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Abstract

In this master’s thesis The Hedge Monte-Carlo method (HMC) is
evaluated. The HMC method is used to price financial derivatives and
at the same time obtain optimal hedge portfolios. The optimal hedge is
of great importance as it enables risk management in option trading.
The advantage of this method is also that different types of options
with features like path-dependent and early exercise can be priced.

The evaluation is based on the quality of the price and hedge esti-
mates of European options. To further evaluate the performance of the
method the price process of the underlying asset followed initially a Ge-
ometric Brownian Motion process (GBM) and then the Normal Inverse
Gaussian process (NIG). Several different scenarios are considered in
the evaluation of retrieving good prices and hedges, i.e. different times
to maturity, initial stock prices and variances. Results shows that the
method is very promising when considering the quality of the price and
as for the quality of the hedge good levels are obtained for GBM when
the option is in the money. A desirable feature as the probability of
exercise of an in the money option is very high. For options where the
underlying asset follows NIG acceptable levels on the hedging errors
were difficult to obtain. As the performance of the method is measured
on both good prices and good hedges, the NIG process isn’t as suitable
as the GBM process when the HMC method i used.
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1 Introduction

1.1 Background

The Hedge Monte-Carlo method (HMC) is a method derived in order to
price financial derivatives and at the same time obtain optimal hedge port-
folios. The method has been inspired by the Least Square Method (LSM) of
Longstaff and Schwartz (2001) -pp 122 and thereof has the advantage of be-
ing able to price different types of options with features like path-dependent
and early exercise. The HMC method also has the advantages of variance
reduction, optimal hedges and that historical data can be used. Potters,
Bouchaud and Sestovic(2001) -pp 518.

In this thesis European options are being considered, which gives the
holder of a call option the right to buy the underlying asset and respec-
tively if holding a put option to sell the asset, i.e. plain Vanilla options that
are traded on exchange markets. In most cases risk in option trading can’t
be eliminated completely and arbitrage opportunities do not exist, which
is the reason that option markets exists. Due to the fact that risk can’t
be eliminated completely, I have with the article Hedged Monte-Carlo: low
variance derivative pricing with objective probabilities in mind, in this thesis
evaluated the Hedge Monte-Carlo method based on the quality of the price
and hedge. Potters, Bouchaud and Sestovic (2001) -pp 519, presents in the
article a new Hedged Monte-Carlo method to price financial derivatives and
at the same time obtain the optimal hedge. The possibility of obtaining the
optimal hedge is of great importance in the banking industry, due to the
fact that it enables risk management in option trading.

Initially the price process of the underlying asset followed a Geomet-
ric Brownian Motion process (GBM) and then the Normal Inverse Gaus-
sian process (NIG) which is a Lévy-process. This due to that the NIG-
distribution assigns a large amount of probability mass to the tails of the
distribution, enabling to better capture the recent historical movement in
the financial markets. In a heavy-tailed distribution the probability for out-
comes significantly deviating from the mean is much greater than in the case
of the normal distribution.

1.2 Method

The HMCmethod starts out at maturity (when the payoff of the derivative is
known) and works backwards in time, to obtain the price and optimal hedge
for the derivative. The method is based on minimizing the local quadratic
risk of the financial risk which occurs due to the imperfect replication of
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a derivative by a hedging strategy. The numerical implementation is done
with the same approach as used by Longstaff and Schwartz (2001).

The algorithm in Longstaff and Schwartz method is based on finding
the conditional expectation of the option value at each time step before the
option has reached maturity. This is done by using regression and results in
that the optimal stopping times for all trajectories are retrieved. The idea
behind the regression method is that the conditional expectation at each
time step is approximated by using a set of basis functions.

1.3 Purpose

The purpose of the thesis was to give a thorough description of the theory
behind the HMC method, the definitions and theorems in order to have an
understanding of the framework, the numerical implementation of the HMC
method and to present the results for how well the method preforms based
on price and hedge estimates. The evaluation of the method was done for
European options where the price process of the underlying asset followed
initially a GBM and then a NIG process.
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2 Theory - The Hedge Monte-Carlo method
The hedge Monte-Carlo method (HMC), is a method to price options among
other financial derivatives and to find the optimal hedge. This method works
backwards due to the fact that the exact option price is known at maturity,
when it is equivalent to the pay-off and with the local quadratic measure of
risk in mind the variance of the wealth change in a time step is minimized.

Before going into how the HMC method is used to price and hedge
derivatives there are some definitions and theorems that needs to be stated
as well as the models of the underlying asset and Black & Scholes needs to
be described. The following terminology will be used:

T : Maturity

δt : Timestep (δt = T/n)

n : Number of the time steps

t : 0 < t ≤ T

Pt(St) : The price of the option

LSt , L
B
t : Number of stocks and bonds in the portfolio L at time t with

The price St respectively Bt

V L
t : The value of the portfolio L,V L

t = LBt Bt + LSt St

r : Risk free interest rate.

2.1 Definitions

In this thesis European options are being considered, which gives the buyer
the right (not the obligation), to buy the underlying asset at maturity if
holding a call option or to sell the asset if holding a put option. Options are
financial derivatives and the definition of a derivative is,

Definition 1. (Derivative), an asset that is completely defined in terms of
an underlying financial asset is a derivative asset. Which is also called a
contingent claim. Björk (2004) -pp 9.

As the Black & Scholes model for option pricing is used as a benchmark-
ing method, the formula will be described and the definition follows below.
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Definition 2. (Black & Scholes), consist of two assets with the dynamics
given by

dB(t) = rB(t)dt (1)
dS(t) = αS(t)dt+ σS(t)dW̄ (t) (2)

where B(t) is the price process of a risk free asset, S(t) the price process of a
stock, W̄ (t) is a Standard Brownian motion, and r, α and σ are deterministic
constants, Björk (2004) -pp 89.

A risk neutral valuation framework is considered, i.e. the price of an
asset today is given by the discounted expected asset price of tomorrow. To
have a risk neutral valuation the so called Q-probability is used, which is a
risk neutral measure with the following property:

Definition 3. (Risk neutral measure), a probability measure Q is called
a risk neutral measure or alternatively a martingale measure if the
following condition holds:

S0
B0

= EQ
[

St
Bt
| S0

]
(3)

Björk (2004) -pp 9.

A risk neutral framework enables option pricing without estimating the
drift of the underlying assets or modeling stochastic discount factors and
still receive the same price as with no-arbitrage valuation.

In order to derive the price and the hedge strategy the assumptions that
the market is arbitrage free and complete are made, these assumptions are
defined as,

Definition 4. (Arbitrage free market), a market is considered arbitrage free
if there is no portfolio Lt, t ∈ [0, T ] consisting of assets traded in the market,
where the value of the portfolio V L

t = 0 and V L
τ > 0 with P (V L

τ > 0) = 1,
0 ≤ t ≤ τ ≤ T , Hanke (2003)-pp 4, Lüders (2004) -pp 6.

Definition 5. (Complete market) An arbitrage-free market is considered
complete if every contingent claim is attainable, i.e. a financial market in
which the value of any contract can be replicated by selecting an appropriate
portfolio of assets in the market and investing an initial amount, Föllmer,
Schied (2011) -pp 287.
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2.2 Theorems

Black & Scholes model for option pricing is used as my benchmarking
method. In order to have the complete understanding of the model, be-
low follows the theorem of B&S.

Theorem 1. (Black & Scholes equation), if one assumes that the market
is specified by the price processes in the definition of Black & Scholes and a
derivative instrument X with the contract function Φ(S(t)) is to be priced,
then the only pricing function fulfilling the requirement of being arbitrage free
and with the form D(t) = F (t, S(t)) where F ∈ C1,2 is a smooth function (of
the time and the price of the underlying asset S), is when F is the solution
of the boundary value problem below, Björk (2004) -pp 97.

Ft(t, s) + rsFs(t, s) + 1/2s2σ2Fss(t, s)− rF (t, s) = 0 (4)
F (T, s) = Φ(s) (5)

The Black & Scholes model can be expected to be arbitrage free and
complete by the meta-theorem:

Theorem 2. (Meta-theorem), let M be the number of underling traded assets
in the model where the risk free asset is not included, and R is the number
of random sources. We then have the following relations:

1. The model is arbitrage free if and only if M ≤ R.

2. The model is complete if and only if M ≥ R.

3. The model is complete and arbitrage free if and only if M = R.

Björk (2004) -pp 118
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As previously mentioned, a risk neutral valuation framework is consid-
ered.

Theorem 3. (Risk Neutral Valuation), the arbitrage free price of the claim
Φ(S(t)) is given by D(t) = F (t, S(t)) where F given by:

F (t, s) = e−r(T−t)EQ
t,s[Φ(S(T ))], (6)

and where dS(t) = rS(t)dt+S(t)σdWQ(t) and W is a Q-Wiener process,
Björk (2004) -pp 99.

2.3 Stochastic Differential Equation, SDE

In this thesis a stock is the underlying asset, which is described as a stochas-
tic differential equation (SDE). This approach is used to capture the behav-
ior of the asset price. How well the movement of the asset price is captured
is of great importance because it will affect the derivative pricing. Stochas-
tic differential equations arise from ordinary differential equations, when for
example white noise is a part of the equation. In the world of finance we see
this when there is uncertainty in the rate of return. If we consider r being
the risk free interest rate then r + ξ(t) is the uncertain interest rate, where
ξ(t) represents the uncertainty and is referred to as the white noise of the
equation.

2.3.1 Geometric Brownian motion

SDE can rarely be solved in a precise way but there are a few cases when
the SDE can be solved, one of these are when the equation is the Geometric
Brownian motion with X(t) as the unknown process,

dX(t) = µX(t)dt+ σX(t)dW̄ (t) (7)

this equation can be solved in the following way,

dX(t) = µX(t)dt+ σX(t)dW̄ (t), X(0) = 1 (8)

consider f(x) being ln x then f ′(x) = 1
x and f ′′(x) = − 1

x2

d(lnX(t)) = 1
X(t)dX(t) + 1

2(− 1
X2(t))σ2X2(t)dt (9)

= 1
X(t)(µX(t)dt+ σX(t)dW̄ (t))− 1

2σ
2dt (10)

= (µ− 1
2σ

2)dt+ σdW̄ (t). (11)

If we then set Y (t) = lnX(t),
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dY (t) = (µ− 1
2σ

2)dt+ σdW̄ (t), (12)

the solution to Y is given by,

Y (t) = Y (0) + (µ− 1
2σ

2)t+ σW̄ (t) (13)

and we get X to be,

X(t) = X(0)e(µ− 1
2σ

2)t+σW̄ (t) (14)

and the expected value is,

E[X(t)] = X(0)eµt (15)

Mörters, Peres, Schramm and Werner (2010) -pp 190, Klebaner (2005)
-pp 124.

The properties of the Wiener process in the equation of the GBM, .i.e.
in equation 14 enables simulation of the stock price, S(t) at a specific time
t by the formula:

S(t) d= S(0)e((r−1/2σ2)t+σ
√
tZ(t)).

where Z(t) ∼ N(0, 1) and d is equality in distribution. In order to get values
for all time points this formula is used:

S(ti+1) d= S(ti)e((r−1/2σ2)(ti+1−ti)+σ
√
ti+1−tiZ(ti+1)).

2.3.2 Normal Inverse Gaussian process

The Normal Inverse Gaussian process is a so called Lévy process. Lévy
processes are a general class of one-dimensional stochastic processes, with
the following definition:

Definition 6. (Lévy Process), a process {X(t)t≥0} defined on a probability
space (Ω, F, P ) is said to be a Lévy process if it has the following properties:

1. The paths of X are P−almost surely right continuous with left limits.

2. P (X0 = 0) = 1, a.s.

3. For 0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s.

4. For 0 ≤ s ≤ t, Xt −Xs is independent of {Xu : u ≤ s}.

Kyprianou (2006) -pp 2.
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From the definition of a Lévy process we have that for any n = 1, 2, ...,

Xt = Xt/n + (X2t/n −Xt/n) + ...+ (Xt −X(n−1)t/n) (16)

and that X has stationary independent increments that still are Lévy dis-
tributed, these properties result in that for any t > 0, Xt is a random
variable belonging to the class of infinite divisible distributions.

Definition 7. (Infinite divisible distributions), a real-valued random vari-
able Y has an infinitely divisible distribution if for each n = 1, 2, ... there
exists series of i.i.d. random variables Y1,n, ..., Yn,n such that

Y
d= Y1,n + ...+ Yn,n (17)

Kyprianou (2006) -pp 3.

An essential property of the Lévy process is the connection to infinite
divisible distributions, because from the definition above follows that a Lévy
process {X(t)t≥0} has a unique characteristic exponent, which is a contin-
uous function λ(u), for all u ∈ R and the characteristic function of X(t) is
given by,

φ(u) = etλ(u), for u ∈ Rd and t ≥ 0 (18)

where,

λ(u) = ibu− 1
2uau+

∫
R\{0}

[eiuy − 1− iuy1{0<|y|<1}(y)]ν(dy), (19)

for for some real b, real a > 0 and ν(·) a Lévy measure on R \ {0} so
that

∫
R\{0}min(1, | y |2)ν(dy) <∞.

In Section 2.3.1 the solution of Geometric Brownian motion was de-
scribed, worth noting is that Brownian motion is a Lévy process {X(t)t≥0}
that has Gaussian increments. The Lévy measure ν(·) controls the jumps of
the Lévy process so if one sets ν = 0 then X(t) is a Brownian motion with
drift b and volatility a.

The NIG process is a subordinated Brownian motion, as earlier stated
also a Lévy process {X(t)t≥0} but with normal inverse Gaussian distributed
increments and the random variableX(t) has aNIG(α, β, δ, µt)-distribution,
where α > 0,

∣∣∣ β ∣∣∣ < α, δ > 0 and µ ∈ R. For real values x, the probability
density function is given by,
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FNIG(x;α, β, δ, µ) = αδ

π

K1(α
√
δ2 − (x− µ)2)√

δ2 + (x− µ)2 eδ
√
α2−β2+β(x−µ), (20)

where
Kv(z) = 1

2

∫ ∞
0

uv−1e−
z
2 (u+ 1

u
)du (21)

is the modified Bessel function of the third kind and the characteristic
function is given by,

φNIG(u;α,β,δ,µ) = e−δ(
√
α2−(β+iu)2−

√
α2−β2)eiµu (22)

The distribution function is determined by numerical methods and the
parameters has the following interpretation:

α controls the shape of the density

β controls skewness

µ manages the position of the density function and

δ is the scaling parameter.

The random variable X of a NIG-distribution has the mean,

E(X) = µ+ δβ√
α2 − β2 (23)

and the variance,

V ar(X) = δ
α2

(α2 − β2)
3
2

(24)

Rachev, Hoechstoetter, Fabozzi and Focardi (2010) -pp 285.

2.4 The Black and Scholes formula

Based on the definition and the theorem of Black & Scholes described in the
two previous sections one can see that the SDE;

dS(t) = rS(t)dt+ S(t)σdW (t) (25)

can be described by the Geometric Brownian Motion model. By applying
the solution of the GBM equation to the S-process one gets S(T ):

S(T ) = S(t)e((r−1/2σ2)(T−t)+σ(W (T )−W (t))) (26)

9



and the pricing formula is

F (t, s) = e−r(T−t)
∫ ∞
−∞

Φ(seZ)f(z)dz (27)

where f is the density function and Z is a stochastic variable with the
distribution

N [(r − 1
2σ

2)(T − t), σ
√
T − t]

The pricing formula is an integral that requires numerical evaluation
except for some contract functions Φ like an European call option where
Φ(x) = max[x−K, 0] which gives

EQ
t,s[max[seZ −K, 0]] = 0 ∗Q(seZ ≤ K) +

∫ ∞
ln(K/s)

(sez −K)f(z)dz (28)

by solving the equation, one is left with the Black & Scholes formula:
The price of an European call option with strike price K and time of maturity
T is given by the pricing formula F:

F (t, s) = sN [d1(t, s)]− e−r(T−t)KN [d2(t, s)] (29)

N is the cumulative distribution function for the N[0,1] distribution and
d1, d2 equals to:

d1(t, s) = 1
σ
√
T − t

{ln( s
K

) + (r + 1
2σ

2)(T − t)}, (30)

d2(t, s) = d1(t, s)− σ
√
T − t (31)

Björk (2004) -pp 101.

2.5 The price and the hedge strategy

In practice the most cost-conscious model is determined by the model as-
sociated with minimum risk, so with quadratic measure of risk in mind the
variance of the wealth change between t and t+1 is minimized. If we assume
that the market is arbitrage free and complete then the price process of the
option Dt, can be replicated by a so called hedging portfolio that consist
of two assets, a bond B (with a deterministic price process) and a stock
S (with a stochastic price process). With time the value process V L

t will
correspond to:

V L
t = LBt Bt + LSt St (32)

at time t,

V L
t+1 = LBt Bte

r(t+1−t) + LSt St+1 (33)
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at time t+ 1.

Then for every time point t the option price process is:

V L
t = Dt → V L

t = Pt(St) (34)

From one time point to another the portfolio has the following local value
change:

e−r(t+1−t)V L
t+1 − V L

t = (35)

e−r(t+1−t)(LBt Bter(t+1−t) + LSt St+1)− (LBt Bt + LSt St) = (36)

e−r(t+1−t)(LSt St+1)− LSt St = LSt (e−r(t+1−t)St+1 − St) (37)

Which in theory should be equal to the change of the option price at the
same time interval:

e−r(t+1−t)Pt+1(St+1)− Pt(St) (38)

The equality does not hold, due to the fact that one assumes an arbitrage
free and complete market in theory, which is not the case in reality. So we
have a financial risk:

e−r(t+1−t)Pt+1(St+1)− Pt(St)− LSt (e−r(t+1−t)St+1 − St) 6= 0 (39)

The local risk is defined as the variance of the wealth change between t
and t+ 1, a risk neutral measure:

Rt = EQ[(e−r(t+1−t)Pt+1 − Pt − LSt (e−r(t+1−t)St+1 − St))2 | Ft] =

EQ[(e−r(t+1−t)Pt+1−Pt)2−2LSt (e−r(t+1−t)Pt+1−Pt)(e−r(t+1−t)St+1−St)+...

...(LSt )2(e−r(t+1−t)St+1 − St)2 | Ft] =

=
{
B = (e−r(t+1−t)Pt+1 − Pt)(e−r(t+1−t)St+1 − St)
A = (e−r(t+1−t)St+1 − St)2

}
=

= EQ[(e−r(t+1−t)Pt+1 − Pt)2 − 2LSt B + (LSt )2A | Ft] (40)
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Consider the function within the square brackets:

=


(e−r(t+1−t)Pt+1 − Pt)2 − 2LSt B + (LSt )2A
Take the derivative with respect to LSt : 2B + 2LSt A
The minimum of the function: 2B + 2LSt A = 0 =⇒ LSt = B

A

 =

The minimization of the function Rt is obtained when the hedge LSt is:

LSt = EQ[(e−r(t+1−t)Pt+1 − Pt)(e−r(t+1−t)St+1 − St)]
EQ[(e−r(t+1−t)St+1 − St)2]

(41)

The numerator is a covariance and the denominator is conditional ex-
pectations, thereby a numerical solution to the problem is rather difficult to
obtain, instead the problem is solved by linear regression:

Y = α1 +XL+ ε, (42)

In matrix notation,
Y1
Y2
...
Yt

 =


1 X1
1 X2
...

...
1 Xt


[
α
L

]
+


ε1
ε2
...
εt


Y = XΓ + ε (43)

Minimizing the residual ε = Y−XΓ by least Squares, i.e. εT ε with
respect to Γ one retrieves the normal equation,

XTY = XTΓ (44)

Solving this equation for Γ gives the following least squares solution,

Γ = (XTX)−1XTY (45)

where,

Y =


e−r(t+1−t)P1+1 − P1
e−r(t+1−t)P2+1 − P2

...
e−r(t+1−t)Pt+1 − Pt

X =


e−r(t+1−t)S1+1 − S1
e−r(t+1−t)S2+1 − S2

...
e−r(t+1−t)St+1 − St


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Which equals to equation 41. Now one can retrieve the optimal hedge
by simulations.

The numerical implementation is done in the same manners as in Longstaff
and Schwartz (2001), i.e. with the least squares Monte Carlo (LSM).

2.6 Numerical implementation

The value of an option is implied to equal the maximized value of the dis-
counted cash flows from the option. C(q, s; tk, T ) are the cash flows gen-
erated by the option for every trajectory q, conditional on the option not
being exercised at or before time t and on that the option-holder is follow-
ing the optimal stopping strategy for all s, t < s ≤ T . F is the σ-field of
distinguishable events at time T and F = {Ft; t ∈ [0, T ]} is the so called
augmented filtration produced by the price processes for the derivatives in
the economy. The value of function F(q; tk) if continuing at time tk can be
stated as

F(q; tk) = EQ[
n∑

j=k+1
e−rδC(q, tj ; tk, T ) | Ftk ], (46)

where n is the number of time steps.

The assumption is made that at time tn−1 the unknown function F(q; tn−1),
i.e. the function from equation 46 can be stated as a linear combination of
a countable set of Ftn−1-measurable basis functions. This due to that the
method is given in terms of Hilbert Spaces, with the property that any
function belonging to this space can be represented as a countable linear
combination of bases for this vector space. There are several limitations on
the basis functions but in this case it is enough for them to be complete and
linearly independent, Longstaff and Schwartz (2001) -pp 122.

F(q; tn−1) =
∞∑
j=0

ajfj(tn−1, Stn−1) (47)

The approximation F̂(q; tn−1) of F(q; tn−1) is then done by first specify-
ing the basis functions followed by regressing the discounted values
C(q, tn; tn−1, T ) on to the basis functions for the paths where the option is
in the money at time tn−1. At tn−2 the cash flows for each path are once
again approximated and regressed on to the basis functions for the paths
where the option is in the money. This is done for all the exercise times
for each path until starting time is reached. Then for every path the cash
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flows on the optimal stopping time are discounted to starting time and the
average over all paths is estimated.

In this thesis only European options are considered and as the exercise
time for European options equals to time of maturity T the cash flow for
each path won’t change with time, i.e. no need for recalculating the cash
flows at each time step. A difficulty in derivative pricing is that in many
cases payoff functions can be discontinuous at certain points but this not
being the case for the payoff function of European options one can use it
as a basis function and also due to the fact that the closer to maturity the
more the value function resembles the payoff function. For the call option
one has:

EQ[P (Stn+1) | Stn ] ≈
N∑
k=1

an,kfk(tn, Stn) =
N∑
k=1

an,k(Stn −Kk)+ (48)

and for the put option,

EQ[P (Stn+1) | Stn ] ≈
N∑
k=1

an,kfk(tn, Stn) =
N∑
k=1

an,k(Kk − Stn)+ (49)

2.6.1 The numerical implementation stepwise

1. Simulating m trajectories for the price of the stock, where the price
process:

Sm(t) = S(0)eXm(t)

is from the exponential Lévy process model and {X(t)}t≥0 is a Lévy
process. In this thesis the Lévy processes X(t) being considered are
Brownian motion and normal inverse Gaussian process.

2. Calculating the initial payoff for all trajectories P (tn+1, Stn+1) at time
tn+1,

3. Calculating the basis functions, fk(tn, Stn) which are the payoff func-
tions (Stn−Kn)+ or (Kn−Stn)+ and calculating the coefficients an,k at
time tn, by regressing the discounted payoff function from the previous
time step on to the basis functions.
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4. Now one can retrieve an approximation of P (tn, Stn) by the coefficient
and basis functions calculated in step 3:

P̂ (tn, Stn) =
N∑
k=1

ak,nfk(tn, S(tn))

5. The basis functions are computed for tn−1 and the coefficients an−1,k
are calculated by regressing the discounted P̂ (tn, Stn) on to the basis
functions.

6. P̂ (tn−1, Stn−1) can now be approximated.

7. The calculations in step 5 and 6 are done for every time step until
starting time.

8. Once all option prices are retrieved and new stock prices are simulated,
the optimal hedge is calculated through equation 41.

Note that the basis functions are calculated just once and can then be
used for different simulations of stock prices. The price of the option is
retrieved for all the trajectories which allow one to use the method on other
derivatives with path-dependent and American-exercise features.
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3 Numerical results

3.1 Background

I started out with implementing the method and investigated if I could repli-
cate the price of an European option with the underlying asset price process
following a GBM. To confirm that the method works and to evaluate how
good it works the price and hedge were compared to those retrieved from
B&S. I continued with modeling the asset price process as a NIG-process in
order to see if other underlying asset price processes can be used in combi-
nation with the HMC method and also to see how well it performs, here the
estimates were compared to the ones calculated by a Fourier option pricer.

3.2 Numerical results for the GBM-process

Initially the method was implemented for European options with a non-
dividend paying stock as an underlying asset, which followed a GBM process
and evaluated by comparison with the price and hedge obtained by the B&S
formula. As for my analyses I am considered call options with the following
values on the parameters:

1. Maturity: 1 month, 6 months and 1 year.

2. Strike price: 100.

3. The initial stock prices: 95, 105 and 115.

4. The volatility of the stock return: 20%, 40% and 80%.

5. The interest rate: 3%.

The evaluation is based on the number of basis functions n and sim-
ulations m needed to get good estimates of the price and hedge for the
different initial stock prices, times to maturity and volatilities. Studies by
Lars Stentoft (2003), express that both the number of simulations and the
number of basis functions should tend to infinity in order to approximate
the conditional expectation well, and the assumption is made that the same
will be for the price estimate. Stentoft (2003) -pp 11. Even if better pre-
cision can be obtained by increasing the number of simulations one needs
to take into account that it is payed in computational time, and thereof a
trade-off between precision and computational time needs to be evaluated
when looking at the price and at the hedge. As a higher number of basis
functions improves the expected price it also leads to a higher variance of
the coefficients in front of the basis functions, which affects the estimate of
the hedge. The estimate of the hedge can be improved by increasing the
number of simulations but then this will require additional computational
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time. So one needs to find the right combination of simulations and basis
functions that will perform within a reasonable time and at the same time
result in acceptable levels of bias and variance.

Initially the evaluation was based on the number of basis functions be-
tween 3 and 30 and for each choice simulations between 1 000 and 30 000.
The results presented in Appendix A, Table 1, 4 and 7 are the least number
of simulations contra basis functions needed in order to obtain good prices
with the HMC method where good prices meaning option prices with less
than 1% discrepancy from the true value, i.e. the B&S price, the price esti-
mates and the B&S prices are presented in Table 2, 5 and 8. In almost all
cases simulations between 10 000 and 20 000 and basis functions between 15
and 30 lead to good prices except for the low variance with 1 month and 6
months to maturity. Consistently the prices got better with the number of
simulations increasing as expected but the aim is to find the least number
of simulations in order to save time.

However even if it resulted in good price estimates one can’t say the
same thing about the hedges. Looking at the mean square error, (MSE)
of the hedges represented in Table 3, 6 and 9 one can see that the errors
are significantly bigger than the ones for B&S delta hedges and that in only
one case is the level of the MSE acceptable, this for 20% volatility, 1 month
to maturity and strike price 105. The hedging errors are more substantial
for one year to maturity and increase as the volatility gets higher. Maybe
I was a bit optimistic with the choices of simulations considering that 100
000 paths for the stock price process were used by Longstraff and Schwartz,
Longstraff and Schwartz (2001) -pp 127.

Some performance issues where revealed when looking into the hedge for
high volatility and 1 month to maturity and it got more distinctive as the
volatility got lower, see Figure 1 and 2. The figures show that the hedges
are systematically biased, the hedges are consistently underestimated before
strike price and overestimated after. Even though the number of simulations
and basis functions were enough for calculating good prices they weren’t
enough to obtain good hedges. To achieve good prices and good hedges one
needs to significantly increase the number of simulations and basis functions
which is payed in additional computational time.

In the next phase of my evaluation I considered number of basis func-
tions up to 150 and for each choice simulations between 30 000 and 100 000.
Results showed that when considering higher number of simulations the sys-
tematical bias is reduced considerably in those cases it had appeared during
the first phase of the evaluation and the MSEs are significantly reduced in
all cases, they are still not as low as the MSEs for B&S delta hedges but ac-
ceptable levels were achieved in more than one case. Tables 10, 12 and 14 in
Appendix B shows the number of simulations and basis functions needed in
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Figure 1: The hedges for HMC and
B&S compared to the true pay off in
phase 1.

Figure 2: The hedge residuals for
HMC in phase 1.

order to achieve significantly lower MSEs, whereas the MSEs are represented
in Table 11, 13 and 15. In all cases the choice of number of simulations and
basis functions was based on both the price estimate and the MSE for the
hedge. The longest CPU time used by MATLAB when running the different
cases was 826 seconds which is approximately 14 minutes. Very good price
estimates where achieved through out all the different cases but the hedge
estimates showed clearly that the method has performance issues when it
comes to high variance and out of the money options. In these cases even
when the number of simulations was increased to 200 000 a minor improve-
ment of the MSEs were achieved but the levels were still too big.
Taking a closer look when the methods performance very good, i.e. when
the option is in the money, close to maturity and the variance is low, mean-
ing volatility at 40% or lower, one can see in Figure 3 and 4 that the HMC
hedge follows the true pay off closely and the residuals are mostly within
the (-1,1.5) interval except for one at -1.5 and another one at 2. Considering
the hedging errors in a histogram as presented in Figure 5 one can see that
it is normally distributed and most of the errors are in the interval of -1 to
1. The V aR5% of - 1.227 shows that with 95% certainty a loss bigger than
1.227 won’t occur. Put this against the price of the option at 17.596 one
can conclude that this is a rather small loss.
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Figure 3: The hedges for HMC and
B&S compared to the true pay off in
phase 2.

Figure 4: The hedge residuals for
HMC in phase 2.

Figure 5: A histogram of the hedging
errors in phase 2.
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3.3 Numerical results for the NIG-process

By implementing the NIG process to model the asset price I seek to capture
the type of movements of the underlying asset that we seen lately in the
financial markets, i.e. outcomes considerably differing from the mean and
to evaluate how well the HMC method works when a NIG process is be-
ing considered. Once again an European option with a non-dividend paying
stock as an underlying asset is considered and evaluated by comparison with
the price and hedge obtained by a Fourier option pricer, which uses Fourier
transform techniques to price options.

For my analyses I considered options with the same values on the pa-
rameters as in the previous case:

1. Maturity: 1 month, 6 months and 1 year.

2. Strike price: 100.

3. The initial stock prices: 95, 105 and 115.

4. The interest rate: 3%.

As for the NIG-distribution I used the following estimates on my param-
eters.

1. The density, α : 37.

2. Skewness, β: -7.

3. The position of the density function, µ: 0,25.

4. Scaling, δ: 2.

The parameter values for the NIG-distribution is from a study by Erik
Lindström, Lindström (2012) -pp 23.

The first phase of the evaluation for NIG is done in the same manner
as for GBM i.e. I have considered the number of basis functions between
3 and 30 and for each choice simulations between 1 000 and 30 000. The
results presented in Appendix C, Table 16 are the least number of simula-
tions contra basis functions needed in order to obtain good option prices i.e.
where the discrepancy from the true value is less than 1%. When consider-
ing the NIG process the true value of the option price is represented by the
option price retrieved from a Fourier option pricer. The price estimates and
the Fourier prices are presented in Table 17, where one can clearly see that
simulations between 10 000 and 25 000 and basis functions between 5 and
20 leads to good prices except for in one case where the initial stock price
is 95 and time to maturity is 1 month. The price estimates got better with
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the number of simulations increasing as expected but the goal is to find the
least number of simulations in order to save computational time.

The conclusion of the results on the MSEs of the hedges in this phase
is that the levels are not acceptable, see Table 18, except for in one case
when considering a deep in the money option with 1 month to maturity.
The size of the errors follows the same pattern as when considering GBM,
i.e. the further the maturity is and the more out of the money the option
is the bigger the errors are. Even though the levels of the MSEs weren’t
satisfactory, looking at the hedge estimates in comparison to the ones of
Fourier and the true pay off there are no signs of systematic bias, see Figure
6. The hedges follow the shape of the true pay off and the residuals are
evenly distributed around the zero level, see Figure 7.

Figure 6: The hedges for HMC and
Fourier compared to the true pay off
in phase 1.

Figure 7: The hedge residuals for
HMC in phase 1.

In the next phase the number of basis function goes up to 150 and for
each choice simulations between 30 000 and 100 000 are done. The MSEs
are reduced significantly and acceptable levels were achieved for the deep in
the money options and close to maturity but still they are not as low as the
MSEs of the Fourier method. For these computations the longest CPU time
used by MATLAB was 394 seconds which is approximately 7 minutes. The
results for the MSEs are presented in Appendix D Table 20 and the choices
of number of simulations contra basis functions in Table 19.

Just like when the price function followed a GBM, good price estimates
where retrieved quite effortlessly in all cases but even though the increase
of simulations and basis functions lead to lower MSEs the results for NIG
weren’t acceptable, except for the deep in the money options with 1 month
to maturity. The number of simulations and basis functions where increased
in order to see if lower levels could be retrieved but it only resulted in very
small improvements.
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Considering the case when the method works, i.e. for deep in the money
options and 1 month to maturity one gets quite good hedge estimates as
represented in Figure 8 where the hedge estimates follows the shape of the
true pay off very well and the residuals are mostly within the (-0.5, 0.5)
interval, see Figure 9. In figure 10 the hedge errors are presented in a
histogram where the errors are normally distributed within the (-0.75, 0.75)
interval except for two values deviating out by 1.25 on the scale. The V aR5%
is - 0.482 which indicates that with 95% certainty one won’t suffer a loss
bigger than 0.482 which in relation to the price of the option at 15.2900 is
quite small.

Figure 8: The hedges for HMC and
Fourier compared to the true pay off
with 1 month to maturity in phase 2.

Figure 9: The hedge residuals for
HMC with 1 month to maturity in
phase 2.

Figure 10: A histogram for the hedge
errors with 1 month to maturity in
phase 2.

By just increasing the time to maturity to 6 months one still gets good
prices but the hedges are not as good, see Figure 11 and Figure 12. Consid-
ering the hedge errors in a histogram, Figure 13, one can see that the errors
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are in a much wider interval than one would have hoped for. The V aR5% of
- 1.941 compared to the price at 18,1940 isn’t that high but still one would
expect the amount to be a little bit smaller considering that it is an in the
money option with 6 months to maturity.

Figure 11: The hedges for HMC and
Fourier compared to the true pay off
with 6 months to maturity in phase 2.

Figure 12: The hedge residuals for
HMC with 6 months to maturity in
phase 2.

Figure 13: A histogram for the hedge
errors with 6 months to maturity in
phase 2.
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4 Conclusion
Based on my evaluation, a thorough evaluation of the number of simulations
contra basis functions needed in order to achieve good price and hedge esti-
mates, I can say with confidence that the method results in very good price
estimates and this goes for both when the price process of the underlying
asset follows a GBM and a NIG process. The pricing ability of a method is
of great importance in the options market where the trade volumes are so
big that the values easily exceed millions of Eur’s or US dollars, thereof a
misprice bigger than 1% isn’t acceptable.

From a hedging point of view when considering a GBM process the
method performs best for in the money options with variance below 40%
and the results gets better as one gets closer to maturity which is not a
discouragement as the performance of the HMC method is most important
for the options deepest in the money. At this stage the probability of ex-
ercise of an option is very high. As for the evaluation of the hedges when
the underlying asset price process followed a NIG process, acceptable levels
on the MSEs of the hedge estimates were achieved in fewer cases than for
GBM. The method performed well from a hedging point of view only when
it was a deep in the money option with less the 6 months to maturity. Even
though fewer basis functions were needed in order to achieve good prices
in the NIG case it didn’t result in good hedges. The performance of the
method is measured in both good prices and good hedges and thereof is
the NIG process not as suitable to use as the GBM process with the HMC
method.

When it came to computational time, I only made sure that the calcu-
lation was done within a couple of minutes i.e. I made sure that it could
be done within reasonable time but a more meticulous evaluation has been
done by Lars Stentoft where the results showed that when the number of
stochastic factors is increased the method has a better trade-off between
computational time and precision, thereof preferable opposed to the Bino-
mial Model. Stentoft (2003) -pp 16.

The method isn’t the optimal choice when considering high variance and
out of the money options but I strongly believe that the method is of great
importance due to it’s other properties such as enabling pricing path de-
pendent options and options with underlying assets of higher dimensions.
Another desirable property in option trading is the possibility to reduce
financial risk which the method enables by the optimal hedging strategy.
This is also why I stand by the method even though The B&S delta hedge
errors and the Fourier hedge errors where consistently smaller and thereof
one can conclude that it’s not the optimal choice for pricing European op-
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tions. The method resulted in acceptable levels on the MSEs and it can be
used to price other options when the B&S or Fourier method isn’t an option.

5 Future work
It would be of great value to evaluate how well the HMC method performs
when considering other type of options especially American options. Pricing
American options by simulations is considered difficult due to Monte Carlo
simulations going forward in time whereas pricing American options is done
by going backwards this due to the probability of early exercise. It would
also be interesting to investigate the American options hedge parameters
which is considered an unexplored area.

The pricing problem in the HMC method is reduced to selecting a suit-
able set of basis functions by the assumption that the option value can be
described by a linear combination of basis functions. Worth noting is that
the precision of the option value one can get with increased computational
time is based on the choice of basis functions. I thereof believe that looking
into the choice of basis functions would be interesting, especially when other
type of contracts, like American style options, are being considered.
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Appendices
Appendix A: Results for phase 1 of the evaluation for GBM

Table 1: Number of simulations and basis functions for 20% volatility
Initial stock price 115 105 95
Time to maturity m\n m\n m\n

1 month 20 000\20 80 000\50 80 000\150
6 months 15 000\30 15 000\30 20 000\30
1 year 15 000\30 15 000\30 15 000\20

Table 2: Prices for 20% volatility
Initial stock price 115 105 95
Time to maturity Price\True Price Price\True Price Price\True Price

1 month 15.33\15.26 5.89\5.86 0.61\0.62
6 months 17.51\17.53 9.56\9.55 3.84\3.87
1 year 20.23\20.27 12.57\12.63 6.73\6.67

Table 3: MSE for 20% volatility
Initial stock price 115 105 95
Time to maturity MSE\B&S MSE MSE\B&S MSE MSE\B&S MSE

1 month 0.07\0.01 0.79\0.06 0.34\0.07
6 months 0.92\0.09 1.22\0.10 1.26\0.11
1 year 1.42\0.12 1.69\0.14 2.46\0.13
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Table 4: Number of simulations and basis functions for 40% volatility
Initial stock price 115 105 95
Time to maturity m\n m\n m\n

1 month 20 000\25 15 000\25 20 000\25
6 months 15 000\20 20 000\25 20 000\25
1 year 15 000\25 15 000\25 15 000\20

Table 5: Prices for 40% volatility
Initial stock price 115 105 95
Time to maturity Price\True Price Price\True Price Price\True Price

1 month 15.84\15.89 7.83\7.80 2.50\2.50
6 months 22.01\21.99 14.86\14.98 9.19\9.21
1 year 27.23\27.25 20.25\20.29 14.25\14.22

Table 6: MSE for 40% volatility
Initial stock price 115 105 95
Time to maturity MSE\B&S MSE MSE\B&S MSE MSE\B&S MSE

1 month 0.76\0.17 1.83\0.50 2.36\0.47
6 months 2.78\0.44 2.99\0.43 3.44\0.60
1 year 4.37\0.61 3.84\0.62 3.95\0.48
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Table 7: Number of simulations and basis functions for 80% volatility
Initial stock price 115 105 95
Time to maturity m\n m\n m\n

1 month 20 000\20 10 000\20 20 000\15
6 months 10 000\15 15 000\20 15 000\25
1 year 15 000\25 20 000\15 10 000\15

Table 8: Prices for 80% volatility
Initial stock price 115 105 95
Time to maturity Price\True Price Price\True Price Price\True Price

1 month 19.33\19.30 12.23\12.27 6.71\6.77
6 months 33.05\32.88 26.20\26.05 19.70\19.84
1 year 42.31\42.63 35.34\35.52 28.68\28.83

Table 9: MSE for 80% volatility
Initial stock price 115 105 95
Time to maturity MSE\B&S MSE MSE\B&S MSE MSE\B&S MSE

1 month 5.07\1.89 4.26\2.07 5.04\1.78
6 months 16.00\2.01 8.44\1.98 9.11\2.09
1 year 26.99\1.92 15.10\2.00 15.12\1.97
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Appendix B: Results for phase 2 of the evaluation for GBM

Table 10: Number of simulations and basis functions for 20% volatility
Initial stock price 115 105 95
Time to maturity m\n m\n m\n

1 month 90 000\45 100 000\100 100 000\120
6 months 90 000\60 100 000\90 90 000\90
1 year 90000\30 80 000\65 100 000\65

Table 11: MSE for 20% volatility
Initial stock price 115 105 95
Time to maturity MSE\B&S MSE MSE\B&S MSE MSE\B&S MSE

1 month 0.014\0.006 0.21\0.08 0.14\0.08
6 months 0.36\0.07 0.44\0.11 0.29\0.11
1 year 0.58\0.09 0.58\0.10 0.45\0.16
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Table 12: Number of simulations and basis functions for 40% volatility
Initial stock price 115 105 95
Time to maturity m\n m\n m\n

1 month 100 000\45 100 000\65 100 000\80
6 months 90 000\50 100 000\55 100 000\50
1 year 100 000\45 80 000\40 100 000\50

Table 13: MSE for 40% volatility
Initial stock price 115 105 95
Time to maturity MSE\B&S MSE MSE\B&S MSE MSE\B&S MSE

1 month 0,56\0.29 0.79\0.44 0.56\0.35
6 months 1.47\0.49 1.26\0.59 1.15\0.50
1 year 1.75\0.58 1.83\0.55 1.18\0.54
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Table 14: Number of simulations and basis functions for 80% volatility
Initial stock price 115 105 95
Time to maturity m\n m\n m\n

1 month 100 000\45 100 000\45 100 000\50
6 months 100 000\40 100 000\45 90 000\40
1 year 100 000\45 100 000\45 90 000\45

Table 15: MSE for 80% volatility
Initial stock price 115 105 95
Time to maturity MSE\B&S MSE MSE\B&S MSE MSE\B&S MSE

1 month 2.92\1.78 3.02\2.27 2.36\1.66
6 months 5.88\2.35 4.79\1.91 3.84\1.68
1 year 8.77\1.99 6.68\1.95 7.33\2.15
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Appendix C: Results for phase 1 of the evaluation for the NIG process

Table 16: Number of simulations and basis functions
Initial stock price 115 105 95
Time to maturity m\n m\n m\n

1 month 15 000\15 15 000\20 60 000\60
6 months 20 000\15 20 000\15 25 000\20
1 year 10 000\5 25 000\20 25 000\20

Table 17: Price estimates
Initial stock price 115 105 95
Time to maturity Price\True Price Price\True Price Price\True Price

1 month 15.43\15.35 6.19\6.21 0.88\0.87
6 months 18.13\18.28 10.54\10.56 4.85\4.84
1 year 21.49\21.50 13.95\14.08 8.03\8.09

Table 18: MSE
Initial stock price 115 105 95
Time to maturity MSE\Fourier MSE MSE\Fourier MSE MSE\Fourier MSE

1 month 0.63\0.18 1.92\1.61 0.78\0.60
6 months 2.64\0.71 4.85\2.09 2.55\1.55
1 year 19.79\1.54 3.16\1.47 3.16\1.93

32



Appendix D: Results for phase 2 of the evaluation for the NIG process

Table 19: Number of simulations and basis functions
Initial stock price 115 105 95
Time to maturity m\n m\n m\n

1 month 60 000\30 60 000\60 40 000\100
6 months 100 000\60 100 000\60 100 000\60
1 year 60 000\30 100 000\60 100 000\60

Table 20: MSE
Initial stock price 115 105 95
Time to maturity MSE\Fourier MSE MSE\Fourier MSE MSE\Fourier MSE

1 month 0.12\0.06 1.03\0.96 0.52\0.52
6 months 1.43\1.05 1.84\1.47 1.80\1.56
1 year 2.17\1.25 1.63\0.89 1.73\1.22
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