
*

1



*

* Acknowledgment
I want to thank my advisor and teacher Tatyana Turova for all help and
support in this work.
I will also thank Mona Forsler for the room and James Hakim for a well
working computer.

Paul Pehrsson

2



*

3



Contents

1 Some symbols and notations 6

2 Introduction 7

3 Preliminaries 7
3.1 Proof of Proposition 3.1. . . . . . . . . . . . . . . . . . . . . . 9
3.2 Proof of Proposition 3.2. . . . . . . . . . . . . . . . . . . . . . 10

4 An extended process 12

5 Results 13

6 Discussion 17

7 Proofs 20
7.1 Properties of straps . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . 20
7.3 The Union of Intervals . . . . . . . . . . . . . . . . . . . . . . 20
7.4 Proof of Proposition 5.2 and Corollary 5.1 . . . . . . . . . . . 21
7.5 Proof of Corollary 5.1 . . . . . . . . . . . . . . . . . . . . . . 23
7.6 Proof of Proposition 5.3 . . . . . . . . . . . . . . . . . . . . . 23
7.7 Proof of theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . 23
7.8 Proof of the Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . 24
7.9 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . 25
7.10 Proof of Proposition 5.4 . . . . . . . . . . . . . . . . . . . . . 26
7.11 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . 29
7.12 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Simulations 36
8.1 Numerical support for Theorem 5.2 . . . . . . . . . . . . . . . 36
8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 References 38

4



M -step Bootstrap Percolation on Z1

Paul Pehrsson

Abstract
We study an extended bootstrap percolation process in several steps in di-
mension one, assuming noncyclic boundary conditions. We study the asymp-
totic behavior of the process as the size of the underlying graph goes to
infinity. We find a phase transition with respect to the initial conditions.
The phase diagram on the set of initial conditionals of the extended process
is described completely. This provides necessary and sufficient conditions
for complete percolation of the extended process.
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1 Some symbols and notations

Ax the number of elements of one in a vector x = (xi)
n
i=1.

A(τ) = Ax(τ)

Bt the union of special intervals.

g(x) =
∏m
j=1 gj(x) a generating function of a certain combinatorial prob-

lem and gj(x) are the factors.

0̄ = (0)ni=1 the vector of zeros.

Qs the percolator operator

Rp the randomizer operator

Tj a subset of N = {1, 2, 3.....n}

T the stopping time for the process.

Vs,x the union of intervals in x with | Ij | equal or less s ≥ 0 a positive
integer and greater than zero.

Us,x The element of Vs,x.

ωn the number of zeros in a vector x.

xM = (xi)i∈M

φ(n) ∈ [0, 1] a function which goes to zero when n goes to ∞.
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2 Introduction

We study bootstrap percolation on Z1 which generalizes our earlier study
in [2].

Although the most studied cases are the model in higher dimensions, the
dimension one is interesting since the problem has an exact asymptotic so-
lution. We show that this is in a perfect agreement with the high-dimension
results of Bollobas, Holmgren, Smith and Uzzel [1].

Consider a graph on a vertex set V = {1, 2.., i, .., n} with a set of edges
E = {12, 23.., (i − 1)i, .., (n − 1)n}. We denote this graph Zn = (V,E)
and call it ”a strap”. Let us define a bootstrap percolation process X(t) =
(xi(t), i = 1, 2, .., n), t = 0, 1, .., on Zn. We fix the boundary condition,
namely we assume that x0(t) = 1 and xn+1(t) = 1 for all t ≥ 0. Then
xi(t) ∈ {0, 1} is defined as follows. We set initially

xi(0) =

{
1 with probability p,
0 with probability 1− p, (1)

independent for different i. Then for all t ≥ 1 and i = 1, .., n, we set

xi(t+ 1) =

{
1, if (xi−1(t)) = 1 and (xi+1(t)) = 1,
xi(t), otherwise.

(2)

We call this process Bootstrap Percolation on Zn.
Define A(t) = #{i : xi(t) = 1}. Note that by the definition of the pro-

cess, we have A(t + 1) ≥ A(t) for all t ≥ 0. Since A(t) ≤ n we can define
the stopping time T for Bootstrap Percolation on Zn

T = min{t : A(t+ 1) = A(t)}.

T is also bounded by n. Furthermore it is not difficult to see that T ≤ 1. We
shall study A(T ) for different choices of p, as well as of the initial conditions.
We study the conditions of percolation and probability of percolation. The
asymptotics of P (A(1) = n) was studied in Pehrsson [2]. Here we define
further dynamics for the case when A(1) < n given a binary initial vector.
We shall study P (A(1) = n|A(0) = y) and P (A(1) = n), which is the
probability of percolation at the first step.

3 Preliminaries

Let us recall results from Pehrsson [2] which we use here.

Proposition 3.1 (Fixed initial conditions.) For all n ≥ 0 and we have

P (A(1) = n|A(0) = x) =

 (x+1
n−x)
(nx)

, if x ≥ dn/2e,
0, otherwise,
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and
P (A(1) = n) = E(P (A(1) = n | A(0))

=
n∑

x=dn/2e

(
x+ 1

n− x

)
px(1− p)n−x.

Proposition 3.2 (Phase transition.)
(i) If ωn �

√
n (i.e., ωn = o(

√
n)) then

P (A(1) = n | A(0) = n− ωn)→ 1

as n→∞.
(ii) If ωn �

√
n (i.e.,

√
n = o(ωn)) then

P (A(1) = n | A(0) = n− ωn)→ 0

as n→∞.
(iii) If ωn = c

√
n then

P (A(1) = n | A(0) = n− ωn)→ e−c
2
,

as n→∞.

Theorem 3.1 ([2])
Assume that the initial conditions A(0) have a Bin(n, p) distribution.
Let

p = p(n) = 1− φ(n), (3)

where φ(n) is a decreasing monotone function, 0 ≤ φ(n) ≤ 1 and

lim
n→∞

φ(n) = 0 (4)

Then
lim
n→∞

P (A(1) = n) = 1, (5)

if φ(n) < n−α and α > 1/2, and

lim
n→∞

P (A(1) = n) = 0, (6)

if φ(n) > n−α and 0 < α < 1/2.
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3.1 Proof of Proposition 3.1.

We regard the strap with assigned values to the vertexes as a vector (xi)
n
i=1,

where each xi can take value 0 or 1. We can form
(
n
x

)
different vectors with

x ones.
Consider the vector of initial conditions. If in the initial vector we have

a zero between two ones then this zero will be changed to one at the first
step.

We are interested in those vectors of the initial conditions, which yield
complete percolation at the first step. We denote the number of such vectors
C(A(1) = n | A(0) = x) or only C(n | A(0) = x). In the case of straps it is
a little bit simplified. We have initially x + 1 intervals Ik , 1 ≤ k ≤ x + 1,
where we define an interval as the longest list of the consecutive indices of
elements of zero, could be an empty set. Together we have n − x zeros,
which gives a simple relation:

x+1∑
k=1

|Ik| = n− x. (7)

We have
0 ≤ |Ik| ≤ 1. (8)

We place the first zero in x+1-st interval. The second zero is in the xth inter-
val, and so on: we place the n−x zero in x−(n−x−1) intervals. We have n−x
different orders. By multiple principle we have (x + 1)x..2x−n+1

(n−x)! different

equally probable vectors satisfying (7) and (8). This implies C(A(1) =
(
x+1
n−x
)

, x ≥ dn/2e. Otherwise, there will be not enough elements with value one.
We conclude

P (A(1) = n|A(0) = x) =

 (x+1
n−x)
(nx)

, if x ≥ dn/2e,
0, otherwise,

(9)

and then we get

P (A(1) = n) = EP (A(1) = n|A(0)) (10)

=

n∑
x=1

P (A(1) = n|A(0) = x)P (A(0) = x)

=
n∑

x=dn
2
e

(
x+ 1

n− x

)
px(1− p)n−x.

This finishes the proof of Proposition 3.1. �
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3.2 Proof of Proposition 3.2.

Note that P (A(1) = n | A(0) = x) is a growing function of x, and it is zero
at x = dn2 e, and one at x = n. Therefore we shall find a maximal number
ωn such that when x > n − ωn we have P (A(0) = n | A(1) = x) → 1 as n
tends to infinity.

Set x = n− ωn. Assume, that ωn/n→ 0 as n→∞. From the Stirling’s
formula

n! = (
n

e
)n(2πn)

1
2 eαn (11)

set
βn = 2αx − α2x−n − αn.

Then by P (A(1) = n|A(0) = k) =
(
k+1
n−k
)
/
(
n
k

)
we have

P (A(1) = n | A(0) = x) =
(x+ 1)x!x!

(2x− n+ 1)(2x− n)!n!

= (x+ 1)(2x− n+ 1)−1eβn(2− nx−1)n−2x−1/2(nx−1)−n−1/2 + o(1)

= (1 + 1− nx−1)n−2x−1/2(1− 1 + nx−1)−n−1/2 + o(1)

= (1 + xx−1 − nx−1)n−2x−1/2(1− xx−1 + nx−1)−n−1/2 + o(1)

= (1− ωnx−1)2ωn−n−1/2(1 + ωnx
−1)−n−1/2 + o(1)

= (1− ωnn−1)2ωn(1− (ωnn
−1)2)−n−1/2 + o(1)

= (1− ωnn−1)2nωnn
−1

(1− (ωn
2n−1)n−1)−n−1/2 + o(1)

= e−2ωn
2n−1+ωn2n−1

+ o(1)

= e−ωn
2n−1

+ o(1)

as n → ∞. Now we see that if ωnn
−1/2 → 0 then the last expression

converges to 1, and if ωnn
−1/2 → ∞, the last expression converges to 0. If

ωnn
−1/2 → c, where c is a constant then the last expression converges to

e−c
2

as n→∞, which is strictly between zero and one.
This proves Proposition 3.2. �

Example 3.1 In the proof of proposition3.2 we get

P (A(1) = n | A(0) = n− ωn) = e−ω
2
nn
−1

(1 + o(1)).

We let ωn = n1−β, which yields

P (A(1) = n | A(0) = n− n1−β) = e−n
1−2β

(1 + o(1)).

(See figure 1.)
We have two values n = 103 (red) and n = 1012 (blue).
We obtain that the critical βc = 1/2 seems reasonable already for these finite
n.
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Figure 1: y(β) = e−n
1−2β

(1 + o(1)), n = 103(red), n = 1012(blue)

Example 3.2 We have

P (A(1) = n) =
n∑
j=0

P (A(1) = n | A(0) = j)P (A(0) = j). (12)

We use ideas of the proof of Theorem 3.1 Pehrsson [2].
Assume that

P (A(0) ∈ [n− n1−α+ε, n− n1−α−ε]) = 1− o(1))

for all ε > 0. This leads us to the expectation value EA(0) = n − n1−α in
(12).
We get

P (A(1) = n) =

n−n1−α−ε∑
j=n−n1−α+ε

P (A(1) = n | A(0) = j)P (A(0) = j) (13)

= e−n
1−2α

(1 + o(1)) = e−n(1−p)
2
(1 + o(1)).

This is the same as the conditional case with β replaced by α.
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4 An extended process

Here we extend the dynamics of activation beyond time τ = 1, considering
a generalization of the above model of Bootstrap Percolation on Zn. The
new process has parameters: m, s, p, where m is the number of steps, s is
the length of intervals which can percolate, and p is the probability of an
element to be one, or to be ”active” (we call it an external activation).

Let us introduce notation Ik for the inactie intervals (i.e., consecutive
vertices with value 0) defined as follows. Let x(τ) = (xi(τ))ni=1 be any
process defined at time τ with xi(τ) = 0 or 1 independent i.
Given a set

A(τ)

of active vertices at time τ , we define

A(τ) =| A(τ) | .

Consider the set of vertices

{v0}
⋃
A(τ)

⋃
{vn+1}

= {vj0 , vj1 , .., vjr , ..vjA(τ)+1
},

where 0 ≤ jr ≤ n+ 1
and ju > jv whenever u > v and 0 ≤ r, v, u ≤ A(τ) + 1.
Define I ′r = [0, jr] the interval (i.e., vertices i with value xi = 0, 1) between
0 and jr. We now define the intervals at time τ as

Ir = (I ′r+1 \ I ′r) \ {jr+1}

where 0 ≤ r ≤ A(τ).
We may let k = r + 1 and define Ik, 1 ≤ k ≤ A(τ) + 1.

Then given a set A(τ) we define for τ = 2h− 2 whenever 1 ≤ h ≤ m:

P (xi(τ + 1) = 1 | xi(τ) = 0) = p, (14)

P (xi(τ + 1) = 1 | xi(τ) = 1) = 1, (15)

independent for different i, and for τ = 2h− 1

xi(τ + 1) =

{
1, if i ∈ Ik :| Ik |≤ s,
xi(τ), otherwise,

(16)

where Ik = Ik(τ) as defined above, and 1 ≤ i ≤ n. The process starts with
the first step at τ = 1 and stops after the m-th step at τ = 2m.
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5 Results

We are interested in the probability that at the last step, we have complete
percolation. Here we classify the Bootstrap percolation in one dimension on
a strap Zn with respect to the initial conditions and the last step. More pre-
cisely we describe conditions for a complete percolation. In one dimensional
case it is sufficient to study the process at all steps. We will also show that
the percolation steps except the last percolation step can be omitted. We
give a rough sketch about the structure of the process.

Observe that we can separate the process in two parts: percolation and
randomizing. This leads to the following definition.

Definition 5.1 (External activation or updating)
Let x = (xi)

n
i=1 be a strap with xi ∈ {0, 1}.

Define a random vector

Rpx = Rp(xi)
n
i=1 = (Rp,ixi)

n
i=1 (17)

for 1 ≤ i ≤ n by

P (Rp,ixi = 1|xi = 1) = 1, (18)

P (Rp,ixi = 1|xi = 0) = p, (19)

independent for different i.

Definition 5.2 (intervals of a strap)
Let x = (xi)

n
i=1,where xi = 0 or xi = 1

Give a set
Ax

of active vertices in x define

Ax = |Ax|

We define Ir ⊆ V :
Let us consider the set of vertices

{xj0 = x0}
⋃
Ax
⋃
{xjAx+1 = xn+1}

= {vj0 = x0, vj1 , .., vjr , ..vjAx+1 = xn+1}

where 0 ≤ jr ≤ n+ 1 and ju > jv whenever u > v and 0 ≤ u, v, r ≤ Ax + 1
Define I ′r = [0, jr] the interval between 0 and jr of the whole strap.We now
define the intervals as

Ir = (I ′r+1 \ I ′r) \ {jr+1}

where 0 ≤ r ≤ Ax.
We may let k = r + 1 and define Ik ,1 ≤ k ≤ Ax + 1.
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Definition 5.3 (Percolator)
Let x = (xi)

n
i=1 be a vector with xi ∈ {0, 1}.

Then define an operator on x

Qsx = Qs(xi)
n
i=1 = (Qs,ixi)

n
i=1, (20)

where

Qs,ixi =

{
1, if i ∈ Ij such that |Ij | ≤ s
xi, otherwise

(21)

for 1 ≤ i ≤ n.

Definition 5.4 We define

[

m∏
j=1

(Q
kj
s

lj∏
i=0

R(i)
p )]x := [

m∏
j=1

(QsR
lj
p )]x,

where R
(0)
p = 1 and R

(i)
p , i > 0 are independent and defined from definition

5.1 Qs percolators and 0 ≤ kj , lj <∞

Let us derive now a useful representation of the process x(τ) defined above
using operators Rp and Qs.

Proposition 5.1 Let 0̄ = (0)ni=1

We have the following equalities in distribution

x(2m) = (QsRp)
m0̄, (22)

where
x(0) = 0̄, (23)

x(1) = Rp0̄, (24)

x(2) = QsRp0̄, (25)

and
x(2h− 1) = Rpx(2h− 2), (26)

x(2h) = Qsx(2h− 1), (27)

and at time τ = 2m
x(2m) = QsRpx(2m− 2) (28)

for all 1 ≤ h ≤ m.

The follwoing statement tells us that the distribution of our process is
same as the distribution of its following simplified version.
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Proposition 5.2 Let x = (xi)
n
i=1 and xi ∈ {0, 1} for all i, 1 ≤ i ≤ n Then

QsRpQsx
d
= QsRpx (29)

Here we get the information about how to rationalize the process.

Corollary 5.1 We have the following equality in distribution:

QsRpQsRpx
d
= QsRpRpx.

This statement can be generalized, which explanes further simplifications.

Proposition 5.3 We have the following equality in distribution:

(QsRp)
mx

d
= QsR

m
p x. (30)

This separates The Operators and collects the Randomizing parts on the
right.

We shall use the following definition and results on generating functions.
Consider | Ij | as unknown variables, then we have the equation system

m∑
j=1

| Ij |= r. (31)

We define

g(x) =

∞∑
r=0

arx
r

where ar is the number of solutions of (31) to be a generating function of
(31). We define

gj(x) =
∑

i∈Mj⊆N
xi,

where N = {0, 1, 2, 3......} as a generating factor. We regard the exponents
of gj(x) as values of the variables | Ij | in (31), which build up the set Mj .
We shall use the following result on generating functions for boxes.

Theorem 5.1 Function

g(x) =

m∏
j=1

gj(x)

is a generating function for all factors gj(x).

Lemma 5.1 For all ωn < n

P (A(1) = n | A(0) = n− ωn)

=

ωn/(s+1)∑
j=0

(−1)j
(
n− ωn + 1

j

)( n−j(s+1)
ωn−j(s+1)

)(
n
ωn

) . (32)
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Lemma 5.2 If ωn = o(n) we have(
n−ωn+1

j

)( n−j(s+1)
ωn−j(s+1)

)(
n
ωn

) =
aj
j!
,

Then

wj ≤ a
1
j

j = z ≤ n(
ωn

n− ωn
)s+1 = z2, (33)

where

wj =


z1 if 0 ≤ j ≤ ωγn

s+1

z1,j if ωγn
s+1 < j ≤ ωn

s+1

0 otherwise

(34)

with

z1 = (n− 2ωn)[
ωn − ωγn

n
]s+1

and

z1,j = (n− 2ωn)[
ωn − j(s+ 1)

n
]s+1

for 0 < γ < 1 and n large.

Proposition 5.4 Let
y(0) = Rp0̄

and
y(1) = Qsy(0).

Let A(t) be the number of ones in vector y(t), t = 0, 1. Then

P (A(1) = n | A(0) = n− ωn) = e−n(
ωn
n

)s+1
+ o(1).

The following Theorem is the main result here.

Theorem 5.2 Let p = 1− n−α. Then for any m ≥ 1
if α > 1

(s+1)m

P (A(2m) = n)→ 1 as n→∞,

while if α < 1
(s+1)m

P (A(2m) = n)→ 0 as n→∞.

This tells us that our process have very similar behavior like the one
step process with the same initial conditions. Based on these results one
can determine conditions for complete percolation for an m-step process.
Corollary 5.1 and Proposition 5.2 tells us that percolation process in the
first step can be omitted. Then Proposition 5.1 describes our given process
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in terms of operators. The Proposition 5.3 is a generalization of Proposition
5.2 in several steps. Theorem 5.1 contains a short description of the method
of generating function which is used in the first Lemma. Lemma 5.1, Lemma
5.2 and Proposition 5.4 give us the corresponding expression

P (A(1) = n | A(0) = n− ωn) = e−n(
ωn
n

)s+1

which generalizes the results in [2].

6 Discussion

Define as in Bollóbas et. al. [1]

Ppn(T < t) (35)

to be the distribution of the time T = T (T dn) of compleate percolation
on a torus under the d-neighbor bootstrap percolation model on Zd given
probability sequence pn which defines the elements of the torus. We will
compare this probability with the in one dimension with P (A(1) = n).
Define also as in Bollóbas et. al. [1]

pα(t) = inf{p : Pp(T ≤ t) ≥ α, }, (36)

where 0 < α < 1 is a constant. We want to compare Theorem 5.2 with a
result from Bollóbas et. al. [1], which we state here:

Theorem 6.1 Let d ≥ 2,let t = o(log n/ log log n), let (pn)∞n=1 be a sequence
of probabilities, let ω(n) → ∞, and let T = T (T dn). Under the standard d-
neighbor model,

(i) if, for all n, qn ≤ (n−d/ω(n))1/mt, then

Ppn(T ≤ t)→ 1

as n→∞;
(ii) if, for all n, qn ≥ (n−dω(n))1/mt, then

Ppn(T ≤ t)→ 0

as n→∞,
moreover, for any α ∈ (0, 1),

pα(t) = 1− (1 + o(1))

(
log( 1

α)

d32d−1nd

) 1
mt,d

.

17



Our conjecture is that the theorem holds for the case d = 1. We project
the torus on a ring Zn and adjust the parameters. We set t = 1 because it
defines our stopping time. Let (see [1] p3.-p4)

mt,d = ex(t, d) = minA⊂Zd{| Zd \A |: 0 /∈ At}. (37)

We use the result [1] that mt = mt,d = ex(t, d), and with Zd replaced by Zn
we have by (37)

m1 = ex(1, 1) = min
A∈Zn

{|Zn \A| : 0 /∈ A1}. (38)

This gives us m1 = 2. We get then from Theorem 6.1 (i):

1− pn = qn ≤ (n−1/ω(n))
1
2 = n−

1
2 e−

1
2
log(ω(n)) = n−

1
2n−φ(n),

where φ(n) > c/ log(n) for any positive real constant c.
If qn = n−2γ Theorem 6.1 (i) implies that γ > 1/4 and Ppn(T ≤ 1)→ 1

as n→∞.
On the other hand, by Theorem 6.1 (ii) we have

qn ≥ (n−1ω(n))
1
2 = n−

1
2 e

1
2
log(ω(n)) = n−1/2nφ(n).

Hence, if qn = n−2γ , we should have γ < 1/4, and in this case

Ppn(T ≤ 1)→ 0

as n→∞.
We further estimate pα(1) from

Ppn(T ≤ 1) = P (A(1) = n) = e−(1−p)
2n(1 + o(1)), (39)

which is derived from example 3.2. From (36) we get

pα(1) = inf{p : P (A(1) = n) ≥ α}, (40)

where 0 < α < 0 is a constant. We define χ(p) = P (A(1) = n) which by
(39) is a monotone increasing function of p. We have χ(0) = e−n + o(1)
and χ(1) = 1 + o(1). Then 0 < α < 1 cut the function somewhere between
0 < p < 1 and this must be the lowest limit which preserves the condition
P (A(1) = n) ≥ α in (40).

So we do only study the case when

P (A(1) = n) = α. (41)

We solve the equation P (A(1) = n) = α by using

P (A(1) = n) = e−n(1−p)
2
(1 + o(1))
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from (39), which yields

e−n(1−p)
2
(1 + o(1)) = α.

Hence,
−n(1− p)2 = log(α(1 + o(1))−1)

⇔ (1− p) = [n−1[log(
1

α
) + o(1)]]

1
2

⇔ (1− p) = [n−1 log(
1

α
)[1 +

o(1)

log( 1
α)

]]
1
2 ,

and therefore

(1− p) = [1 + o(1)]
1
2 [n−1 log(

1

α
)]

1
2 .

Since (1 + o(1))1/2 = 1 + o(1), we derive

p = 1− (1 + o(1))[n−1 log(
1

α
)]

1
2

Then from (40) we get

pα(1) = 1− (1 + o(1))(
log( 1

α)

n
)
1
2 . (42)

Theorem 6.1 agrees with Theorem 5.2 in one dimension in the special
case when m = 1 as well as the Theorem 3.1.
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7 Proofs

7.1 Properties of straps

We suppose that the operators act on strapsm, and we derive some obvious
properties.

Let
x = (xi)

n
i=1 (43)

be a strap, let j ∈ Z+ and

wj = (xi)i∈Tj , (44)

where Tj ⊆ {1, 2, 3, . . . , n} = N . Then w1 ⊆ w2 if and only if T1 ⊆ T2 and

w2 \ w1 = (xi)i∈T2\T1 , (45)

w1

⋃
w2 = (xi)i∈T1

⋃
T2 , (46)

w1

⋂
w2 = (xi)i∈T1

⋂
T2 . (47)

7.2 Proof of Proposition 5.1

We study the process at time τ = 2h−1. We define x(2h−1) = Rpx(2h−2)
and then

P (xi(2h− 1) = 1 | xi(2h− 2) = 1) = 1, (48)

P (xi(2h− 1) = 1 | xi(2h− 2) = 0) = p. (49)

We define x(2h) = Qsx(2h− 1), and then

xi(2h) =

{
1, i ∈ {Ij : 0 < |Ij | ≤ s}
xi(2h− 1), otherwise

(50)

where Ij = Ij(2h − 1) and 1 ≤ j ≤ A(2h − 1). We start at time τ = 0 and
stop at τ = 2m. This completes the proof. �

7.3 The Union of Intervals

We define following sets and vectors.

ix = Index(x) = {i : xi ∈ x}. (51)

In particular, for a vector x = (xi)i∈S⊆N , where N = {1, 2, 3, .., n}, we have

ix = S.

Write
Ones(x) = (xi = 1)i∈ix , (52)
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Zeros(x) = (xi = 0)i∈ix . (53)

Let x = (xi)i∈S . Then Ones(x) is the subvector of x containing only ele-
ments of xi = 1, and Zeros(x) is the subvector of x containing only elements
of xi = 0.

Let x = (xi)
n
i=1, where xi = 0 or xi = 1, and let Ik be the intervals given

by Definition 5.2. Then we set Is,k = Ik if 0 < |Ik| ≤ s. Now define

V = Vs,x =

Ax+1⋃
k=1

Is,k

and
Us,x = xV , (54)

which will be our fundamental tool in the proof of the Proposition 5.2.

7.4 Proof of Proposition 5.2 and Corollary 5.1

Now we must regard Rp acting identical in the both sequences in (29) in
the beginning. Then we let them be independent and they will be equal in
distribution, since all Rp have the same distribution from the Definition 5.1.

We start to compare the two sequences in this way.
We start the sequence on the right side of (29) from

x = Us,x
⋃

(x \ Us,x), (55)

and the left side of (29) from

Qsx = QsUs,x
⋃

(x \ Us,x). (56)

The right side of (29) from the first step

Rpx = RpUs,x
⋃
Rp(x \ Us,x). (57)

The left side of (29) from the first step

RpQsx = RpQsUs,x
⋃
Rp(x \ Us,x). (58)

The right side of (29) from the second step

QsRpx = QsRpUs,x
⋃
QsRp(x \ Us,x). (59)

The left side of (29) from the second step

QsRpQsx = QsRpQsUs,x
⋃
QsRp(x \ Us,x). (60)
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From the definition of Qs it follows that it only can change the value of
the elements x′i = Qsxi. That means that Index(Qsw) = Index(w). The
same property has Rp. Index(Rpw) = Index(w). They are both defined
elementwise.
Then

Index(QsUs,x) = Index(Us,x) = U (61)

since Us,x is a subset of x.
By the definition it follows that

x \QsUs,x 6= x \ Us,x = (xi)i∈N\U . (62)

If and only if they have the same value of all elements in the two sets we
will regard such two sets equal.
It remains to show that

QsRpQsUs,x = QsRpUs,x = QsUs,x. (63)

Since QsUs,x only consists of elements xi = 1, it follows from the definition
of Rp and Qs that QsRpQsUs,x = QsUs,x. We claim that

Us,RpUs,x
⋃
Ones(RpUs,x) = RpUs,x (64)

and
Us,RpUs,x

⋂
Ones(RpUs,x) = ∅ (65)

since
Us,RpUs,x = Zeros(RpUs,x). (66)

Rp change the value of elements of zero in Us,x to elements of ones, we will
still have a union of intervals of length, smaller or equals to s.
This property implies (63).
On the other hand

QsRpUs,x = Qs(Us,RpUs,x
⋃
Ones(RpUs,x)) (67)

= QsUs,RpUs,x
⋃
QsOnes(RpUs,x).

Then again by their definition Rp and Qs, are ”onto” operators, defined
element wise, but Qs depends on the intervals Ij . This means that it depends
on elements outside a given element it acts on. If we let Qs act on sets of
elements of entire intervals, then it acts equal on all such a set. Both sets
in the union of (67) consist only of elements xi = 1,since all | Ij |≤ s. The
union has the same indexset Index(QsRpUs,x), which equals Index(Us,x) ,
since the two operators are ”onto”. This implies

QsUs,RpUs,x
⋃
QsOnes(RpUs,x) = QsUs,x. (68)
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Then the statement of the proposition follows immediately. Now the state-
ment is true for identical Rp acting equal in both sequences of (29) in distri-
bution. Let Rp and R′p be two not identical operators satisfying Definition
5.1, which implies

w
d
= QsRpQsx

d
= QsR

′
pQsx

d
= QsRpx. (69)

This completes the proof. �

7.5 Proof of Corollary 5.1

Put x = Rpy in the Proposition 5.2 and the corollary follows immediately.
This completes the proof. �

7.6 Proof of Proposition 5.3

We prove it by induction over m, for m = 2 we can apply Corollary 5.1 so

y
d
= QsRp(QsRp)

mx (70)

and by the induction assumption

y
d
= QsRpQsR

m
p x. (71)

This can be written by Corollary 5.2

y
d
= QsRpR

m
p x (72)

y
d
= QsR

m+1
p x (73)

and the proposition follows by induction.
This completes the proof. �

7.7 Proof of theorem 5.1

We prove it by induction.
If

| I1 |= r,

then by the definition

g(x) = g1(x) =
∑

i∈M1⊆N
xi

ar = 1 if and only if | Ij |= r is the only solution. So the statement holds
for m = 1.
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We assume it holds for m ≥ 1, and derive that it holds for m + 1.
Consider

m+1∑
j=1

| Ij |= r (74)

We rewrite it as
m∑
j=1

| Ij |= r− | Im+1 | .

By the induction assumption there exist a generating function g′(x) such
that

coefficient(g′(x), xr−|Im+1|) = ar||Im+1|.

The right side is the number of solutions of (74) given | Im+1 |. It can be
rewritten as

coefficient(g′(x)x|Im+1|, xr) = ar||Im+1|.

Now denote | Im+1 |= i and make following summation and use the definition
on the right side. ∑

i∈Mm+1

coefficient(g′(x)xi, xr)

= coefficient(g′(x)
∑

i∈Mm+1

xi, xr)

= coefficient(g′(x)gm+1(x), xr) =
∑

i∈Mm+1

ar|i

= ar|i∈Mm+1

since no solutions are equal for different choice of i. Then g(x) = g′(x)gm+1(x)
is a generating function and gm+1(x) is a generating factor for any choice of
Mm+1. Then the theorem follows by induction.
This completes the proof. �

7.8 Proof of the Lemma 5.1

We consider the intervals:

A(0)+1∑
j=0

| Ij |= n−A(0), (75)

where
| Ij |≤ s, (76)

and
A(0) ∼ Bin(n, p). (77)
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First we assume that A(0) = y = n − ωn, i.e., non-random. Every solution
(vector) of (75) has equal probability py(1 − p)n−y. We have totally

(
n
y

)
solutions with this probability. We will define P (A(1) = n | A(0) = n− ωn)
as the quotient between the number of solutions under (76) and the total
number of solutions. To estimate the solutions under (76) we use the method
of generating function ( see [3], p80-p86). From (76) and (75) we obtain the
generating function

f(z) = (1 + z + ..zs)n−ωn+1 = [(1− zs+1)(1− z)−1]n−ωn+1

=

n−ωn+1∑
j=0

(
n− ωn + 1

j

)
(−1)jz(s+1)j

∞∑
r=0

(
r + n− ωn

r

)
zr.

The coefficient of zωn yields

g(z) =
∑

r+(s+1)j=ωn

(
n− ωn + 1

j

)
(−1)jz(s+1)j

(
r + n− ωn

r

)
zr

=
∑

r+(s+1)j=ωn

(
n− ωn + 1

j

)
(−1)jz(s+1)j

(
r + n− ωn

r

)
zr,

which implies

=

ωn
s+1∑
j=0

(
n− ωn + 1

j

)
(−1)jz(s+1)j

(
n− j(s+ 1)

ωn − j(s+ 1)

)
zωn−j(s+1)

=

ωn
s+1∑
j=0

(
n− ωn + 1

j

)
(−1)j

(
n− j(s+ 1)

ωn − j(s+ 1)

)
zωn .

This gives us

P (A(1) = n | A(0 = n− ωn) = g(1)/

(
n

ωn

)

=

ωn
s+1∑
j=0

(
n− ωn + 1

j

)
(−1)j

( n−j(s+1)
ωn−j(s+1)

)(
n
ωn

) .

This completes the proof �

7.9 Proof of Lemma 5.2

We have by Lemma 5.1

aj
j!

=

(
n−ωn+1

j

)( n−j(s+1)
ωn−j(s+1)

)(
n
ωn

)
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=
(n− ωn + 1)!(n− j(s+ 1))!ωn!

j!(n− ωn − j + 1)!n!(ωn − j(s+ 1))!

=
1

j!

j−1∏
i=0

(n− ωn − i+ 1)

j(s+1)−1∏
i=0

ωn − i
n− i

.

Then

z1 = (n− 2ωn)[
ωn − ωγn

n
]s+1,

where 0 ≤ j ≤ ωγn
s+1 and large n.

z1,j = (n− 2ωn)[
ωn − j(s+ 1)

n
]s+1,

where ωγn
s+1 ≤ j ≤

ωn
s+1 and

z2 = n[
ωn

n− ωn
]s+1,

where 0 ≤ j ≤ ωn
s+1 and 0 < γ < 1. We easily see that that (33) and (34)

are satisfied.
This completes the proof. �

7.10 Proof of Proposition 5.4

We conclude from Lemma 5.2 that

z1 = (n− 2ωn)[
ωn − ωγn

n
]s+1

for 0 ≤ j ≤ ωγn
s+1 , and

z1,j = (n− 2ωn)[
ωn − j(s+ 1)

n
]s+1

for ωγn
s+1 ≤ j ≤

ωn
s+1 is the lowest bound of a

1
j

j , while

z2 = n[
ωn

n− ωn
]s+1

is the highest bound of a
1
j

j .
We shall use the Taylor-Maclaurins theorem, which states that

n∑
j=0

f (j)(0)xj

j!
+
f (n+1)(θx)xn+1

(n+ 1)!
= f(x), (78)

where 0 < θ < 1.
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We study first the upper bound. By Lemma 5.2 and Maclaurins theorem
(78)

P (A(1) = n | A(0) = n− ωn) ≥
mn=

ωn
s+1∑

j=0

(−1)jzj2
j!

+Rmn(z2).

We claim that the all rest terms are o(1). Therefore

P (A(1) = n | A(0) = n− ωn) ≥ e−z2 + o(1)

Then similar for the lower bound.

P (A(1) = n | A(0) = n− ωn) (79)

≤
m′n=

ω
γ
n

s+1∑
j=0

(−1)j
zj1
j!

+

mn=
ωn
s+1∑

j=m′n+1

(−1)j
zj1,j
j!
.

Consider the right term in right side of (79)

|
mn∑

j=m′n+1

(−1)jzj1,j
j!

|≤
mn∑

j=m′n+1

zj2
j!

= R̃m′n(z2)− R̃mn(z2).

We claim that all the restt erms vanish under a given condition. Our con-
clusion is

P (A(1) = n | A(0) = n− ωn) ≤ e−z1 + o(1).

We are left to show that all the restterms vanish when n goes to infinity.
All the restterms is of the form Rm(z) = eθzzm/m!, where 0 < θ < 1 and
z positive or negative. It is quite easy to see that if the quotient z/m → 0
when m→∞ then the rest term vanishes. We use that mn →∞ as n→∞.
It is enough to study n(ωn/n)s+1/m′n in the case 0 < γ ≤ 1. We substitute
ωn = n1−β and m′n = ωγn. We study the exponents and when they are
negative. We get

1− β(s+ 1)− (1− β)γ < 0

which give us
1− γ

s+ 1− γ
< β

so we can choose γ arbitrary near one and one and all of our restterms will
vanish for β > 0. Since

z1 = (n− 2ωn)(
ωn − ωγn

n
)s+1

= n(
ωn
n

)s+1(1− 2ωnn
−1)(1− ωγ−1n )s+1
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= n(
ωn
n

)s+1 − o(n(
ωn
n

)s+1)

and
z2 = n(

ωn
n− ωn

)s+1 = n(
ωn
n

)s+1(1− ωn
n

)−(s+1)

= n(
ωn
n

)s+1 + o(n(
ωn
n

)s+1),

the Proposition 5.4 follows. �

Example 7.1 As in Example 3.1 from Proposition 5.4 , we get from

P (A(1) = n | A(0) = n− ωn) = e−n(ωn/n)
s+1

(1 + o(1))

P (A(1) = n | A(0) = n− n1−β) = e−n
1−(s+1)β

(1 + o(1)) (80)

shown in figure 2.
We can easily see the critical βc = 1/(s+ 1) for s = 1, 3, 7, 15.

Figure 2: y(β) = e−n
1−(s+1)β

(1 + o(1)), s = 1(red), s = 3(blue), s =
7(yellow), s = 15(green)
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7.11 Proof of Theorem 5.2

Let p = 1− n−α. Proposition 5.3 implies

x(2m) = QsR
m
p 0̄ (81)

for m ≥ 1, and
x(2m− 1) = Rmp 0̄. (82)

Consider
P (xi(2m− 1) = 0) = P (Rp,i

m0 = 0) (83)

= P (Rp,i
00 = 0)

m∏
k=1

P (Rp,i
k0 = 0|Rp,ik−10 = 0)

= (1− p)m.

Hence,
P (xi(2m− 1) = 1) = 1− (1− p)m. (84)

Then we reduce the process to a one step process

y(1) = Q1R1−(1−p)m 0̄ = x(2m) (85)

y(0) = R1−(1−p)m 0̄ = x(2m− 1). (86)

Let p = 1− n−α and regard a one step process y(τ) for m = 1. We have
following model for percolated combinations

A(0)+1∑
j=1

| Ij |= n−A(0) (87)

| Ij |≤ s (88)

A(0) ∼ Bin(n, p) (89)

By Lemma 5.1, we get

f(ωn) =

ωn
s+1∑
j=0

(−1)j
(
n− ωn + 1

j

)( n−j(s+1
ωn−j(s+1)

)(
n

n−ωn
) (90)

where f(ωn) = P (A(1) = n | A(0) = n− ωn). By Lemma 5.2, we get

f(ωn) =

ωn/(s+1)∑
j=0

(−1)j
aj
j!

with z1,j ≤ a1/jj ≤ z2 , where

z1 = (n− 2ωn)(
ωn − ωγn

n
)s+1
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for 0 ≤ j ≤ ωγn/(s+ 1) and

z1,j = (n− 2ωn)(
ωn − j(s+ 1)

n
)s+1

for ωγn
s+1 ≤ j ≤ ωn

s+1 and z1 ≤ z1,j in the defined region for z1. This is the
lower bound.

z2 = n(
ωn

n− ωn
)s+1

for 0 ≤ j ≤ ωn/(s+ 1) and this is the upper bound. We use Proposition 5.4
and get

P (A(1) = n | A(0) = n− ωn) = e−n(
ωn
n

)s+1
(1 + o(1)) (91)

We insert ωn = n1−β in (91).
This impies

P = P (A(1) = n | A(0) = n− ωn) = e−n
1−β(s+1)

(1 + o(1)))

β < 1
s+1 implies P → 0 as n→∞

and β > 1
s+1 implies P → 1 as n→∞. Now we replace ωn in the proposition

3.2 in [2] by ωn = n1−
1
s+1 and change Theorem 3.1 in [2] by replacing the

critical α by αc = 1
s+1 , our responsibility to Theorem 5.2 and apply the

proof of theorem 3.1 with this changes. This will prove Theorem 5.2 for
m = 1.
More in details. The proof of the theorem 3.1 implies

P (A(0) < n− ωn) ≤ en(1−p)α−ωnα(1 + o(1)) (92)

and
P (A(0) > n− ωn) ≤ eωnα−n(1−p)α(1 + o(1)) (93)

where α > 0 is small.
From proposition 5.4 let ωn = n1−

1
s+1 . Then by (92) and (93), we get

α >
1

s+ 1
+ ε⇒ P (A(1) = n) =

n∑
i=0

P (A(1) = n | A(0) = i)P (A(0) = i)

=

n∑
i=n−n1− 1

s+1−ε
′

P (A(1) = n | A(0) = i)P (A(0) = i) + o(1) = 1− o(1)

and

α <
1

s+ 1
− ε⇒ P (A(1) = n) =

n∑
i=0

P (A(1) = n | A(0) = i)P (A(0) = i)
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=

n−n1− 1
s+1+ε′∑

i=0

P (A(1) = n | A(0) = i)P (A(0) = i) + o(1) = o(1)

for arbitrary small ε > ε′ > 0
This Prove Theorem 5.2 for m = 1.
We can also reason like this.
By study ωn = n1−α (instead of ωn = n1−

1
s+1 ) This proof of the theorem

3.1 ,by the limits of(92) and(93) also provides the information

P (A(0) ∈ [n− n1−α+ε, n− n1−α−ε]) = 1− o(1)

for all ε > 0. Combining this with Proposition 5.4 , we get

P (A(1) = n) = EP (A(1) = n | A(0)) =

n∑
i=0

P (A(1) = n | A(0) = i)P (A(0) = i)

=
n−n1−α−ε∑
i=n−n1−α+ε

P (A(1) = n | A(0) = i)P (A(0) = i)(1− o(1))

= P (A(1) = n | A(0) = np)(1− o(1)) = e−n(1−p)
s+1

(1− o(1)),

which also gives a critical αc = 1
s+1 also for m = 1.

By (84) this result is generalized to αc = 1
(s+1)m for the extended process.

This completes the proof. �

Example 7.2 As in Example 3.2 we can do the same procedure with

P (A(1) = n | A(0) = EA(0)) = e−n
1−(s+1)α

(1 + o(1))

and get

P (A(1) = n) = e−n
1−(s+1)α

(1 + o(1))

= e−n(1−p)
s+1

(1 + o(1))
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7.12 Discussion

Here we discuss some heuristic proof of Theorem 5.2, which uses the fact
that the length of the (inactive) intervals are independent asymptotically
distributed. Locally it can be shown that each interval I followed by an
element of one is Ge(p)-distributed, P (| I |= k) = (1 − p)kp, where I = Ij
is one of the A(0) + 1 intervals. If we denote Nj − 1 =| Ij |, where 1 < j <
A(0) + 1 then we use

A(0)+1∑
j=1

(Nj − 1) = n−A(0), (94)

where A(0 the number of elements of one, and Nj − 1 is the number of
zeros in one interval, both are depending random variables. If we estimate
A(0) = np taken from example 3.2 we loose the random property on the
right side of (94). Therefore we can only estimate the left side

A(0)+1∑
j=1

(Nj − 1)

by
np+1∑
j=1

(Nj − 1)

and claim it is asymptotic correct. Now

φn−A(0)(s) = Eeis(n−A(0)) = (p+ (1− p)eis)n = en(1−p)(e
is−1)(1 + o(1))

when p = 1− n−α and

φ∑np+1
j=1 (Nj−1)(s) = Eeis

∑np+1
j=1 (Nj−1) = Eeis

∑np+1
j=1 Nj−(np+1)is

= e−(np+1)is(peis(1− (1− p)eis)−1)np+1 = (p(1− (1− p)eis)−1)np+1

= en(1−p)(e
is−1)(1 + o(1)).

However, we do not know if the solution is unique. Let us see if we can use
the result of Theorem 5.2. By example 7.2, we construct following.

Example 7.3 Let | Idjt+t |≤ st for a fix integer d > 1 , 0 ≤ t ≤ d − 1 and
0 ≤ jt ≤ dn−td e be our percolation conditions. Define

At(τ) =| {xj(τ) = 1 : j ∈
dA(0)−t

d
e⋃

k=0

(Idk+t
⋃
{ max
i∈Idk+t

i+ 1})} | .
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We define

Bt = {i : i ∈
d(A(0)−t)/de⋃

k=0

(Idk+t
⋃
{ max
i∈Idk+t

i+ 1})} (95)

and

n =|
d−1⋃
t=0

Bt |=
d−1∑
t=0

| Bt |, (96)

where all sets Bt are disjointed. If the set consists of the last interval, we
set maxi∈I i+ 1 = ∅ for that interval. Suppose,

P (A(1) = n) =
d−1∏
t=0

P (At(1) =| Bt |) + o(1).

We assume from (96) that all | Bt | are asymptotic equiprobable and therefore

| Bt |∈ Bin(n, 1/d).

Then E | Bt |= n
d and V ar(| Bt |) =

n(1− 1
d
)

d . By the Chebyshev’s inequality

P (|| Bt | −E | Bt ||> nε+1/2) ≤ V ar | Bt |
n1+2ε

≤ n

n1+2ε
≤ n−2ε → 0

as n→∞ for all ε > 0. Hence

| Bt |=
n(1 + o(1))

d
.

We have P (At(1) = n
d + o(n)) = P (At(1) = n

d ) + o(1) by example 7.2, where

o(n) ≈ n1/2. We expect the same contribution of all elements of zero for all
the intervals, so the approximation

P (A(1) = n) =
d−1∏
t=0

P (At(1) =
n

d
) + o(1) =

d−1∏
t=0

e
n
d
(1−p)st+1

+ o(1) (97)

is supposed to hold by symmetry of the intervals. Then

d−1∏
t=0

(1− (1− p)st+1)
n
d + o(1) =

d−1∏
t=0

P (| I |≤ st)
n
d + o(1)

which indicates asymptotically independence of the probability of the length
of the intervals.
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This is of course not a complete argument but it tells us about the nature
of the intervals.

Another interesting aspect is whether the result holds with cyclic condi-
tion. It is enough to study the case when m = 1. In a ring we have

P (A(1) = n | A(0) = n−ωn) = P (A(1) = n | A(0) = n−ωn, x1 = 0)P (x1 = 0)

+P (A(1) = n | A(0) = n− ωn, x1 = 1)P (x1 = 1)

= P (A(1) = n | A(0) = n− ωn, x1 = 1) + o(1)

= P ∗(A(1) = n− 1 | A(0) = n− 1− ωn−1) + o(1),

where P ∗ is a probability of a strap with noncyclic conditions. Therefore
the asymptotically behavior is the same for cyclic and noncyclic conditions.
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Figure 3: α = 0.20

Figure 4: α = 0.25
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8 Simulations

8.1 Numerical support for Theorem 5.2

We simulated the case s=1, t=2,the same as the Theorem 5.2 by using the
following algoritm:
y = Qs(Rp)

2x0 1.We start with x0 = (0)ni=1 then we randomize all elements
of zero.
2.We randomize all the elements of zero again
3.We percolate the elements of zero.
and by QsRpQsRpx0
1.We start with x0 = (0)ni=1 then we randomize all elements of zero.
2.We percolate the elements of zero.
3.We randomize all the elements of zero again.
4.We percolate the elements of zero.
Both algorithms implies the same results.

8.2 Results

Figure 5: α = 0.30

We used n=100 and made 100 realizations for α = 0.20, 0.25, 0.30. We
plot the number of complete percolated realizations quoted with the number
of realizations against the number of realizations and get the ”asymptotic
probability of percolation”. This frequency converges quite slowly but the
trend is visible for n = 100.
If we start with α = 0.2 (Figure 3), we see a vanishing trend and conclude

that the critical α is higher than 0.2.

At α = 0.3 the last picture (Figure 5), we see that the trend is rising and
can conclude that the critical α is lower than 0.3.
At α = 0.25 the middle picture (Figure 4), the trend is almost horizontal.

We therefor conclude that this is nearby the critical α. The convergence
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Figure 6: α = 0.19

speed in our simulator is quite low to run on small computers. We construct
a simulator for a s, 1 − processes and ran it for s = 4, where we expected
αc = 0.2 by theorem 5.2.

In figure 6 the frequency seems low at 0.25 for α = 0.19 in the critical
zone.

In figure 7 the frequency is about 0.5 for α = 0.20 also in the critical zone.

In figure 8 the frequency is about 0.6 for α = 0.21 also in the critical
zone.We used N = 10000.

It is a quite slow convergence speed in both simulations but indicate
critical α to be the middle α in both simulations.

Figure 7: α = 0.20
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Figure 8: α = 0.21
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