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Abstract 
A model implemented in order to describe the electricity demand 

on hourly basis for the Nordic countries. The objective of this 

project is to use the demand data simulated from the model as 

input data in the price forecast model, EMPS model, at Vattenfall. 

The time horizon is 5 years, 6 years including the current year. 

After different models tried out, the final model is described by 

fundamental and autoregressive time variant variables, an ARX 

model. The variable of temperature is described by historical data 

from 46 years which are used to create an idea of the outcome 

variation depending on the weather. Non parametric bootstrap of 

the residuals is used when adding noise to the simulation. The 

ARX parameters was estimated by prediction error method but a 

two-step estimation was also tried, by first estimating the 

fundamental parameters and then model the rest of the demand 

by an AR process. The second method was supposed to increase 

the weight on the fundamental variables. Results of the simulation 

Indicates of a realistic description of the electricity demand which 

is an improvement of the earlier demand input to the EMPS model 

but the difference is not always seen in the outcome of the price 

forecast. The results are discussed in Chapter 5.  
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1. Introduction 

1.1 Background  

This master thesis is a project for Vattenfall AB and the business unit Asset 

optimization Trading, AOT . Vattenfall is one of the biggest energy companies in 

Europe where one of its main tasks is to produce and sell electricity to a profitable 

price.  

In order to maximize the revenue it is important to have a good price prognosis. The 

MA/ seasonal planning department is the department that is in charge of the price 

prognosis of the next five year. The MA/Seasonal planning is using a forecast price 

model, the EMPS model, or EFI as it is called internal in Vattenfall. The EMPS model is 

taking into consideration input parameters as such consumption, transmission 

capacity water values (which are computed in the system), fuel prices, etc.  

1.1.1 EMPS model 

The main purpose of the EMPS model is to forecast the spot price in deregulated 

markets. The price is evaluated by considering estimation of the water values and the 

input data provided by the user.  

The EMPS model of Vattenfall, called EFI, is a forecast of the next five years, six 

including the current year, electricity price with a weekly resolution.  

The EMPS model has two steps in its procedure. The first part, called the strategy 

part, develops the water values. In the second part the system uses the water values 

and the input data from the user to simulate the output. The output consists of water 

values for water power stations, prognosis to the Nordic system price, the price 

areas, the power production and reservoir development.  

EMPS is a model created to optimize and simulate the hydropower system. It 

takes the transmissions between different regional reservoirs and between 

bigger areas into consideration.  The system uses the flexibility in the 

hydropower system to stabilize future uncertain inflows which are less steerable 

or non-steerable. The hydropower is optimized in relation to regional 

hydrological inflows, thermal generation and power demand. 

The steering of the hydropower is done by computing water values for each 

region. A high water value indicates a lower water level/volume in the reservoir. 

The water value is computed by a stochastic dynamic programming where also 

the interaction between the areas are included. Optimal operational decisions are 

evaluated for each time step for thermal and hydro production. This is done by 

considering the water value of the aggregated regional subsystems. In each 

subsystem a more detailed plan of the distribution of the production is done 

according to the number of plants and reservoirs.  
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In the EFI model, the price is simulated with 46 different weather scenarios, 
actual historical weather years. The scenarios are used in blocks of five years to 
include an actual historical 5 years weather change.  

The existing EMPS model simulates the 46 simulations 5 times per week which 
will expand to 168 times per week if the model will be transformed to an hourly 
based model. An update of the EFI model with 84 times 46 simulations per week 
is done but not jet implemented due to non-updated input data.  

 

1.1.2 What is the need of a demand forecast on an hourly basis?  

Over the years the renewable energy sources wind and solar power have rapidly 

increased. The sources are obviously only producing when there is wind or sun 

which is why these renewable sources cannot be a base energy source, a source 

to rely on. When wind or solar power or both are producing a lot of energy they 

also increase the supply on the market. The supply and demand curves of the 

electricity market will meet at a lower electricity price. If the wind and solar 

power would produce a constant amount of electricity during specified periods 

the electricity spot price would not be hard to forecast. This is where the time 

resolution becomes a problem for the model. The wind and solar power are only 

producing when there is wind or solar which is sometimes hard to forecast and 

can change quickly during a day. This results raises the volatility in the electricity 

price during the day. Because the price forecast is set on a weekly basis the daily 

high and low peak prices will not be caught in the model. The information that is 

lost makes the model output lose its momentum.  

In order to catch the momentum during the day and improve the resolution of the 

output data, the input data must contain information on the same time scale basis 

as the output data that is on an hourly basis. One of the input data to the model is 

the electricity demand forecast for the next 5 years. The demand data is today on 

a monthly basis which is added together to annual data, the price model is then 

distributing the demand data over the year on an two hourly basis. The system 

has a daily, weekly and yearly profile of the consumption which is used when 

distributing the monthly consumption data. 

1.1.3 Background of the electricity demand 

Parts of the electricity consumption are static processes in form of the 

consumption of the households and the consumption of lighting. This part is 

relatively easy to model since it is not affected by unexpected events. The 

households consumption of  electric heating during the winter is closely related 

to the temperature. When the temperature is very low then the electric heating 

stagnates, meaning it does not increase more. Electricity consumption versus 

temperature is deferring depending on if you are in southern, middle or in 

northern Europe. The difference is due to the use of air condition in southern and 

middle Europe. As the air condition uses as much electricity as the electric 
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heating the electricity consumption is higher in southern and middle Europe than 

in northern Europe. In the north the temperature related electricity consumption 

could be omitted during summer. 

Another part of the electricity consumption is the electricity consumed by the 

industry. The industry looks very stable on a daily basis but looking at a long run 

perspective the industry production varies with the economic cycle. If the 

economic situation is falling the situation in the country will worsen and some 

industries will have difficulties to survive, these might therefore decrease the 

production and in worst case shut down their industry. This part is hard to model 

since it needs to be observed from many perspectives and deeper investigation is 

needed to detect the industries that will disappear. Because of this it was decided 

to use the already existing demand forecast on a monthly basis where 

investigation and previous knowledge is creating the forecast.  

The model should partly be based on analyses of these factors and analyses of 

other possible contributing factors.  

1.1.3.1 Previous models used within electricity demand 

The electricity demand, is a quite well investigated area where most of the 

models have a time horizon of either intraday, one week, one year or long term as 

10 years ahead. Speaking of general modeling of electricity demand, the 

traditional techniques of  forecasting are regression, multiple regression, 

exponential smoothing and iterative least squares techniques (Singh, Ibraheem, 

Khatoon, & Muazzam, 2013). The range of models are varying between manual 

methods that has been tested operationally and formal mathematical approaches. 

(BOFELLI & MURRAY, 2001) 

The most popular model is the multiple regression model which is describing the 

demand by a number of factors that are affecting the electricity demand in 

different ways (Singh, Ibraheem, Khatoon, & Muazzam, 2013). The interest of 

load forecasts is typically aimed to the hourly quantity of the total system load. 

(Alfares & Nazeeruddin, 2002) 

The development of the traditional methods has modified the previous 

techniques by keep track of the environmental changes and update the 

parameters during the forecast along with the changes. The most popular model 

among the modified technique is the stochastic time series methods. The time 

series models are looking for internal structures such as seasonal trends and 

autocorrelation.  

All models tried out are more or less imprecise and uncertain due to the fact that 

there are unknown or totally random variables. Instead of using hard computing, 

trying to find the exact solution, soft computing solution has over the last few 

decades been used. The soft computing is using the environment of 

approximation rather than being exact. (Singh, Ibraheem, Khatoon, & Muazzam, 

2013) 
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Looking at the chronological order, the ARMAX model is found straight after the 

stochastic time series.  As many of the popular models are best suited to short 

term load forecasting this model has also been tried out on long term where the 

result was compared with regression methods. (Alfares & Nazeeruddin, 2002) 

Another technique that has been used within the electricity demand model is the 

dynamic factor model which can be modified in several ways. (Mestekemper, 

2011) It is briefly explained as reducing the dimension of the original set of data 

which gives e.g. better parameter estimation. The method is mostly used when 

the time horizon is short. See appendix B for further reading.  

1.2 Purpose  

The main purpose of the model is to describe the electricity consumption during 

the days depending on what weekday it is, if it is a public holiday or an expected 

vacation day. The model should also be able to observe how the electricity 

consumption is varying depending on the temperature input. The model should 

also be able to change the pattern while the input data is being updated and 

explain future year’s consumption.  

The idea of the project is to improve the model of the consumption data used for 

the EMPS model with an hourly resolution by systemizing it and increasing the 

quality and reliability of the model, compared to today’s monthly consumption 

data. The outcome of the project is an implemented model where the output is 

forecasted hourly consumption for the next five years. The main focus in the 

model is to create a normal consumption year and then use the monthly 

forecasted consumption, from the consumption model that is used for the EMPS 

model today, to profile the future years. The model should be implemented and 

calibrated for each of the Nordic countries separately.  

The path of the project includes investigations of different models and to find a 

suitable definition of the demand. Different variables were tested to conclude 

what is affecting the electricity consumption. The analysis of the observed 

consumption is investigated mostly by time series analysis and several time 

series models have been investigated for a possible fit. Static models have also 

been tried and by then combinations of stochastic processes based on regression 

models was also included.  

In order to handle the noise added to the model I used block bootstrap and tried 

different ways to identify the periods of the more significant noise.  

The simulation was tested out by different methods, e.g. prediction with different 

time horizons. The final method was to use prediction with one time step as time 

horizon and then add noise. This was executed for each time point and continued 

until the timeline of the simulation was outlined. 
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1.3 Limitations 

Included in the specification when I started the project was to be able to see the 

trends in the price if the electricity consumption was distributed differently 

during the day. The goal was to see the change in price if the consumers was 

affected by the information available in order to consume the electricity when the 

price was lower during the night. 

 There is no trend seen when looking at historical data which means that the data 

has to be created by modification of the real data. A possible way of create this 

data is to investigate the behavior within peoples habits and what would be a 

possible future scenario of the consumption. This investigation would need a lot 

of information analyzed and this was too time consuming.  

Another aspect of the project that had to be removed from the scope was to 

modify the economic growth of the year more precisely. The idea was to identify 

the industrial consumption since the factories is the group which is most affected 

of an economic national change. If the economic growth goes down a lot of 

factories has to decrease their production and worst of all shut down. And the 

other way around if the economic situation will improve. In order to identify the 

industrial consumption in the northern countries a lot of data had to be found to 

identify the factories. The simplified solution was to modify all the consumption 

which still gives a better way to describe the consumption than the outcome data 

used before.  

1.4 Result 

The main result of this master thesis shows that the model developed captures 

the annually, weekly and daily trends. It also follows the changes in the 

temperature very good. With the noise added and with 46 weather scenarios as 

temperature input data the 95% confidence interval gives has a relatively good 

spread. The validation of the spread is done by calculating the amount of 

observed demand hours which is outside the confidence interval which is slightly 

above 5%. 5% would be approved as it might be in the quantiles of the 95% 

confidence interval.  

Another objective was to use the demand model to simulate input data to the 

EMPS model. The result showed that the more specific hourly model improved 

the variation from day to night during the summer period. There is hardly any 

significant changes in the spring period, some days have more variations from 

day to night others are the same as with the old demand data.   

1.5 Outline 

This thesis is structured into 6 sections. It starts with an introduction about the 

EMPS model and why this project was set up. Section 2 is handling the theory 

needed to know to understand the modeling part and some of the result section. 

The theory can be read with varied carefulness depending on the mathematical 

background. This section is mostly describing and defining methods used within 
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time series analysis but also describes bootstrap which is used when simulating 

the model. The modeling part, section 4, is guiding the reader through the way 

taken to arrive to the ARX model which was chosen. Section 4 is also showing the 

method used for simulating the model. The modeling section is followed by the 

results which is mostly analyzing the result of the demand model. The section 

concludes with result from the EMPS model, if the change from demand on 

annually basis to hourly basis had an impact on the price and how the noise 

added to the demand data was seen in the price. The last section is discussing the 

results and also give some tips of future work.   
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2. Theory 
This part contains the theory behind the tools that has been used to conclude the 

best model solution. The final model is structured by a time series model with 

deterministic input variables that are effecting the electricity consumption in a 

one way relation. Meaning e.g. the electricity demand would change if the 

temperature changed but the temperature would not be effected if the electricity 

consumption changed.  

2.1 Time series analysis 

A time series {          } is a realization of a stochastic process 
{          }.  
 
DEFINITION 1 Stochastic process 

The process {          } is a family of random variables { ( )} where t 
belongs to an index set.  
 
Time series analysis are statistical methods, e.g. time series models, that are often 
used to model physical events as stochastic processes.  
The stochastic process has two arguments{ (   )    },  (   ) is a random 
variable for a fixed t and   is the sample space on the set of all possible time 
series,  , that can be generated by the process. 
 
The stochastic process described must have an ordered sequence of 
observations. The ordered sequence of observations is the order through time at 
equally spaced time intervals. (Madsen, Time Series Analysis, 2008) 
 

The model used can be seen as tools often used when it is hard to describe all 

patterns by deterministic variables or there are no fundamental parameters at 

hand. The time series models finds the underlying forces by observing the 

correlation between previous and current data points. The linear time series 

models are constructed by either autoregressive parameters or a moving average 

parameters, or a combination of these two. The autoregressive parameters is 

looking after a lagged correlation between the current data point and previous 

data points. The moving average is looking after the correlation in the residuals 

that is deviating from a mean of all data points.  

Two linear processes that are the base for time series models are the Moving 

average process, MA process and the autoregressive process, AR process which 

are defined as follow 

DEFINITION 2 The MA(q) process 

The process {  } given by 

                           (2.1) 



14 

 

Where {  } is white noise, is called a Moving Average process of order q. In short it 

is denoted an MA(q) process.  

 DEFINITION 3 The AR(p) process 

The process {  } given by 

                          (2.2) 

Where {  } is uncorrelated white noise, is called an autoregressive process of 

order p (or an AR(p) process). 

(Madsen, Time Series Analysis, 2008) 

2.1.2 Time series models  

In the following part, the theory of the models I tested will be described shortly 

just to be sure that reader understand section 3, the modeling part.  

2.1.2.3 ARMA  

Auto regressive moving average process has the following equation 

DEFINITION 4 The ARMA(p,q) process 

The process {  } given by 

                                        (2.3) 

 

Where {  } is white noise is called an ARMA(p,q) process.  

2.1.2.2 SARMA 

SARMA, Seasonal Autoregressive moving average process, removes the seasonal 

pattern from the data sequence before fitting the data to the ARMA model. 

DEFINITION 5 Multiplicative (   )  (   )  Seasonal model 

The process {  } is said to follow a multiplicative (   )  (   )  seasonal model if  

   ( ) (  )  
     ( ) ( 

 )    (2.4) 

Where {  } is white noise   and   are polynomials of order   and  , respectively, 

and   and   are polynomials of order   and  , which have all roots inside the 

unit circle.  

The method of seasonal adjustment is used to capture the underlying trend 
which becomes more distinct when removing the seasonal trend. Long term 
forecasting is less suitable for seasonal models as they are adapt for non-
stationary data which is hard to forecast in long term. More reading will follow in 
section 3.1.1. 
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2.1.2.1 SARIMA  

The SARIMA, seasonal autoregressive integrated moving average process 

differentiates the data by both considering the seasonal periodic pattern of order 

D and differentiating afterwards the data by order d to become stationary. After 

filtering the data by the seasonal differentiation the model structure will be 

easier to identify by ACF and PACF. The equation of SARIMA looks like,  

DEFINITION 6 Multiplicative (     )  (     )  Seasonal model 

The process {  } is said to follow a multiplicative (     )  (     )  seasonal 

model if  

 ( ) (  )    
     ( ) ( 

 )    (2.5) 

Where {  } is white noise   and   are polynomials of order   and  , respectively, 

and   and   are polynomials of order   and  , which have all roots inside the 

unit circle. (Jakobsson) 

This seasonal method is hard to use when the focus of the model should be on the 

seasonal pattern and not only to find the underlying factors. This is the same 

issue as in 2.1.2.2.  

The other problem with SARIMA is that it is integrated one time which means in 

this case that it has been differentiated. The differentiation also makes it difficult 

to go backwards since it is only the difference between the data points that is 

used when the model is done.  

2.1.1 Identification of the model and model order 

The identification of the model is based on the stochastic process found in the 

data. The data modeled is one or more time series. To be able to describe a 

stochastic process with a time series model the process has to be stationary.  

DEFINITION 7 weak stationary 

A process  { ( )} I said to be weakly stationary of order k if all the first k moments 

are invariant to changes in time. A weakly stationary process of order 2 is simply 

called weakly stationary. (Madsen, Time Series Analysis, 2008) 

One of the primary tools for time series analysis is the estimation of the 

correlation.  

2.1.1.1 ACF – autocorrelation function 

DEFINITION 8  Autocovariance function 

The autocovariance function is given by 

   (     )   (     )     [ (  )  (  )]   [( (  )   (  ))( (  )   (  ))] 

And the autocorrelation function is given by 
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   (     )   (     )  
   (     )

√  (  )  
 (  )

  (2.6) 

The time series is from start at least or is integrated to become weak stationary 

before continuing the modeling. If the time series is stationary the 

autocorrelation function will be a function of the time difference          

 ( )  
   ( )

   ( )
 
   ( )

  
    (2.7) 

 

The difference from the earlier equation is that the variance is the same no 

matter of where in the process you are. For example     (     ) =          
  

due to the variance should be equal in all time steps.  

To investigate which model structure that is appropriate to describe the data the 

autocorrelation function, ACF is a good way to start with.  

As defined above the autocorrelation function is a description of the relation 

between the covariance of two data points and the variance of the process. The 

output is the correlation between the data from different time steps in the 

process.  

To identify if the process is a pure AR process, autoregressive process, or a pure 

MA process, moving average process the following theorem will show what to be 

observant of.  

THEOREM 1 Property for AR processes 

For an AR(p) process it holds  

 [   ]̂       (2.8) 

 

     [   ]̂  
 

 
    (2.9) 

k=p+1,p+2,… 

where N is the number of observations in the stationary time series and     is the 

PACF. 

The ACF of the AR process has the characteristics as a damped exponential 

and/or a sine function. 

THEOREM 2 Property for MA processes 

For a MA(q) process it holds  

   [ ( )]̂       (2.10) 
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   [ ( )]̂  
 

 
 [   ( ̂ ( )     ̂ ( ))]  (2.11) 

k=q+1,q+2,… 

where N is the number of observations in the stationary time series and  ( ) is the 

ACF. 

The orders of the pure processes can be observed by looking at the estimated 

variables  ( )̂ (   ) and    ̂  (   ), which should be approximately 

normally distributed. For example the    ̂ is approximately zero after the order p 

since there are no correlation in the current time step and the delays further on.  

If the process is mixed, there are both MA and AR processes within the stochastic 

process, the model order is far more difficult to discover where the trial and error  

method is useful. Different orders are tried out until no significant lags are seen. 

(Madsen, Time Series Analysis, 2008) 

The right model order is found when the parameters of the Sample 

Autocorrelation Function, SACF, no longer are significant except of k=0 which will 

always be 1 since it is the variance divided by itself. SACF is the autocorrelation 

function of one sample. (Madsen, Time Series Analysis, 2008) 

 

Figure 1 The autocorrelation function when there is a correlation between 

current data point and the data point in time point 25. This is a pure AR process 

since it has the form a sine function.   

When analyzing the residuals after a simulation theorem 3 can be used to see if the 

simulation is simulating correct. 

DEFINITION 9 The inverse autocorrelation function 

The inverse autocorrelation function (IACF) for the process, {  }, is found 

as the autocorrelation at lag k is denoted   ( )  



18 

 

THEOREM 3  Inverse Autocorrelation function for AR processes 

For an AR( ) process it holds that 

    ( )          (2.12) 

       ( )         

PROOF Follows from the fact the at the AR(p) process,  ( )     , can be 

written as     ( )   if    is stationary.  

2.1.1.2 Optimization of the number of parameters and model 

order 

The following methods are used in order to validate the model order and also to 

see if the number of parameters is optimized.  

The loss function is using the residual sum of squares, RSS,  and is comparing the 

RSS for different number of parameters in order to see when the number of 

parameters is optimized. The RSS is written as 

   
∑ ( ̂   ̅)

  
   
∑ (    ̅)

  
   

    (2.13) 

     

The RSS gives information of the proportion of the variation explained by the 

model compared to the total explained variation in y. (Madsen, Time Series 

Analysis, 2008) (page 34)  

 

The optimized number of parameters is seen when the model is not being 

improved by additive parameters.  

The loss function is written as 

   (  )  ∑   
  

   (  )    (2.14) 

 

Where the index   is the number of parameters. The loss function seeks its 

minimum for the least number of parameters. The expression holds that when 

the model is extended with one more parameter, from    to     , then 

 (    )   (  ). The gain of including on more parameter will be less as the 

number of parameters increase and the loss function curve will stagnate. 

(Madsen, Time Series Analysis, 2008) 

Another choice when a leak of data points is the issue is Akaike´s information 

criteria, AIC, is an option. The AIC measures the quality of the model and the 

information lost when describing the observed data.  
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         (              )       (2.15) 

 

where    is the number of estimated model parameters. AIC is choosing the 

model order when it is minimized. 

The maximum likelihood is a way of estimating parameters. The estimation of the 

parameters are optimized when the maximum of the probability of the estimated 

parameter values is reached. The formula of maximum likelihood is, 

 ̂         
 

 (   ) 

Where P is the probability function of the parameter   and  ̂ is the parameter 

estimated when the P is maximized. 

Final prediction error is closely related to and has the following equation, 

   ( )    (  ) (
    ⁄

    ⁄
)   (2.16) 

 

Where d is the number of estimated parameters, n is the number of values in the 

input data set and   (  ) is the loss function of the estimated parameters     

For each model order tested an estimation of the FPE will be computed and the 

order which gives the minimum FPE will be chosen.  

The FPE gives an approximation of the prediction error in the future. (Akaike, 

1969) 

 2.2 Regression models 

A classical regression model is describing a static relation between one 

dependent parameter    and one or  more independent parameters 

               The regression model differ from the time series analysis by 

instead of using the time as an index, the variables are known for each time, t, and 

simple calculating one time step at the time. In the time series analysis the 

observations are modeled by the pattern over time and not by each time step. 

The regression model is written as follow 

    (       )        (2.17) 

 

Where  (       ) is a known function with known variables,     at time t but 

with unknown parameters,  . E.g. of the function is the general linear regression 

model  

DEFINITION 10  General linear model 
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The general linear model (GML) is a regression model with the following model 

structure 

     
          (2.18) 

 

Where    (         )
  is a known vector and   (       )

 are the 

unknown parameters.    is a random variable with mean  [  ]    and 

covariance    [       ]   
      

The random variable    is assumed to be independent of    since it is supposed to 

be the part of the observed data that was randomly around zero and impossible 

to model. 

This way of modeling the data observed has advantages when all input variables 

are known and when different scenarios is wanted, scenarios meaning different 

outcome of the same variable e.g. different temperature scenarios. Different 

scenarios can be seen by modifying the input data or try different variables in 

order to see what is affecting the output data. With the aim of finding which 

parameters that optimize the model, hypothetical tests can be done. Briefly 

explained, the hypothetical test is checking the significance of the variable added, 

if it is adding value to the model or if it is only by chance adding value and would 

then be rejected, not included in the model.  

Simulation done by a regression model will always give the same output except 

from the noise added.  

2.3 Combining time series with deterministic modeling  

The time series models are good in describing the data by non-fundamental 

factors and finding the underlying forces. The deterministic model is good when 

the dynamics in the data have to be included and scenarios are wanted. If the 

regression model is not good enough, due to all variables are not known, it is a 

good thing to combine these two ways of describing the observed data. The 

regression model will extend the time series model in terms of input exogenous 

parameters.  

2.3.1 ARX 

ARX, Autoregressive exogenous process, is an autoregressive time series model 

with exogenous input parameters. The known parameters will describe the 

model and a filter created by the correlation between the previous output data 

points will fulfill the model.  

 ( )    ( )        (2.19) 

Which can be expressed as, 
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(                        ) 

Where    is the external variable at time t.   is the backshift operator which is 

going to be defined and explained later. 

2.3.2 ARMAX  

ARMAX, Autoregressive moving average exogenous process, is an extension of an 

ARX where moving average parameters are added.  

 ( )    ( )    ( )     (2.20) 

Which can be expressed as, 

                  

                                    

2.4 Parameter estimation 

There are several ways of estimating the parameters of a model. One way is by 

least squares estimates, LS. The LS estimation is aiming at estimating the 

parameters   ̂ of     such that the  (    ̂) is describing the observations as good 

as possible. The LS method finds the parameters optimized when the residuals 

have the least square, ∑[     (    )]
 .  

DEFINITION 11 LS estimates 

The Least Squares (unweighted) estimates are found from 

 ̂        
 
 (  )  

Where 

 ( )  ∑ ∑[     (    )]
   

  ∑   
 ( 

  )   (2.21) 

 

i.e.  ̂ is the   that minimizes the sum of squared residuals. 

The term unweighted is used if the variance of the residuals is constant. The 

residuals might have a larger variance where correlation might occur, if that is 

the case weighted least squares estimations are made.  

The variance of the parameters is used when calculating the confidence interval 

of the parameters which is an important observation to see if the parameter is 

significant or not.  

   [ ̂]    ̂  [
  

   
 ( )]

  

|
   ̂

   (2.22) 
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Where  ̂   ( ̂) (   )  

(Madsen, Time series Analysis, 2008) 

2.4.1 Prediction error model   

An extension of the LS model is the prediction error model which is a more 

complex model where a minimization of the prediction error is 

implemented. Given a model the parameters   are calculated by 

 ̂         
 
{ ( )  ∑   

  
    

( )}   (2.23) 

where 

  ( )      ̂     ( )    (2.24) 

The conditioned estimated output is calculated by 

 ̂     ( )   [         ]    (2.25) 

As understood by the name of the method one is estimating the parameters by 

observing when the expected output of the model, with condition on the last 

output in t-1, is as close as possible to the observation. In other words the 

parameters are set when the prediction error one step ahead is in its minimum.  

The problem is how to calculate the  [         ] which is demonstrated below 

for a model with deterministic input, the ARX model.  

To be able to understand the derivation of the conditional mean, knowledge of z-

transformation and the backwards shifting operator is very useful.  

The backward  shifting operator is using the z transform to turn the time series 

difference equation to be convergent.  

DEFINITION 12 The z-transform 

For a sequence {  } the z-transform of {  } is defined as the complex function 

 ({  })   ( )  ∑    
     

        (2.26) 

 

The z-transform is defined for the complex variables z for which the Laurent1 

series converges.  

DEFINITION 13 Backward shifting operator 

The backward shifting operator     is defined as  

                                                           
1
 The series described in the definition.  
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 ({    })  ∑     
   
           ∑     

   
      (   )      ( )      ({  })

 (2.27) 

The advantages with the z-transform and by then the backward shifting operator 

is that convolution in the time domain is equal to multiplication in the z domain. 

It is simpler to work with multiplication than convolution.  

An example of how the backwards shifting operator,  ,  is used, 

         

And if an autoregressive process of order p is described with an backward 

shifting operator it is written 

 ( )  (           
 ) 

Where the polynomial of B indicates the order of the model and the backward 

shift operator is often expressed by the z-transform, 

 ( )   (           
 )   (     

        
  ) ( ) 

 (                 ). 

For a time series model with deterministic input the prediction error would be, 

     ( )     ( )      (2.28) 

The {  } is the deterministic variable. Here   ( ) and   ( ) are rational transfer 

operators where operator is the backward shifting operator. The transfer 

functions    and    is transforming the variables from time domain to z domain.  

For an ARX model the equation would be 

 ( )    ( )         (2.29) 

And the rational transfer function would be 

  ( )    
  ( ) ( )   (2.30) 

  ( )   
  ( )    (2.31) 

The conditional mean,  [         ] for the ARX model following the  formula (24)  

and keeping the rational transfer operators is demonstrated beneath. The goal of 

the derivation is to achieve an expression where the observed    is included and 

from there have an expression of the prediction error. The parameters are 

chosen in order that the minimum of the prediction error is allocated. 

 ̂     ( )    [         ]    ( )     ( )        ( )    

[  ( )   ]      ( )   [  ( )   ]    (2.32) 
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[  ( )      ̂     ( )    
  ( )(     ( )  )] 

 ̂     ( )    ( )   [  ( )   ]  
  ( )(     ( )  )    ( )    

[    
  ( )][     ( )  ] 

    (    
  ( ))    

  ( )  ( )    (2.33)

  

With initial conditions given e.g.  ̂        ,      and      for     it is 

possible to calculate the prediction error.  

The equation for the ARX model is 

 ̂     ( )    (   ( ))   ( ) 
  ( ) ( )     (   ( ))   ( )  

 (2.34) 

(Madsen, Time Series Analysis, 2008) 

With expression (2.34) it is possible to calculate the prediction error, formula 

(2.24). 

It can happen that the PEM model in the software program does not find the right 

minimum when optimizing the parameters. The minimum error is being found by 

the loss function which can have a shape that contains local minimum.  

The software also assumes that the parameter optimization worked well and 

calculates the variance from this assumption.  

In order to check that the right minimum was chosen different initial values can 

be tested and if the same value is set to the optimized parameter when the initial 

values were in different parts of the function it is clear that the global minimum 

was found. (Söderström & Stoica, 1989). 

2.4.1.2 Model validation  

The next step in modeling is to evaluate if the estimated model is describing the 

observation in an adequate way? There are a number of methods available but 

none of  the methods can be used by itself say that if the model is good or bad. 

Several methods have to be used and analyzed to give different aspects of the 

model. In this section some of the methods will be presented. 

2.4.1.2.1 Cross validation 

One of the most common checks of the model is cross validation which is using 

the model on a dataset that was not included when estimating the model. The 

method is used to evaluate the accuracy of the model in practice by comparing 

the output is compared to observed data. (Madsen, Time Series Analysis, 2008) 

2.4.1.2.2 Residual analysis 
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The aim when estimating a model is to describe the observed data so well that 

the remaining residuals will only be white noise.  

By just observing the plot of the residuals, {  }, it will be revealed if there are 

outliers and non-stationary. If the residuals are white noise it will be seen in the 

autocorrelation function, ACF explained earlier in section 2.1.1.1 and the 

output  ( ) 

  ̂( )          (  
 

 
) 

 The output,  ̂ ( ), will be approximately zero except for the   =0 which will be 

 ̂ ( )     (Madsen, Time Series Analysis, 2008) 

2.5 Simulation and prediction 

In this section prediction and simulation is going to be explained and the 

difference between them.  

2.5.1 Prediction  

An important theorem to explain prediction is  

THEOREM 4 

Let Y be a random variable with mean E[Y] then the minimum of  [(   ) ] is 

obtained for a=E[Y]. 

PROOF  

 [(   ) ]   [(   [ ]   [ ]   ) ]

  [(   [ ]) ]  ( [ ]   )    [   [ ]]( [ ]   )

    [ ]  ( [ ]   )     [ ] 

Equal sign in the last step is achieved if  [ ]    and the proof is followed.  

An even more important theorem is the following 

THEOREM 5 Optimal prediction 

   
 
 [   ( ))     ]   [(    ( ))     ] 

Where   ( )   [     ]  

The proof follows the proof of theorem 3. 

This theorem says that the minimum of the expected value of the squared 

prediction error is when the expected value is described by the conditioned 

expected value. By then the prediction is optimized. 
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 The confidence interval is one of the big difference between the simulation and 

prediction. The prediction will be discovered to have a much wider interval 

within a few samples comparing to the simulation. This will be discussed later. 

(Madsen, Time Series Analysis, 2008) 

Depending on the time horizon   the prediction will be more or less accurate. As 

  is increasing the prediction accuracy is deteriorating.  

After each prediction step made, a confidence interval is calculated and a mean of 

the confidence interval is found where the next step in the prediction has it’s 

starting point. This means that for each step in the prediction the confidence 

interval will grow because of more uncertainties in the trend discovered. When 

the confidence interval grows the starting point of the next step in the prediction 

will be more unsecure which affects the whole prediction path of the next step. 

The prediction path is described in the picture.  

 

Figure 2.1 Example of a prediction path. (University of Baltimore) 

2.5.2 Simulation 

The simulation is used to reconstruct scenarios form historical data and to 

estimate the robustness of the algorithm so it can simulate the oscillations that 

are observed. The simulation needs to include the trend and variation that was 

not described by the time variant variables. Time variant parameters are often 

used in order to describe the trend in the latest periods (Brown, Katz, & Murphy, 

1984) 

If the simulation model is a deterministic model, in other words a static model 

where only if the parameters are updated the output will change. Otherwise the 
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simulation will always be the same despite from the noise added. E.g. in the 

simulation of a regression model there will be a white noise or bootstrapped 

noise added.  

If the predictor in equation 2.24 is used the prediction would in 5 year time be a 

linear combination of noise plus the last observed value. 

    (        )     
             

               
                 

              

As seen is the impact of the autoregressive variables expressed by the 

noise. If the noise is bootstrapped there is a risk of a misleading confidence 

interval which would be fine if the noise were normal distributed. If the If a the 

model is simulated the autoregressive variables will be expressed by the last 

simulated outputs. The confidence bounds are measured by simulations of the 

noise. If the noise is simulated enough times, the confidence bounds will give an 

equally good prediction of the coming 5 years as the prediction with normal 

distributed noise. The method of the simulation of this model will be explained 

later in section 3.  

 

2.6 Bootstrap 

There are two kinds of bootstrap, parametric bootstrap and non-parametric 

bootstrap. Parametric bootstrap is when you want to estimate a parameter and 

want to know how accurate the estimation of the parameter is.  

I will only explain the non-parametric bootstrap in this chapter since that is used 

in the model.  

The bootstrap method that is going to be used in the model is also called residual 

resampling. The residual resampling can simply be explained by taking the 

residuals are seen as a set where noise is drawn and added to the simulation 

output of the model. The residual drawn is put back and the set is recovered.  

This method, residual resampling is used when there is uncertainty of the 

distribution fitted for the residuals. The best way of sampling the noise is by 

describe it with the right distribution. It is hard to find a known distribution as 

the data often include outliers or are distributed in another way. The set of 

residuals do often include outliers which make them not a good fit to the normal 

distribution. Instead the student t-distribution would make a better fit where the 

tales are wider due to the outliers. The problem with the t-distribution is when 

the degrees of freedom are low, it can be an issue estimating the variance.  

If the distribution is a bad fit to the residuals it will be misleading and seen in the 

simulation as well but on the other hand if the distribution is well fitted the 

confidence interval will be the most narrow of all the bootstrap methods used. 

What is said is that if the distribution of the noise is a good fit then the parameter 
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estimation is the best way of sampling noise but if it is hard to believe that the 

distribution is a good fit then the resampling residuals method is better and a 

safer method. 

 Instead of drawing the noise from a distribution the noise can be drawn from the 

observed residuals. The residuals are identical independent distributed and 

strong stationary, no matter where in time the variance will always be constant. 

The sampling must be drawn randomly from the set as the noise has to be 

independently and the residuals must be added at random time point in the 

model. The bootstrap is done with replacement as the noise is randomly picked 

and a bigger set is better.  (Carpenter & Bithell, 2000) 

If the variety in the residuals is big it is possible to use the block bootstrap. The 

block bootstrap is dividing the set of residuals into smaller blocks for specific 

periods where n samples are drawn from a block with N numbers of data point. N 

has to be much larger than n.  
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3. Modeling 
With the fundamental theoretical background given in the previous chapter the 

model of this thesis will be explained. The path to the final model includes many 

tests of different models were on some trials and analyzes will be presented in 

this paragraph. The final model is built up to describe the variety during the days 

and the outcome of each hour. The fine resolution made it necessary to use 

deterministic variables but the correlation within the previous periods made it 

also necessary to use time invariant variables. The final model is an 

Autoregressive exogenous model, ARX which been introduced before within 

electricity demand modeling. Similar models have also been used within close 

related environments and where the same dynamic on fine resolution is tried to 

be modeled, e.g. (Mestekemper, 2011) and (Härdle & Trück, 2010). 

3.1 Model structure  

An appropriate model structure for the electricity consumption is a model that 

can describe the several trends that have different periods but also be general 

enough to explain different years depending on the input, in other words it is 

important that the model output is updated along with the update of the input 

data. Finding the right model structure is about finding the right method of 

describing the electricity consumption. The electricity demand could be 

described by fundamental variables or variables as autoregressive processes or 

moving average process or both. 

A trade off was made when considering the final model as a complex academic 

model is not always suitable when it comes to actually using the model within 

operational companies. One of the objective was to implement and test the model 

operational. The ARX model is a suitable model due to its fundamental variables 

which makes its less abstract and more similar to existing models but also 

include the stochastic pattern. 

 In order to find a suitable model several, models were tried out to see the fit and 

to compare the results between. The models tested was first time series models 

which was found in papers where the electric demand was modeled. The issue 

with the stochastic processes of only time variant variables was the future 

description where their capacity, of describing the consumption properly, lasted 

maximum 10 days ahead when the resolution was on hourly basis.  

3.1.1 Seasonal stochastic models 

In the electricity consumption there are several different seasonal patterns which 

can be modeled by seasonal differentiation. The seasonal models is using a 

differentiating technique where the mean is being removed.  

The most common models with seasonal description is SARIMA and SARMA. 

SARMA, Seasonal Autoregressive moving average process, removes the seasonal 

pattern from the data sequence before fitting the data to the ARMA model. 

SARIMA, Seasonal autoregressive integrated moving average model is using the 
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same technique except that it is first differentiating seasonal and then 

differentiating the remaining data again to reach an ARMA process. The 

differentiation is done to achieve a stationary process which is necessary when 

time series analysis is applied. 

It is not preferable to use the SARIMA model when it comes to long time horizon. 
This is because the model is constructed to model time series that are non - 
stationary. Non-stationary time series are often hard to forecast since they are 
not time invariant and can change shape over time. What SARIMA do is removing 
the non-stationarity of the data, modeling the stationary trends and then 
transforming it back to the non-stationary data.  

3.1.2 Stochastic models 

The ARMA model was tested to see if the seasonal pattern could be modeled 

without the seasonal differentiation.  It was found that the best way of describing 

the consumption was by include the deterministic variables especially of the 

temperature which have a strong impact on the electricity consumption. Without 

fundamental variables it is hard to steer the simulation of future years if the 

model cannot find the temperature trend over the year. The ARMA model would 

have been a good estimated model if the time horizon was shorter than 5 years 

for example 10 days.  

The next model that was tested was a linear regression model in order to 

describe the electricity consumption with only deterministic variables.  

3.2 Deterministic model 

The 5 years ahead prediction could become poor if it is only described by non-

fundamental parameters as in a time series model. Due to the long time horizon 

will the trend hard to be predicted. In order to make a prediction it is better to 

use a normal year where the daily momentum is caught and add the specific 

predicted trends which often within this environment is on higher resolution and 

has to be interpolated down to hourly basis before added.  

3.2.1 Deterministic parameters chosen 

In order to find the vital variables to explain the electricity consumption, 

investigation was done for existing regression models of the electricity demand. 

There are some differences when modeling the electricity demand in the Nordic 

countries and the continental countries. Most of the variables fits in the Nordic 

countries when variables as cooling degree days is not significant enough to be 

contributive. The input variables of a regression model should be independent of 

the output variable but the output variable should be dependent of the input 

variables.  

Starting from scratch adding one parameter at the time in order to see if there 

was an improvement of the model or if the parameter was insignificant. To 

ensure that the parameter was stable and significance was checked of the 

confidence interval. If a parameter was unstable it was seen very clear as the 

confidence interval was much larger relatively the parameter value. 
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The temperature  was the first fundamental parameter experimented with. The 

temperature was shifted 1 hour since there is a delay between the changes in the 

temperature and the consumption. Another try out was to create a weight on the 

temperature as the model had a hard time reaching the tops of the consumption 

during winter time, The weight forced the model to stay at a lower temperature 

when the temperature was at the most extreme temperatures. The weight were 

though insignificant and was removed.  

Another parameters were solar intensity which is explained by a cosines function 

where the electricity demand peaks in the beginning of the year and goes down 

beneath zero as the summer has a consumption less than base case. The base 

case is 24 base hours which are the base for every hour and from there the hours 

will be modified due to all the external variables. 

Instead of seasonal differencing dummies for every day and hour was done. Some 

weekdays were highly correlated which made the correlation matrix close to 

singular. The correlation matrix is close to singular when a parameter is a linear 

combination of another parameter. To avoid this the weekdays were merged 

together. Monday and Friday were left for themselves as Monday has less 

consumption than the normal weekday because of the start-up phase after the 

weekend. Tuesday to Thursday were merged together since they are ordinary 

weekdays with not much difference. Friday has a trend of de-escalation before 

the weekend. Saturday and Sunday is merged together where the amount of 

consumed electricity during the weekend is less as ordinary jobs takes time off 

on weekends.  

The hardest fundamental parameter to catch is the vacation. Vacation can be at 

all times during the year. I created a dummy variable for the vacation where the 

vacation parameter was most significant when the vacation was set during 

Christmas and until 6th of January, long weekend during Easter from Thursday to 

Monday. The summer is the hardest time as a lot of people is going away on 

holiday which makes the period more clearly but the vacation is very spread out 

during the summer period. The most significant was found when taking the 

whole month of July and half August. Though this period was clear enough to be 

discovered visually the parameter was not estimated good enough to have a 

significant effect on the simulation.  

The public holiday is its own parameter as it differs from the vacation since 

everyone is free during this day.  

The final regression model was the following, 
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• ∑   
  
    constants that describes the base hour 

•     (    
 

   
), solar intensity, described by a cosine function 

•       , Heating degree days with I hour delay in relation to the demand 

• (        )       (       )  , 24 hours of each weekday group because the daily 

trends differs between the weekday group. 

•       , Vacation period 

•           , Public holiday 

 

The model checking indicated of correlation within the residuals and in some 

specifically time delays. I decided to extend the model by adding stochastic 

autoregressive variables.  

 

3.3 Extended stochastic model with deterministic variables – 

ARMAX and ARX 

After having a model of fundamental parameters mentioned above it is seen in 

the plot of the ACF that there are still correlation between the residuals.  

 

Figure 3.1 The ACF plot of the residuals after the regression model. It has clearly 

correlation left especially at 24th hour.  
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This means that not sufficient trends are caught with the deterministic model and 

since there are correlation between the data points between certain time points 

time variant parameters need to be added.   

The ARMAX model used in (Härdle & Trück, 2010) is a dynamic system extended 

by deterministic variables. The model was tried but when analyzing the output, 

insignificance was found in the MA parameters. At last the ARX model was tested 

and chosen. 

 The addition of the autoregressive parameters to the deterministic model, turns 

the model into an ARX model, autoregressive exogenous model. The lags were 

found at the following hours back from time t,                        .  

             

 

3.4 Model order 

The next step in the modeling was to identify the optimized model order. When 
using the mixed models with both AR variables and MA variables, e.g. SARIMA, 
SARMA, ARMA and ARMAX, I tried out the different orders of combinations and 
compared the Final prediction error, FPE, to find the best combination of orders. 
 
The model order of the AR variables in the ARX model was possible to detect in 
an ACF plot where the lags were clearly seen. The lags were mostly seen in the 
nearby type of hours as the current hour t, meaning either in         or 
              . I started include all lags in the model and by then I 
discovered in the model output which lags that were insignificant and if they 
could be excluded in order to highlight the significant parameters  
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Figure 3.2 The ACF plot of the observations modeled. The model order is hard to 

identify straight away but the correlations are strong every 24th hour. The model 

type is either an AR or an ARMA.  

 

3.5 Procedure of selection of deterministic parameters  

When developing the deterministic part,  the parameters was compared by their 

significance. For example were different delays in the temperature correlation to 

the demand tested, meaning how long time after the temperature has changed 

will it take until the effect is seen in the demand. The parameter of the 

temperature was most significant at 1 hour delay. The delays was tested from 

one hour delay to 24 hours delay. The existing model is using 3 hours delay The 

temperature was then transformed into heating day degree parameter, HDD. The 

HDD is supposed to catch the temperature when the correlation to the electricity 

consumption is high enough to make an impact on the model. The HDD variable 

refers to the temperature being measured when we are heating up our houses. To 

increase the significance of this parameter the summer temperatures will be 

excluded. The limits tested was between 13 and 20 where 17 degrees of Celsius 

gave the most significant parameter.  

 
The number of variables from the regression model was determined by the loss 
function as described earlier. The parameters were also obtained in the model 
output were it was seen if the parameter was significant or not, if not it was 
excluded.  
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The number of parameters was counted to be 100 deterministic variables and 
autoregressive lags in 1,2,3,24,2. The final model structure with model order is 
written as, 
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3.6 Parameter estimation 

In order to optimize the parameters to fit the model to the data as good as 

possible the Prediction Error method was used. The prediction error method 

optimizes the parameters by minimizing the prediction error as described in 

theory section.  

The prediction error for the model chosen is estimated by the following equation 

which is described in section 2.3.1 

The autoregressive parameters are stationary if the roots are within the unit 

circle when looking at z transformed parameters which were explained in section 

2. All parameters had roots within the unit circle. The sum of the parameters is 

between -1 and 1 then they are stabile since the simulation or prediction of the 

model can never increase more than the previous data.  

When variables are correlated, or are too similar, the parameters tends to be 

insignificant or unstable as the confidence interval is way too large for the 

parameter value. This problem was seen within the dummy variables for each 

hour but was ignored since it was only a few  

The parameters estimated for the fundamental variables in the ARX model was 

found very low. This means that most of the model was explained by the AR 

process and not by the external variables as the plan. The next hour was with 

70% calculated from the previous hours and the rest was  edited by the external 

variables.  

When explaining a simulation for 5 years ahead it would feel more confident if 

the outcome was not all because of the hours before but due to the temperature 

for example. A simple test as splitting the model in two parts, one deterministic 

and one AR-process and see the difference in the parameters of the AR-process. If 

the AR- process would have lowered its parameter value it could be an idea to 

have the input data to the AR process as the difference between the observed 

data and a pre estimated regression model.  and from there solve the parameter 

estimation  non linearly. Another possibility could be to regularize the estimation, 
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modify the parameter estimation to receive heavier weights on the external 

variables parameters.  

The outcome after splitting the model was though almost the exact same value of 

the AR parameters as with the ARX model in with parameters estimated in 1 step. 

This means it would not help to regularize the estimation since the AR 

parameters will still be the same. And it would be the same as both methods are 

sub optimized, the estimation is forced to have higher external parameters and 

cannot optimize all parameters together.  

The ARX model in 2 steps will be followed in the result part in order to compare 

the result.  

3.7 Model check 

As mentioned in the theory a common method to validate the model is by 
observing the residuals. In Figure 1 the residuals for the pure regression model 
still had correlation in the residuals especially in the hour close to the current 
hour. The residuals of the ARX model had some larger outliers but in general 
within an approved range see Figure 4.. Looking at the ACF plot for the residuals 
from the ARX model it does not have any significant lags and can then be seen as 
a good estimate of the observed data.  

 
Figure 3.3 The plot of ACF of the residuals between the model and the observed 

data. The correlation is very small in the lags of 24 but otherwise is it a good 

estimation which is approved to continue with.  
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Figure 3.4 The residuals after the ARX model, unit in percentage of the observed 
data. 

 
More detailed result will be presented in the Result in section 4. 

3.8  Simulation 

When simulating the first day, the AR process of the model needs input from the 

25 hours before. The previous year’s last 25 hours are used as input data and the 

sensitiveness of the initial values will be tested in section 4, Results. Otherwise 

the simulated data is used as input for the autoregressive parameters. In this 

section the method for simulating this model is going to be described. 

3.8.1 Path of the simulation 

The model is being simulated by one step prediction meaning, by calculating the 

model output one step at the time. The simulation will be a continuation of the 

first 25th observed data and therefor is the input of the autoregressive 

parameters. Certain deterministic parameters needs to be updated in each year, 

those who varies are days since the day of the week will be different, public 

holiday will also be different. In the price model the temperature input data are 

historical temperature data from the last 46 years. The output from the 

simulation will be 46 scenarios depending on the weather. The temperature used 

as input will be approximations in two ways, it will be distributed throughout the 

hours of the day based on a daily mean and approximated daily profile of 

temperature, will be written more of in part 3.6. For each step a noise is added 

and the time invariant variables are updated continuously as the next step is 

calculated. 

3.9 Bootstrap of residuals, adding noise  

After an ARX model is fitted to the electricity consumption data, the output of the 

ACF of the residuals do not contain any significant lags referring to correlation in 
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the error data. The residuals has though outliers coming from misses of public 

holiday or vacation etc. When comparing to a normal distribution it is seen that 

the empirical distribution has too wide tails to be normal distributed. It fits better 

to a student t-distribution with 5 degrees of freedom.  

Sampling from a distribution demand trust of the fit of the residuals to the 

distribution. If the distribution is not a good enough fit then the sampling could 

be misleading in the simulation. To simulate from a student t-distribution could 

imply a higher amount of outliers than before if the tails does not fit exactly. The 

t-distribution can be risky when it comes to the estimation of the variance. At low 

degrees of freedom the variance can tend to become very large as the variance 

has the following expression:  

To avoid the issues of the outliers of the residuals another method can be applied 

called block bootstrap. The bootstrap method creates a distribution or a set of the 

data that is available. The set of data is then acting as a pool where new data set is 

being drawn. This method reduce the risk when simulating from a student t-

distribution to either draw too many of an interval value that does not occur as 

often as it is drawn or draw outliers that is outside the interval of the real 

residuals.  

The public holiday and the vacation days had residuals that were larger than the 

other days since the model did not succeed fully to describe these days. By also 

dividing the residuals obtained into blocks of the weekdays, Monday, Tuesday-

Thursday, Friday, Saturday and Sunday the resampled residuals become even 

more accurate. The separation has to be balanced as the noise has to be 

generalized enough to be the same for other years than just that year, also called 

over fitted.  

The residuals were first tried out to be divided into months and then hour type 

but the days had more similar output than hour types.  

3.10 Simulation of 46 weather scenarios  

Earlier in this thesis observed temperature was used but in the future the 

temperature will be unknown. The unknown temperature is weather scenarios 

from 46 years back which gives the simulation a sample space of the possible 

weather in each year.  

One of the issues when it comes to the simulation was the updating of the input 

variables e.g. the temperature. The temperature has to be the temperature of the 

year simulated on hourly basis. The electricity price model for midterm forecasts 

at Vattenfall AB was using the temperature seen every year 46 years back. Each 

year would be used in the simulation and the outputs would be 46 according to 

the 46 weather scenarios.  

The temperature data for 46 years back is on daily basis and needed to be 

interpolated to hourly basis. The interpolation was done by creating daily 

profiles for the temperature each month by polynomial fitting. The hourly 
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temperature was found for three years which gave three months of data in order 

to fit the polynomial curve for each month. The polynomial curve for each month 

was then moved after the difference between the mean of the curve and the daily 

temperature the current day.  

The 46 scenarios coming out of the simulation could then be used to interpret the 

different probabilities that year depending on the temperature.  

3.10.1 Simulation forecast with economic growth modification 

An existing model of the demand forecast the next five years on monthly 

basis is currently used. The monthly demand forecast is prioritizing the trend 

from a more out-zoomed perspective than describing the demand hour of the 

year. The monthly demand forecast is taking in consider the economic growth 

over the years. For example a decrease in economic growth can cause a 

reductions within the industrial consumption as some factories will shut down or 

reduce their production in order to save money. The monthly forecast is also 

taking under consideration the amount of heat pumps which is in use etc.  

Since the model simulated is rather describing the dynamic during the year than 

profiles the years by forecasted events, is the information of the monthly demand 

forecast needed. As mentioned earlier the monthly forecast contains trends as 

economic growth over the years and the consequence in the electricity demand 

can be seen.  

A fitted curve to the monthly forecast is compared to a fitted curve to the monthly 

demand simulated with normal weather. Normal weather is used in the 

simulation due to that the monthly forecast is independent of the temperature. 

The relation between the relatively difference in the curves will be the change of 

the factors that are not included in the ARX model. The relative difference will be 

multiplied by each hour after a simulation is done which becomes a parallel 

movement but different for each hour. The simulation will then also possess 

information and the future years gets a more distinct profile.  
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Figure 3.5 Forecasting modification for seven years, 2010-2016.  
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4 Results 
To validate a model several aspects have to be considered. In this section a number 

of visual results will be presented and analyzed. As mentioned in the modeling part, I 

have tried to estimate the parameters of the ARX model in both a one-step and two-

steps structure, see the modeling section. The results from using these two types of 

parameter estimation methods will be studied and compared. The interest in the 

comparison lies in the greater weight in the AR part of the two step structured ARX. 

In the first section of this chapter the results from the one-step structure ARX will be 

presented and analyzed. In the next section the results from the two-step structure 

ARX will be presented and compared with the results from one-step structure ARX. 

4.1 The one-step structure ARX 

Starting with the results from the ARX model in one-step structure means that all the 

parameters have been estimated simultaneously.  

4.1.2 Simulating with known variables 

The first way of testing the model is with all variables known; the observed initial 

values of the previous 24 hours electricity consumption and the observed 

temperature. The temperature observed is in fact also an approximation since it is a 

national temperature and the temperatures within Sweden are varying a lot from 

north to south.  

The question is how good the model is given all correct variables? The model is 

simulated 100 times and the empirical 95% confidence interval of the simulated 

output is compared to the observed data for that simulated year. In order to see a 

variation with different variables two years are simulated, 2012 and 2013.  
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Figure 4.1 Simulating 2012 with known external variables (observed temperature) 

and correct initial values. Comparing the output of the simulation with observed data 

of 2012.  

 

Figure 4.2  Simulating 2013 with known external variables (observed temperature) 

and correct initial values. Comparing the output of the simulation with observed data 

of 2013. 

By studying figure 3.1 and 3.2 visually it is seen that the confidence interval (red and 

blue) follows the observed electricity consumption (green) when the temperature is 

changing relatively sharp. The confidence interval is closer to the observed 

consumption during periods of low temperature, e.g. December 2012 and January 

2013, indicating the variable weight in the model, see figure 3.7 below. Compare this 
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to summer when the temperature contribution is zero the confidence interval is 

more unchanging.  

 

Figure 4.3.Observed temperature 2012 and 2013. Note the colder temperatures in 

2013 which is the cause of the higher electricity consumption in figure 3.1 and 3.2. 

A clear difference in the years of 2012 and 2013 is seen, meaning that the model is 

able to form the simulation depending on the variables of the year. The profiling is 

mostly due to the different temperature over the years.  

 

Spring 
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Figure 4.4. Same content as the figure 3.1 (simulation of 2012) and 3.2 (simulation of 

2013) but zoomed in at a week in March. Note the daily trend during this period of 

the year. 

Summer 

 

Figure 4.5. Same content as the figure 3.1 (simulation of 2012) and 3.2 (simulation of 

2013) but zoomed in at a week in June. Note the daily trend during the summer 

period. 

Comparing the daily trend of the observed data during summer and the rest of the 

year, a clear difference is seen in the weekdays. During summer the weekdays only 

have a clear peak in the morning and during the rest of the year there is a peak both 

in the morning and in the evening, see figure 3.3-3.4. The simulation does not follow 

the daily trend in the summer as good as during colder periods of the year. It may be 

because the model does not include specific daily hour variables for the summer and 

so the estimated parameters for the daily hour variables are the same during the 

year. A consequence of this is that the simulation does not follow the tending 

decrease in consumption throughout the day. This is probably because more sun 

hours at night, reduction in industrial activity and vacations led to less electricity 

consuming activity during the night. Overall the simulated weakly pattern complies 

pretty well with the weakly pattern of the observed data with a reduced 

consumption during weekends. Daily trends during the weekend do not show any 

spectacular differences over the year. 
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Figure 4.6. Same content as the figure 3.1, simulation of 2012, and figure 3.2, 

simulation of 2013, but zoomed in at the vacation weeks in July/August.  

One of the weak points of the model is its disability to capture vacation periods. The 

confidence interval of the simulation is either too high or too low, meaning that the 

observed data is not centered in the interval, see Figure 3.5. In 2012 the vacation 

seem to be a little bit better fitted than in 2013 where the observed data is below the 

lower bound. The vacation period is very distinct as the curve suddenly decreases for 

approximately three weeks. The model has a dummy variable for the vacation but 

obviously the contribution is not enough to fit the observed data. One idea why this 

happens is that the vacation period data is quite small so the variable parameter has 

little impact, compared to other variables, in the least square parameter estimation. 

 

Figure 4.7. Same content as Figure 3.1 (simulation of 2012) and Figure 3.2 (simulation 

of 2013) but zoomed in at the Easter week. Note the public holiday at Good Friday 

and Easter Monday.   
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Another weakness of the model is the ability to model public holidays, with similar 

issues as for the vacation periods. The interval at these days sometimes misses the 

observed data as the day is modeled as a normal day and not a public holiday. The 

variable assigned for the public holiday is, as said about the vacation variable, not 

strong enough to fit an interval because of the minority of public holidays when 

estimating the parameters. In some cases, like the 6th of January, the interval fits the 

observed data very well. This may be since the 6th of January occur straight after the 

Christmas vacation and when simulating this day the consumption of the Christmas 

vacation days, that are the input data to the AR – part of the model, have decreased 

the level of the consumption. If the public holiday occurs randomly as the 1st of May 

it appears as a normal day in the simulation. The difficulty of using a general dummy 

variable for public holidays is that it gives a constant absolute contribution over the 

year. Most likely if a public holiday falls close to a weekend or during warm or cold 

periods of the year it should results in different consumption contribution. An 

example of when the simulation misses the public holidays is during Easter week 

where Friday and Monday are holidays. One can clearly see that the days are 

perceived as normal weekdays. The rest of the week is also poorly fitted as this 

period of the year can have very varied weather.  

4.1.3 Relative spread size of the confidence interval 

In figure 3.1 and 3.2 the 95% confidence interval seems to be surrounding the 
observed data quite well. But how big is the spread of the 95% confidence interval 
compared to the observed data? Figure 3.8 below is showing the relative difference 
between the bounds and the observed data for the years 2013 where the 95% 
confidence interval for 2012 is more or less the same. The upper bound is 
approximately 110% of the observed data, with some exceptions of outlying peaks, 
and the lower bound is approximately 90 %, also with some peaks excluded. Figure 
3.8 gives a good picture of how the interval changes over the year. During the 
vacation weeks in summer time the bounds moves 10% up and are instead, 100%-
120% of the observed data. Similar pattern can be seen at Christmas holiday. The 
reason for this, as mentioned previously, is that the model tends to overestimate the 
vacation consumption 
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Figure 4.8. The index ratio between the observed data and the 95% confidence 

interval in figure 3.1. Index = 100 when the observed data and the confidence interval 

are equivalent.  

4.1.4 Threshold 

From a wide end perspective it did not seem to be many observed data points 
outside the confidence interval. But if we only look at the data points that lie outside 
the interval, how large are theses excesses and during which periods do they often 
happen? Figure 3.9 is showing the data points that were outside the 95% confidence 
interval for 2012 and 2013. The plot shows the relative level of the excess compared 
to the confidence interval, e.g. 0.05 means that the observed data point is 5% above 
the upper boundary. 
 
Starting with 2012 the winter periods have intervals that are too low to capture the 
observed data. The confidence interval is 5% lower than the observed data. There are 
also some excesses during summer time were the interval appear to be too high for a 
short period as well as for the last days of the year. 
 
If several time points after each other have data points outside the interval, they 
form together a smaller cluster. The clusters size mean in figure 3.9 is circa 3 hours. 
The biggest cluster size of 2012 is 25 hours and appears in the beginning of the year, 
otherwise there are only a few clusters with about 17 hours in size.  
 
Looking at 2013 the interval is mostly too high in cases where the observed data lies 
outside the interval. The relative amplitude and the periods of the excesses resemble 
2012. The mean of the cluster size is similar as for 2012, circa 4 hours, but there are 
some cluster during the year that are 21 hours.  
What is more seen is that the model have periods during the year where the 
observed data are not randomly going outside the confidence interval. This is for 
example during winter when the extreme cold temperature is hard to capture or 
during summer as the model has a harder time to follow the daily trend.  
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Figure 4.9. The observed data points outside the 95% confidence interval. The blue 

dots are for data points exceeding the upper limit and the red dots are for data points 

that fall beneath the lower bound. Upper plot 2012 and lower 2013.  

Simulated year % outside the confidence 

interval  

2012 8,3% 

2013 12,14% 

Table 4.1 The percentage amount hours when the observed electricity consumption 

was found outside the 95% confidence interval.  

As can be seen in table 3.1 the simulation of 2013 has more hours outside the 

confidence interval and particularly during summer time where the cluster size is 

often small but with a dozen having a cluster size of more than 12 hours. It is also 

seen that 2013 has 12% of the observed data outside the 95% confidence interval, 

which is perhaps a little much. Having smaller clusters are maybe inevitable since 

extreme consumption might be on a broader weekly or daily level and not on hourly 

level. The weak points of the model might be revealed with groups of clusters during 

the summer of 2013 and the same underestimation of some days of 2012 and 2013. 

4.1.5 Distribution comparison  

To compare the hourly distribution an empirical distribution is observed for each 

month. The observed data consists of data from 2012 and 2013 and the simulated 

data for the same years. 

Looking at the mean hour of each distribution it is seen that for the winter months 

the distributions of the simulations is matching the observed mean hour very well for 

both years. Though both years overestimate and underestimate the same monthly 
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hours. During summer the mean hour are underestimated a little in 2012, which also 

can be seen in figure 3.9, and in 2013 it overestimates the summer hours a little. The 

autumn months is not following the trend of the observed mean but is both above 

and below and ends up in December with a good match.  

As expected, by viewing the first plots in this chapter, the summertime mean 

deviates more from the observed mean than other moths. The lower mean hour 

springs from the misses at the peaks, the lowest temperatures, and will cause a lower 

monthly consumption.  

 

The standard deviation should be higher for the simulated values as it is taken from a 

simulation with 100 simulations with noise added. The spread of the noise is creating 

the higher standard deviation of course than an observed output. The standard 

deviation is though lower many months but during summer are the standard 

deviation higher than the observed outcome for both years.  

Month Mean 
2012 
(10^4) 

Observed 
mean 
2012 
(10^4) 

Mean 
2013 
(10^4) 

Observed 
mean 
2013 
(10^4) 

Std 
2012 
(10^3) 

Observed 
std 2012 
(10^3) 

Std 
2013 
(10^3) 

Observed 
std 2013 
(10^3) 

Jan 1.9128 1.9711 2.0055 2.0453 2.2915 2.3814 2.5788 2.8022 

Feb 2.0271 2.0730 1.9680 1.9844 2.5655 2.7063 2.0088 2.0984 

Mar 1.7234 1.7350 1.9551 1.9205 2.0119 2.0727 1.9737 1.9610 

Apr 1.6652 1.6394 1.6821 1.6165 1.9635 1.8388 2.0083 1.8170 

May 1.4116 1.4080 1.3732 1.3293 1.9218 1.7473 1.9674 1.7839 

Jun 1.3377 1.3626 1.2447 1.2512 1.8649 1.7467 1.8313 1.7422 

Jul 1.2060 1.2107 1.2091 1.1631 1.7978 1.5273 1.8467 1.5330 

Aug 1.2661 1.2916 1.2581 1.2526 1.8497 1.8376 1.8430 1.8400 

Sep 1.4076 1.3931 1.4067 1.3650 1.9334 1.8437 2.0957 1.9725 

Oct 1.6208 1.5829 1.5743 1.4991 2.2144 2.2376 2.0262 1.9835 

Nov 1.7196 
 

1.6989 1.7426 1.6901 2.1270 2.2446 2.2368 2.3099 

Dec 2.0119 2.0258 1.7645 1.7464 2.4007 2.7688 2.2130 2.4006 
Table 4.2 The mean hour of each month. A comparison between observed data and 

simulated data with known temperature.  

The cumulative distribution is compared between the simulation of 2012 and the 

observed data of 2012. It is seen that in spring are the distributions following each 

other quite well.  
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Figure 4.10. The empirical cumulative distribution of the hours in March. 

The weak periods of the model, as has been told before, the summer time when the 

temperature does not have a significant impact the cumulative distribution of the 

simulation is increasing a little bit faster than the observed data but the most 

important is that the simulation is surrounding the observed cumulative distribution 

in order to catch the sample space. 

 

Figure 4.11. The Cumulative distribution of the hours in August. 
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4.1.6 How sensitive is the model given external data but 

unknown initial value? 

We have seen the result when all variables where known but let see what happens if 

the initial values are changed. The simulation of the one-step estimated ARX model is 

90% output from the AR process and 10% from the fundamental variables. The 

conclusion should be that the model is very sensitive to the initial value as the 

simulation is mostly built up by the previous hours. Two tests are done, one where 

the initial value is changed by 10% and another test where the initial value is changed 

with 300%.  

 

Figure 4.12. The robustness of the simulation is tested by triple the initial value and 

see when it is totally restored, not affected by the initial value anymore. The lower 

figure is zoomed in.  

Figure 3.10 is showing the relative difference between the simulation with the 

modified initial values and the first simulation with observed initial values. 

Surprisingly the figure shows that the output from the simulation is stabilizing very 

fast. The impact of the initial value disappeared after 200 hours, which is 

approximately 8 days. This means that if the last day of a certain year were 

completely miscalculated it would only affect the first couple of days when 

simulating the following year.  
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Since the one step structured ARX model is explaining the electricity consumption 

with mostly autoregressive variables this test can be interpreted differently. The 

model is a good simulation up to 8 days as the model is built up by the last observed 

value.  

4.1.7 Simulating with different weather scenarios 

We now change the other variable in the model. Since the future temperature 

cannot be known the model will be simulated with 46 different historical weather 

scenarios instead. The aim of using the 46 years is that the simulated outcome space 

is a result of the historical temperature. The 95% confidence interval should become 

wider, than in the case of simulating 2013 with known temperature, since warmer 

and colder year are included in the simulation.  

 
Figure 4.13 Simulating 2011 with unknown temperature variable, 46 weather 
scenarios. Comparing the output of the simulation with observed data of 2011. 
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Figure 4.14 Simulating 2012 with unknown temperature variable, 46 weather 
scenarios. Comparing the output of the simulation with observed data of 2012. 

 
Figure 4.15 Simulating 2013 with unknown temperature variable, 46 weather 
scenarios. Comparing the output of the simulation with observed data of 2013. 
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In Figure 3.14 we see the relative difference between the simulated confidence 

interval with all weathers scenarios and the observed data of 2013 .The 95% 

confidence bands are around 80%-120% and is shifting quite a lot during summer 

time. One unexpected observation is that the interval is not covering the cold months 

in the beginning of the year 2013. A closer look is telling us that the coldest days in 

February and January are seen in a 99% confidence interval. Though the 99% 

confidence interval is not following the observed data in its curves and then is not 

describing the possible outcome very good. 

 

Figure 4.16 The 95% confidence interval that was seen in figure 3.11-3.13 this relative 

relation with the observed data for respective year. If the output is 1 then the 

observed data and the confidence interval are equivalent.  

 

Figure 4.17. The observed data that was left outside the 95% confidence interval for 

simulations with weather scenarios 2011-2013. The blue dots are for data point 
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exceeding the upper limit and the red dots is for those data points that falls beneath 

the lower bound. Upper plot 2011 then 2012 and lowest 2013.  

Simulated year % outside the confidence interval  

2011 5% 

2012 6,4% 

2013 8,2% 

Table 4.3 The percentage amount hours when the observed electricity consumption 

was found outside the 95% confidence interval.  

4.1.8 Temperature correlation comparison 

The temperature is an important factor when calculating the electricity demand. A 
way of verifying that the model has the right relation to the temperature is by 
comparing the observed correlation, between the temperature and the electricity 
consumption and the correlation in the simulation, with the approximated 
temperature used.  
 

 

Figure 4.18. The pairwise observation between the temperature and the electricity 

consumption. The upper row, first seen with the temperature of the spring with 

temperature form 2007 and in figure, first row second column, is during summer 

period. Second row is the correlation between the observed temperature and the 

observed electricity consumption from 2012.  

 



56 

 

 

Figure 4.19. The pairwise observation between the temperature and the electricity 

consumption. The upper row, first seen with the temperature of the spring and in 

figure, first row second column is during summer period. Second row is the correlation 

between the observed temperature and the observed electricity consumption.  

 

 

Looking at the figures that are describing the pairwise observation during wintertime 

it is seen that both figures flatten out when the temperature is around -12 degrees. 

The pairwise observation to the temperature in the simulated case is noticeable less 

dependent to the simulated demand due to the big weight on the AR process in the 

model. The observed pairwise observation has a strong dependency. During summer 

time the simulated pairwise observation is more similar to the observed pairwise 

observation and is nearly independent. This because the temperature variable do not 

affect the demand when the heating consumption is less.   

This part will be compared to the 2 step ARX model where the pairwise observation 

were much more significant.  
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4.2 The two-step structure ARX 

The results of the two-step structure ARX will here be presented and analyzed. They 

will mostly be compared with the results of the one-step structure ARX to avoid 

repetition of the comments.  

4.2.1 Simulating with known variables 

The confidence intervals are following the temperature good, for example it captures 

the sharp turn in January 2013 caused by quickly decreasing temperature very well, 

see figure 3.17. In a broad view there seems to be no clear differences between the 

one-step ARX model and the two-step ARX model.  

 

Figure 4.20 Simulating 2012 with known variables. Comparing the output of the 

simulation with observed data of 2012.  
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Figure 4.21 Simulating 2013 with known variables, observed temperature. Comparing 

the output of the simulation with observed data of 2013.  

Comparing the years 2012 and 2013 in figure 3.18 the simulation of 2012 succeeds a 

little bit better with the 95% -confidence interval but the simulation of 2013 has a 

better daily profile during the vacation. 

 

Figure 4.22. Same content as figure 3.16 (simulation of 2012) and figure 3.17 

(simulation of 2013) but zoomed in at the vacation weeks in July/August. 

Zooming in at the summer period, see figure 3.19, the observed data for the 

weekdays in June have a more distinct summer profile than the output from the 

simulations, although some days the simulation fits better than others.  
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Summer 

 

Figure 4.23. Same content as figure 3.16 (simulation of 2012) and figure 3.17 

(simulation of 2013) but zoomed in in a week in June. Note the daily trend during the 

summer period. 

In figure 3.20 it is seen that the two-step ARX model has a little more significant daily 

trend than the one-step ARX model. This is probably due to the temperature and 

hourly variables, which have more significant parameters. The two-step ARX model 

follows the daily trend better in the simulation of 2013 than 2012.  
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Spring 

 

Figure 4.24. Same content as figure 3.16 (simulation of 2012) and figure 3.17 

(simulation of 2013) but zoomed in at  a week in March. Note the daily trend with one 

morning peak and one evening peak. 

The idea of this model was as described above to be able to catch rapid changes due 

to external factors, better than in the one step ARX model, e.g. the public holidays, 

since the external part has more weight. In 3.21 the simulation struggles to find the 

public holidays during the Easter week and they tend to look like normal weekdays.  

This result was not very surprisingly as the parameters for these periods are hard to 

estimate due to the leak of data. Vacation is three weeks during summer and the 

data used for estimating the model parameters were three years. Obviously it is not 

enough since the vacation period and the public holidays are not distinct enough. The 

interval seems slightly better than with the one-step ARX model since the lower 

interval follows the public holiday trend fairly good. The differences are however not 

very distinct. 
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Figure 4.25. Same content as the figure 3.16 (simulation of 2012) and figure 3.17 

(simulation of 2013) but zoomed in at the Easter week. Note the public holiday at 

Good Friday and Easter Monday.   

4.2.2 Relative spread size of the confidence interval 

The confidence interval is approximately between 90% and 110% of the observed 

data as can be seen in the following figure 3.22. More or less the same spread as with 

the one-step structure ARX model.  

 

Figure 4.26. The index ratio between the observed data and the 95% confidence 

interval in figure 3.17. Index = 100 when the observed data and the confidence 

interval are equivalent.  
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4.2.3 Threshold 

The simulation underestimated the effect of the cold temperature a little as grouped 

clusters are seen during wintertime. During summertime 2012 the excess is also 

increasing. This could be because of the none-existing temperature relationship 

during summertime. When the temperature is not affecting the model the AR 

process plays a bigger role. If the AR process poorly simulates one hour it will follow 

into the next day and this explains the grouped clusters. In the plot of 2013 the 

wintertime been better simulated. The bad indication could be that the threshold 

excess is not very random between the years but that the grouped clusters occur at 

same periods. Either the two years where similarly difficult to model during these 

periods or the model are weaker in these areas of the year. 

The threshold excesses are similar to the one-step structure ARX model and no 

distinct differences are seen.   

 

Figure 4.27. The observed data that was left outside the 95% confidence interval. The 

blue dots is for data point exceeding the upper limit and the red dots is for those data 

points that falls beneath the lower bound. Upper plot 2012 and lower 2013.  

Simulated year % outside the confidence interval 

2012 3% 

2013 3,4% 

Table 4.4 The percentage amount hours when the observed electricity consumption 

was found outside the 95% confidence interval.  

 



63 

 

4.2.4 Distribution comparison  

There are no big differences seen in the output of the mean hour for each month 

compared to the one-step structure ARX model. They are more or less 

overestimating and underestimating the same periods.  

Month Mean 
2012 
(10^4) 

Observed 
mean 
2012 
(10^4) 

Mean 
2013 
(10^4) 

Observed 
mean 
2013 
(10^4) 

Std 
2012 
(10^3) 

Observed 
std 2012 
(10^3) 

Std 
2013 
(10^3) 

Observed 
std 2013 
(10^3) 

Jan 1.9128 1.9711 2.0055 2.0453 2.2915 2.3814 2.8022 2.8022 

Feb 2.0271 2.0730 1.9680 1.9844 2.5655 2.7063 2.0984 2.0984 

Mar 1.7234 1.7350 1.9551 1.9205 2.0119 2.0727 1.9610 1.9610 

Apr 1.6652 1.6394 1.6821 1.6165 1.9635 1.8388 1.8170 1.8170 

May 1.4116 1.4080 1.3732 1.3293 1.9218 1.7473 1.7839 1.7839 

Jun 1.3377 1.3626 1.2447 1.2512 1.8649 1.7467 1.7422 1.7422 

Jul 1.2060 1.2107 1.2091 1.1631 1.7978 1.5273 1.5330 1.5330 

Aug 1.2661 1.2916 1.2581 1.2526 1.8497 1.8376 1.8400 1.8400 

Sep 1.4076 1.3931 1.4067 1.3650 1.9334 1.8437 1.9725 1.9725 

Oct 1.6208 1.5829 1.5743 1.4991 2.2144 2.2376 1.9835 1.9835 

Nov 1.7196 1.6989 1.7426 1.6901 2.1270 2.2446 2.3099 2.3099 

Dec 2.0119 2.0258 1.7645 1.7464 2.4007 2.7688 2.4006 2.4006 

Table 4.5 The mean hour for each month of the year and the standard deviation for 

each month of the year. A comparison to between the observed data and the 

simulation with known temperature.  

The simulated empirical cumulative distribution for the month of March is following 
the output of the observed data as well it did with the one-step structure ARX model. 
The simulated model gives slightly fewer hours with higher electricity demand than 
the observed data but the difference between the distributions is very small. 
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Figure 4.28. The Cumulative distribution of the hours in March 2012. 

The tails in the cumulative distribution of August are larger for the simulated data 

than the observed data. Otherwise they are following each other quite well. Looking 

at figure 3.16 the confidence interval is wider than the observed data. During 

summer the temperature parameter is mostly zero so the simulation is less 

restricted. 
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Figure 4.29. The Cumulative distribution of the hours in August. 

 

4.2.5 How sensitive is the model given external data but 

unknown initial value? 

The test is done by having the initial value tripled in amplitude. There is hardly any 

difference in the results of the one-step structure ARX model. The simulation also 

recovers very well, and after approximately 200 hours (8 days) the outcome of the 

simulation has restored as if the initial value was known.  

 

  

Figure 4.30. The robustness of the simulation is tested by triple the initial value and 

see when it is totally restored, not affected by the initial value anymore.  

 

4.2.6 Simulating with different weather scenarios 

When simulating with all weathers scenarios the output of the coldest temperatures, 

which include February 2013, does not appears in the 97% confidence interval and is 

first seen in the 99% confidence interval. The tradeoff is that the wider the 

confidence interval the more the yearly trend (that resembles a sinus curve shape) 
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diminishes. Figures 3.25-3.27 resemble the output from the one structure ARX; the 

confidence interval becomes more smooth and wider when simulating with a mixture 

of weather scenarios.  

Increasing the 95% confidence interval of the weather scenarios is not raising the 

upper bounds a lot but rather decrease the lower bounds the more. This is probably 

due to the spread of cold winter comparing to the spread of warmer winters. The 

smaller spread in the upper bound causes of the underestimation at extreme cold 

temperature of the model.  

 

Figure 4.31 Simulating 2011 with unknown temperature variable, 46 weather 
scenarios. Comparing the output of the simulation with observed data of 2011. 
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Figure 4.32 Simulating 2012 with unknown temperature variable, 46 weather 
scenarios. Comparing the output of the simulation with observed data of 2012. 
 

 
Figure 4.33 Simulating 2013 with unknown temperature variable, 46 weather 
scenarios. Comparing the output of the simulation with observed data of 2013. 
 
In order to investigate if the spread of the confidence interval is in order and 

functional or if it is a badly description of possible outcomes the amount of demand 
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hours is counted and the percentual amount is analyzed. Though it is seen that the 

variation during summer is very low but in the confidence interval for the simulations 

it has a wider spread than other periods. The low bounds during summer period are 

due to the absence of temperature variable. Since heating day degrees is used is the 

temperature variable not included in the model when the temperature is higher than 

17 degrees Celsius.  

 

 

Figure 4.34 The 95% confidence interval that was seen in figure 3.25-3.27 this relative 

relation with the observed data for respective year. If the output is 1 then the 

observed data and the confidence interval are equivalent.  
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Figure 4.35. The observed data that was left outside the 95% confidence interval for 

simulations with weather scenarios 2011-2013. The blue dots is for data point 

exceeding the upper limit and the red dots is for those data points that falls beneath 

the lower bound. Upper plot 2011 then 2012 and lowest 2013 

 

Simulated year % outside the confidence interval  

2011 4% 

2012 5% 

2013 6% 

Table 4.6 The percentage amount of hours when the observed electricity consumption 

was found outside the 95% confidence interval of the simulation with weather 

scenarios.  

4.2.7 Temperature correlation comparison 

The simulation of the two-step ARX model should have a more significant correlation 
seen with the temperature, as there is more weight on the parameter than in 1 step 
ARX model. Looking at the correlation of the non-summer month in figure 3.32, first 
row first column, this is also seen. The correlation output is more packed into a line 
than in the case with the one step ARX model simulation. Figure 3.32 is showing the 
correlation when using temperatures from 2007 when figure 3.33 has for all weather 
years at the same time.  
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Figure 4.36. The correlation between the temperature and the electricity 

consumption for 2007. The upper row, the correlation between the weather scenario 

of 2007 and the simulation done with this temperature. Upper row first column is 

during spring and second column is during summer time. Second row is the 

correlation between the observed temperature and the observed electricity 

consumption 2012.  

Continuing by analyzing the correlation between all-weather scenarios and their 

respectively simulation the result seems good. The non-summer months is more 

similar to the observed correlation than before. The summer period with all-weather 

scenarios looks a little bit different which is because of the cold summers which 

created correlation to the demand as heating were used also during summer time.

 

Figure 4.37. The correlation between the temperature and the electricity 

consumption for 2007. The upper row, the correlation between the weather scenario 
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of 2007 and the simulation done with this temperature. Upper row first column is 

during spring and second column is during summer time. Second row is the 

correlation between the observed temperature and the observed electricity 

consumption 2012. 

4. 3 Result of the EMPS model 

The main objective of this project was to create a better electricity price forecast by 

transform from weekly outcome to hourly outcome of the price prognosis. In order 

to receive an improvement by the transformation, more information had to be 

received by the input data which also had to be on hourly basis. The demand input 

data was one of the factors. The validation of the demand model is hard to do by 

observing the outcome from the price model since the impact of the demand is not 

the most significant variable in the EMPS model.  

4.3.1 Changing input demand data from annually to hourly 

The previous input data was an annually consumption which was distributed by 

annually-, weekly- and daily profiles. The demand data simulated by the model has 

46 weather scenarios which are included in the model. In the old demand data only a 

normal temperature is used and the weather scenarios is built in as input to the price 

model instead.  

If we disregard the noise added to the model, just simulate the model 46 times with 

the 46 different weather scenarios without noise and use these simulations as input 

data to the price prognosis model. The outcome of the price mode using the old 

demand data and the demand data without noise form the model can be compared 

by looking at the weekly trend and the daily trend.  

During summer time the prognosis, with the new demand data, had much more 

distinct variation between day and night. The rest of the year did not show any 

distinct different.  

4.3.2 Including noise to the demand data 

The demand data simulated by the model has noise added which includes the error 

estimation of the model. The model is simulated with the 46 weather scenarios 20 

times each to include the spread of the noise. If the demand has enough impact on 

the price prognosis the spread of the price prognosis will be wider.  

A comparison was done between the spread of the price prognosis, when simulated 

with the old demand data and the 46 weather scenarios, and when simulated with 

the new demand data, 46 weather scenarios and 20 simulation on each weather 

scenarios to include the noise spread.  

The analysis of the comparison was that the spread was almost equal. This means 

that the impact of the demand on the price model is not big enough to be able to 

notice the difference between the outcomes with the noise.  
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5. Discussions and conclusions 
This section will analyze the result from a wider perspective as the section of the 

result was more detailed. I will also go through the main objectives of the project , 

what goals were accomplished and how a tradeoff between the objectives had to be 

considered.  

5.1 Conclusion of the main objectives in the project 

The objectives were to create a model that explained the hourly electricity 

consumption in the Nordic countries, one for each country. The model should be 

buildup by annually, weekly and daily trends but also be temperature sensitive. The 

objective of the model was also to include economic trends and be able to identify 

changes in the consumption connected to the economic development. 

Quantifications of the factors should be estimated and possibilities of analyzing the 

variation of the factors.  

The model is describing the annually, weekly and daily trend and also follows changes 

along with the temperature. According to the main objectives and looking at the 

simulated outcome, has the model accomplished the main tasks and the outcome is 

a realistic demand year saying the model is good.  

5.2 Discussion and conclusion of Results 

One of the weakness of the model is when the temperature is unusually low. It does 

not captures the most extreme peaks as the heating consumption increases with the 

extremely cold temperatures. One of the explanations is the approximation of the 

temperature that is done. The input data of the temperature is on daily basis and is 

transformed to hourly basis by observing the average daily profile of the temperature 

each month. Otherwise the simulation of the model is changing fairly good along 

with the temperature.  

Another weakness is when public holidays occurs and during vacation. The 

parameters of the variables are estimated with use of four years of data. Each year 

have approximately 10 public holidays and the conclusion is that the leak of data 

results in weakly estimated parameters. The parameter of the public holiday should 

be more significant than it is if more data was available and handled which would  

contribute to a more distinct difference between a normal day and a public holiday. 

 The same issue is seen during the vacation period and the variable of the vacation. 

The consumption is not decreasing sufficient, either during the summer or the 

winter. This is probably also due to the leak of data.  

One strength of the model is the spread of the confidence interval is relatively tight. 

If the confidence interval is too tight it would imply more risk and if it is too wide it 

would give less information about the possible output. Looking at the threshold plots 

the 95 % confidence interval is a little too tight as the amount of observed demand 

hours that is outside the interval is slightly too high. But when all the weather 
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scenarios are included in the simulation the 95% confidence interval is broadened a 

bit. This suits the variation of the observed demand better as the threshold plot 

shows less demand hours outside the interval. Comparing to how much the 

consumption changes from one year to another it is relatively good size of the spread 

of the interval from the simulation with the weather scenarios.  

The annually trend is followed very good from summer to winter and so is also seen 

for the weekly trend. The daily trend is more distinct when the temperature variable 

is more distinct, though not extreme, but comparing the summer period with the rest 

of the year as the heating day degree is only effective below 17 degrees of Celsius. 

The observed daily trend is different during summer and the rest of the year. In the 

summer time the weekdays often only have one peak of the day unlike the rest of 

the year where two peaks is seen, one in the morning and one in the afternoon.  

The hour variables are the same for the whole year, meaning there are no specific 

weekday hours for the summer and for the winter. Since the daily trend differs 

depending on the period the parameter estimation might be  bit of a compromise as 

the summer only have one peak and the winter two. The afternoon peak in the 

winter time is not distinct as in the observed data but the afternoon peak also 

appears, not as distinct as in the winter, in the summer time as well.  

Though would the including of almost twice as many variables not work since they 

have many hours which are very similar and the parameters would probably be 

insignificant. 

In the chapter of Result the two different structures of ARX was compared. The aim 

when trying the two step structured ARX was to increase the significance of the 

fundamental parameters and by then increase the impact of them in the simulation. 

This was only seen in the plot of correlation between temperature and demand. The 

2 step ARX model had way more temperature correlation during winter/spring than 

the 1 step ARX model. Otherwise the results were very similar.  

When first looking at the residuals after the simulation I did not think of the 

definition of the inversed autocorrelation and suspected that the simulation was not 

good. This was also one of the reason why I thought the 2 step ARX model would be 

better. With the definition of the inverse ACF it is seen that the residuals after 

simulating with an AR process will in the inverse ACF correspond to a MA process. 

The residuals were then correct simulated with both structures of the models. The 

definition of the inverse ACF of an AR process is seen in section 2.1.1.1. (Madsen, 

Time Series Analysis, 2008) 

The last analysis of the result and the main application of the model is the EMPS 

model. The EMPS model did expand the variation during the summer period while 

the rest of the year did was varying and did not show any distinct trend that differed 

from the old data. The analysis of the spread when include the noise in the new 

simulated demand data did not indicate of a high impact of from the noise. The 
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simulations of the demand with the different noise did come out as more or less the 

same price.  

5.4 Future work 

As mentioned before there are possibilities to improve the model when it comes to 

days that differs from the normal day, e.g. vacation, public holiday and days with 

more extreme temperature.  

In order to capture the cold days better a better transform of the temperature could 

be done as estimating model with several variables that affects the way of how the 

temperature affect the demand. Example of variables would be wind, humid and as 

well where in the country the temperature is measured. The north of Sweden for 

example does not react in the same way as south of Sweden to different weather 

scenarios.  

One of the hopes of the model was to include an economic indicator as a variable. 

This was hard to fulfill since the variables that could possible explain economic 

develop was at minimum on quarterly basis. A future work could be to find the 

industries that has hourly balancing which it could be possible to find the trend of 

economic development. But still with that information it is hard to see such trend as 

the industries are normally cutting down the production in larger scales instead of a 

bit at a time.  Another possible solution would be to use the MIDAS model, see 

appendix B, which uses a technique that makes it possible to have input variables 

with different sample frequencies. The method would make it possible to keep the 

low resolution and not approximate the quarterly based data to hours. The 

advantage of the method is that it can keep the more information of the raw data 

but it struggles with the amount of parameters which can quickly be too many due to 

the way of including lags. (Ghysels, Santa-Clara, & Valkanov, 2004) 

Another objective that was too time consuming to include was to find the trend of 

moving the consumption from day to night due to lower electricity prices. To be 

confident in such a result it requires further investigation of how consumers perceive 

around this and create a representation of a possible future change.  

Final entry is to create an interface between the output of the simulation of the 

model to EFI, the EMPS model. Today there is no connection to the EFI system and a 

future interface could either implement the simulation in EFI or create a link to the 

MATLAB files so the data will be sent directly as input data to the system.  

  



75 

 

7. References 

 
Akaike, H. (1969). Fitting autoregressive model for prediction. Ann. Inst. Statist. Math., Vol. 21, 243-

247. 

Alfares, H. K., & Nazeeruddin, M. (2002). Electric load forecasting: literature survey and classification 

of methods. nternational Journal of Systems Science, vol. 33, number 1, , 23±34. 

BOFELLI, J. V., & MURRAY, F. T. (2001). Forecasting Electricity Demand on Short, Medium and Long 

Time Scales Using Neural Networks. Journal of intelligence and Robotic Systems Vol 31, 129-

147. 

Brown, B. G., Katz, R. W., & Murphy, A. H. (1984). Time series models to simulate and forecast wind 

speed and wind power. Journal of climate and applied meterology Vol. 23, 1184-1195. 

Carpenter, J., & Bithell, J. (2000). Bootstrap confidence intervals: when, which, what? A practical 

guide for medical statisticians. STATISTICS IN MEDICINE vol. 19, 1141-1164. 

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS Touch: Mixed Data Sampling 

Regression Models. Working paper. 

Härdle, W. K., & Trück, S. (2010). The dynamics of hourly electricity prices, SFB 649 Discussion paper 

2010-013, , ISSN 1860-5664. Retrieved from Humboldt-Universität: http://sfb649.wiwi.hu-

berlin.de 

Jakobsson, A. (n.d.). Time series analysis and signal modelling. Lund university. 

Madsen, H. (2008). Time Series Analysis. Chapman & Hall/CRC. 

Mestekemper, D.-W. M. (2011). Energy Demand Forecasts and Dynamic Water Temperature 

Management, Dissertation for the degree of doctor. Universität Bielefeld, (referee: 

Kauermann, Prof. Dr. G.; Kneib, Prof. Dr. T.). 

Singh, A. K., Ibraheem, Khatoon, S., & Muazzam, M. (2013). An Overview of Electricity Demand 

Forecasting Techniques. Network and Complex Systems, Vol.3, No.3, ISSN 2224-610X (Paper), 

38-48. 

SINTEF, EMPS. (n.d.). Retrieved from http://www.sintef.no/home/SINTEF-Energy-Research/Project-

work/Hydro-thermal-operation-and-expansion-planning/EMPS/) 

Söderström, T., & Stoica, P. (1989). Chapter 7. In System Identification. Prentice Hall. 

University of Baltimore. (n.d.). Retrieved from http://home.ubalt.edu/ntsbarsh/stat-

data/GraphForecast.gif 

 



76 

 

Appendix A 

Dynamic Factor Model  

A model that estimates the co-movement between several time series. The 

dimension of the original data set, the number of input variables, is reduced as 

the variables are projected onto one and another. The information from the 

original data set is still there but compressed into a lower dimensional data set. 

The dynamic factor model finds the common factors by using normalization.  

A modified way of using dynamic factor models is by letting the factors be 

functions of observable variables, this is called semi parametric factor model. To 

identify the common factors the DSFM uses a simulating technique which shows 

that for any set of estimated factors there exists a set of transformed factors with 

the same covariance structure as the original set. This means that it is possible to 

interpretation can be done on any probable set of factors.  

In an 
orthogonal L-factor model an observable J-dimensional random vector 

                                   

Where,     , is the demand at time t and dimension j and can be considered as a 

multi-dimensional time series.      are the common factors,      are the error,      

are factor loadings.  
The advantage of the dynamic factor model is if sufficiently of the variation in    
can be explained by the L common factors,     , the feasibility will increase along 

with the reduction of dimension.  
(Mestekemper, 2011) 
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Appendix B 

MIDAS 

Time series regression model with time series at different  sampling frequencies. A 

base frequency is used where the frequencies of the other variables are described by 

the base frequency, e.g. if the base frequency is one year and m=4, the variable has a 

frequency of a quarter.  

The formula is,  

       ( 
 
 ⁄ )  
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And     is the demand,  ( 
 
 ⁄ ) is a suitable polynomial where the lags m of       ⁄

( )
 

is included as parameters.  

The MIDAS regression model includes much more information as the variables with 

higher resolution does not need to be aggregated and also the variables with lower 

resolution does not need to be approximated to higher resolution. The model also 

become more flexible along with the different sample frequencies.  

The cost of the increased set of information and the flexibility is the distribution of 

the parameters. Imagine a model with many variables which has a suitable 

polynomial  ( 
 
 ⁄ ) with many lags of      ⁄

( )
  data. The number of parameters to 

estimate would be many as well. The best possible would be to capture as much as 

possible of the information from the MIDAS regression but keep down the number of 

parameters. The number of parameters are reduced by methods within distributed 

lag models. (Ghysels, Santa-Clara, & Valkanov, 2004) 


