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Abstract 

 
The main aim of this project was to peel off the epitaxially grown nanowires (NWs) 

from their native substrate and transfer them to the cheaper carrier substrate in order 

to make solar cell device from transferred NWs. Potentially the peeling and 

transferring idea is about to decrease the cost of NWs growth by reusing the native 

substrate especially for expensive material such as InP and GaAs which are suitable 

materials for single junction solar cell. Two different kinds of polymers, PDMS and a 

SolOne
TM 

were used in this work as a membrane to peel off the NWs. Successful 

peeling was achieved which provides an opportunity to make photoluminescence and 

absorption measurements on ordered arrays of NWs embedded into membrane.  

 

Transmission and reflection measurements were done on NWs embedded in 

membrane, after peeling, in order to experimentally measure the absorption through 

the ordered array of NWs without any contribution of the substrate. To fabricate a 

solar cell device from peeled off NWs, an ordered array of NWs with 2500 nm in 

length and 180 nm diameter with 400 nm of pitch was used. After peeling, the back 

contact was applied to the back of the membrane by metal deposition, and the 

membrane was bonded to the carrier substrate (silicon wafer was used in this projects) 

from the backside. After planarization, two different sizes of top contact were defined 

by photoresist spinning and lithography. Indium tin oxide (ITO), which is the 

transparent conductive oxide, was deposited on the top of the NWs as top contact.  

 

I-V measurements under dark and illumination, which was provided by solar 

simulator, were performed to observe the fabricated device performance.   
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1.  Introduction  

 

 
Nanotechnology has received huge attention recently by exhibiting novel properties 

and capability of manipulating the materials in order to tailor their properties for 

broad range of applications in different fields of science such as organic chemistry, 

molecular biology and semiconductor physics.  This new field of science still needs 

much more research and work on the synthesis of nanomaterials, new characterization 

methods and tools and device fabrication techniques to improve knowledge of 

nanosystems and development mechanisms before getting into industrial 

manufacturing [1][2].  

 

The main aim of this project was investigation and developments of techniques to 

peel off nanowire arrays from native substrates, which act as a carrier substrate after 

growth, and transfer them to another cheap carrier substrate such as silicon (Si) or 

glass. NWs should be processed vertically, and include contact formation for solar 

cell fabrication. This work is including optical and electrical characterization of 

peeled off NWs by conventional techniques such as spectroscopy, photoluminescence 

and current-voltage measurement to evaluate the physical properties of the device and 

also the capability of this peel off method. This idea helps to reduce the production 

cost of nanowire solar cells or any other devices defined by NW arrays, for instance 

nanowire LEDs, by reusing the native substrate after peeling and also some more 

application by making devices flexible. 

 

Nanowires are a new class of materials, where the wire is in nano scale with diameter 

variation from tens of nanometers to hundreds of nanometers and length from few 

micrometer to hundreds of micrometer. The geometric design and properties of the 

nanowire make it a really good candidate for novel electronic and optoelectronic 

devices [3][4]. A broad range of material compositions can be grown 

heteroepitaxially in NW form due to efficient strain relaxation via the free surface [5], 

which is not possible for bulk and thin-film geometry. There are two main different 

approaches of nanowire synthesis; top-down approach where the bulk substrate will 

be selectively etched down to form the nanowires, and the bottom-up approach where 

nanowires will be formed by epitaxial growth, layer by layer, on the substrate 

[6][7][8]. 
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2.  Background 
 
 

2.1 Solar Power, the only long-term solution  
 
 

On the one hand, increasing consumption of electrical power, and on the other hand 

diminishing of the fossil fuel supply (which is the main source of energy to produce 

electricity in generators) have enforced human civilization to find good alternative 

sources to produce electricity that can also provide their increasing power demand in 

next few decades. During the last century the consumption of finite reserves fossil 

fuel greatly increased, just Oil consumption increased from 1.53 Gt in 1965 to 3.93 Gt 

in 2008 [9]. According to Central Intelligence Agency all already known oil reserves 

will be run out by 2052 if current rate of oil consumption goes on without considering 

population and consumption growth [9]. Even by considering coal and gas deposits 

we can carry on until 2088. Figure 2.1(a) shows the amount of already known oil, 

coal and gas reserves versus years; these reserves will be run out earlier since rate of 

power consumption is not standing still. 

Global Warming is the other huge issue that the human civilization faces, and 

greenhouse gases are the main cause of that; Carbon dioxide (CO2) is one of these 

gases that is mainly produced by burning fossil fuel. Burning that huge amount of 

fossil fuel emits a huge amount of CO2 just in 2012, 31.6 Gt of CO2 was released by 

fuel [10][11]. 

 

Renewable energy is a promising way that fits with two above-mentioned issues. 

Currently just only 19% of the global power production is provided by renewable 

energy mainly from traditional biomass (9.3%) and modern renewable energy (9.7%) 

such as wind, solar and hydro power [12]. 

Solar energy is one of these renewable energies with huge capacity to provide all of 

our power demand for future. Worldwide electrical power production at 2011 was 

2.3x10
12

 W, while we receive 100,000 times more solar power from the sun. The 

capacity of this source of energy is incomparable to other terms of renewable energy 

and even fossil fuel and nuclear energy, which is shown in figure 2.1(b) [13]. 

 

Photovoltaics (PV) is one of the several methods to harvest solar energy by 

converting solar radiation to the most popular forms of energy: electricity. By only 

covering 40% of earth Sahara’s surface (0.16% of earth’s surface) by photovoltaic 

cell with 10% in efficiency [13], more than our current annual power consumption 
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could be harvested from solar power. In a sharp contrast to this huge potential of PV 

the total global operating capacity was 100 GW in 2012 [12], which is still less than 

0.1% of the total global generated electrical power.  

The main reason of this low contribution of PV in global electricity production is the 

cost of electricity produced by PV, which is still expensive as compared to other 

methods of electricity production. High efficient solar cells are too expensive and the 

cheap solar cells do not have sufficient efficiency to be competitive. There is still 

room for development and research to reduce the cost of solar electricity, either by 

boosting efficiency or by reducing cost of production. The other problem is unstable 

performance during day in which efficiency dramatically drops at cloudy weather and 

during night. 

 

 

 

 
 

2.2 III-V Solar Cell 
 

Flexible combination of III-V materials from binary to quaternary compounds, with 

variation in bandgap makes them suitable to be tailored for solar spectra, figure 2.2 

(a) and also suitable characteristics such as high absorption coefficient, carrier 

mobility and large diffusion length principally make III-V materials suitable materials 

for most efficient photovoltaic cells [16]. III-V solar cells are also the most expensive 

photovoltaics, low profusion of elements (such as Ga and In) and complexity of 

synthesis and fabrication are the main reasons of cost [14][15]. 

GaAs and InP are two suitable materials for high efficient single junction III-V solar 

cells due to their bandgap value, which is close to the bandgap of the most highest 

efficient single junction solar cell based on Shockley-Queisser limit as it is illustrated 

in figure 2.2(b) [17]. 

 But the biggest disadvantage of planer III-Vs is the relatively high production cost. 

To reduce the production cost thin film solar cells were designed and developed but 

suffer from complexity of growth on cheap substrate and photon absorption [21][23]. 

  

a) b) 

Figure 2.1: a) Fossil fuel energy reserves based on current consumption. b) Annual solar energy in 
comparison other energy reserves and annual global energy consumption. INTERNATIONAL ENERGY 
AGENCY. Energy Technology Perspective. IEA, 2008. 
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2.3 Nanowire Solar Cell 
 
 
 

After planar wafer-based and thin-film solar cells, nanowire solar cells have received 

great interest of researchers in the last decade for next generation of solar cells. 

Ability of tailoring materials properties in nanoscales is one of the key motivations for 

this huge interest. Strong light absorption due to extreme light trapping and high 

scattering trough NWs with inherent anti-reflection properties [18][19], and efficient 

carrier collection due to small scale size and geometrical design of NWs have proved 

the potential of NWs solar cells to approach the standard theoretical limits with lower 

quantity and quality of material [20][21]. 

 

Planar single junction solar cells generally have thicknesses between 200-500 μm, and 

are quite thick compared to thin film solar cells especially for Si which has indirect 

bandgap. Consequently the diffusion region is much thicker (200-250 μm for silicon 

solar cells) compared to the active region [22]. High efficient planar solar cells 

require high quality material to have long carrier mobility and lifetime, so planar cells 

require much more material with high quality besides the complexity of the growth 

due to lattice mismatched increases severely the cost of production. Generally, NW 

solar cells can be designed with three different kinds of junctions; radial junction, 

axial junction and substrate junction [21] as illustrated in figure 2.3. Principally, radial 

junction has more advantages compared to axial and substrate junction due to 

orthogonalization of light absorption and carrier separation direction [21]. Generally 

the minority carrier diffusion length for radial junction NW is ~1 μm, for axial 

junction 2-20 μm for silicon NW, which is much smaller than for planar solar cells 

[23]. 

(a) (b) 

Figure 2.2: a) Lattice mismatch with relevant energy bandgap for major III-V 
materials in comparison with solar radiation spectra at sea level. b) Shockley-

Queisser efficiency limit versus energy band gap, GaAs and InP are suitable materials 

for high efficient solar cell. The SolarWiki. 
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Recently it has been shown by J.Wallentin et al. that a NW array consisting of NWs 

with 1.5 μm length, 180 nm diameter and 12% covering area with 500 nm pitches 

achieved 13.8% efficiency whilst the record for planar InP solar cell is 22% [24].  

 

NWs fulfill the requirements of low-cost high efficient solar cell in principle, which 

are strong light absorption and effective carrier collection while using utilizing lower 

quantity of material. However there are still challenges which must be overcome 

before commercial NW solar cell can be produced. Complexity of growth, imprecise 

doping control, high rate of surface recombination (due to large surface to volume 

ratio), uniformity of NW and stability are some of these challenges [21]. Despite 

research and progress in each of these areas, still much investigation and effort are 

needed; even if all these challenges were to be overcome, the fabrication and 

production technology have not been tailored for these types of solar cells in large and 

commercial scale.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

 

  

 

 

 

 

 

c b 

Figure 2.3: Different junction design in NW solar cells: a) Radial junction. b) Axial junction. c) 

Substrate junction, Blue color represents N or P type of semiconductor material and green 

represents the other one, P or N type 
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3.  NWs Transferring and Device Fabrication  
 
 

3.1 Technical background  
 
 
Usually high crystalline NWs are grown on the same substrate material to overcome 

strain induced by lattice mismatching. Materials such as GaAs and InP are quite 

expensive [25]. Reducing substrate cost for large-scale application, for instance solar 

cells, is desired. So peeling off the NWs from their original substrate and transferring 

them to a cheaper substrate is one the approaches to reduce the substrate cost in view 

of the fact that the native substrate principally can be reused for NWs growth [25]. 

The main transferring challenges are uniformity of NWs length after peeling with 

high order of transfer rate of array of NWs, while the position and orientation of each 

of them is maintained. Uniformity and orientation of NWs after peeling can 

dramatically affect the optical properties and fabrication process, which they have 

been designed and optimized for. Therefore keeping the NW array structure after 

peeling is significantly important. 

 

Peeling the NWs with polymers has been reported, but all the reports are related to the 

NWs with long lengths, more than 10 μm [25][26]. The main focus of peeling in this 

work is to peel off much shorter NWs, about 2.5 μm in length. Geometry (length, 

diameter and pitches) of the NWs can affect the peeling. For instance, longer, thinner 

NWs with greater pitch are much easier to peel off than shorter, thicker with smaller 

pitch.  

 

3.2 Peeling and Transferring Processes 
 
 
To peel off NWs from the substrate they need to be embedded into a polymer with 

good adhesion to the NWs. Since the peeling is a mechanical process, a polymer is a 

good candidate due to flexibility and elasticity, preventing it from breaking and 

keeping the wires orientation.  After peeling the NWs by use of a polymer, a back 

contact is applied by depositing a thin layer of metal on the backside of the 

membrane. The next step is bonding; the membrane is bonded to the cheap carrier 

substrate by bonding matrix from the backside followed by removing the membrane 

by either wet or dry etching. At the end the NWs should be standing up as before 
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ripping, with the same orientation and position as compared to each other but on the 

new substrate. Figure 3.1 shows the different steps of the entire procedure of this 

transferring technique. The procedure with all details and the used material as 

membrane has been described in section 3.4 Peeling Polymers. 

 
 

 
 

3.3 Device Fabrication Process  
 

 

In order to make a solar cell device from the transferred NWs array, a thin layer of 

high-k dielectric material deposition is desired before peeling to prevent possible 

short circuit leakage, figure 3.2-1. After deposition, the dielectric must be removed at 

the tip of the NWs to make top contact, figure 3.2-2. The NWs are peeled off and 

transferred to the new carrier substrate as mentioned in previous part. Next is the 

Back Contact 

4. Membrane Bonding    

Back Contact  
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Polymer   

3. Metal Deposition   

Figure 3.1: Schematic of peeling and transferring procedure. 1) First, NWs after growth 
are embedded into polymer. 2) Second, NWs are peeled off from the native substrate. 3) 
Third, back contact formation by metal deposition. 4) Next step is membrane bonding to 
cheaper passive substrate, such as silicon. 5) Final step is dissolving of membrane.      
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planarization to prevent connection between bottom and top contacts and also make 

NWs more stable during the process. Figure 3.2-4 shows spinning of spacer and 

etching it back to expose tips of the NWs. Front contact is defined by lithography 

followed by deposition of transparent conductive oxide (TCO) as front contact. After 

the lift off process TCO is deposited on the defined pad figure 3.2-5. A bond pad is 

defined at the edge of the front contact and deposited as a thick layer of highly 

conductive metal such as gold to make it possible make contact with a probe during 

the measurement, figure 3.2-6. 
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Passive substrate   
Bonding Matrix 

Back Contact  

      

     

Passive substrate  
Bonding Matrix 
Back Contact  

3. Peeling and transferring 

of the NWs  
4. Planarization and height 

adjustment. 

5. Top contact definition 

and TCO deposition.    

6. Bond pad definition 
and gold deposition.     

     

     

Substrate  

2. Revealing tip of NWs 

by dry etching 
 

     

     

Substrate  

1. High-K dielectric 

deposition 
 

Figure 3.2: Schematic of device fabrication procedure. 1) Depositing the NWs with high-k 
dielectric after growth. 2) Revealing tip of the NWs by dry etching for top contact. 3) 
Peeling and transferring of the NWs by embedding them into membrane and bonding to 
cheaper passive substrate.4) Planarization by spinning spacer and etching back to expose 
the tip of the NWs. 5) top contact pattern definition and deposition. 6) Bond pad definition 
and metal deposition. 
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3.4 Peeling Polymers  
 
 

As mentioned before, polymers are the good candidate for mechanically peeling the 

NWs from their native substrate due to good adhesion and flexibility. Four different 

polymers were used in this work to peel off the NWs, where each of them has their 

own cons and pros in term of adhesion, simplicity of use, flexibility and stability 

during processing of device fabrication (such as chemical and temperature stability). 

All the materials and the procedure of peeling are described in the following sections. 

 

3.4.1 Polydimethylsiloxane (PDMS) 
 
PDMS is an organic polymer based on Si with the empirical formula (C2H6OSi)n, 

where n is the number of repletion. PDMS is a viscoelastic material, it is liquid for 

low n and semi-solid for large n. It has various applications such as microfluidic 

device fabrication, soft lithography, device encapsulation, contact lens manufacturing 

and in food industry. Generally PDMS is a non-toxic, non-flammable bio-compatible 

material which is flexible and transparent with semi good adhesion to a wide variety 

of materials. In many of these application PDMS is mixed with a cross-link agent 

(which bonds the polymer chain together) to harden the liquid PDMS and make it a 

flexible solid, similar to rubber. Peeling off also requires solid phase PDMS, which is 

mechanically robust and can hold the wires [27][28][29]. 

 

Table 1 shows the three different PDMS and relevant agent, which were used with 

their physical parameters. The major difference between these two types of PDMS is 

viscosity; 625A is much more viscous as compared to 601A which makes it a good 

material to peel off short NWs while it has 6 times higher elongation. But it is not 

really a good candidate to peel off long NWs since it cannot penetrate all the way 

down trough to the substrate as will be shown later. 

 
Product 

name  

Curing agent Mix ratio 

A:B (pbw) 

Viscosity at 23 °C, 

mixed (mPa s) 

Elongation at 

break (%) 

Tensile strength 

(N/mm2) 

ELASTOSIL

® RT 601 A 

ELASTOSIL

® RT 601 B 

9:1 3500 100 6.0 

ELASTOSIL

® RT 625 A 

ELASTOSIL

® RT 625 B 

9:1 25000 600 6.5 

SYLGARD® 

184 

SYLGARD® 

184 (agent) 

10:1 5000 Not 

determined 

Not  

determined 
 

Table 1: Comparison of three different PDMS, which were used in this work 

 

The preparation procedure is quite the same for both of the mentioned products. After 

mixing PDMS and its relevant agent with weight ratio of 9:1, it was necessary to stir 

the mixture carefully to make the curing agent distribute uniformly. To eliminate 

trapped air bubbles, which can be introduced during stirring, a vacuum-connected 

desiccator was used to leave the mixture in it for 30 minutes. In order to spin on 

PDMS, all the samples were bonded on one-inch Si wafer by crystal bonding to make 

it easier to place them on the spinner chuck. After dropping mixture droplets on the 

samples and waiting for 2 minutes to allow the mixture fills out the space between the 



 
 
 

14 

 NWs and go between the wires completely spinner was used at rotational speed of 

800 rpm with ramp stage 300 for 30 s to obtain an even 100 m film of PDMS. All 

the samples were placed in an oven at 80 °C for 1 hour to cure the PDMS. The curing 

time is highly dependent of the temperate and PDMS thickness; generally for higher 

temperature shorter curing time is required. Afterward, the PDMS membranes were 

peeled off with tweezers, and the NWs embedded into the membrane followed with 

high rate. 

It was found out that for PDMS 601A the critical length for peeling is  2μm, as it is 

shown in figure 3.3. InP NWs with 2 μm length and 180 nm diameter were peeled off 

just at bottom part. Backside images from membrane show that the NWs maintain 

their orientation and position with respect to each other. (Since the membrane is not 

conductive, it is hard to image the samples without charging). 

 

To peel off shorter NWs PDMS 625A and its relevant agent 625B were used; since it 

has better adhesion and tensile strength it will not tear off during the peel off while it 

sticks to NWs. After embedding the NWs into the PDMS and before peeling the 

membrane, tweezer was used (it could be any other thing that doesn’t have sharp edge 

to tear PDMS) to gently swipe on top of PDMS to break off the NWs from their base. 

Figure 3.4 shows the NWs array with 1.1 μm length and 138 nm diameter before and 

after peeling. 

(a) (b) (c) 
Figure 3.3: a,b) SEM images  at 30o tilt of the substrate after peeling with PDMS 601A,  InP NWs 
array with D = 180 nm, L = 2 m were peeled of  from substrate. c) SEM image at 45o tilt of backside 
of membrane after peeling; the dots indicate the bottom of NWs. 

 

 

Figure 3.4: a) SEM images at 30o tilt of an InP NWs array with D = 138 nm, L = 1.1 m after growth, 
inset: schematic of the method of breaking the NWs from the base. b,c) SEM image at 30o tilt of the 
substrate after peeling, showing that all the NWs were broken at the bottom part  

 

 

(a) (b) (c) 

 
 

PDMS 
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3.4.2 SolOneTM
 

 

The second polymer that was used to peel off NWs in this work it is SolOne
TM

, which 

was provided by Sol Voltaics AB Company. Due to proprietary information 

agreement it is not possible to define exactly that the material properties, but 

generally it is a liquid phase of material, which is basically a mix of two different 

components, a polymerizable component and a solvent component. The solvent 

component, which is mainly Acetone and Ethanol, maintains the solution in liquid 

phase but after solvent evaporation it will be polymerized. The final polymer is very 

similar to Delrin (Polyoxymethylene). 

 

Experimental investigation demonstrates that SolOne
TM

 has higher adhesion (after 

polymerization) as compared to PDMS and lower viscosity (it has not been 

determined, but is in liquid phase compared to PDMS which is in liquid/viscous 

phase), which helps to penetrate between the NWs array and consequently peel off 

NWs with higher yield of transferring. The peel off procedure with SolOne
TM

 is easier 

than using PDMS since there is no need to prepare the SolOne
TM 

by mixing the 

materials; it is already prepared and does not have the trapped air bubbles which is 

inevitable during PDMS preparation. It is just necessary to drop a couple of droplets 

or spray SolOne
TM

 on the samples and let it dry out for more than 12 hours. The 

peeling part it is exactly same as for PDMS. As it is mentioned in section 3.2 and 3.3 

after bonding the membrane itself must be removed to make it possible to further 

process and fabrication. Due to Lund Nano Lab’s restriction it is not allowed to dry 

etch both of these polymers with Reactive-ion etching. Chemical etching to dissolve 

PDMS with its relevant solvent Dynasolve 210 is forbidden in the clean room. 

SolOne
TM

 is allowed to be used in Lund NanoLab clean room as well as the its 

relevant chemical-etching solvent (Thinner). Furthermore, bonding the membrane to 

the carrier substrate for further process and device fabrication is another problem of 

using PDMS. By considering all these issues, SolOne
TM

 was chosen as a main 

material to peel off the NWs and subsequently to fabricate the solar cell device from 

peeled off NWs. During peel off experiment and developing the technique with 

SolOne
TM

 it was discovered by experimental evaluation of several samples with 

varying NW length that the critical length to peel off the NWs is about 2.2 μm for 

diameter 150-200 nm. 

 

Three samples with the same NWs array dimensions were used to investigate the 

capability of each of these three polymers for peeling purpose. Samples with NWs 

dimension: 2.7 μm length and diameter varied from 600 nm at the top of the NW to 

500 nm at the bottom with 1000 nm in pitch were prepared to be peeled off by the use 

of PDMS 601, 625 and SolOne
TM

 separately. After peeling, all the substrates were 

inspected by SEM to compare the results. Figure 3.5 shows the substrates after 

peeling; as indicated, the top two images (a,b) relate to the sample was peeled off by 

PDMS 601. The dark area at top left image (indicated by red circle) is the peeled off 

NWs and the bright area is the NWs that have not followed along during peel off.  

The same phenomenon is observed for use of PDMS 625, as shown in figure 3.5(c). 

Most of the NWs were not peeled off, and were found still standing on the substrate. 

By imaging with higher magnification it was observed that PDMS 625 was stuck at 

middle along the NWs due to higher viscosity as compared to PDMS 601 that 

penetrated all the way down to the bottom of the NWs but had not enough adhesion to 
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NWs to peel them off. With SolOne
TM 

peel off was successful as shown in figure 

3.5(e), which shows the substrate after peeling. Figure 3.5(f) is related to the NWs 

embedded in membrane; the array structure of NWs has been maintained. 

 

 
 
 
 

 

 

3.5 Bonding Matrix 
 
 

After peeling off the membrane and depositing metal on the backside, it must be 

bonded on the carrier substrate to be easy to handle and to withstand during further 

device fabrication processes such as spin coating, heat-curing, chemical developing 

and lift-off. The bonding matrix material must be compatible with mentioned 

fabrication process steps. The main challenges to find appropriate bonding matrix are 

adhesion, flatness, temperate and chemical stability. Good adhesion to the metal is 

Figure 3.5: a,b) SEM image of the substrate after peeling by PDMS 601, most of the 
NWs were left on the substrate although the PDMS 601 penetrated between the 
NWs all the way down. c,d) SEM image of the substrate after peeling by PDMS 625, 
peeling was poor since PDMS 625 could not penetrate to the bottom. e) SEM image 
of substrate after peeling by SolOneTM; all the NWs were peeled off nicely from the 
bottom. f) SEM image of backside of the SolOneTM membrane after peeling. 

SolOne
TM

 

PDMS 625 

PDMS 601 

20 μm  
  

5 μm  20 μm  

  20 μm  1 μm  
  

5 μm  
  

  

  

a) b) 

c) d) 

e) f) 
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desired since after peeling and metal deposition, the membrane should be bonded to 

the bonding matrix from the metal side.  

Discrepancy in length of the NWs after transferring can affect the process step mainly 

spin coating to get uneven, and subsequently can affect the planarization and contact 

deposition so flat bonding of membrane is needed. Samples need to be baked at a 

temperature of 200
o 

C, or chemically developed in some step of the device fabrication 

process, so temperature and chemical stability of the bonding matrix is needed. 

 

The investigation was done on different conventional and available material to find 

out the suitable bonding matrix for this work based on the possible chemicals, used 

for fabrication. Table 2 shows the result of an experimental investigation of chemicals 

and different steps of the fabrication. Since after bonding the membrane has to 

chemically dissolve (it is not allowed to use the dry etch to etch thick amount of 

materials in the LundNanoLab), and the membrane used in this work is SolOne
TM

, its 

relevant chemical dissolver thinner is also included in the investigation. Remover 

1165 and developer MF319 are also chemicals used during the fabrication process for 

lithography, development and lift-off.  

 

 

Bonding Matrix 
Thinner 

(SolOneDissolver) 
Dynasolve 210 Remover 

Adhesion to 

Membrane 

Heat 

Resistivity 
Flatness 

PMMA Can’t Stand Can’t Stand Can’t Stand Poor Good Good 

S1813 Can Stand Can’t Stand Can Stand Poor Good Good 

Uncured BCB Can’t Stand Can’t Stand Can’t Stand Good Good Good 

Cured BCB Can Stand Can’t Stand Can Stand Poor Good Good 

Ag Paste Can’t Stand Can’t Stand Can’t Stand Good Good <150°C Poor 

In Droplet Can’t Stand Can’t Stand Can Stand Good Good <100°C Poor 

Cured PDMS Can Stand 
It is used for 

removing PDMS 
Can Stand Very Good Good Poor 

Imprint Resist Can Stand Can’t Stand Can’t Stand Good Good Good 

Super Glue Can’t Stand Can’t Stand Can’t Stand Good Poor Poor 

Table 2: Result of investigation on potential materials as a bonding matrix 

 

PMMA, S1813, BCB, Imprint Resist and PDMS were spin-coated with spinner on the 

carrier substrate to achieve really flat surface, which was not possible for others. To 

check heat resistivity of the bonding matrix, all of them were ramped up to 200
o 
C to 

observe if they can stand that temperature. Adhesion was also experimentally 

checked, membrane from metal deposited side was put on top of the carrier substrate 

with bonding matrix to observe if membrane will attach to bonding matrix or not. All 

the carrier substrates with different bonding matrix were separately put in the remover 

and then thinner to see if they are not dissolving. Some of the bonding matrixes have 

to be baked such as BCB and S1813, since makes the adhesion very poor after baking. 

After all the these experiments PDMS was chosen as a bonding matrix although it 

was not the really suitable material for bonding matrix but it was the only and most 

compatible material to our process.  
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3.6 Ohmic Contact 
 
 
Semiconductors have received interest for optoelectronic and high-speed electronic 

devices, such as solar cells, light emitting diodes and transistors. One of the main 

challenges to achieve a high device performance is formation of ohmic contact 

between the semiconductor and the metal, which in principle means that the contact 

resistance will be low, and that charge carriers can flow from semiconductor to metal 

and vice versa [30]. Generally ohmic contact to intrinsic semiconductors is difficult 

due to a difference between metal and semiconductors work function [31], which 

results in band bending and built in potential barrier at the metal-semiconductor 

interface called Schottky barrier, figure 3.6(a). The height of the barrier can be 

calculated by the Schottky–Mott rule to be difference between metal work function 

and semiconductor electron affinity [31]. A large number of surface energy states at 

semiconductors surface and consequently Fermi level pinning makes the barrier 

height partially independent of the metal and semiconductors work function. The 

common techniques to make ohmic contact to the semiconductors are; selecting a 

metal with appropriate work function, inserting the material with narrow gap between 

metal and semiconductors and increasing doping level at semiconductors surface. 

Increasing doping level (ND > ~10
18

cm
-3

), the depletion-layer width becomes narrow 

(Wd < ≈ 2.5–5nm) so electrons can “tunnel” through the potential barrier due to the 

wave nature of electron, figure 3.6(b). Generally, ohmic contact fabrication to p-type 

semiconductor is even more difficult than to n-type, because the larger holes effective 

mass as compared to electrons, which limits hole transport properties since 

probability of tunneling for holes with larger effective mass is lower than for electrons 

with smaller effective mass [32]. For some materials for instance GaAs ohmic 
contact to p-type is easier than n-type properties.  
 

Ohmic contacting to the NWs after peeling is desired but has not been investigated 

during the course of this work. The conventional Ti/Au/Ti metal contact is deposited 

by sputtering on the backside of the membrane as a back contact. A thin layer of Ti is 

used due to poor adhesion of gold (Au) to polymer surface and Ti is preventing the 

gold from spiking by diffusing into the semiconductor. Again after Au a thin layer of 

Ti is deposited for outer layer to take the advantages of Ti adhesiveness to attach the 

membrane to the bonding matrix.  
 

Metal 

Semiconductor 

E
F
 

(a) (b) 

Figure 3.6: a) Metal semiconductor interface causing built-in potential (Vbi). b) Ohmic contact 
formation by increasing doping at semiconductor surface making the junction thin enough for 
electron tunneling.   
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4.  Results and Discussion  
 
 
In this work three different types of measurements and investigations were done 

including photoluminescence on peeled NWs, absorption trough embedded NWs 

array and device fabrication from peeled off NWs. Each measurement is described 

individually by first induction and technical background of the measurement followed 

by procedure of the measurement and discussion about the result. 
 
 

4.1 Photoluminescence (PL) 
 

4.1.1 Introduction  
 
 
One of the common methods to study electrical and structural properties of materials 

is photoluminescence (PL) characterization since it is contactless, nondestructive and 

also faster than conventional electrical measurements. As simple explanation of PL 

operation, the sample is irradiated by a light source (mostly laser with certain energy) 

then luminescence of the sample is measured [33]. PL measurement can characterize 

properties such as carrier concentration, minority carrier lifetime, bandgap, crystalline 

quality, impurity levels and defect states. 

 

For direct bandgap semiconductors, typically a laser with low wavelength is used to 

provide photons with energy higher than the semiconductor bandgap. By absorbing 

the photons electrons are excited from the valance to the conduction band and 

electron-hole pairs with same momenta will be generated [34]. Generally, these 

generated electrons and holes after releasing some portion of their energy trough 

nonradiative processes (mostly phonon scattering) will thermalize to the local ground 

state where they finally recombine. This process happens when the relaxation time is 

shorter than the recombination time. Since the probability of radiative recombination 

is higher than nonradiative recombination in direct bandgap semiconductor, photons 

with energy equal to the energy difference of recombined carriers will be emitted. 

Figure 4.1 shows the PL mechanism.   
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One of the challenges for PL measurement on NW is the substrate contribution 

especially when substrate and NWs are the same material. That makes it hard to study 

NWs PL data due to the effect of the substrate peek on NWs peek. Peeling the NWs 

from the substrate embedding them in a polymer film for characterization allows 

overcoming this problem and also makes it possible to do PL at the bottom of the 

NWs to get some information about bottom part of the NWs, which is hard while they 

are standing on the substrates. 

 

 

4.1.2 PL measurement and Results 
 
 
Some samples with InP NWs were provided for investigation of PL measurement on 

embedded InP NWs after peeling. Figure 4.2 shows the optical setup used for room 

temperature PL measurement on the membrane after peeling the NWs from the 

substrate. PL measurements were done on the sample while the NWs were standing 

on the original substrate (before peeling), on both sides (top and bottom) of 

membrane and on the substrate after peeling. 

A laser with 375 nm wavelength and 15 mW power was used as light source. To 
prevent the membrane from burning and damage due to the laser power, optical 
filters were used to decrease the intensity of the incident light. Laser light was 
sent trough the regular microscope to make it possible to focus the light on the 
membrane. The same microscope was used to collect the portion of emitted 
photons and carry them to detector by optical fiber. The detector was connected 
to computer and BWspec 3.25 software was used to adjust the measurement 
parameters and observe the results.  
 
 

Figure 4.1: Photoluminescence mechanism; an incident 
photon is absorbed and excites electron to conduction 
band (blue). After relaxation and releasing excess energy 
(red), generated carriers recombine and emit a photon. 
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Figure 4.3 shows PL spectra of two different samples from same growth but different 

NWs lengths; each color of PL spectra is related to an individual different 

measurement. The blue spectrum is related to the sample after growth when the NWs 

were still standing on the substrate. Red and black spectra are related to PL 

measurement on the both sides of membrane, top and down, respectively after 

peeling. The green spectrum is related to the substrate after peeling.  

 

Both samples show the main peek around 1.4 eV for PL measurement on the NWs 

while standing on substrate, which is related to the InP bandgap with wurtzite 

structure at 300 K. As it is shown the peaks are not quite sharp and the spectra show 

some shoulders (smaller peaks) at lower and higher energy for both of the samples. 

PL on top of the membranes also shows the same peek at 1.4 eV but with smoother 

spectra for higher energy. By flipping the membrane, PL was done on the backside of 

the NWs. The shoulder at lower energy was observed to be intensified for both of the 

samples; for the sample with longer NWs length that intensification was more 

significant, figure 4.3(b). The peak at lower energy was detected at 1.35 eV, which is 

close to the InP bandgap for zincblende structure at room temperature. That indicates 

that the wires have been grown with two different crystal structures (zincblende and 

wurtzite) especially with a zincblende structure at the bottom part of NWs. PL on the 

substrate after peeling showed a peek at 1.44 eV, which indicates the highly N-type 

InP substrate. 

          Substrate  

  

PDMS 

          

  

  

  

  

  

  

  

  

  

  Substrate  

  
PDMS 

          

 

 Laser  
 

 

 

 

 

 

Spectrometer  

Bwspec 
software  
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X-Y-Z 

Sample  

Optical Filter 

Figure 4.2: Schematic of PL set up; PL was done on NWs after growth while standing 
on the native substrate. PL was also performed on the top and bottom membrane 
sides as well as on the substrate after peeling. 

Emitted Photon 
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4.2 Absorption Measurement  

 

4.2.1 Introduction  
 
 
Reflection and transmission prevent optimum absorption; some portion of light is 

reflected back by the semiconductor surface, and also some portion is transmitted 

trough the semiconductor. Sufficient thickness of each semiconductor material is 

required to absorb all the non-reflected light and decrease the transmission loss. To 

increase the thickness more material is needed which results in cost increase. Anti-

reflection coating by depositing a special thickness of dielectric martial on the 

semiconductor surface and light-trapping effects by texturing the front and rear 

surface, are two common methods to reduce reflection and transmission losses 

respectively [35][36][37]. As mentioned before NW arrays are promising for 

photovoltaics applications due to light coupling into NWs array, and anti-reflection 

properties that results in strong light absorption.  

 

Extensive studies about NWs optical properties have demonstrated the strong light 

absorption in ordered array of NWs [38][39][40]. Due to benefit of scatting, 

resonance and diffraction effects in ordered array of NWs the light path length will 

increase and result in strong absorption [41][42]. These optical properties are highly 

Figure 4.3: PL spectra for NWs standing on substrate (blue), top and bottom of the membrane after 
peeling (red, black respectively) and substrate after peeling. 

(a) (b) 

L=1.1 μm L=4.5 μm 
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dependent on the geometrical size of NWs array such as length, diameter and pitch. 

There are also some experimental reports about light absorption into NWs, but all of 

that have been measured while the NWs were standing on their substrate, which 

makes analysis of the experiment more complex due to contribution of the substrate. 

By peeling off the NWs array from the substrate while the orientation is kept, it is 

possible for direct experimental investigation of light absorption trough the NWs 

array embedded in transparent membrane. 

 

In this work, an experimental study about light absorption of InP NWs array with 

varying NWs diameter and length has been done. For the experimental investigation, 

two series of the samples were grown, one with length variation and the other one 

with diameter variation to study the effect of NWs dimension on their light 

absorption. 

  

 

4.2.2 Measurement and Result  
 
The NWs have been grown with the particle–assisted MOVPE method. For the length 

series samples with different lengths of NW were grown by increasing the growth 

time. For the diameter series, the gold particles were removed and different 

thicknesses of shell were grown by increasing the time in order to get different 

diameters. Figure 4.4 shows the simple schematic of the growth procedure.   
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(a) 

(b) 

Figure 4.4:a) NWs growth by particle–assisted MOVPE method. Increasing the growth 
time longer NWs are harvested. B) After removing Au particle, increasing laterally 
growth time result in thicker NWs.  
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SEM inspection was done for each sample, to determine the average diameter D, 

length Las-grown and their corresponding standard deviation by measuring the diameter 

and length of 50 grown NWs as it is shown at figure 4.5(a). Then NWs arrays were 

embedded into PDMS 625 and peeled off from the substrate. To determine the actual 

length of NWs embedded to PDMS membrane, all of the substrates after peeling were 

inspected with SEM to measure the average length of NWs left part Lsub on the 

substrate, figure 4.5(b). Then, the NWs average length L in the PDMS membrane was 

calculated as L = Las-grown - Lsub. And the final standard deviation (SD) of the actual 

length of embedded NWs was measured by SD = [SDas-grown
2
 + SDstub

2
]

(1/2)
, (SDas-

grown=standard deviation before peeling. SDsub=standard deviation of left part on the 

substrate). In the quoted values, the uncertainty denotes the standard deviation in 

length and diameter.  

 

A sample from diameter series shows dual diameter in which the lower part of the 

NWs was thinner with constant diameter around 135 nm for all of the sample and the 

upper part was thicker and increased by increasing laterally time growth, Figure 

4.5(c). Figure 4.5(d) shows one of the membranes with embedded NWs after peeling. 

 

 

 

 

 

 

Figure 4.5: SEM image at 30o. a) NWs after growth while standing on native substrate. 
b) Substrate after peeling, inspection was done to check the quality of peeling and 
measure length of probable left part on the substrate to be deduced from the length 
after growth. c) A sample from the diameter series with dual diameter geometry, 
thicker at the top. d) Optical images of membrane with embedded NWs after peeling.       

(c) 

(a) (b) 

(d) 
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SEM inspection was done for the all the samples as mentioned and the length and 

diameter of the embedded NWs into membrane was calculated. Table 3 and 4 show 

the exact embedded NWs length and diameter for both series. 

 

 

Sample ID 
Length before 

peeling  (nm) 

Length after peeling 

(On substrate (nm) 

Final Length 

(nm) 

Diameter 

(nm) 

AX7042  1062±19 84±30 978±35 132±10 

AX7031b  1664±15  30±12 1634±19 138±4 

AX7031a  1921±31  52±26 1869±40 138±4 

AX7033b  1862±22  39±15 1830±27 141±3 

AX7025   2275±40  190±77 2085±77 129±3 

AX7032a  2322±34  73±31 2249±47 132±3 

AX7028  3094±94  227±111 2867±145 138±2 

AX7035a  4704±60  170±75 4534±96 147±4 

Table 3: Length series NWs dimension 

 

Sample ID 
Length before 

peeling (nm) 

Length after peeling 

(On substrate) (nm) 

Final Length 

(nm) 

Diameter 

(nm) 

AX7039a 1598±24 38±9 1560±26 132±3 

AX7037a 1520±40 50±10 1470±41 157±6 

AX7036a 1653±87 45±7 1608±87 181±11 

AX7038a 1663±83 110±26 1553±86 241±13 

AX7040a 1561±67  41±23 1520±70 347±34 

                                                            Table 4: Diameter series NWs dimension 

    

 

To measure the total absorption of the NWs, the total reflection R(λ) and total 

transmission  T(λ) were measured separately in order to calculate the absorption of the  

embedded NWs as: 

 

 A(λ) = 1- R(λ) - T(λ) 

  

In order to measure the reflection and transmission an integrating sphere was used as 

a light collector. The sphere interior surface is coated by highly reflective material so 

after (transmitted/reflected) light enters the sphere through the illumination port, after 

multiple reflections, it is scattered uniformly around the interior of the sphere. The 

detection fiber optics at the side of the sphere collects the light trough baffle, which 

prevents first reflections to enter the detection fiber. Then light is carried to the 

detector by optical fiber. The Measurement setup was including AvaSphere-30-REFL 

(integrating sphere), AvaLight-HAL (white-light source) and AvaSpec-ULS364 

(spectrometer). Figure 4.6 shows the schematic of the integrating sphere, and the 

reflection and transmission measurement. 
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For the reflection measurements, light was sent into the sphere through the 

illumination-port toward the sample, which is attached on the sample view-port, and 

the reflected light was collected by the sphere and carried to the spectrometer. A 

Planar silicon substrate was used as reference for calibration and normalization. The 

background was calibrated by identical measuring but without any sample. During the 

measurement the unattached side of sample was facing to the roof of the lab to 

prevent back reflection of transmitted light trough the membrane. For the 

transmission measurement, light was sent from outside the sphere toward the sample 

view-port with the same focus as for the reflection measurement, and transmitted light 

was collected and carried to the spectrometer. The reference level was measured when 

no sample was attached to sample view-port, and the background level was measured 

without any illumination. 

 

The measurements were performed at the very dim room (to minimize the 

background counts and noise) in the wavelength range of 400  900 nm with a 

wavelength step of  = 0.35 nm using a 15×10
3 

ms integration time both for the 

reflectance and transmittance measurements. In both measurement, approximately 1 × 

 mm
2
 in area was illuminated at the middle of the membrane (where all the SEM 

inspection and length and diameter measurement were done), roughly 1.2x10
7 

NWs 

were illuminated during the measurements. The incident light angle was kept 

approximately 8° for both measurements.  The upper limit range of the measurement 

Figure 4.6:a) Cross section of integrating sphere AvaSphere-30-REFL. b) Schematic of InP NWs 
embedded in PDMS.  Modeling was done when air-NW/PDMS interface was illuminated. c, d) 
Schematic of transmission and reflection measurement  respectively  

(c) (d) 

(a) (b) 

Incident Light  
      

Detection view spot 

        

Detection view spot 

Incident Light  
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was chosen to 900nm due to high signal to noise ratio of the spectrometer (silicon 

detector) above that range, which coincidentally matches nicely the band gap of InP 

which corresponds to a wavelength of 925 nm 

 

Figure 4.7 shows the reflection, transmission and absorption spectra all together for 

some samples. Figure 4.7 (a) and 4.7 (b) illustrate the spectra for shortest (L=978±35 

nm) and longest (L=4534±96 nm) samples of the length series respectively. As it is 

shown, the reflection level of both samples is approximately the same, but there is a 

difference in the transmission spectra. The sample with shorter NWs shows the lowest 

transmission around 630 nm (due to diameter-dependent resonance absorption) 

[38][40]. In contrast, the sample with longest NWs almost no light was transmitted 

below 700 nm and the absorption has saturated at a value of approximately 95 % for λ 

< 700 nm. Analyzing the reflection spectra revealed that absorption is limited by a 

spectrally independent reflection loss of 5 %, which we attribute to reflection at the 

air/PDMS interface, see figure 4.6(b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Figure 4.7: Absorption, transmission and reflection spectra a) for embedded NWs with L= 978 nm 
and D=132 nm b) for embedded NWs with L= 4534 nm and D=147 nm c) for embedded NWs with 
L= 1560 nm and D=132 nm d) The membrane without embedded NWs (PDMS 625). 
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The figure 4.7 (c) shows the spectra of the sample with thinner NWs diameter 

D=132±3 nm and length L=1598±23. The same diameter-dependent resonance 

absorption was observed at λ ≈ 630 nm. The measurement was done also in the pure 

PDMS 625 (membrane without embedded NWs) to make sure that it is transparent 

and the membrane absorbs no light. As is illustrated in figure 4.7 (d), the absorption 

level of the membrane is zero. Since for the length series the gold particle had been 

not removed, measurements were done on both sides of the membrane (top of the 

NWs with gold particle and bottom of the NWs without gold particle were 

illuminated) to investigate the effect of the gold particle on the light absorption. 

 

To systematically study the effect of the NW length on the absorption, the average of 

A(λ) in the interval 400 nm < λ < 900 nm  was calculated for all of the length series 

samples. Tables 5, 6 and 7 show the calculated mean value of absorption, 

transmission and reflection measurement respectively for each sample from the length 

series. First we find a rapid increase from Amean ≈ 70 % to Amean ≈ 85 % when the NW 

length is increased from the shortest length of L ≈ 1000 nm to L ≈ 2000 nm. However, 

the increase is less rapid for L > 2000 nm, and a further increase of the NW length to 

4500 nm increases Amean by just 0.06 to 91 %. This can be understood from the 

saturation of the absorption with increasing length of the NWs, figure 4.7(b).  

For all of the samples reflection was about 5% when the top of the NWs (mentioned 

top up in the table) was illuminated by the light source, which is reasonable since all 

of them have almost the same diameter, and around 3% when the backside of the 

membrane was illuminated (mentioned top down in the table). The difference 

between the reflection mean values experimentally demonstrates the effect of the gold 

particle, which is highly reflective material on top of the NWs. For transmission 

measurements this difference between the two sides of the sample was not observed. 

The difference between two sides of the samples at reflection measurement is the 

main reason of the difference between top up and top down for the calculated 

absorption values.   
 
 

Sample ID 
Embedded NWs 

Length (nm) 

Diameter 

(nm)  

Absorption 
top Up (%) 

Absorption  
top Down (%) 

Difference 
top up & 
down 

AX7042  978±35 132±10 68.47% 70.11% 2.34% 

AX7031b  1634±19 138±4 79.98% 82.45% 3.00% 

AX7031a  1869±40 138±4 75.58% 77.15% 2.03% 

AX7033b  1830±27 141±3 81.73% 84.22% 2.96% 

AX7025   2085±77 129±3 77.99% 79.77% 2.23% 

AX7032a  2249±47 132±3 79.06% 80.44% 1.72% 

AX7028  2867±145 138±2 85.54% 86.90% 1.57% 

AX7035a  4534±96 147±4 89.31% 90.87% 1.72% 

Table 5: Mean value of the absorption of each sample when top and bottom of the membrane is 
illumitated  from Length series  
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Sample ID Transmission 

Top Up (%) 

Transmission 

Top Down (%) 

Difference top 

up & down (%) 

AX7042  26.18% 26.08% 0.38% 

AX7031b  14.30% 14.15% 1.06% 

AX7033b  12.45% 12.16% 2.38% 

AX7031a  18.89% 19.06% 0.89% 

AX7025   16.59% 16.34% 1.53% 

AX7032a  15.54% 15.60% 0.38% 

AX7028  9.11% 9.23% 1.30% 

AX7035a  5.63% 5.73% 1.75% 

Table 6: Mean value of the transmission  of each sample from Length series  

 
 

Sample ID Reflection  

Top Up (%) 

Reflection  

Top Down (%) 

Difference top 

up & down (%) 

AX7042  5.35% 3.81% 28.79% 

AX7031b  5.72% 3.40% 40.56% 

AX7033b  5.82% 3.61% 37.97% 

AX7031a  5.53% 3.79% 31.46% 

AX7025   5.42% 3.89% 28.23% 

AX7032a  5.38% 3.96% 26.39% 

AX7028  5.34% 3.87% 27.53% 

AX7035a  5.06% 3.40% 32.81% 

Table 7: Mean value of the reflection  of each sample from Length series 

 
Full 3D electromagnetic modeling of light interaction with embedded NWs array was 

done by Nicklas Anttu to check the compatibility between the theoretical and 

experimental results. The modeling was done for both types of experiment and for InP 

NW array embedded into PDMS with square pattern 400 nm in pitch. An Average 

diameter of 136 nm was considered for the length series and a length average of 1520 

nm was considered for the diameter series. The reflectance R(λ) and transmittance 

T(λ) were modeled and calculated  when air-NW/PDMS interface is illuminated with 

light source as it is shown in figure 4.6(b). Afterwards, the absorption A(λ) was 

calculated from A(λ) = 1- R(λ) - T(λ).  

 

Figure 4.8 gives modeled and measured data for the length series, which show good 

agreement with each other. Modeled transmission through the NWs shows very good 

agreement but the measured reflection data is below modeled data with discrepancy 

about 0.02% due to roughness of the backside of membrane after peeling while it was 

modeled for the flat surface.  The non-flat surface of the membrane was due to 

breaking point of the NWs was not at a same level as shown in figure 4.5(b). Such a 

roughening is expected to work as a partial anti-reflection interface/coating, 

decreasing the reflectance compared to that of a smooth interface [43]. SEM 

inspection was done on the backside of the membrane to check the flatness of the 

membrane as it is shown in figure 4.8(d). 
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In the same way, measurement and modeling was done for the diameter series with L 

≈ 1600 nm and varying diameter; tables 7, 8 and 9 show the measured data for 

absorption, transmission and reflection respectively. It was observed that the 

absorption increased rapidly by increasing diameter from the smallest experimental 

value of D = 132 ± 3 nm with Amean = 70 % to 92% for D = 241 ± 13 nm. Even NWs 

with a length of L < 2000 nm can absorb light efficiently by optimizing the nanowire 

geometry. The sample with thicker NWs diameter D =347±34 nm also absorbed 

approximately same amount of incident light Amean = 93%. 

 

 

 

 

 

 

 

 

 

(a) 

(c) (d)

10 μm 

(b)

Figure 4.8: Measured and modeled wavelength-averaged absorption, reflection, and transmission of 
NW arrays as a function of NW length L. The average diameter of the fabricated samples lies in the 
range of D = 129 ± 3 nm to 147 ± 4 nm. The modeled NW arrays have NWs of diameter D = 136 nm, 
which is the mean of the average diameters of the fabricated samples. 
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Sample ID 
Final Length 

(nm) 

Diameter 

(nm) 

Absorption  

 Top up (%) 

Absorption   

Top down (%) 

Difference top up 

& down (%) 

AX7039a 1560±26 132±3 68.58% 69.59% 1.45% 

AX7037a 1470±41 157±6 74.46% 74.24% 0.30% 

AX7036a 1608±87 181±11 81.74% 82.58% 1.02% 

AX7038a 1553±86 241±13 91.34% 91.82% 0.52% 

AX7040a 1520±70 347±34 91.58% 92.99% 1.52% 

Table 8: Mean value of the absorption of each sample when top and bottom of the membrane is 
illumitated  from dimater series. 

 
 

Sample ID Transmission 

Top Up (%) 

Transmission 

Top Down (%) 

AX7039a 24.25% 23.81% 

AX7037a 16.59% 17.12% 

AX7036a 9.72% 9.92% 

AX7038a 2.83% 2.81% 

AX7040a 1.40% 1.84% 

Table 9: Mean value of the tranmission of each sample from dimater series 

 
 

Sample ID Reflection  

Top Up (%) 

Reflection  

Top Down (%) 

AX7039a 7.17% 6.60% 

AX7037a 8.94% 8.64% 

AX7036a 8.54% 7.50% 

AX7038a 5.84% 5.37% 

AX7040a 7.02% 5.17% 

Table 10: Mean value of the reflection  of each sample from dimater series 

 

 

Figure 4.9 shows compatibility of the measured and modeled data for absorption, 

transmission and reflection. Generally the agreement between measured and modeled 

absorption for these diameter series is very good, see Figure 4.9(a). However, 

noticeable discrepancy between measured and modeled absorption was observed for 

the two largest diameters (D = 347 ± 34 nm, D = 241±13 nm). For the modeled 

spectra the absorption is drastically increased by increasing NWs diameter, but for 

diameter increase further than 200 nm the absorption starts decreasing. However, the 

measured data showed increase in absorption up to 93% for diameter larger than 200 

nm.  

This discrepancy can be traced to a difference between the measured and modeled 

reflectance. By increasing the diameter from 0 to 400, the modeled reflectance 

increases monotonously from 3 % to 24 % figure 4.9(c). In strong contrast, the 

measured reflectance showed diameter independent behavior with values of the order 

of 4 % for all the diameter series samples. As mentioned before, the diameter series 

samples have the two-diameter geometry, whereas the modeled NWs are of a constant 
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diameter along the NW length. The diameter for all of these samples is smaller and 

almost the same (D ≈ 135 nm) at the bottom part of grown NWs. Such two-diameter 

NWs have been previously reported to strongly decrease the reflectance of NW arrays 

[44]. The independence of the reflection is possibly due to the similarity of the 

diameter at the bottom part, which was facing the light source at the experiment. The 

results demonstrate that by reducing the reflection losses, the range of NW diameters 

suitable for absorption applications can be extended considerably.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) (b) 

(c) 

Figure 4.9: Measured and modeled wavelength-averaged absorption, reflection, and 
transmission of NW arrays as a function of NW diameter D. The average length of the NWs 
on the fabricated samples lies in the range of L = 1441 ± 70 nm to 1663 ± 86 nm. The 
modeled NW arrays have NWs of length L = 1570 nm, which is the mean of the average 
lengths of the fabricated samples. 
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4.3 Solar Cell Device  
 

4.3.1 Introduction  
 
 
The photons of sunlight incident to a semiconductor material will be reflected back, 

will be absorbed or will be transmitted trough the semiconductor. Reflected and 

transmitted photons are considered as losses in a photovoltaic device since only 

absorbed photons can generate power [45]. Absorbed photons can excite electrons 

from the valence band to the conduction band and generate electron-hole pairs in a 

band-to-band transition. Only photons with energy equal or more than the bandgap ( 

Eg) can be absorbed and photons with energy lower than the bandgap will be lost. 

Generally the photons with higher energy are absorbed more readily within short 

length of penetration trough the semiconductor due to higher absorption coefficient 

while photons with lower energy penetrate deeper before absorption. Based on 

absorption coefficient, different thickness of each semiconductor martials is required 

to absorb all of the non reflected incident photons (light); for instance for InP and 

GaAs, 1μm is a sufficient thickness, which for Si is 1000 times larger [31][46]. 

 

Generated electrons and holes may recombine since they are not in equilibrium. To 

reduce the probability of a recombination they must be spatially separated, otherwise 

they are considered as loss since they cannot be extracted. This can be done by the 

action of built-in electric field induced at the p-n junction. If the generated carriers 

can reach at the junction they will be swept across the junction; holes will be swept to 

the p-region and electrons to the n-region. This process is called carrier collection as it 

is illustrated in figure 4.10(a). But not all of the generated carriers can be collected. 

The collection probability mainly depends on the carrier diffusion length compared to 

the distance that they must travel to reach the junction (drift region w). By contacting 

to the both n- and p-regions and connecting them together, generated charge carrier 

(electrons and holes) can be extracted to the external circuit and generate net current, 

which is called light-generated current [31][45][46]. 

 

The generated current cannot generate power itself; voltage also must be generated in 

order to generate the electrical power. When the external circuit is open, n and p-

region are not connected to each other, and the number of the electrons at n side and 

holes at p side will be increased by carrier collection since generated carries after 

separation cannot be extracted into an external circuit. The increase of charges creates 

an electric field opposite to the electric field induced by p-n junction, thus the net 

electric field will be decreased. It is similar to the p-n junction being forward biased, 

so the voltage will be created across the junction by this mechanism, which is called 

photovoltaic effect [31][45][46].  

 

Solar cells are characterized by I-V measurement at dark and under illumination to 

observe the device performance and measure device parameters as it is shown in 

figure 4.10 (b). One of the key parameter of solar cells performance is the efficiency 

(), which is defined as the ratio of electrical power produced by solar cell to incident 

power by sunlight. It is extracted by two main parameters, open-circuit voltage (VOC ) 

and short-circuit current (JSC ). The VOC and JSC are voltage at zero current flow and 
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current through the circuit whit no voltage across the device respectively. JSC is the 

maximum of light-generated current and VOC is the maximum voltage produced by 

solar cell and the power is zero at both of these points since one of the component 

either current or voltage is zero for each of these point. The filling factor (FF) is the 

ratio of maximum power produced by device to product of VOC and JSC. The 

maximum power point (MPP) as illustrated is the product of VMPP and JMPP. High 

performance solar cells have 0.80–0.89 in filling factor. The light-generated current 

and filling factor and efficiency of the solar cell are defined as below [31][45][46]: 
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4.3.2 Device Fabrication  
 
 
InP NWs array with p-i-n axial junction and 2.5 μm in length and 190 nm and square 

pattern with 400 nm in pitches were used. InP was considered because of its low 

surface recombination velocity compared to GaAs and also ability of growth and 

doping of InP NW here at Lund NanoLab. First a thin layer of SiO2 (approximately 

10 nm) was deposited by Atomic Layer Deposition (ALD) technique to cover all 

around the NWs and then to reveal the tip of the NWs, SiO2 was etched back by RIE. 

Then SolOne
TM 

was applied to embed the NWs. After peeling the NWs with 

SolOne
TM

, 25/250/25 nm of Ti/Au/Ti was deposited on the backside of the membrane 

  

Electric Field  

Dark 

Illuminated 

(a) (b) 

 
Load 

Figure 4.10: a) Band structure of p-n junction solar cell; an electron-hole pair is 
created by the photon absorption and separated by the built in electrics field. b) I-
V of a solar cell device, current density under dark (blue) and illumination (red) 
vs. bias voltage. MPP indicates maximum power point, which is the maximum 
power provided by the cell. 
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by sputtering. Since the polymer membrane is not heat resistant sputtering was done 

at low power and pressure to prevent swelling up of the membrane which have seen 

before for higher sputter power, due to heat during the sputtering process. 1-inch Si 

wafers were prepared by spinning PDMS 601 as a bonding matrix. Then the samples 

were placed from backside on top the PDMS. To cure the PDMS, the samples were 

placed on the oven at 80
o
 C

 
for 1 hour. Afterward, samples were left on Thinner 

(SolOne
TM

 Dissolving Chemical) for 12 hours to dissolve the SolOne
TM

 membrane. 

Then Samples were rinsed with IPA (Isopropanol) and dried by an N2 gun.  

Figure 4.11 shows the NWs array before and after transferring. Here it is really 

important to maintain the array structure of the NWs upon transfer.  

 

 

 

 

After NWs transferring, planarization was done for all of the samples by spinning 

Shipley 1813 (S1813) photoresist at 3000 rpm for 1 min. To soft-bake photoresist 

samples were placed on hotplate at 90
o
C for 1 min. Planarization was done in order to 

prevent short-circuit by filling the space between top and bottom contact and also to 

keep the orientation of the NWs during the further processing by filling the space 

between the NWs. To reveal the tip of NWs for top contact, the S1813 was thinned 

down by applying UVL flat exposure for 4 s followed by 40 s of development with 

MF319. To remove the residual Plasma Preen was used at 5 mbar for 1 min. 

Afterwards, SEM inspection was done to make sure the tip of the NWs was revealed 

as it is shown in figure 4.12(a). For chemical and physical stability of photoresist, 

samples were hard-baked at 200
o
C for 20 min, for which the temperature was ramped 

to the annealing temperature to avoid shrinkage or crack of the photoresist. Then 150 

nm of ITO was deposited on all the samples by sputtering as a top contact. ITO was 

selectively etched away by HCl 1:1 for 1 min to define couples of individual devices 

with two different area patterns 0.01 and 0.000049 cm
2
 in each sample. To define the 

bond pad double-layer photoresist was applied to take the advantage of undercut 

formation after exposure during developing for lift-off step. For the first layer, LOR 

30B was used and spun at 4000 rpm for 1min and soft-baked at 165°C for 5 min with 

ramping up the temperature. For the second layer S1813 was used and spun at 4000 

(a) 

Before  After 

(b) (c) 

Figure 4.11: SEM images at 30o tilt before and after transferring a) NWs after growth with D = 190 
nm, L = 2.5 m, and P = 500 nm; a thin layer of SiO2 was deposited and the tips of the NWs were 
revealed. b) Array of NWs peeled off and transferred to silicon substrate. c) Image with higher 
magnification after transferring, orientation of the NWs was maintained as grown which is really 
important for this transferring technique. 
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rpm for 1 min and then soft-baked at 90°C for 1 min. Each of the samples was 

exposed for 20 sec by UVL followed by 90 s development with MF 319 then the 

sputter machine again was used to deposit 25/250 nm of Ti/Au and then samples left 

on remover 1165 for a couple of hours for lift-off process. The final device is shown 

in figure 4.12(b).  

 

 

 

 

 

 

 
 

 

 

Due to a mistake during processing the Ti/Au layer was deposited all over the ITO 

patterns. Also cracks, mostly on the bigger pattern, were observed caused during 

handling or processing of membrane. This leads to the top and bottom contacts being 

connected to each other, as shown in figure 4.13. Since no more samples were 

available sample at that time, it was not possible to do the whole device fabrication 

over again. 
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Passive substrate   
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Passive substrate   
Bonding Matrix 
Back Contact  

Figure 4.12: a) SEM images at 30o tilt after etching back the resist to expose the tip of the 
NWs for ITO deposition (front contact). b) SEM images at 30o tilt after ITO and Metal 
(Ti/Au) deposition. c) Schematic of the individual NW geometry. 

Figure 4.13: a) Schematic of designed device; the Au reposition designed to be at the edge of the 
cell to make it possible to go down with the probe without penetrating the cell. b) Schematic of 
fabricated device; due to a processing mistake, Ti/Au layer was deposited all over the device. c) 
SEM image of one fabricated cell; a crack was observed which makes the top and bottom contact 
connected due to resist missing between the cracks. 
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4.3.3 Measurement and Results 
 
The standard characterization measurement for terrestrial solar cells is the use 
of a sun light simulator for air mass 1.5 spectrum, one-sun of illumination which 
is equal to 100 mW/cm2 and 25 °C of cell temperature. The measurement set up 
is sketched in figure 4.14. The light was provided by sun simulator OREIL SOL 1 
A and the samples were kept at adjusted height from the light source within 15 
cm distance to keep the spectral constant.  Two electrical probes were used to 
connect bottom and top contacts of the solar cell devices to a computer 
controlled current-voltage source KEITHLEY 2400-C. ORIEL Monocrystalline 
Silicon Solar Cell and its relevant Readout Meter were used for calibration by 
measuring the number of sun and device temperature. The whole setup was 
connected to the computer and controlled with software LabVIEW. First the 
current was measured by sweeping the voltage under dark (no illumination) and 
then the same measurement was done under illumination by opening the shutter 
of the sun simulator. All the important parameters of the device such as open-

circuit voltage, short-circuit current, filling factor and efficiency were calculated 

instantly after measurement by software. 
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Figure 4.14: Schematic of simple solar cell I-V measurement; light is provided by 
the sun simulator with power of 100 mW/cm2. Top and bottom contacts are 
connected to the current voltage source to sweep the bias voltage and measure the 
current. The whole set up is controlled by the pc with LabVIEW software. 
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Eighteen fabricated devices were measured. All the samples with 0.01 cm2 area 
pattern showed short-circuit behavior probably due the crack shown in figure 
4.13(c).  Six of the smaller devices showed rectifying behavior with response to 
the light. The table 11 shows the measured device parameters. JSC for all of them 
was really low due to the thin layer of Ti/Au deposited on top of the ITO all over 
the devices; subsequently most of the light was reflected back and was not 
absorbed by the NWs.  The low VOC is also due to the low light absorption since it 
is proportional to ln (IL/I0). The last two devices showed better performance in 
terms of JSC and VOC; more light absorption is one of the possibilities of the 
difference between devices. Since the four first devices were from another 
sample, the difference between lengths of the NWs tips reveled for top contact 
results in different thickness of the ITO and Ti/Au deposition. The difference of 
metal deposited thickness affects the light absorption through the NWs array. 
The I-V spectra for the device with highest efficiency is shown in figure 4.15 at 
both linear and logarithmic scales. The Voc of 0.604 V and JSC of 5.209 mA/cm2 
with filling factor of 16.74%, results in an efficiency of 0.527 % for the best 
device.  
 
 

Devices VOC (V) JSC (mA/cm2) FF (%) η (%) 

1 0.340 0.376 24.94 0.032 
2 0.330 0.399 25.65 0.034 
3 0.389 0.436 23.79 0.040 
4 0.347 0.559 20.18 0.039 
5 0.609 4.720 16.43 0.472 
6 0.604 5.209 16.74 0.527 

Table 11:Comparison of the device performance by the main parameter of the solar cell  

 
 

 
 
 
 

η= 0.527  % 

JSC=5.209 mA/cm
2
 

VOC=0.604 V 

FF=16.74 % 

Figure 4.15: Linear (left) and logarithmic (right) spectra under dark (blue) and illumination (red) 
of the device with highest achieved efficiency.  
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Conclusions and Path Forward 
 

 

The method of peeling off NWs from their native substrate by polymer and 

transferring them to the cheaper carrier substrate has been investigated and developed. 

Ordered arrays of NWs with length between 1.1-4.5 m were successfully peeled off 

from their base and transferred with high yield of transformation while orientation of 

the NWs was preserved. 

 

PL measurements on the membrane with embedded NWs showed that the fabricated 

NWs consisted of two different crystal structures zincblende and wurtzite. 

Absorption through the ordered array of NWs without any contribution of substrate 

was investigated by measuring transmission and reflection through the membrane 

after peeling. The measurements demonstrate that the NWs can absorb all the incident 

light with energy above the band gap energy, which is coupled into the array, even if 

the NWs fill only a fraction of the volume of the NW array.  

Solar cell devices were fabricated from transferred NWs and I-V measurements were 

done in order to observe the device performance. A Voc of 0.604 V and JSC of 5.209 
mA/cm2, was observed for the device with highest efficiency of 0.53 %, even 
though the top contact was not transparent in this case. 
 
Further development is needed to face some of the challenges occurring during this 

work, such as finding peeling polymer with desirable characteristics for instance good 

enough strength to prevent breaking during peeling and also low viscosity that allows 

the polymer penetrate between the NWs all the way down to the bottom of the NWs.  

Since the processing of the embedded NWs without passive substrate is not possible 

at the moment (it is too thin and fragile) the bonding matrix is needed. If the peeling 

polymer is easy to remove some of the main problem with bonding matrix will be 

solved since some of the materials that have been tried as bonding matrix in this work 

were dissolving by the relevant membrane dissolver. The membrane also needs to be 

thin otherwise RIE etching is not possible due to Lund Nano Lab rules and 

restrictions.  

Finding the compatible bonding matrix that can handle chemicals and the temperature 

of device processing is another challenge for this work. Also the way of handling the 

membrane during the work to decrease the possibility of introducing cracks needs to 

be further developed. The way of forming Ohmic contact to the NWs is another 

challenge, which has not been investigated in this work. Since annealing is the 

common method for Ohmic contact, temperature stability of the polymers is a further 

challenge to the ongoing project.  
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ABSTRACT  
An understanding of the absorption of light is essential for efficient photovoltaic and photodetection 

applications with III-V nanowire arrays. Here, we correlate experiments with modeling and verify 

experimentally the predicted absorption of light in InP nanowire arrays for varying nanowire diameter and 

length. We find that 2000 nm long nanowires in a pitch of 400 nm can absorb 94 % of the incident light with 

energy above the band gap, a consequence of that light which in a simple ray-optics description would be 

travelling between the nanowires can be efficiently absorbed by the nanowires. Our measurements 

demonstrate that the absorption for long nanowires is limited by insertion reflection losses when light is 

coupled from the air top-region into the array. These reflection losses can be reduced by introducing a smaller 

diameter to the nanowire-part closest to the air top-region. For nanowire arrays with such a nanowire 

morphology modulation, we find that the absorptance increases monotonously with increasing diameter of the 

rest of the nanowire. 

 

KEYWORDS  

Indium phosphide, semiconductor, nanowire, absorption of light 

 

1. Introduction 

Vertical III-V nanowire (NW) arrays have gained 

considerable recent interest for photovoltaics[1-4]  

and photodetectors [5,6]. The NW geometry has 

distinct material science benefits compared to the 

conventional thin-film geometry. For example, the 

free surface of the NWs allows for efficient defect-

free strain relaxation as compared to thin-films of the 

same materials [7-10], thus opening a large pallet of 

lattice-mismatched material combinations for 

tailoring the properties of opto-electronic devices. 

Furthermore, NWs of the opto-electronically highly 

interesting but expensive III-V materials can be 

fabricated on a lattice mismatched substrate of a 

much cheaper material, such as silicon [11] . 

   Semiconductor NW arrays can interact strongly 

with light [12-14], and the interest of using NW 

arrays for photovoltaics and photodetection is 

founded to a large extent on theoretical predictions 

[13,15-20] that NW arrays due to their geometry 
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can absorb light efficiently. Indeed, it was recently 

demonstrated that an InP NW array with an axial 

pn-junction could convert more than 70 % of the 

photons of the solar spectrum with energy above the 

band gap of InP into photocurrent, giving rise to a 

record 13.8 % conversion efficiency in a cell of 1 mm2 

in area [1]. However, a systematic experimental 

study of the absorption of light in III-V NW arrays 

has not been performed. By increasing our 

understanding of the interaction between light and 

nanowires, such a fundamental study holds the 

prospect of leading to optimization of the materials 

and enhanced performance in nanowire-based opto-

electronics.  

   Here, we study experimentally the absorption of 

light in InP NW arrays for varying NW diameter and 

NW length. The epitaxially fabricated NW arrays 

were embedded in polydimethylsiloxane (PDMS) 

matrices and peeled off from the native, opaque 

growth substrate. Next, we performed transmission 

and reflection measurements in the visible and the 

near-infrared wavelength region where the PDMS is 

transparent. From these measurements, the 

absorption of light in the NWs could be determined. 

We found that a NW length of 2000 nm is sufficient 

for absorbing more than 94 % of the incident light 

averaged over the wavelength range from 400 nm to 

900 nm. Indeed, our measurements demonstrate that 

a NW array can absorb all incident light with energy 

above the band gap, limited only by the insertion 

reflection losses when light is coupled from the air 

top-region into the array. We found that these 

reflection losses are reduced in a NW geometry 

where the NW-part closest to the air top-region 

shows a smaller diameter than the rest of the NW. 

 

 
 
Figure 1: a) SEM image at 30° angle from top view of a fabricated InP NW array with period p = 400 nm and NWs of diameter D 
= 138 ± 4 nm and length L = 1620 ± 40 nm. Top inset: SEM image of the substrate of the same sample after peeling of the NWs. 
Notice how the NWs were ripped off nicely at their base. Bottom inset: SEM image at 14° angle of fabricated NWs of L = 1653 ± 
87 nm showing a dual-diameter geometry with a diameter of D = 181 ± 11 nm at the top of the NWs and a diameter of D = 133 ± 
3 nm at the bottom. All the scale-bars are 1 m here. b) Schematic view of InP NWs embedded in PDMS. Notice that after the 
peel-off, the bottom of the as-grown NWs is located at the top air-NW/PDMS interface. Inset: Photograph of one of the PDMS 
membranes after peel-off. c) SEM image at 50° angle of the air-NW/PDMS interface of one the membranes. The scale-bar is 10 
m. Note the roughened air-NW/PDMS interface after peel-off. Inset: SEM image at 10° tilt of the cross-section of one of the 
membranes after cleaving the membrane. The scale bar is 3 m. 

 Furthermore, in such a nanowire morphology, the 

absorptance increases monotonously with increasing 
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diameter of the rest of the NW. This makes it feasible 

to tune the NW geometry in order to increase the 

absorptance even more efficiently with respect to 

materials consumption than for the case of straight, 

cylindrical InP NWs, for which a diameter of 

approximately 200 nm in a pitch of approximately 

500 nm has been predicted to yield a high 

absorptance [17,18].  

 
2. Experimental 
For the experimental investigations, two series of 

NW arrays were fabricated with either different NW 

length or different NW diameter. The dimensions of 

the NWs in the peeled-off PDMS membranes were 

determined from scanning electron microscope 

(SEM) images as follows. The average diameter D 

and the corresponding standard deviation was 

determined by measuring the diameter at the top of 

50 as-grown NWs (Figure 1a) for each sample. For 

the NW length L, the average length Las-grown and its 

standard deviation sas-grown of the same 50 as-grown 

NWs was measured first. Next, the average length 

Lstub and its standard deviation sstub of 50 stubs left on 

the substrate after peel-off was measured (top inset 

in Figure 1a). Then, the NW length L in the PDMS 

membrane was calculated as L = Las-grown - Lstub with 

standard deviation given by s = [sas-grown2 + sstub2](1/2). In 

the quoted values, the uncertainty denotes the 

standard deviation in length and diameter, 

respectively. 

   The first growth series consisted of eight samples 

of NW arrays grown for different times. Since the 

growth time is related to the nanowire length, this 

allowed us to investigate the dependence between 

the nanowire length and the absorption of light.   

The average length ranged from L = 955 ± 35 nm to L 

= 4492 ± 96 nm. For this series, the average NW 

diameter varied slightly, from D = 129 ± 3 nm to D = 

147 ± 4 nm. To allow for an investigation of the effect 

of the NW diameter on the absorption, the second 

growth series consisted of five NW arrays with 

average diameter varying from D = 132±3 nm to D = 

347±34 nm. For this series, the average NW length 

varied slightly, from L = 1441 ± 70 nm to L = 1663 ± 86 

nm.  

   In more detail, samples were prepared for NW 

growth by defining 160 nm diameter and 20 nm high 

Au catalyst particles in periodic arrays with a period 

of 400 nm using nanoimprint lithography on InP 

(111)B substrates. Notice that this period is predicted 

to yield a high absorptance in the nanowires if the 

nanowire diameter is chosen suitably [17,18] For 

the second growth series where the diameter was 

varied, an additional 20 nm thick SiNx layer was 

used as a growth mask between the Au particles. The 

NWs were grown in a low-pressure (100 mbar) metal 

organic vapor phase epitaxy (MOVPE) system 

(Aixtron 200/4) with a total flow of 13 l/min using 

hydrogen (H2) as carrier gas. For InP growth, 

trimethylindium (TMI) and phosphine (PH3) were 

used as precursors, with constant molar fractions of 

χPH3 = 6.9×10-3 and χTMI = 74.3×10-6, except for the 

longest NWs that had an average length of L = 4492 ± 

96 nm for which χTMI = 100.4×10-6 was used. 

Hydrogen chloride (HCl) was used to control the 

radial growth19 at a molar fraction of χHCl = 6.2×10-5. 

The samples were first annealed at 550 °C for 10 min 

under a PH3/H2 gas mixture to desorb any surface 

oxides. The reactor was then cooled to 440 °C, at 

which growth was initiated by adding TMI to the 

flow. After a 15 s nucleation time where χPH3 = 2.1×10-

3, HCl was added and nominally intrinsic InP NWs 

were grown. For the length series, eight samples 

were grown for different times varying between 5 

and 25 min. For the diameter series consisting of five 

samples, the core NWs were grown for 14 min. For 

both series, growth was terminated by switching off 

the TMI flow, and the sample was cooled down in a 

PH3/H2 gas mixture. For the diameter series, the Au 

particles were removed by wet chemical etching in a 

KI:H2O:I2 solution after which the NW cores were 

reinserted into the growth chamber for shell growth 

at a temperature of 575 °C in order to increase the 

diameter of the NWs. For this growth step χTMI = 

65.4×10-6 and χPH3 = 11.5×10-3.  Here, the growth time 

was varied from 1.5 to 20 min.  

   For the spin-on of PDMS, all the samples were 

bonded to 1-inch silicon substrates by crystal 

bonding. Wacker 625A PDMS and its curing agent 

625B were used. After mixing with a weight ratio of 

9:1, droplets of the mixture were dropped on the 

samples. The mixture was allowed to penetrate and 

fill out the space between the NWs for 2 min. Next, 

the samples were spun at a spin-coating speed of 800 

rpm for 35 sec to obtain an even film of PDMS. All 

the samples were placed in an oven at 80° C for 1 
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hour to cure the PDMS. Afterwards, the PDMS 

membranes containing the NWs were peeled off 

with tweezers (see inset in Figure 1b). We note that 

the NWs kept their orientation with respect to each 

other also in the PDMS matrix after the peel-off (see 

inset in Figure 1c). 

   To measure the total absorptance A(λ) of the 

embedded NWs, total reflectance R(λ) and total 

transmittance T(λ) were measured separately. The 

absorptance of the NWs was then obtained as A(λ) = 

1- R(λ) - T(λ). In the measurements, the air-

NW/PDMS interface of each sample was irradiated 

by a white-light source (AvaLight-HAL), and in each 

measurement either reflected or transmitted light 

was collected by an integrating sphere (AvaSphere-

30-REFL) and analyzed with a spectrometer 

(AvaSpec-ULS3648). The measurements were 

performed in the wavelength range of 400 < λ < 900 

nma with a wavelength step of Δλ = 0.35 nm using a 

15×103 ms integration time both for the reflectance 

and the transmittance measurements. A spot of 

approximately 1×π mm2 in area was irradiated in 

both types of measurements. 

   For the reflectance measurements, light was sent 

through the entrance view-port into the sphere and 

toward the sample view-port and the underlying 

sample. The light that was transmitted through the 

sample was allowed to pass to the exterior of the 

sphere without additional reflections back into the 

sphere. Here, the calibration and normalization was 

performed by using a planar silicon substrate sample 

as a reference. The background was calibrated for by 

measuring the stray light inside the sphere when no 

sample was attached to the sample view-port. For 

the transmittance measurements, light was instead 

sent into the sphere through the sample and the 

sample view-port. Here, the reference level was 

measured when no sample was mounted, and the 

background level was measured with the light 

source turned off. For both the reflectance and the 

transmittance measurements, the incidence angle 

was approximately 8° from the normal incidence that 

                                                        
a This wavelength range is defined by a high signal to noise 

ratio in the measurements. Coincidentally, the upper limit of 

this range matches nicely the band gap of InP which is 925 nm 

in wavelength. 

maximizes the area of the nanowire array to the 

incident light. 

   To support the experimental findings, we have 

performed full three-dimensional electromagnetic 

modeling [21] of the interaction of light with the 

NW arrays. In this modeling, we consider normally 

incident light since the 8° incidence angle in the 

experiments is expected to have only a minor effect 

on the results [16]. The modeled NW array consists 

of InP NWs placed in a square pattern of period p = 

400 nm into a PDMS matrix with air on the top side 

(Figure 1b). The NWs in the modeling are of length L 

and have a circular cross-section of diameter D. For 

the InP, tabulated values for the refractive index n(λ) 

were used [22], and for the PDMS a wavelength 

independent value of n = 1.43 was used. In the 

modeling, the reflectance R(λ) of the sample and the 

transmittance T(λ) into the PDMS below the NWs 

were calculated. Afterwards, the absorptance A(λ) 

was calculated from A(λ) = 1- R(λ) - T(λ).  

 

1. Results and discussion 

 

Figure 2. Measured absorptance of two InP NW arrays of 

similar NW diameter of D = 132 ± 10 nm (solid line) and 147 

± 4 nm (dashed line) but considerably varying NW length of L 

= 955 ± 35 nm (solid line) and 4492 ± 96 nm (dashed line). 

The gray circles indicate the measured values and the lines are 

calculated from these values as a moving average over 20 nm 

in wavelength.  

A study of the spectrally resolved absorptance A(λ) 

for varying NW length L can reveal many important 
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details about the optical response of NW arrays 

(Figure 2). For this purpose, we concentrated on two 

NW arrays with NW diameter D ≈ 140 nm. With this 

choice for the diameter, the NWs fill just 10 % of the 

volume in the NW array, and the remaining 90 % is 

filled by the non-absorbing PDMS. The first array 

has NWs with L = 955 ± 35 nm whereas the second 

array has considerably longer NWs with L = 4492 ± 

96 nm.  

   First, we find for the shorter NWs an absorptance 

peak of A ≈ 94 % at λ ≈ 630 nm. This absorptance 

peak in the measurements is attributed to the 

(diameter-dependent) resonant absorption predicted 

theoretically [15-17,23,24] and shown indirectly by 

photoconductivity measurements [6]. When moving 

toward shorter wavelengths from the absorptance 

peak, the absorptance dips to A ≈ 70 % at λ ≈ 450 nm 

after which it rises to A ≈ 80 % at λ = 400 nm. In 

contrast, the absorptance decreases monotonously 

when moving toward longer wavelengths from the 

absorptance peak. Thus, for these short NWs, the 

absorptance shows a complicated and non-

monotonous dependence with wavelength. 

 

 
 

Figure 3. Measured and modeled wavelength-averaged absorptance, reflectance, and transmittance of NW arrays as a function of NW 

length L. The average diameter of the fabricated samples lies in the range of D = 129 ± 3 nm to 147 ± 4 nm. The modeled NW arrays 

have NWs of diameter D = 136 nm, which is the mean of the average diameters of the fabricated samples. 

 

   In contrast, when considering the longer NWs with 

L = 4492 ± 96 nm, the absorptance has saturated at a 

value of approximately 97 % for λ < 700 nm. Further 

analysis of the measured spectra revealed that the 

absorptance is limited by a spectrally independent 

reflection loss of 3 %, which we attribute to reflection 

at the air-NW/PDMS top interface. Furthermore, for 

these longer NWs, due to the saturation of the 

absorptance, the resonant absorption is not visible 

any longer at λ ≈ 630 nm as was the case for the 

shorter NWs. Instead, the absorptance spectrum is 

now very similar to that expected for a homogenous 

thin film where the overall absorption is limited by 

reflection losses as well as the weak absorption 

coefficient close to the band gap. Thus, we find here 

direct evidence that a NW array can absorb all the 

incident light with energy above the band gap which 

is coupled into the array, even if the NWs fill only 10 

% of the volume. 

   To systematically investigate the effect of the NW 

length on the absorptance, we turn to study all the 

eight fabricated arrays of D ≈ 140 nm and varied 

length. For compact presentation of the results, we 

employ Amean, the average of A(λ) over the 

measurement range of 400 < λ < 900 nm (Figure 3a). 

First, we find a rapid increase from Amean ≈ 70 % to 

Amean ≈ 85 % when the NW length is increased from 

the smallest fabricated value of L ≈ 1000 nm to L ≈ 

2000 nm. However, the increase is less rapid for L > 

2000 nm, and a further increase of the NW length to 

4500 nm increases Amean by just 0.06 to 91 %. This can 

be understood from the saturation of the absorptance 

with increasing length of the NWs (Figure 2). For 

long NWs, it is the absorptance for wavelengths 

close to the bandgap wavelength, which is 925 nm 
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for InP, that increases with increasing length. This 

increase has only a minor effect on the wavelength 

averaged absorptance shown in Figure 3a. When 

these measured absorptance values are compared to 

the modeled values, we find excellent agreement 

(Figure 3a). The modeling shows a saturation toward 

the limiting value of Amean = 95 % when L → ∞ for a 

diameter of 140 nm.  

   To allow for a more detailed study of the 

absorption of light in the NW arrays, we show in 

Figure 3b and Figure 3c the measured and modeled 

wavelength-averaged reflectance and transmittance 

of the NW arrays. First, from the modeling, we 

expect for L > 1000 nm a reflectance of 5 %.b  The 

measurements show however noticeably lower 

reflectance values on the order of 3.5 %. A possible 

explanation for this discrepancy between modeled 

and measured reflectance could be the slight 

roughening of the air-NW/PDMS interface during 

the peel-off from the native substrate (see Figure 1c). 

Such a roughening is expected to work as a partial 

anti-reflection interface/coating, decreasing the 

reflectance compared to that of a smooth interface 

[25]. When turning to the measured and modeled 

transmittance through the NW layer, we find 

excellent agreement (Figure 3c). At L = 2000 nm, the 

transmittance is less than 15 %, and at 4500 nm, the 

transmittance is less than 5 %. Thus, for these NWs 

with D ≈ 140 nm it is noticeably beneficial to increase 

the NW length beyond 2000 nm to enhance the 

absorptance.  

   Theoretically it has been predicted that the 

absorptance is strongly diameter dependent [1,6,15-

18,23,24]. Indeed, by studying the five samples 

with L ≈ 1600 nm and varying D, we find that the 

absorptance increases rapidly when the diameter is 

increased from the smallest experimental value of D 

= 132 ± 3 nm (Figure 4a). For D = 241 ± 13 nm, the 

absorptance has increased to a high value of Amean = 

94 %. Thus, also NWs with a length of L < 2000 nm 

                                                        
b We note that for L < 1000 nm the modeled reflectance can 

show higher values than 5 % and there are noticeable 

oscillations in the reflectance. These occur in these short NWs 

due to additional contribution from reflection from the 

NW/PDMS-PDMS bottom interface, located a distance L 

down from the top air-NW/PDMS interface (Figure 1b) . 

can absorb light efficiently by optimizing the 

nanowire geometry. We note that the agreement 

between measured and modeled absorptance is very 

good in general for these arrays (Figure 4a). 

However, for the largest fabricated diameter of D = 

347 ± 34 nm, the measured absorptance is 93 % 

whereas the modeled absorptance is only 81 %. This 

discrepancy can be traced to a difference between the 

measured and modeled reflectance as described 

below. 

   The modeled reflectance increases monotonously 

from 3 % to 24 % when D increases from 0 to 400 nm 

(Figure 4b). In strong contrast, the measured 

reflectance is seemingly diameter independent and 

shows values on the order of 4 % for the fabricated 

NW arrays. Note that the modeled NWs are of a 

constant diameter along the NW length (see Figure 

1b) whereas the fabricated NWs in this diameter-

variation series show a two-diameter geometry (see 

bottom inset of Figure 1a). The diameter of these 

fabricated NWs is smaller close to the air-NW/PDMS 

top interface than further down in the PDMS layer, 

that is, the diameter of the as-grown NWs is larger at 

the top part of the NWs (see Figure 1b). Such two-

diameter NWs have been previously reported to 

strongly decrease the reflectance of NW arrays 

[26,27]. We note that the diameter is approximately 

140 nm at the air-NW/PDMS interface for all samples 

in this diameter-variation series, possibly explaining 

the independence of the reflectance on the quoted 

diameter D of the top part of the as-grown NWs 

(Figure 4b). 

   To elucidate the effect of the NW diameter on the 

absorptance without strong effects of the reflection 

losses, we turn to study the transmittance of the 

samples (Figure 4c). We find that the transmittance 

decreases monotonously with NW diameter and the 

agreement between modeling and experiments is 

excellent. Thus, since A = 1 – R - T, the peak found in 

the modeled absorptance at D ≈ 200 nm (Figure 4a) 

shows up due to the increasing reflection losses in 

the modeling with increasing D (Figure 4b). 

Therefore, our results demonstrate that by reducing 

the insertion reflection losses, the range of NW 

diameters suitable for absorption applications can be 

extended considerably. Our experimental results 

(Figure 4c) show that D > 200 nm is very suitable for 

high absorptance since the transmittance is less than 
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4 %. This low transmittance gives the prospect of 

Amean > 96 %, provided that a suitable geometry is 

used for the NW part closest to the top interface  to 

reduce the insertion reflection losses.  

  

 

 

Figure 4. Measured and modeled wavelength-averaged absorptance, reflectance, and transmittance of NW arrays as a function of NW 

diameter D. The average length of the NWs on the fabricated samples lies in the range of L = 1441 ± 70 nm to 1663 ± 86 nm. The 

modeled NW arrays have NWs of length L = 1570 nm, which is the mean of the average lengths of the fabricated samples. 

 

4. Conclusions 

In conclusion, we have studied experimentally the 

absorption of light in InP NW arrays. The NWs were 

peeled off from the opaque growth substrate into 

transparent PDMS matrices to allow for 

determination of the absorption in the NWs without 

contribution from the substrate. Our measurements 

demonstrate that the NWs can absorb all the incident 

light with energy above the band gap energy which 

is coupled into the array, even if the NWs fill only a 

fraction of the volume of the NW array. Thus, also 

light that would travel between the NWs in a ray-

optics description can interact efficiently with the 

NWs. We found that 2000 nm long NWs can absorb 

94 % of the incident light. Furthermore, we identified 

the insertion reflection loss into the NW array as a 

very important parameter affecting the absorption of 

light. By reducing this reflection loss, the 

absorptance of a NW array does not show a clear 

optimum when it comes to the NW diameter. 

Instead, the absorptance increases monotonously 

with increasing diameter of the NWs.  
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