelica.Constants.pi*L*OD/n, zeta=zeta_bend*L/n/OD),

T_start(displayUnit="K") = T0_TS)

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={66,-46})));

Modelon.ThermoFluid.FlowResistances.FrictionLoss frictionLoss1(

redeclare package Medium = Medium ,

positiveFlow=true ,

redeclare model Friction =

Modelon.ThermoFluid.FlowResistances.FrictionModels.

VariableZeta

(A=

Modelica.Constants.pi*L*OD/n, zeta=zeta_bend*L/n/OD),

T_start(displayUnit="K") = T0_TS)

annotation (Placement(transformation(

extent={{-10,-10},{10,10}},

rotation=90,

origin={66,42})));

Modelon.ThermoFluid.Interfaces.FlowPort HeInflowPort1(

redeclare package Medium=Medium)

annotation (Placement(transformation(extent={{-110,

-70},{-90,-50}}),

iconTransformation(extent=

{{-106,-68},{-86,-48}})));

Modelon.ThermoFluid.Interfaces.VolumePort VLPport1(

redeclare package Medium =

Medium) annotation (Placement(transformation(

extent={{-110,50},{-90,70}}),

iconTransformation(extent={{-106,46},

{-86,66}})));

Radiation.RadiationPipesInsidePipe radiationPipesInsidePipe(

s=0.15 ,

L=L,

Nmli=1,

e=eAl ,

r1=D_TS/2,

r2=OD/2)

annotation (Placement(transformation(extent={{-6,-8},

{10,8}})));

Radiation.RadiationParallelPipes radiationParallelPipes(

s=0.1,

L=8,

e1=eSS ,

Nmli=1,

115

Chapter 8. Appendices

r1=OD/2,

r2=D_tank/2,

e2=eTi)

annotation (Placement(transformation(extent={{-46,28},

{-30,44}})));

Radiation.RadiationPipesInsidePipe radiationPipesInsidePipe1(

s=0.15 ,

L=L,

Nmli=1,

r1=D_TS/2,

r2=D_tank/2,

e=eTi) annotation (Placement(transformation(extent={{-6,18},

{10,34}})));

CryomoduleComponents.CMSteelPiping TSpiping(

thkSS=0.003 ,

m_SS=m_SS_TS ,

L_CMpipe=L,

redeclare package Medium = Medium ,

D_CMpipe=D_TS ,

T0=T0_TS ,

n=n,

p_start_in=p_start_inTS ,

p_start_out=p_start_outTS)

annotation (Placement(transformation(extent={{66,-8},

{86,12}})));

equation

connect(HeInflowPort1 , frictionLoss.portA) annotation

(Line(points={{-100,-60},{66,-60},{66,-56}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(VLPport1 , frictionLoss1.portB) annotation (Line(

points={{-100,60},{66,60},{66,52}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(titaniumTank.twoPhaseFlowPort , VLPport) annotation

(Line(

points={{-73.4 ,14},{-86,14},{-86,20},{-100,20}},

color={0,190,0},

smooth=Smooth.None));

connect(titaniumTank.twoPhaseFlowPort1 ,

cMSteelPiping.volumePort) annotation (Line(

points={{-54.6 ,14},{-46,14},{-46,4},{-42,4},{-42,3.2}},

color={0,190,0},

smooth=Smooth.None));

connect(cMThermalShields.ThermalShieldPort ,

radiationPipesInsidePipe.port_b)

annotation (Line(

points={{44,0},{10,0}},

color={191,0,0},

smooth=Smooth.None));

connect(radiationPipesInsidePipe.port_a ,

cMSteelPiping.CMFlowPort)

116

8.2 Appendix II - Dymola Components, Modelica Code

annotation (Line(

points={{-6,0},{-16,0},{-16,12},{-32,12},{-32,6.2}},

color={191,0,0},

smooth=Smooth.None));

connect(titaniumTank.TankHeliumPort ,

niobiumCavity.NiobiumCavityPort)

annotation (Line(

points={{-68.8 ,20.4},{-68.8 ,48},{-6,48}},

color={191,0,0},

thickness=0.5,

smooth=Smooth.None));

connect(titaniumTank.TitaniumTankPort ,

radiationParallelPipes.port_a)

annotation (Line(

points={{-64,20.4},{-64,36},{-46,36}},

color={191,0,0},

smooth=Smooth.None));

connect(radiationParallelPipes.port_b ,

cMSteelPiping.CMFlowPort) annotation (

Line(

points={{-30,36},{-22,36},{-22,12},{-32,12},{-32,6.2}},

color={191,0,0},

smooth=Smooth.None));

connect(radiationPipesInsidePipe1.port_b ,

radiationPipesInsidePipe.port_b)

annotation (Line(

points={{10,26},{16,26},{16,0},{10,0}},

color={191,0,0},

smooth=Smooth.None));

connect(radiationPipesInsidePipe1.port_a ,

radiationParallelPipes.port_a)

annotation (Line(

points={{-6,26},{-64,26},{-64,36},{-46,36}},

color={191,0,0},

smooth=Smooth.None));

connect(frictionLoss.portB , TSpiping.flowPort)

annotation (Line(

points={{66,-36},{66,-0.4}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(TSpiping.volumePort , frictionLoss1.portA)

annotation (Line(

points={{66,3.2},{66,32}},

color={255,128,0},

pattern=LinePattern.None ,

smooth=Smooth.None));

connect(TSpiping.CMFlowPort ,

cMThermalShields.ThermalShieldPort)

annotation (Line(

points={{76,6.2},{76,20},{44,20},{44,0}},

color={191,0,0},

smooth=Smooth.None));

connect(HeInflowPort , cMSteelPiping.flowPort)

117

Chapter 8. Appendices

annotation (Line(

points={{-100,-20},{-72,-20},{-72,-0.4},{-42,-0.4}},

color={0,190,0},

smooth=Smooth.None));

annotation (Icon(coordinateSystem(

preserveAspectRatio=false , extent={{

-100,-100},{100 ,100}}),

graphics={

Polygon(

points={{-94,-60},{-74,-40},{106,-40},{86,-60},

{-94,-60}},

lineColor={0,0,255},

fillColor={235 ,235 ,235},

fillPattern=FillPattern.Solid),

Text(

extent={{-116 ,101},{124,46}},

lineColor={255,0,0},

textString="%name"),

Ellipse(

extent={{-42,50},{-80,-48}},

lineColor={0,0,0},

fillPattern=FillPattern.HorizontalCylinder ,

fillColor={215 ,215 ,215}), Rectangle(

extent={{-60,50},{80,-48}},

pattern=LinePattern.None ,

fillColor={215 ,215 ,215},

fillPattern=FillPattern.HorizontalCylinder ,

lineColor={0,0,0}),

Ellipse(

extent={{96,50},{64,-48}},

lineColor={95,95,95},

fillPattern=FillPattern.Solid ,

fillColor={255 ,255 ,255}),

Rectangle(

extent={{-28,4},{16,-12}},

lineColor={165,0,0},

fillPattern=FillPattern.HorizontalCylinder ,

fillColor={168,0,0})}), Diagram(coordinateSystem(

preserveAspectRatio=false ,

extent={{-100,-100},{100 ,100}}), graphics));

end Cryomodule;

TitaniumTankPipe

model TitaniumTankVolume

replaceable package Medium=

DistributionSystem.Media.Helium_RefProp;

parameter Integer n=1;

parameter Modelica.SIunits.Volume V=0.5;

parameter Modelica.SIunits.Length thkTi "Thickness of titanium

tank";

parameter Modelica.SIunits.Mass m_Ti "Titanium mass";

118

8.2 Appendix II - Dymola Components, Modelica Code

parameter Modelica.SIunits.Temp_K T0 "Initial temperature";

parameter Modelica.SIunits.Length D_Ti=0.4 "Tank diameter";

parameter Modelica.SIunits.Length L_Ti=6 "Tank length";

WallComponents.DynamicWallTi dynamicWallTi(

thk=thkTi ,

A=Modelica.Constants.pi*D_Ti*L_Ti ,

m=fill(m_Ti/n, n),

T0=ones(n)*T0 ,

n=1) annotation (Placement(transformation(extent=

{{-10,30},{10,50}})));

Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a

TitaniumTankPort

annotation (Placement(transformation(extent=

{{-10,54},{10,74}}),

iconTransformation(extent={{-10,54},{10,74}})));

Modelon.ThermoFluid.Volumes.TwoPhaseVolume volume(

redeclare package Medium = Medium ,

V=V,

initOpt=Modelon.ThermoFluid.Choices.InitOptions.noInit)

annotation (Placement(transformation(extent=

{{-10,-10},{10,10}})));

Modelon.ThermoFluid.Interfaces.ApplicationSpecific.

TwoPhaseFlowPort

twoPhaseFlowPort(redeclare package Medium = Medium)

annotation (Placement(transformation(extent=

{{-104,-10},{-84,10}}),

iconTransformation(extent={{-104,-10},{-84,10}})));

Modelon.ThermoFluid.Interfaces.ApplicationSpecific.

TwoPhaseFlowPort

twoPhaseFlowPort1(redeclare package Medium = Medium)

annotation (Placement(transformation(extent=

{{84,-10},{104,10}}),

iconTransformation(extent={{84,-10},{104,10}})));

Modelon.ThermoFluid.Interfaces.FlowHeatPort TankHeliumPort

annotation (

Placement(transformation(extent={{-58,54},{-38,74}}),

iconTransformation(extent={{-58,54},{-38,74}})));

equation

connect(twoPhaseFlowPort , volume.portA) annotation (Line(

points={{-94,0},{-10,0}},

color={0,190,0},

smooth=Smooth.None));

connect(volume.portB , twoPhaseFlowPort1) annotation (Line(

points={{10,0},{94,0}},

color={0,190,0},

smooth=Smooth.None));

connect(volume.q , dynamicWallTi.qb[1]) annotation (Line(

points={{0,0},{0,30}},

color={191,0,0},

smooth=Smooth.None));

connect(dynamicWallTi.qa[1], TitaniumTankPort)

annotation (Line(points={{0,50},{0,64}},

color={191,0,0},

smooth=Smooth.None));

119

Chapter 8. Appendices

connect(TankHeliumPort , volume.q) annotation (Line(

points={{-48,64},{-24,64},{-24,14},{0,14},{0,0}},

color={191,0,0},

thickness=0.5,

smooth=Smooth.None));

connect(TankHeliumPort , TankHeliumPort) annotation (Line(

points={{-48,64},{-48,64}},

color={191,0,0},

thickness=0.5,

smooth=Smooth.None));

annotation (Diagram(coordinateSystem(preserveAspectRatio=false ,

extent={{-100,

-100},{100 ,100}}), graphics), Icon(coordinateSystem(

preserveAspectRatio=false , extent=

{{-100,-100},{100 ,100}}),graphics={Rectangle(

extent={{-90,40},{90,-42}},

pattern=LinePattern.None ,

fillColor={215 ,215 ,215},

fillPattern=FillPattern.HorizontalCylinder ,

lineColor={0,0,0}),Text(extent={{90,-50},{-70,-90}},

textString="%name"),

Line(

points={{-48,12},{-48,54}},

color={255,0,0},

thickness=1,

smooth=Smooth.None),

Line(

points={{-46,12},{-46,54},{-46,54},{-46,14},{-46,12},

{-48,12},{-46,12},{-48,54},{-46,36},{-48,58},

{-46,52},{-46,48},{-48,28},{-48,14},{-46,20},

{-48,24},{-48,20},{-46,12},{-48,12}},

color={255,0,0},

thickness=1,

smooth=Smooth.None),

Line(

points={{-48,12},{-46,56},{-48,48},{-46,54}},

color={255,0,0},

thickness=1,

smooth=Smooth.None),

Line(

points={{-46,12},{-48,12}},

color={255,0,0},

thickness=1,

smooth=Smooth.None),

Rectangle(

extent={{-46,12},{-46,54}},

lineColor={255,0,0},

lineThickness=1,

fillPattern=FillPattern.HorizontalCylinder ,

fillColor={215 ,215 ,215}),

Rectangle(

extent={{-52,54},{-44,10}},

lineColor={255,0,0},

lineThickness=1,

120

8.2 Appendix II - Dymola Components, Modelica Code

fillPattern=FillPattern.HorizontalCylinder ,

fillColor={255,0,0})}));

end TitaniumTankVolume;

CMSteelPipingTwoPhase

model CMSteelPipingTwoPhase

replaceable package

Medium=VaporCycle.Media.Naturals.HydrogenMbwr;

parameter Modelica.SIunits.Length thkSS "Thickness of steel

pipe";

parameter Modelica.SIunits.Mass m_SS "Stainless steel mass";

parameter Modelica.SIunits.Temp_K T0 "Initial temperature";

parameter Modelica.SIunits.Length L_CMpipe

"Length of pipes inside cryomodule";

parameter Modelica.SIunits.Length D_CMpipe

"Inner diameter of pipes inside cryomodule";

parameter Integer n=1 "Mass sections";

parameter Modelica.SIunits.Pressure p_start_in=p_start_in;

parameter Modelica.SIunits.Pressure p_start_out=p_start_out;

parameter Real zeta=0.03 "Friction loss coefficient";

parameter Modelica.SIunits.CoefficientOfHeatTransfer

alpha0 = 300;

VaporCycle.Pipes.Pipe distributedPipe(

L=L_CMpipe ,

D=D_CMpipe ,

n=n,

redeclare package Medium = Medium ,

p_start(displayUnit="Pa"),

T_start(displayUnit="K"),

p_in_start=p_start_in ,

p_out_start=p_start_out ,

T_in_start=T0,

T_out_start=T0,

includeStaticHead=true ,

redeclare model Friction =

VaporCycle.Pipes.SubComponents.FlowResistance.

OnePhaseColebrook ,

redeclare model HeatTransfer =

Modelon.ThermoFluid.FlowChannels.HeatTransfer.

DiscretizedHeatTransfer.ConstantCoefficient

(alpha0=alpha0))

annotation (Placement(transformation(extent=

{{-10,-34},{10,-14}})));

WallComponents.DynamicWallSS dynamicWallSS(n=n,

m=fill(m_SS/n,n),

T0=ones(n)*T0 ,

thk=thkSS ,

A=Modelica.Constants.pi*D_CMpipe*L_CMpipe/n,

Q_vb=0,

Q_fs=0,

121

Chapter 8. Appendices

Q_ss=0)

annotation (Placement(transformation(extent=

{{-10,6},{10,26}})));

Modelon.ThermoFluid.Interfaces.ApplicationSpecific.

TwoPhaseFlowPort

flowPort(redeclare package Medium = Medium)

annotation (Placement(

transformation(extent={{-108,-32},{-92,-16}}),

iconTransformation(

extent={{-110,-34},{-90,-14}})));

Modelon.ThermoFluid.Interfaces.ApplicationSpecific.

TwoPhaseVolumePort

volumePort(redeclare package Medium = Medium)

annotation (Placement(

transformation(extent={{-108,2},{-92,18}}),

iconTransformation(extent={{

-110,2},{-90,22}})));

Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a CMFlowPort

annotation (Placement(transformation(extent=

{{-10,32},{10,52}}),

iconTransformation(extent={{-10,32},{10,52}})));

equation

connect(distributedPipe.q , dynamicWallSS.qb) annotation (Line(

points={{0,-19},{0,6}},

color={191,0,0},

thickness=0.5,

smooth=Smooth.None));

connect(dynamicWallSS.qa[1], CMFlowPort) annotation (Line(

points={{0,26},{0,42}},

color={191,0,0},

smooth=Smooth.None));

connect(flowPort , distributedPipe.portA) annotation (Line(

points={{-100,-24},{-10,-24}},

color={0,190,0},

smooth=Smooth.None));

connect(distributedPipe.portB , volumePort) annotation (Line(

points={{10,-24},{32,-24},{32,-2},{-64,-2},{-64,10},

{-100,10}},

color={0,190,0},

smooth=Smooth.None));

annotation (Icon(coordinateSystem(preserveAspectRatio=false ,

extent={{-100,

-100},{100 ,100}}),

graphics={

Rectangle(

extent={{-100,-12},{100,-36}},

lineColor={0,0,0},

fillColor={215 ,215 ,215},

fillPattern=FillPattern.HorizontalCylinder),

Text(extent={{84,-40},{-76,-80}},

textString="%name"),

Rectangle(

extent={{-100,24},{100,0}},

lineColor={0,0,0},

122

8.2 Appendix II - Dymola Components, Modelica Code

fillColor={215 ,215 ,215},

fillPattern=FillPattern.HorizontalCylinder)}),

Diagram(

coordinateSystem(preserveAspectRatio=false ,

extent={{-100,-100},{100 ,100}}),

graphics));

end CMSteelPipingTwoPhase;

CMThermalShields

model CMThermalShields

parameter Modelica.SIunits.Length thkAl "Thickness of aluminum

shield";

parameter Modelica.SIunits.Mass m_Al "Aluminum mass";

parameter Modelica.SIunits.Temp_K T0 "Initial temperature";

parameter Integer nn=1 "Mass sections";

parameter Modelica.SIunits.Length D_TS=0.5 "Thermal shield

diameter";

parameter Modelica.SIunits.Length L_TS=6 "Thermal shield total

length";

WallComponents.DynamicWallAl dynamicWallAl(

n=nn ,

T0=ones(nn)*T0,

thk=thkAl ,

m=fill(m_Al/nn , nn),

A=Modelica.Constants.pi*D_TS*L_TS)

annotation (Placement(transformation(extent=

{{-10,12},{10,32}})));

Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a

ThermalShieldPort

annotation (Placement(transformation(extent=

{{-110,-10},{-90,10}})));

equation

connect(ThermalShieldPort , dynamicWallAl.qb[1])

annotation (Line(

points={{-100,0},{0,0},{0,12}},

color={191,0,0},

smooth=Smooth.None));

annotation (Icon(graphics={

Polygon(

points={{-64,-76},{-64,74},{-4,56},{-4,-92},{-64,-76}},

lineColor={0,0,255},

fillColor={235 ,235 ,235},

fillPattern=FillPattern.Solid),

Polygon(

points={{-36,-74},{-36,76},{24,58},{24,-90},{-36,-74}},

lineColor={0,0,255},

fillColor={235 ,235 ,235},

fillPattern=FillPattern.Solid),

Text(extent={{68,-82},{-92,-122}},

textString="%name")}), Diagram(coordinateSystem(

preserveAspectRatio=

123

Chapter 8. Appendices

false , extent={{-100,-100},{100 ,100}}), graphics));

end CMThermalShields;

NiobiumCavity

model NiobiumCavity

parameter Modelica.SIunits.Length thkNb "Thickness of niobium

cavity";

parameter Modelica.SIunits.Mass m_Nb "Niobium mass";

parameter Modelica.SIunits.Temp_K T0 "Initial temperature";

parameter Integer nn=1 "Mass sections";

parameter Modelica.SIunits.Length D_Nb=0.3 "Cavity diameter";

parameter Modelica.SIunits.Length L_Nb=6 "Cavities ' total

length";

Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a

NiobiumCavityPort

annotation (Placement(transformation(extent=

{{-110,-10},{-90,10}})));

WallComponents.DynamicWallNb dynamicWallNb(

n=nn ,

T0=ones(nn)*T0,

thk=thkNb ,

m=fill(m_Nb/nn , nn),

A=Modelica.Constants.pi*D_Nb*L_Nb)

annotation (Placement(transformation(extent=

{{-10,10},{10,30}})));

equation

connect(NiobiumCavityPort , dynamicWallNb.qb[1]) annotation

(Line(points={{-100,0},{0,0},{0,10}},

color={191,0,0},

smooth=Smooth.None));

annotation (Icon(coordinateSystem(preserveAspectRatio=false ,

extent={{-100,-100},{100 ,100}}), graphics={Bitmap(

extent={{-120,90},{190,-70}},

imageSource="",

fileName="modelica:// DistributionSystem/../../../

DESY_Picture.jpg"),

Text(extent={{78,-46},{-82,-86}},

textString="%name")}), Diagram(coordinateSystem(

preserveAspectRatio=

false , extent={{-100,-100},{100 ,100}}), graphics));

end NiobiumCavity;

124

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS
Date of issue
March 2014
Document Number
ISRN LUTFD2/TFRT--5939--SE

Author(s)

Riccard Andersson
Supervisor
John Weisend, ESS
Rolf Johansson, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsoring organization

Title and subtitle

Cool-down and Warm-up of the Cryogenic Distribution Line at ESS

Abstract

The European Spallation Source, ESS, is a joint collaboration of 17 European countries, where the
world’s most powerful neutron source will be built for future research within a vast variety of fields.
In order to deliver the highly energetic neutrons, protons are accelerated to energies in the GeV range
and then collided with a spallation target. This acceleration process requires superconducting cavities
cooled down to slightly over 2 K, and this cooling is done through the cryogenic system using
helium.

In this project, the cryogenic system at ESS has been modeled in Dymola. Simulations have been
made of the cool-down and warm-up of the superconducting part of the accelerator. This was done in
separate simulations for the cryogenic distribution line and for an individual cryomodule.
Additionally, a model was created for the helium discharge system, in order to size the vent line
leading rapidly expanded helium from the cold masses back to the cryoplant. The mathematical tools
and structure of the modeling are described in a separate chapter.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-124

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Introduction
	The European Spallation Source
	The Cryogenic System at ESS

	Problem Formulation
	Helium Discharge to Relief System
	Cool-down and Warm-up of the Distribution Line
	Cool-down and Warm-up of One Cryomodule
	Model Comparisons

	Methods
	Dymola and Modelica
	Matlab

	Models
	Theory
	Modelica Components
	Specification of Pipes and Components

	Results
	Helium Discharge to Relief System
	Cool-down of the Cryogenic Distribution Line
	Warm-up of the Cryogenic Distribution Line
	Cool-down of One Cryomodule
	Warm-up of One Cryomodule
	Model Comparisons

	Discussion
	Conclusions
	Future Work

	References
	Bibliography
	Appendices
	Appendix I - Dymola Components, Graphical Layer
	Appendix II - Dymola Components, Modelica Code

