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Abstract 
Lane association is the problem of determining in which lane a vehicle is currently 
driving, which is of interest for automated driving where the vehicle must 
understand its surroundings. Limited to highway scenarios, a method combining 
data from different sensors to extract information about the currently associated 
lane is presented.

The suggested method splits the problem in two main parts, lane change 
identification and road edge detection. The lane change identification mainly uses 
information from the camera to model the lateral movement on the road and 
identifies the lane changes as a relative position on the road. This part is 
implemented with a particle filter. The road edge detection enters radar detections 
to an iterated Kalman filter and estimates the distances to the road edges.  

Finally, a combination of the filter outputs makes it possible to compute an 
absolute position on the road. Comparing the relative and absolute positioning 
then leads to the desired lane association estimate. 

The results produced are reliable and encourages to continue approaching this 
problem in a similar manner, but the current implementation is computationally 
heavy.
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Populärvetenskaplig 
Sammanfattning 
Som ett steg mot framtidens förarlösa fordon behövs metoder för att öka 
förståelsen av omvärlden. En bit i det stora pusslet är att kunna identifiera i vilken 
fil ett fordon kör, till en början begränsat till motorvägskörning. Det är vad detta 
projekt handlar om, där uppgiften är att undersöka möjligheterna att få ut 
information om filtillhörighet på ett robust sätt med tillgänglig data. 

En modern lastbil innehåller stora mängder elektronik för att styra och 
kontrollera funktionen. Lagkrav om exempelvis nödbroms har infört radar och 
kamera som standardutrustning, och data som dessa sensorer kontinuerligt samlar 
in kan användas till att ta fram en mängd olika information. 

Från en kamera kan man få information om vägmarkeringar och deras 
sträckning. Genom att kombinera kameradata med lastbilens acceleration i lateral 
riktning, kan den laterala rörelsen över vägen modelleras. Med fokus på korsning 
av väglinjer kan filbyten identifieras. 

Radardetektioner kommer från alla objekt framför ett fordon; andra fordon, 
vägräcken, vegetation längs vägen, osv. Genom att sortera ut detektioner från 
vägräcken kan avståndet till vägens ytterkanter skattas. 

Den information som fås från kamera och radar kan sedan kombineras till en 
skattad filtillhörighet. De resultat som presenteras i den fullständiga rapporten kan 
med bra resultat verifiera att detta är ett möjligt angreppssätt för att lösa det 
presenterade problemet. 
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1. Introduction 
This master thesis presents a way of determining in which lane a vehicle is driving 
in a highway scenario. The project was performed at Scania, using information 
from currently available sensors on Scania trucks, especially radar and camera 
data is essential for this application. 

The project was an overall success, the implemented system can produce 
stable and robust lane estimates for data recorded on highways. 

1.1   Background 
Increasingly higher requirements on fuel economy and safety motivate the 
development of more advanced vehicles. The automotive industry puts great effort 
in research to adapt to the new demands on the market. 

Heavy-duty vehicles contribute greatly to the carbon dioxide emissions to the 
atmosphere, an approximation by the European Commission is a quarter of the 
total emissions from road transport and 6 % of total carbon dioxide emissions in 
the European Union [1]. This has negative impact on the environment and oil is a 
limited resource. Fuel costs stand for about 35 % of the total cost for a modern 
haulage contractor [2], a decrease in fuel consumption is strongly economically 
motivated from their perspective. Modern systems can teach truck drivers how to 
drive more environmentally friendly, but full or partial automation has potential to 
further decrease fuel consumption. One example of this is platooning [3], where 
communicating vehicles autonomously drive closely together to decrease air drag 
and thereby fuel consumption. 

Safety is potentially an even more important issue to consider in this case. In 
Sweden, Trafiksäkerhetsverket has a vision of zero deaths and serious injuries in 
traffic [4], an idea that has also gotten attention internationally. Traffic related 
deaths have been decreasing steadily over the last decades as the safety in vehicles 
has increased [5].
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An older report concludes that human factors alone were the definite or 
probable cause in 57 % of all accidents and a contributing factor in over 90 % of 
the cases [6]. Essentially, this is caused by the limited information processing 
capabilities, which is based on the perception, attention and memory of the driver. 
These abilities can also be impaired by alcohol, fatigue or other distractions. 

The only way to completely remove this risk factor is to rely on an automated 
system that cannot be affected by this kind of external factors and ideally performs 
perfectly in any situation. 

In order to make it possible to automate vehicles, they must be able to 
perceive their environment, understand the current situation and take deliberated 
action.

In the automotive industry, the development of a large number of systems 
assisting the driver is an important area and software in general is of increasing 
importance. For some applications, software can reduce costs by replacing 
expensive sensors [7]. These new, somewhat intelligent functions, are grouped 
under the name Advanced Driver Assistance Systems, ADAS [8]. Some examples 
of currently available systems are adaptive cruise control, emergency brake 
systems and in-vehicle navigation systems. The main purpose of these systems is 
to increase safety by assisting the driver in some situations. 

Figure 1 Scania Truck on the Road [9] 
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Scania is a major manufacturer of heavy trucks and buses as well as 
industrial and marine engines. The main business is heavy trucks with 61,000 sold 
units in 2012 around the world, Figure 1 shows one of these heavy trucks. Scania 
is a global company with almost 40,000 employees in over 100 countries. 
Headquarters and research and development are located in Södertälje [2]. 

Several projects at Scania develop different kinds of ADAS and with them 
related software. The FFI project iQMatic is a collaboration between Scania, 
KTH, Autoliv and LiU and has as a goal to deliver fully autonomous trucks to a 
mining environment where the trucks can transport overburden to a dumping site. 

1.2   Purpose and Goals 
As a part of the iQMatic project, this project explores further possibilities of using 
existing sensors to extract more information about the current situation. 
Specifically, the purpose of this project is to examine the possibilities of extracting 
information about in which lane a vehicle is currently driving from data available 
from radar sensors and camera, available in trucks on the market today. This is 
one of the steps for increasing the vehicles awareness of the surroundings and this 
information is of importance for future systems involved with automated driving. 

The goal of this project is to formulate a stable lane association method with 
possibilities to use in real-time for future needs in automated driving. The lane 
association estimate should be reliable in a highway situation independent of 
situational variations.  

1.3   Methodology 
An initial review of literature, scientific papers and dissertations was conducted to 
give an overview of similar work on the area. Theory, especially for different 
filtering algorithms, was also revised. 

Based on the review results, models and filters were developed in a modular 
manner, where different functionality were put in individual parts to keep 
complexity down and allow for change of strategy. Simulations were made, for 
each module, with real logged data and evaluated by performance and comparison 
with desired output. The evaluation results lead to improvements in models and 
filter tuning, and new simulations in an iterative manner. The final results are the 
collaborative results from all modules working together.

All modelling and simulations are done in MATLAB [10]. 
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1.4   Report Outline 
The report is divided in 6 chapters. After this first introductory chapter, the 
content can be briefly summarized per chapter as follows. 

Related Work – Summary of similar work done on the area with focus on 
related approaches and methods. 

Truck and Sensor Setup – An overview of the communication in the truck, 
the sensors used as data sources and the format of the data the sensors produce. 

Theory – Background about sensor fusion in vehicles, theory about different 
filters and implementation specific design alternatives with focus on what is 
implemented.

Implementation – Detailed description on implementation and the design 
choices presented per function. 

Results – Results from simulations focusing on relating back to design 
choices and step by step getting to the final associated lane estimate. 

Discussion – The method and results are critically discussed and 
improvements and future possibilities are suggested. 
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2. Related Work 
This chapter gives a brief overview of the research topics related to the area. There 
has been little research with the single ambition to identify the current lane, as this 
information itself is not very useful. Some areas facing similar problems are also 
presented, as well as some similar approaches to problems of different character. 

Some of the concepts mentioned here will be explained further in the theory 
section as they are relevant for the project. It might be useful to read this section 
after the rest of the report, both for increased understanding of the work done and 
better perspective on the comparison to the similar projects. 

Lane detection is a topic which has received quite a lot of attention, the 
camera and image processing is central for this purpose. Normally, included in 
this term is localization of the road, the determination of the relative position on 
the road and some kind of analysis of the vehicles heading on the road. One 
suggestion for real-time lane detection is given by [11], where all focus is on the 
image processing as the camera is the only source of information.

Lane departure warning systems use lane detection to determine when 
vehicle is about to leave the lane without a turn signal being active in that 
direction. If this is about to happen, the system can either indicate this to the driver 
as a warning or actively take control of the vehicle and prevent the lane change 
[12].

Typically, lane departure warning systems rely heavily on visual information, 
and are thus sensitive to roadway conditions. A multi-sensor fusion approach 
presented in [13], where GPS, inertial sensors and high-accuracy maps are used to 
assist the vision-based system with a backup lateral offset to the lane markings. 

One of the more similar approaches to this project found in theory is [14], 
here the road estimation is of as much interest as the lane association. Both rely 
only on radar, and no camera signals are used at all. Guard rails and the tracking 
of other vehicles on the road are the important sources for information. The lane 
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association is done looking at the position relative to the road and the other 
vehicles, it is also closely connected to the estimated course of the road. 

Guard rails are also in focus in [15], where guard rails and other vehicles are 
identified with camera and radar sensor fusion. The focus is on visually tracking 
vehicles, detecting the guard rails is mostly done to increase the performance of 
the tracking. 

Another challenging problem is to estimate the course of a road in rural 
environments, one example of how unmarked and winding rural roads can be 
detected is given by [16]. Here, guard rails and lane markings heavily relied on in 
highway scenarios cannot be assumed to exist. The idea is to extend the more 
frequently used image-based lane recognition with evaluation of 3D information 
from stereo vision cameras or imaging radar. Several different filtering approaches 
were evaluated, and a combined Kalman particle filter is proposed as best choice. 
A slightly different approach for the same problem is presented in [17], where 
each road feature is tracked individually. 

Finally, an approach combining relative and absolute positioning estimates is 
given by [18], where the application is a simultaneous localization and mapping 
problem.

These are some examples of the wide-ranging work used as reference and 
inspiration for different parts of the project. 
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3. Truck and Sensor Setup 
A modern truck is equipped with a large numbers of sensors, mainly for being 
able to control the basic functionality, such as engine, brakes and gearbox. The 
extended legal demands and safety goals have forced the introduction of long 
distance radars and a forward-looking camera. These existing sensors are what this 
project mainly uses as input, relevant information about the sensors and the 
produced data is presented in the following sections. 

All data produced by sensors, as well as any other information being 
communicated within the vehicle, is sent on the vehicle internal CAN-network. 
Within all original equipment manufacturers, OEMs, large amounts of data 
transmitted on the network on different trucks on the road is logged for 
development purposes and diagnostics. Throughout this project, this logged CAN-
data has been used as input for the models and filters. An overview of the internal 
communication follows. 

3.1   Internal Communication 
In a truck there can be as many as 20 different electrical control units, ECUs, 
communicating internally to make the truck function in a normal way. An ECU 
can have a number of sensors and actuators connected to it and it is normally 
responsible for some functionality, where engine control is one of the more 
complicated examples.

The internal communication standard in the automotive industry is using 
controller area networks, CAN, which was created by Bosch in 1983 and has been 
used widely in vehicles since [19]. A CAN frame has the format seen in Figure 2. 

Figure 2 CAN Frame [20] 
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The basic CAN frame depicted above consists of several parts [20];  

• Start Of Frame, SOF, indicates the beginning of the frame 
• The identifier is also the arbitration field, see below, and contains 

information about the frame content 
• Remote Transmission Request, RTR, is used to distinguish between the 

data frame and the data request frame 
• IDentifier Extension, IDE, is used to distinguish between the CAN base 

frame and the CAN extended frame 
• Data Length Code, DLC, indicates the number of bytes in the following 

data field 
• Data is the actual message transmitted and can be up to 8 bytes long 
• Cyclic Redundancy Check, CRC, is a calculated checksum that 

guarantees the integrity of the frame 
• ACKnowledge, ACK, is transmitted as a recessive bit and should be 

overwritten by receivers with a dominant bit to indicate that the message 
has been received 

• End Of Frame, EOF, indicates the end of the frame 
• Intermission Frame Space, IFS, is the smallest number of bits separating 

two consecutive messages 

The CAN message identifier is indicating the content of the message as well 
as the priority on the bus. In case of bus access conflicts, the arbitration 
mechanism handles these, allowing the message with the lowest binary identifier 
and highest priority to be transmitted [21]. Other units will be listening until the 
priority of their message allows transmission, and any unit interested in the 
specified content can read a message when it is on the bus [20]. 

Errors are detected in five different ways in the standardized protocol [21]. 

• Bit monitoring – Each transmitter monitors the bus level and signals an 
error if the bus level does not match the transmitted signal 

• Bit stuffing – After transmitting five identical bits, a node will always 
transmit an opposite bit, that will be neglected by the receiver but can be 
used for error detection 

• Frame check – Checks that the fixed bits on the frame have the expected 
values
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• ACK check – All receivers should send an ACK during this part of the 
message frame, if this is not detected by the transmitter an error has 
occurred

• CRC – Each receiver calculates the checksum for the message received 
and compares to the CRC in the message 

In case an error is detected, the incorrect message will immediately and 
automatically be retransmitted. This leads to high data integrity and short error 
recovery times compared to many other network protocols [21]. The mentioned 
error detection is only for the two lower OSI layers [22], which are covered by the 
standard, additional error detection could be implemented in higher layers in 
applications.

Regarding timing, it is hard to generally guarantee that messages arrive at a 
certain time. Scheduling and response-time analysis can be done for specific 
cases, see [23], but a general approach when designing the communication 
structure is to make the bus fast enough and the number of connected nodes small 
enough, the delays are then expected to be sufficiently small. 

The ECU’s are in Scania trucks connected to three different buses, ordered 
by priority, see Figure 3 for an overview. Essential systems communicate on the 
red bus, such as the previously mentioned engine management system, EMS, or 
the brake management system, BMS. Less critical systems communicate on the 
yellow bus, examples here are the instrument cluster system, ICL, and the all-
wheel drive system, AWD. The least crucial information is put on the green bus, 
such as the climate control, ACC. These buses are connected at a gateway unit, 
called the coordinator, COO, which is distributing messages required on several 
buses and also does some processing itself [21]. With the addition of more sensors 
and ECU’s for the development of more advanced functionality in the vehicles, 
another CAN-bus is added. An overview of a typical truck setup can be found in 
the image below. 
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Figure 3 Overview of CAN structure in typical Scania truck. ECUs are connected to 
one of three buses, sorted by importance. The coordinator unit distributes information 
between buses. Scania internal image. 

For more details the two lower OSI layers, which the CAN protocol 
standardizes, refer to [24], or more details on applications of CAN in different 
types of vehicles, refer to [21]. 

3.2   Camera Data 
The forward-looking camera is a normal mono-camera bought by Scania from a 
supplier as a black-box component. It is unfortunately delivered without any 
formal documentation and the performance is agreed on by a constant 
undocumented dialogue, what is mentioned in this section is based on experience 
and general practice.

The supplier is responsible for some camera internal image processing and 
feature extraction, before publishing data on the CAN-bus. Typically, this kind of 
lane detection systems is based on Hough-transform of which there are plenty of 
examples in literature, see for example [25]. The extracted features from the image 
processing are published on the CAN-bus at a frequency of about 12 Hz. 

The camera detects, among other things, the closest lane marking to the left 
and right, and presents this information on the bus as coefficients for a third 
degree polynomial. Each time new data is available from the camera, a triplet 
containing value, time and quality of the value is posted. The quality is an index 
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from 0 to 3, where 3 indicates excellent quality and 2 good quality. Data marked 
with 0 or 1 is not deemed to be of good enough use for this application. 

The general quality and reliability of the camera signals is determined from 
frequent use at Scania to be quite high. There are a few situations known to be 
problematic; for example snow covering lane markings or wet road in 
combination with the low standing sun causing reflections. In other words, 
situations which cause the contrast between lane marking and road to become too 
low are problematic since the image processing relies on the contrast to extract the 
information. Fortunately this does not apply to a very large number of situations. 
Problems could also occur if the windshield is very dirty, with dirt directly 
blocking the view of the camera. 

A summary of the camera properties can be seen in Table 1, which focuses 
on object detection but is included for the general overview it provides. 

As a complement to the logged CAN-data, a compressed movie file showing 
the view through the windscreen is stored for development purposes. Here it is 
easy to determine the actual position of the car in terms of lane number for use as 
a reference signal. 

Table 1 Properties of Radar and Camera for Object Detection [26] 

Camera Radar
Detects Other vehicles, lane 

markings, pedestrians 
Other vehicles, 
stationary objects 

Classifies objects Yes No 
Azimuth angle High accuracy Medium accuracy 
Range Low accuracy Very high accuracy 
Range rate Not Very high accuracy 
Field of view Wide Narrow 
Weather conditions Sensitive to bad visibility Less sensitive 

In the table, the azimuth angle is the angle from the direction in which the 
sensor is facing, typically straight ahead in the cases involved here, to the 
detection.

3.3   Radar Data 
In Scania trucks today, generic long and short distance radars are mounted in the 
front of the vehicles to detect objects in front of it. Radars are commonly used in 
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automotive applications because of the high reliability and accuracy, and low 
sensitivity to weather and dirt, see Table 1. 

The long-distance radar can detect several objects at each measurement 
instant, the update frequency is 20 Hz with the current setup in the truck. The 
detections each have information about distance, velocity and acceleration in the 
direction of detection and an angle from the longitudinal direction of the truck 
(and radar) that relates the previously mentioned parameters to the truck 
coordinate system. These signals are considered to be the raw radar signals.  

Each of the detections are also classified as true or false for the following 
categories; movable fast, movable slow and moving. The movable categories 
indicate if an object is movable, where other vehicles are examples of fast 
movable objects. The moving category, on the other hand, indicates if an object is 
currently moving. These categories are evaluated separately; an object identified 
as a fast movable object, could thus be known to have stopped, and moving would 
be false.

The raw signals are processed and grouped into targets that different 
applications can use for a variety of purposes. One important use is tracking 
objects, where the classification of these objects as moving or static is important. 

When determining distances to road boundaries the static detections along a 
road, such as from guard rails, are of interest. This implies that it is suitable to use 
the raw radar signals for this application. There are methods suggested for 
detecting extended objects, instead of working with the individual measurements, 
refer to for example [27] in the static case and [28] in the dynamic case, but these 
will not be elaborated further here. The basic idea, however, is to associate the 
individual detections with any number of objects with certain dynamic behavior 
and track them over time. 

3.4   Map Data 
It can be assumed that some other information is available to a vehicle on the road 
which is associated to the location, this is called map data. This map data includes 
information regarding topology, speed limits and total number of lanes in the 
current road segment to mention a few examples.
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4. Theory 
This chapter introduces the necessary theory on which this project is based. 
Initially the concept and benefits of sensor fusion is presented, this is followed by 
a brief introduction to general filter theory and then a presentation, in more detail, 
of the filter variants used. Finally a practical approach for change detection is 
presented.

4.1   Sensor Fusion 
Sensor fusion is a term used for the combination of data from different sensors in 
a way that the final data in a sense contains more information than the data from 
the original sources individually [26] [29]. Common ways of handling this kind of 
fusion are different statistical approaches, such as least squares methods, 
maximum likelihood methods and a variety of Bayesian approaches [30]. 

As previously mentioned, the automotive industry finds the sensor fusion 
approach very desirable as a way of replacing expensive sensors with more 
intelligent ways of using cheaper alternatives [7]. Many ADAS use or could use 
the same state estimates, Figure 4 shows how a central fusion could be structured 
in the future.
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Figure 4 Sensor Fusion Vision [7]. Sensors on the left side provide information about, 
for example, acceleration, position and speed to the sensor fusion. From the data provided 
by the sensors, information can, using sensor fusion, be extracted to be used to navigate, 
track objects or acquire situational awareness for a few examples. This is a vision of how 
these systems can be structured in the future, centralizing the sensor fusion and sharing the 
extracted information. 

The figure also shows common sensors providing input and typical output 
data.

Sensor fusion can be implemented in a centralized or decentralized fashion. 
Centralized fusion means that one filter is developed with all available 
measurements as input. Decentralized fusion, on the other hand, implies that 
different filters handle different measurement inputs, and the fusion uses only the 
filter output [30]. 

One example of a way of combining information from different sources, as 
mentioned in [30], is to use weighted least squares, WLS. This would give a 
combined result of value, x, and variance, P, according to the following. 

Equation 1 Fusion of Two Independent Estimates 
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The result is simply a linear combination of the two estimates, weighted by 
their quality given by the inverse variances. This assumes the estimates are 
independent. 

4.2   Filters 
Recursive Bayesian estimation is a common approach for solving estimation 
problems in a probabilistic manner. It is a general method, and some of the 
fundamentals will be presented in this section [31].  

Initially, assume there is a model of the following form, 

Equation 2 General Bayesian Model 

This means that there is a probability distribution that can predict the state x
and measurement z with some degree of certainty. The k index indicates the 
current time step, and k+1 the closest following. Given the model above, the 
filtering density and the prediction density one step ahead can be expressed 
according to the following recursive relations, known as the measurement update
and state update.

Equation 3 General Bayesian Prediction 

The presented equations in this section summarizes the basics in Bayesian 
filtering, they will be referred to as the filtering theorem [32]. The special case of 
the theorem when the model is linear and the noise is white and Gaussian, is the 
well-known Kalman filter, presented in the following section. 

4.3   Kalman Filter 
The Kalman filter, KF, is an efficient recursive filter for linear dynamic systems 
based on a Bayesian model. It has numerous applications in a large variety of 
fields and is of great importance in sensor fusion because of its flexibility [30]. 
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For linear Gaussian systems, the KF computes the posterior distribution exactly by 
updating finite-dimensional statistics recursively [33]. The KF is optimal in the 
sense that it gives the exact posterior density, given that the system is linear and 
completely known and the noise is white [31]. 

Theory
The KF is well known and commonly used, the filter derivation below follows 
[30]. The filter estimates the states x and measurements z in a linear state space 
model given by 

Equation 4 Kalman Filter Model 

Here u is the control signal, v is the process noise and e the measurement 
noise. The F matrix represents the process model and how the states evolve over 
time, the G matrices indicates how the control signal and the noise affects the 
different states, the H matrix is the measurement model and shows which states 
can be measured and how, and the D matrix shows the direct component of the 
control signal on the expected measurements. Q and R are the covariance of the 
process and measurement noise respectively. 

Initial state and covariance can, as implied by above, be expressed as 

Equation 5 Kalman Filter Initializations 

In its standard form, the filter based on the given state space model can be 
divided in two steps and expressed in the following recursive algorithm. 

Measurement update: 

Time update: 
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Algorithm 1 General Kalman Filter Algorithm 

A suggested way to structure the computations is to define the innovation 

Equation 6 Innovation 

the innovation covariance

Equation 7 Innovation Covariance 

and the Kalman gain 

Equation 8 Kalman Gain 

The measurement update can with these definitions be written 

Equation 9 Alternative Measurement Update 

Again, this assumes a linear model with white Gaussian noise. 

Kalman Filter Variants 
There are several variants of the KF, all considered classical approaches to 
Bayesian filtering, which makes it possible to solve many different types of 
problems. Essentially, the basic version requires a linear model and can only 
produce a unimodal posterior distributions, but the variants are more flexible [33]. 

The Extended Kalman filter, EKF, is an approach that takes a nonlinear, non-
Gaussian model and applies the KF to the linearized model with Gaussian noise. 
The linearization is done around the previous estimate, typically with the first, 
sometimes also including second, order terms of the Taylor expansion. There are 
no guarantees that the linearization and noise assumptions will give good results, 
however, in some applications where nonlinearities are small and the true 
posterior is unimodal, this works well [33]. 
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The Unscented Kalman filter, UKF, uses a few carefully selected so called 
sigma points to represent the unimodal Gaussian distributions. The UKF handles 
nonlinearities better than the EKF, but there are still limitations [33]. 

The Gaussian sum Kalman filters, GS-KFs, is a group of approximative 
filters that describes the posterior distribution as a sum of Gaussians, thereby 
allowing multimodal posteriors. These filters recursively form the Gaussian 
posteriors, essentially resulting in the parallel operation of several Kalman filters 
[34].

The Iterated Kalman Filter 
With a large number of independent measurements per time step, it is possible to 
apply an iterated Kalman filter, IKF. This is a variant of the KF which uses the 
basic theory but allows for any number of measurement updates between two time 
updates, instead of continuously alternating the two as the basic KF suggests. 
Intuitively it is reasonable to accept that two measurements with zero time 
difference can update the filter without a time update in between, a formal proof 
can be derived from the information filter, refer to [30]. 

Specifically, this means that the standard KF measurement update equations, 
after initializing 

Equation 10 Iterated Kalman Filter Initializations 

for each of total M measurements i = 1, 2, …, M will appear as follows 

Equation 11 Iterated Kalman Filter Measurement Update 

The final measurement update step is then 

Equation 12 Iterated Kalman Filter Final Measurement Update Step 
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The order in which the measurements are added to the filter does not impact 
the final result. 

Outlier Detection and Rejection Algorithm 
In order to avoid having unwanted measurements disturbing the filter performance 
outliers should be filtered out before adding measurements to the filter. This can 
be done in many ways, basically any hypothesis where a measurement can be 
tested as an inlier/outlier, and possibly rejected depending on the result, would be 
sufficient to increase performance if the measurement signal has outliers [30]. 

Stability
The Kalman filter is sensitive to model imperfections and deviations in the noise 
covariance from the true values. For numerical stability, the covariance matrix P
must be positive-definite [30]. 

4.4   Particle Filter 
The particle filter, PF, is a stochastic method based on Monte Carlo integration 
and is also known as sequential Monte Carlo, SMC [26]. It is an alternative to the 
commonly used KF in cases when the model is very nonlinear, beyond where the 
“linearized” extended Kalman filter or other variants apply. The earliest mentions 
of the PF are from the 1950s, but only since the publication of [35] in the 1990s 
when computational power started becoming more available, did this 
computationally complex filter gain recognition. The positioning problems of 
vehicles in real-time has been one of the big areas of application for the PF. 
Extensions of the positioning problem are algorithms for simultaneous localization 
and mapping, SLAM, an important development and application based on the PF 
[33].

The PF is approximating a posterior distribution  of the state 
given the measurements , based on a set of N samples. These samples are 
called particles and each has an associated weight w. For each time step, all 
particles are sent through the process model, read by the measurement model and 
assigned weights with a likelihood function on how good approximation of the 
true measurements that they make. Resampling, choosing a new set of particles 
from the old set, can optionally be used to keep up the quality of the particles. The 
steps that the filter iterates through are thus, again according to [30] 
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1. The measurement update: Modify the weights according to the 
likelihood function of the difference between observed and predicted 
measurements. 

2. Resampling: Take N new samples of the state from the existing set of 
particles.

3. The time update: Simulate a trajectory from one measurement time to the 
next using the dynamic model. 

The approximated resulting posterior distribution is for each time step the 
discrete set of particles representing the estimated state 

Equation 13 Particle Filter Approximated Posterior 

where (u) is Dirac’s delta function [30].  

Theory
The filter theory in this section is based on [30]. The PF can be applied to any 
nonlinear non-Gaussian model, in general form given by  

Equation 14 General Model for Particle Filter Application 

There are no restrictions on the probability density functions (PDF) of the 
process and measurement noise, but they are assumed to be known. The general 
form of the PF algorithm follows. 

First of all a proposal distribution  must be chosen, as well 
as a resampling strategy and the number of particles N.

Initialization: Generate , i = 1, …, N and let .
Iteration: For k = 1, 2, … 

1. Measurement update: For i = 1, 2, …, N, 

where the normalization weight is given by 
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2. Estimation: The filtering density is approximated by 

and the mean, considered to be the filter estimate, is approximated by 

3. Resampling: Optionally at each time, take N samples with replacement 
from the existing set of particles where the probability to take sample i is 

 and then set the new particle weight .
4. Time update: Generate predictions according to the proposal distribution 

and compensate for the importance weight 

Algorithm 2 General Particle Filter Algorithm 

It is possible, and common, to combine the two weighting steps. 
This section presents the general form of the particle filter, there are several 

variants and extensions, some of which are presented in detail in [31]. 

Selection of Proposal Density 
To be able to implement a filter according to the principle outlined above, the 
proposal density q must be selected. Principally, it can be freely selected as any 
kind of distribution, typically Gaussian, naturally affecting the approximation and 
therefore the performance negatively with a “bad” selection.  

Following the practice in [32], a more straightforward way of looking at the 
proposal density is presented in this section, valid in the case of a SIR filter, see 
section Resampling on page 32. This version of the PF represents making a set of 
design choices and is commonly known as the bootstrap filter. The important 
aspects are that in order to resample, a proposal density and a corresponding 
importance weight are required. 

According to the basic filter theory, see Equation 3, here repeated, we have 
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which would suggest

Equation 15 Relationship between Target Density, Importance Weight and Proposal 
Density 

These terms can be interpreted as the target (filtering) density, the importance 
weight and the proposal density respectively. Following again the basic theorem in 
section 4.2  and the interpretation of the equation above,

Equation 16 Interpretation of Proposal Density 

This implies that the proposal density can be chosen as 

Equation 17 Suggestion for Proposal Density 

This means that the particle predictions can be made by simply updating the 
particles from the previous time step using the process model. Formally, for each 
particle

Equation 18 Formal Notation of Particle Update 

Or using the model notation introduced in the Theory section on page 25 
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Equation 19 Particle Update with Model Notations 

As mentioned, this simplification makes the implementation more 
straightforward and is less computationally expensive than sampling from a given 
distribution. This is the most common version of the PF, and it performs well 
when the signal-to-noise ratio, SNR, is small [33]. 

Number of Particles 
The most important design choice is the number of particles used. The tradeoff is 
between getting a good representation of the full spectrum of the posterior PDF 
and the computational complexity a large number of particles causes [33].

Effective Number of Samples 
Looking at a PF, it is important to avoid something called sample depletion. This 
means, that without any countermeasures, over time all particles except for a very 
few will have negligible weights. To indicate the degree of depletion the effective
number of samples is introduced as 

Equation 20 Effective Number of Samples 

where a computable approximation is 

Equation 21 Approximation of Effective Number of Samples 

This means that the effective number of samples can be interpreted to be at 
its largest equal to the total number of samples when the weights are equal, and at 
its smallest equal to 1 when all particles except one has zero weight [30]. 

Resampling
Resampling avoids the sample depletion problem by, as previously mentioned, 
selecting a new set of particles from the highest weighted particles of the old set. It 
is here important to make sure that the new set still represents the distribution in a 
good way, not selecting too few particles to represent the entire range since 



33

throwing away particles essentially means throwing away information. This 
problem is called sample impoverishment, and in the extreme case this means that 
all particles collapse into one particle [36].

There are two alternatives for when to resample. Sampling importance 
resampling, SIR, means that resampling takes place every iteration, as mentioned 
in the Theory section. The alternative, sampling importance sampling, SIS, is to 
resample only when needed. This could be, for instance, when the effective 
number of samples is below a certain threshold [30]. A simple comparison is made 
in [36], where the resampling schemes produce comparable estimates but the SIR 
shows a smaller variance in the particle values than the SIS. 

There are different ways of selecting the particles to be resampled, the most 
commonly mentioned schemes are multinomial resampling, residual resampling,
stratified resampling and systematic resampling. Theoretically, the first three 
schemes have advantages, but all four show comparable results in practical 
applications. Based on this, systematic resampling is often chosen, since it is the 
simplest method to implement [37]. 

The resampling step can be a computational bottleneck if not the 
implementation is carefully considered and unreasonably high complexity is 
avoided. The systematic resampling can be implemented in different ways; 
Gustafsson suggests in [33] a MATLAB implementation including sort, which is 
of complexity , and Svensson mentions in [38] a method of 
complexity .

Jittering/Roughening/Dithering
This trick with many names is a practical way of avoiding sample depletion 
problems. The idea is to use the relationship between process noise and 
measurement noise; the noise models are modified so the process noise and/or the 
measurement noise appear larger in the filter than they really are in the process. If 
the noise level of the process noise is increased, this allows a wider range of 
particles in the resampling and partly mitigates the sample depletion problem. If 
instead the noise level of the measurement noise is increased, this also increases 
the chances of a particle being resampled since the tolerance will be larger for 
particles not matching an observation [33]. 

Stability
Divergence is normally an important theoretical issue with particle filters, as over 
time the noise will eventually cause the particles to diverge as the accumulated 
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error increases with an infinite time horizon. However, in most practical 
applications this is not something that needs urgent attention, and convergence can 
be proven with finite time horizons [30]. An extended discussion on the 
theoretical stability of particle filters is not assumed to be of further interest here, 
there is plenty of information available on the topic elsewhere. 

4.5   Change Detection – The CUSUM Algorithm 
The CUSUM algorithm is a way of detecting changes over time. It is commonly 
used to detect when a controlled process loses control. In [39] the idea is described 
as follows. Assume that m samples of size n are collected, and the mean of each 
sample is calculated. The cumulative sum, CUSUM, can then be formed by 
plotting one of the following quantities to the sample number m.

Equation 22 CUSUM Basic Sums 

Here  is the estimate of the mean when the process remains in control and 
 is the known or estimated standard deviation. The summation of the deviation 

from the estimated mean will indicate when the samples start drift off from the 
expected values as this sum is compared to a limit value. A principal example of 
the plot can be seen below.  
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Figure 5 CUSUM Visualization [39]. Looking back in time from the current time step, 
previous values are expected to be inside the cone formed by the arms in the illustration. 
Values outside the arms indicate a process out of control, or that a change has occurred. 

This is called the V-Mask, a way of visualizing the procedure. The process is 
deemed out of control when one of the points lies outside the upper or lower arm. 
This image also show the h and k parameters, normally used as design parameters. 
Using these design parameters, a tabular approach, more common than the visual 
variant, can be implemented according to the following. 

Algorithm 3 CUSUM Algorithm 

At time 0 both are initialized to 0. These sums will increase if the deviation 
from the mean is larger than k in the positive or negative direction respectively. At 
each time step the sums are compared to the limit h to determine whether or not 
the process is still in control. 
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5. Implementation 
The problem of associating the current position with a certain lane is split in three 
parts; lane change identification, LCI, road edge detection, RED, and lane
association, LA. The lane change identification determines when lane changes 
take place and the direction of change. It is mainly using camera data as input. The 
road edge detection on the other hand, uses the stationary radar detections to 
determine distance to the road edges. Representative models and suitable filters 
for these applications give estimates as output for the LCI and RED blocks at each 
time step. This information can in the final lane association step be combined for a 
resulting lane estimate. Details follow in the succeeding subsections. 

The modelling and filter development has been carried out in MATLAB in a 
data-driven exploratory manner, focusing on presenting stable results with a 
varying range of input data. Input data for development was chosen to be highway 
scenarios with lane changes, where there were two or three lanes available.  
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Figure 6 Screenshot from Front View Camera Recording. In this situation with three 
lanes, the lanes are identified with indexes from 0, the leftmost lane, to 2, the rightmost 
lane.

Figure 6 shows the view from the front looking camera, this is a screenshot 
from the stored video file. The lanes are numbered with indexes from 0 to the total 
number of lanes minus one. In the figure above, the current situation shows a road 
with three lanes. The leftmost lane is indexed 0, the middle lane in which the 
vehicle is currently driving is indexed 1, and the rightmost lane is indexed 2. In 
the general case of n lanes, they would be indexed from 0 to n-1. Minus one would 
indicate the area between the leftmost lane marking and the guard rail and n the 
corresponding area on the right side of the road. 

This chapter describes the methods and models used, how the filters have 
been implemented and how the final lane estimate is calculated. The first section 
gives a brief overview of the complete implemented system to increase the 
understanding of the individual blocks. 
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5.1   System Overview 
The final implementation of the system showing input data and which states that 
are communicated as outputs can be seen in Figure 7 below. 

Figure 7 System Overview. Lane change identification, road edge detection and lane 
association are illustrated as blocks where input and output is clearly indicated, as well as 
the relationship between the blocks and direction of information. 

The three main blocks, as earlier mentioned, are the lane change 
identification, the road edge detection and the lane association. 

The LCI uses camera signals, specifically the distance to the closest lane 
markings left and right, and the measured lateral acceleration to identify the lane 
changes. Also, the total number of available lanes from the map data is used. The 
n_LCI estimate corresponds to a relative position on the road, a change on this 
signal indicates that a lane change, left or right respectively, has occurred. The 
total number of lanes is also propagated to the LA block, as well as the estimate 
for the lane width, w_l. The subscript l here indicates a value related to the lane. 

The RDI block uses radar signals, distance and angle to measurements as 
well as the classification whether the detected object is moving or not, to estimate 
distances to the road edges, l_r and r_r. Here the subscripts indicate that these 
values are relative to the road. 

Finally, the LA block uses the estimates produced by the first two blocks to 
compute the lane estimate. 

All blocks will be described in detail in the following sections. 
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5.2   Logged Data 
Since the development is tightly connected to the logged data it is of importance to 
mention the nature of the selected data and some details about this selection 
process.

Scania has large amounts of logged data stored in databases. Each data 
segment contains most of what a truck can record during six minutes, mainly all 
traffic on the CAN-network, but also a compressed video showing what the 
camera mounted in the windscreen shows. The video file can be directly played in 
a media player, but the signals must be decompressed, decoded and interpreted 
either by the CANalyzer software [40] or a re-simulation script in MATLAB. 
When the decoding step has been finished the signals can be stored in .mat-files 
and easily accessed. 

During this development a large number of data sets have been used, of 
which eight are of more importance for the tuning of the filters and algorithms. 
They are chosen to represent different situations and difficulties for the 
implemented filters that are frequently encountered driving on a highway. These 
data sets are listed below with their most pronounced characteristic, which is why 
they are chosen. 

1. Lane change, two small exits/entrances 
2. Two lane changes, one small exit/entrance, one medium 

exit/entrance and one large exit/entrance 
3. Lane change, three small exits/entrances 
4. No lane changes, initial large exit/entrance, later another large one, 

two lanes, small disturbance on camera signal, two lanes 
5. No lane change, small exit/entrance, large “disturbance” on camera 

signal from section without lane markings 
6. Two lane changes, small exit/entrance, change from three to two 

lanes, small disturbances on camera signal 
7. Five lane changes, two small exits/entrances 
8. Five lane changes, two small exits/entrances 

The two last data sets are similar in many ways, but the focus on the lane 
changes in this project makes them both interesting to use. 

These data sets are all from the same truck, Tina, and are all recorded in the 
southern parts of Germany, where this truck is located. The road segments have 
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three lanes, unless mentioned otherwise above, the road is both straight and 
curved, there are some hills, and there are several other vehicles on the road. 

The focus of these data sets are lane changes, which test the performance of 
the LCI, and exits and entrances on the highway, which test the performance of 
the RED especially since the guard rails trail off with the exits, see Figure 8. This 
gives a step change in the road width which could be challenging. The exit below 
is categorized as small, as only one lane leaves the road. 

Figure 8 Screenshot from Front View Camera Recording Showing Highway Exit. The 
problematic part of this situation is the guard rail on the right side of the road trailing off 
with the exit. The new position of the guard rail, closer to the road, must be identified when 
the vehicle has passed the exit. 

Worth mentioning, related to the situation above, is that the exiting lane is 
not counted as a real lane, the number of lanes is thus three also here. 

The data selection process was simply to browse through the logs, 
determining from the video file whether or not the situation was completely 
recorded on a highway. From this collection of data the eight above were selected 
showing both simple and more complicated situations with respect to filter 
capabilities, this will be discussed further in the results in chapter 6.  
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5.3   Lane Change Identification 
The lane change identification uses information from the camera about the lane 
markings on the road and the lateral acceleration to model the vehicles lateral 
movement relative to the markings. It models both lane changes, the lane width 
and the position within the lane, where the lane changes as a relative estimate of 
the associated lane is the main focus. 

In a highway scenario with multiple lanes, the initial probability, assuming 
no prior knowledge, would indicate equal probability for each of the lanes. 
Assuming Gaussian distributed variation within each lane the initial PDF would 
have the principal look shown in Figure 9 below, where the lane indices are on the 
x-axis and probability on the y-axis. Here the scaling on the y-axis irrelevant as 
the interest is in the relative levels. 

Figure 9 Initial Probability Density Function with No Prior Information. The lane 
indices on the x-axis indicate equal probability on the y-axis for each lane without prior 
knowledge.

Behind this, there is an assumption that disregards traffic rules and driving 
style, which would indicate higher relative probability for the rightmost lane and 
lower for the leftmost in a country with right-hand traffic. It is also assumed that 
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when a vehicle drives in a certain lane, the vehicle is preferred to be driven in the 
middle of the lane, even though sometimes it is preferable to keep the vehicle in 
the left or right part of the lane because of surrounding traffic environment. This 
can thus be regarded as the naïve extreme case based on no information 
whatsoever.

In the case where there is an initial guess, either from knowledge about the 
data used in simulation or accumulated in the filter over time, the initial 
probability distribution can be set to a Gaussian distribution as in Figure 10. Also 
here the shape of the distribution is of interest, rather than the absolute level of 
probability, hence, no scaling on the y-axis is displayed. 

Figure 10 Initial Probability Distribution with Initial Guess. The x-axis shows lane 
index and y-axis the probability. A guess or prior knowledge could motivate the 
initialization of particles centered on a specific value, in this case lane 1. The variance 
allows for some uncertainty in the initial case. 

The assumed multi-modal probability distribution in Figure 9 with peaks on 
each of the lane indexes motivates the use of a particle filter, since it can handle 
any kind of probability distributions and input and output. The PF does not put 
any restrictions on the model either.  

Measurements on other states are assumed to be Gaussian. 
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Process Model 
The basic idea is modelling the relative sideways movement on the road with no 
regards of the longitudinal movement or speed. This is achieved with a simple 
model of the lateral offset to the closest lane marking to the left, , the change in 
this offset (lateral velocity), , and the change rate of the same offset (the lateral 
acceleration) . Again, the index l indicates that the values are relative to the lane. 
They change over time according to the following equation, where  is the 
sampling time. 

Equation 23 Relative Lane Movement Model 

This simple model is then extended with a state for the associated lane, ,
and the lane width in the current road section, . The latter is measured as the 
sum of the left offset and the right offset, and is in the model considered to be 
constant over time. This gives the complete set of states, , according to the 
following. 

Equation 24 Complete LCI States 

The update method of the associated lane state was developed in parallel with 
the filter with the ambition to find a reliable indicator for lane change, see the next 
section for details. 

Updating the Lane State 
The final way of updating the lane state is described here, different variants were 
tested during development. This update is essentially what discovers the lane 
changes, and the basic idea is to find step changes in the offset state. 

The lane state is updated in a nonlinear manner. Each particle lane estimate 
can be increased or decreased by 1, corresponding to the proposition that a lane 
change has occurred. This happens when the difference of the old offset estimate 
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and the new particle offset estimate is larger than a selected absolute threshold 
value, positive or negative difference indicating the direction of lane change. This 
change is, however, limited in some cases, 

• if the particle estimate would exceed the ranges of the lane state 
( ), or 

• if the particle is already pulling the total estimate in the direction of 
the proposed change. 

What the second limitation means can be exemplified as follows. If the filter 
estimate indicates being in lane 1 (the mean particle value is 1), and an individual 
particle currently suggests lane 2, but identifies a lane and want to change its value 
to 3. This change will not be allowed, and keeping the particle value at 2 will still 
pull the estimate in the direction of the suggested change. This limitation keeps the 
particles clustered and allows for easier change detection. 

The first limitation was used only during the early development phase of this 
filter as an attempt to estimate the absolute lane number solely with this filter. 
This is referred to when looking at different initial distributions for the lane state 
later on and therefore mentioned here. When, as in most cases, only the lane 
change is of interest, the initialization of the associated lane state was set to 0 
instead of the actual value as in in early simulations. This limitation would in this 
case be unwise, as it assumes absolute knowledge of the position. 

After these updates the lane estimate is compared with the actual position 
within the lane, as calculated from the offset and the lane width. The lane estimate 
is then given a small push towards the actual position within the lane it currently is 
positioned in. This push is proportional to the deviation of the position and smaller 
than the noise that the filter will add when the particle is being updated. 

Measurement Model 
Three of these states mentioned in the previous section can be measured, the offset 
to the closest left road marking is the constant term from the third degree 
polynomial that the camera calculates, and the lane width is the sum of the left and 
right constant terms. The lateral acceleration is also measured in the truck. 

The measurement model simply shows that the physically measurable states 
can be directly read from the model, this is the road width, the offset and the 
lateral acceleration, all with some amount of noise e distributed over the states 
according to D.
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Equation 25 Particle Filter Measurement Model 

Filter Design and Implementation 
The filter is implemented in a straight-forward manner according to section 4.4  . 
The number of particles is selected to be 10,000, which has been empirically 
proven to be a good tradeoff between performance and quality for this specific 
case. A smaller number of particles would not properly represent all states in an 
adequate manner, causing larger variations between simulations as the random 
behavior of the noise gives a pronounced effect on the results. A larger number of 
particles would not further increase the performance in a noticeable way, only 
increase the complexity. 

Resampling is selected to be done every iteration, SIR, and the resampling 
method is chosen as systematic resampling, for details see the Resampling section 
on page 32. The proposal distribution is chosen/implemented as described on page 
30, thus the implemented filter is a type of bootstrap filter. 

According to the theory, the particle weight can be calculated using the 
deviation of the measurement from each particle state to indicate the likeliness of 
a certain measurement given the state, .

Noise Levels 
The noise variance levels are selected in an ad-hoc manner, selected to achieve 
jittering and to avoid sample depletion and impoverishment, see the results in 
section 6.1  and especially Figure 23. The noise parameters were adjusted so that 
the effective sample size was at a level somewhere between two thirds and three 
quarters of the total sample size. Adjusting the noise parameters also effects the 
resampling as it affects the weights, to make sure that one single particle was not 
used an extensive number of times in the resampling this maximum number of 
particle occurrences was also monitored and made sure not to exceed a few 
hundred. These approximate levels proved to give desired behavior of the filter in 
general.

The above reasoning applies both for the absolute decision of the noise level, 
but especially important is the relative difference between process and 
measurement noise. Worth pointing out again is that these levels are not the actual 
levels of noise, only what the filter expects of the data. The consequence is how 
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the filter treats individual measurements; a measurement with poor resemblance to 
the current estimate will naturally affect the estimate more in a filter expecting a 
larger noise on the measurement than one expecting smaller noise. 

Also, the noise levels are not the same on the different states since they have 
quite different character. The noise is lower on the associated lane state in the 
process model than on the other states, since this is an entirely estimated state with 
no direct input from the measurements, thus, all other noise will be propagated 
here through calculations. In a similar manner, the measurement noise is different 
on the states as well; the width noise variance factor is twice the offset variance 
factor because they come from two and one measurements respectively. The 
measurement noise variance on the acceleration is set to a higher level because of 
the fluctuating nature of this data. 

Initial Particle Distribution 
Particles are initially generated around a given value, an initial guess, with 
Gaussian noise of a certain variance for each of the states. Any of the states 
getting input, such as offset and acceleration, can be initialized with any 
reasonable guess and it will quickly converge to the actual value.

The exception is the lane estimate, where the given initial value has 
corresponded to the true value during the development phase, since the aim here is 
to get the relative position. Using the true value here makes it easier to follow the 
changes over time and compare them to the actual changes in the logged data. 

There are variations in the simulations, using different initial particle 
distributions on the lane state than the above mentioned, such as the principal look 
shown in Figure 9.

Missing Camera Data 
There is a naïve restriction on the filter update; if the camera signal quality is poor, 
the filter will not be updated and only noise will be added to the states in the 
update stage, and it will then move on to the next time step. This is because of the 
nature of the input data, where it is quite common that there are occasionally some 
invalid measurements, but normally not too many consecutively. 

The quality of the camera signals is only determined by the quality stamp that 
is attached to it. Any data that is of the two highest of four quality levels is passed 
into the filter. 
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Resetting of Particles 
When no new information reaches the associated lane state, such as an indication 
about a lane change, the particles have a tendency to spread out and form break-
out groups. This spreading out occurs in both directions from the estimate because 
of the noise added each step, and because of the random character of the noise the 
estimate sometimes drifts off in one direction. An example of the filter lane 
estimate for data set 4 where no lane change occur can be seen in Figure 11 below. 
Over the course of the six minute in the data set, as seconds on the x-axis in the 
figure, the estimate changes from 0 to 1, this variation is only from the added 
noise.

Figure 11 Drift on Lane State without Reset. The x-axis shows time in seconds. The 
particles are initializes on 0, and since no lane change occurs, they are expected to keep 
indicating 0. However, over time the estimate changes to -1 because of the noise in the 
particle filter. 

It is decided to reset the particle distribution regularly on the lane state, every 
30 seconds or so, to prevent this kind of natural but unwanted behavior. The reset 
places the particles around the current estimate, the mean, as a Gaussian with the 
same variance as the initiation. 

The same kind of particle reset as mentioned above takes place when a lane 
change is detected. This makes the estimate more stable, partly because of the 
same reason of particles spreading out as above, partly because the wide range of 
particles will never all agree on anything (which really is the point), but since 
these changes are expected and desired they are propagated throughout the 
population when identified. 

5.4   Road Edge Detection 
To be able to estimate which lane a vehicle is currently in, the road edge 
detection, RED, looks at radar data that can position the vehicle on the road with 
respect to the road edges. Road edges are in highway scenarios often indicated 
with guard rails which can be detected by the radar, but the radar also detects other 
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vehicles on the road and objects next to it. This data must be pre-filtered before 
being used as filter input. 

For this road edge detection, it is enough to consider and model the distances 
from the vehicle to the left and right edge of the road. Assuming that the 
disturbances in the measurements are Gaussian, a Kalman filter could be suitable 
for estimating this distance, specifically an iterated Kalman filter considering the 
number of measurements per time step. For this kind of problem some kind of KF 
is typically the first choice to try out, and if sufficient settle with. 

For this application the road is assumed to be straight or only slightly curved 
making the straight road assumption valid. Since the scenario of interest is only 
driving on highways where the allowed speed is high, there are restrictions on the 
curvature of the road making this kind of simplification reasonable. For more 
details on recommendations of minimum radii for roads with different speed limits 
in different situations, refer to [41]. 

Model
The model for the distance to the road edges is quite simple, the modelled states 
are the distances to the left, , and right edge, , of the road. Again, here the 
subscripts indicates that these are values relative to the road. 

Equation 26 Road Edge Detection States 

Comparing to Equation 4, the model is designed as follows. 

Equation 27 Road Edge Detection Model 

In this case there is no way of controlling the process and the u terms are left 
out. Process and measurement noise is again represented by v and e respectively. 
The H matrix varies depending on if the current measurement is from the left or 
right side of the road. 

Equation 28 Variations of the H-matrix Depending on Measurement Type 



49

Pre-filtering
An issue that requires some attention is the pre-filtering of the radar 
measurements. There is a wide range of measurements, which can easily be 
identified by a human as measurements of something else than measurements of a 
guard rail, see Figure 12 below for an example of the total set of radar detections 
at one time instant. 

Figure 12 Example of Radar Detections. This is a moment in time, viewed from above 
as positions relative to the front of the truck, placed in origin. Both x-axis and y-axis show 
distance from the front of the truck in meters. The yellow line illustrates the current 
direction of travel and each of the stars indicate a radar measurement converted to the 
truck coordinate system. Blue indicate detections from moving objects, red static detections 
on the left side, green static on the right side and cyan static detections further ahead than 
80 meters. 

This is the scene from above where each star represents one radar detection 
and the axes are position in meters, the front of the vehicle is located in origin 
facing in direction of the yellow colored y-axis, and the color coding of the 
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detections represents the type of measurement and also how they are sorted. The 
blue markings represent detections classified as moving, originating from other 
vehicles on the road mostly, these are not of interest here. The rest of the 
detections are static, and colored cyan if they are further ahead than 80 meters and 
not used for filter updates, and the rest red or green if they are measurements on 
the left or right guard rail respectively. 

A lane change would cause the distances to the road edges to change, 
increasing in one direction and decreasing in one. Comparing to Figure 12, the 
detections would be shifted left or right with approximately one lane width, 
typically a little less than 4 meters. During the lane change one could expect that 
the angle towards the road edges would change slightly, however, this effect is too 
small to be noticed. 

The sorting left and right from the straight central path as well as the 80 
meter limit are consequences of the highway assumption. A highway is typically 
not too curved because of the speeds it is built for, and for this application it is 
assumed to be straight. 

There can be up to 64 radar detections, and typically the groups of red and 
green measurements are between 0 and 20, varying quite a lot within these 
bounds.

The pre-filtering that is implemented is a simple first evaluation of the 
measurements, resulting in an extra weight factor for the IKF measurement 
update. The new measurement update would thus be as follows, compared to the 
earlier presented Equation 11 where the third line would be replaced with 
Equation 29. 

Equation 29 Measurement Update with Pre-Filtering Factor 

Figure 13 illustrates this weight factor in red for two different measurements, 
see the stars on the x-axis. The blue curve represents the current estimate, which is 
known by mean and variance. In this illustration, the weight can be interpreted as 
the value of the red lines at the crossing with the vertical blue line, the current 
mean. The value of the red line is 1 at the top plateau and 0 at the x-axis. 

The width of the plateau corresponds to a threshold value, calculated as a 
constant factor of the current state variance. If the deviation of a measurement 
from the current mean is larger than twice this threshold, the measurement is 
considered as not being from the guard rail and the weight factor is set to 0. This is 
exemplified with the right measurement example in Figure 13 on the following 
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page. If instead the deviation is smaller than the threshold the weight factor is set 
to 1 and the filter update will not be affected by the weight factor, this corresponds 
to being on the plateau in the figure as the left measurement example. If the 
deviation is between the threshold and twice the threshold the weight factor varies 
linearly from 1 to 0 with the size of the deviation. 

Figure 13 Illustration of Pre-Filter Weighing Factor. This principal diagram 
indicates measured value on the x-axis and probability/weight factor on the y-axis. The 
blue line illustrates the current estimate with a specified standard deviation, and the two 
red stars are measurements and the surrounding red shapes shows the pre-filter weight, 
where the maximum value is 1. The weight can be read as the value of the red shape when 
it crosses the blue vertical line. 

If the variance of the estimate changes, so will the width of the accepted 
range in the pre-filtering. This allows for a wider search range for measurements 
in times where there is high uncertainty. 

Noise Levels 
Noise covariance is also for this filter chosen in an ad-hoc manner, following 
continuous evaluation. The time update turned out to have a tendency to strongly 
correlate the two states, distance to the left and right road edges, resulting in poor 
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estimate quality. The covariance factors in the covariance matrix are therefore 
edited during the time update phase, where the uncertainty levels would otherwise 
increase as much in each of the matrix components. Comparing to Algorithm 1, 
the last line in the time update is exchanged with the following equation. 

Equation 30 Covariance Matrix Time Update Adjusted 

Instead of adding uncertainty to all matrix components equally, which would 
be indicated by the original model and filter setup, the component added to the 
covariance is limited to 75 % of what it otherwise would be. This difference is 
enough to keep the road edges from being too closely correlated, as it is known 
that these distances are not always following each other. 

Missing Data 
For some situations, such as passing by large exits, the estimate follows the guard 
rail of the exiting lane and then has a hard time finding the guard rail again when 
it continues. This happens firstly because of the pre-filtering and secondly the 
“normal” weighing in the KF. The special case when no or only one detection is 
qualified for updating the filter by the pre-filtering algorithm, an extra missing 
data factor is introduced. It is used to increase the variance of the estimate and 
thus the search range for next detections. If one single detection is used for 
updating the filter, the variance for that estimate is multiplied with this missing 
data factor, if no updates are made at all the square of the factor. Typically this 
factor is in the range of an increase of about 5 %, i.e. multiplied by 1.05. This kind 
of heuristic manipulation was found necessary to accelerate the desired behavior. 

5.5   Lane Association 
There are several approaches for getting the final lane estimate from the 
information contained in the output of the two filters. The implemented approach 
contains two parts, first the calculation of an absolute position on the road and 
then the combination of the information about the absolute position and the lane 
changes to a final lane estimate. 
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Calculating an Absolute Position on the Road 
Two variants have been implemented, both based on the same idea. To use the 
available information in a good way, the filter output can be used to calculate the 
absolute position on the road and then compare this result with the lane estimate 
from the particle filter. This absolute position can be calculated according to the 
following equation. 

Equation 31 Road Edge Detection Lane Estimate 

Here  represents the lane estimate from the road edge detection, the 
absolute position on the road. The l parameter is the offset to the left edge of the 
road, this data comes directly from the IKF. The lane width, , is the output from 
the particle filter. The o parameter is the offset from the left road edge to the 0-
position of the lane indexes, the middle of the leftmost lane, and it is calculated 
from the following expression. 

Equation 32 Road Edge Detection Offset 

Here  again is the lane width, output of the particle filter,  the sum of the 
distances to the left and right edge of the road, output from the road edge detection 
filter,  is the total number of lanes from the map data also used in the particle 
filter. What is actually calculated with the modulo operation here is thus first the 
space between the road edges, guard rails, that are not occupied by the given 
number of lanes, assuming all lanes have the same width as the current estimate. 
Assuming this extra space is distributed evenly on both sides on the road, half of 
this distance plus half a lane width would indicate the desired 0-position. 

Each of the outputs of the filters are known by mean and standard deviation, 
also the standard deviation is propagated to these new variables following the 
standard rules, for a brief reminder see [42]. 

Final Estimate 
With the above mentioned calculations carried out, there are now two lane 
estimates available, one relative estimate from the lane change identification, LCI, 
and one absolute based on information from both the road edge detection, RED, 
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and the LCI particle filter. In an ideal case, they would perfectly match, except for 
an unknown offset on the relative part. This offset can then be estimated over 
time, using for example the CUSUM algorithm looking at the difference of the 
two values, described in section Change Detection – The CUSUM Algorithm on 
page 34. A CUSUM algorithm is implemented for this purpose, where the 
expected mean value of the difference is 0 and the k and h parameters are tuned 
for performance. 

The RED lane estimate is relatively noisy, and some filtering schemes for 
smoothing the signal are tested, primarily a Savitzky-Golay filter [43] and a 
backwards-looking moving average filter [44], both available in MATLAB. The 
CUSUM algorithm results are compared for each of the smoothened signals as 
well as the unfiltered signal. The Savitzky-Golay filtered signal shows the best 
performance, but it uses surrounding values in both directions and cannot be 
implemented in real-time without a lag corresponding to half the frame size. For 
this exploration of the possibilities it is still considered a good choice, mostly 
because the lag from backward looking moving average filter makes it harder to 
track fast changes. Performance is comparable except for the lag. This Savitzky-
Golay filtered signal is therefore used to present the results, as it best can show the 
potential of the system setup as a total. The rapidly changing unfiltered signal, 
however, is hard to handle for the CUSUM in order to give a reliable output. 

With a time-dependent offset added to the relative lane estimate, it can itself 
be considered an absolute lane estimate. Another alternative to perhaps better use 
the information available is to combine this signal with the absolute positioning. 
This can be done in a decentralized sensor fusion manner according to Equation 1, 
since also the variances of the variables are known and under the assumption that 
the estimates are independent. However, this requires that the discrete particle 
distribution that is the output of the particle filter is approximated as a Gaussian 
distribution, which leads to that the extended information and the original 
motivation for using this more complicated filter is lost. 

Both the CUSUM offset added to the relative signal and this signal weighted 
together with the absolute signal will be presented in the results chapter to make a 
comparison possible, based on the discussion above. 
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6. Results 
This chapter presents the results of the conducted simulations described in the 
previous chapter. As earlier mentioned, all simulations have used real recorded 
data as input, the presented plots in this chapter are based on data from one of the 
eight data sets briefly presented in section 5.2  .

The results and plots presented are a selection of cases and situations, chosen 
to visualize some of the important, challenging or interesting aspects encountered 
or steps completed during the development. There is some random behavior from 
the noise generation, slightly affecting the output of the particle filter, but for the 
essential parts these plots are reproducible. 

One important aspect of the implementation is tuning the filters with a large 
number of parameters to achieve as good performance as possible. Values of 
individual parameters are not discussed in detail in this section, rather the 
performance and general abilities and limitations are in focus. 

Overall, the result is a success with all parts working together in a good way. 
Even with quite unstable data input the lane estimate is stable and reliable over 
time. 

6.1   Lane Change Identification 
The LCI particle filter implementation performs very well, see section 5.3  for an 
extensive description about design choices and implementation. The lane estimate 
output identifies with very high precision the lane changes. If initialized on the 
correct lane, the LCI can with very high accuracy determine the current lane both 
relatively and absolutely. Some extraordinary events could confuse the absolute 
estimate, such as the total number of lanes changing, which could cause the index 
of the current lane to change without a lane change. 

All states are represented by the range of values that the total set of particles 
have over time. The resulting estimate is really the interpretation of the number of 
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particles indicating each position as a discrete posterior probability distribution. 
To illustrate this, histograms with relatively small bins can be drawn of the 
particles, showing their distribution at a particular time instant. With the selected 
implementation and weighing function most of the states have particle 
distributions that resemble Gaussian distributions, both if plotting histograms with 
number of particles on the y-axis or particle values against their weights, see an 
example in Figure 14 and Figure 15 below. 

Figure 14 Typical Particle Distribution on l-state, Frequency. Values are centered on 
1.8 and the error seems to be Gaussian. 
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Figure 15 Typical Particle Distribution on l-state, Weight. Particle values are 
centered on 1.8 and the maximum weight of the error seems to be Gaussian. 

Worth noting about the plot above, is that the Gaussian shape is “filled” with 
particles. This is because the weights are set not only with regards to how well the 
particle approximates this state, but also the other measured states. 

It is natural to estimate these states with the mean value, which is also 
suggested in theory. As a complement to the mean value it is reasonable to 
approximate a variance to the Gaussian approximation. 

The state describing the associated lane, which is of most interest, is as the 
other states represented by a set of particles, but unlike the others the distribution 
here has a different shape. Since there are no direct measurements on this state 
there is no feedback from weights and the particles are only affected by the model 
updates and the added noise. A typical particle distribution, as a histogram, is 
shown in Figure 16 below. 
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Figure 16 Typical Example of Particle Distribution on n-state at a Specific Time 
Instant. The x-axis indicates the particle value and the y-axis the frequency. A majority of 
the particles indicate lane 1, but there are smaller groups indicating the two neighboring 
lanes as well. 

This shows the particle distribution some time after a lane change has 
occurred and the particles have been reset at the lane change. The mean is a valid 
description of the state estimate also on this state, but was compared to the median 
value empirically where the latter had advantages in some situations. 

The majority of the particles estimate that the vehicle is in lane 1, relative to 
the initialized lane 0, where it was initialized. The particles suggesting the current 
lane to be indexed 0 or 2 represents the uncertainty in the estimation. 
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Comparing Initial Particle Distributions 
The choice of initial distribution for the lane state affects the estimate, especially 
initially. Looking at simulations with the suggested initial distributions mentioned 
in section 5.3  , this results in particle distributions of the type in Figure 17 and 
Figure 18. 

Figure 17 Initial Particle Distribution Around Position 0 at Time 0. The x-axis 
indicates the particle value and the y-axis the frequency. Particles are initialized around 0 
with a given variance. 

This is the way that the particles normally are initialized in the simulations. 
Here, no absolute position knowledge exists, and only the changes and the 
direction of change from this initial 0-position is of interest. 
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Figure 18 Initial Particle Distribution for Three Lanes with No Prior Information at 
Time 0. The x-axis indicates the particle value and the y-axis the frequency. Particles are 
initialized with equal numbers indicating each available lane. 

This case is useful when trying to absolutely estimate the position with the 
relative filter. Here knowledge about the total number of lanes is assumed. 

Comparing Figure 17 and Figure 16 by shape and ignoring the different 
estimate values, the character is changed over time. If there has not been any lane 
changes, the only information that has been put into this state is the information 
about the position within the lane, and the small nudges the particles receive 
toward that position. This gives the typical shape with pronounced peaks on the 
lane indexes. The random noise also impacts and causes some “flattening” and 
“spreading out” of the distributions, and naturally this effect increases over longer 
periods of time as the noise is larger than the nudges towards the actual position. 
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If instead some lane changes occur, in this case a change to the right, the 
distribution will have the following look some time instants after the change. 

Figure 19 Lane Change without Reset at a Time Closely After the Lane Change. The 
x-axis indicates the particle value and the y-axis the frequency. A lane change to the left 
has just occurred from a situation similar to Figure 16. After a change to the left, no 
particles are indicating the rightmost lane anymore. 

The performance here is somewhat weak because the filter is here tuned to 
function well with the resetting of the particles when a change is detected, more 
on the resetting in the following section. However, even though not all particles 
indicate the lane change, which is what is expected, a sufficiently large amount of 
them did. What makes the resetting motivated is that this distribution does not 
have the same characteristic look as it had before the change, when the next lane 
change occurs it will be harder to correctly estimate the lane. This problem builds 
up over time and makes the estimate unreliable. 
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During the early development, the filter was tuned to act harder on the 
changes with the ambition of finding an absolute position with this relative filter. 
In experiments with the initial distribution with peaks on each available lane, it 
was shown that with enough lane changes the absolute position could be singled 
out if the filter is tuned for this. This situation was later recreated for data set 8, 
see Figure 20 for the distribution before and Figure 21 for the distribution after the 
lane change. 

Figure 20 Particle Distribution before Lane Change. The x-axis indicates the particle 
value and the y-axis the frequency. Some time after initialization with equal number of 
particles indicating each lane, the distribution could look like this. Some noise has 
disturbed the symmetric look. This happens to be just before a lane change will take place. 

Here there are some variations compared to the newly initialized distribution 
that has accumulated over time. 
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Figure 21 Particle Distribution after Lane Change. The x-axis indicates the particle 
value and the y-axis the frequency. A lane change to the right took place since the previous 
figure. Hardly any particles indicate being in the leftmost lane after the change. 

The filter clearly detects a lane change to the right and excludes the 
possibility of being in the leftmost lane after the lane change. If lane changes 
would occur so that all lanes would be visited (which would be an extremely rare 
case), the estimate would have the possibility to find the correct absolute lane. 
There is here a limitation which this relies on, that it is not allowed to change lane 
to a lane that does not exist.

This is not considered a solution for this approach of the problem, rather a 
hint that the lane identification could be done using this principle. 

 In all of the subsequent simulations, the particles are initialized with a 
Gaussian distribution around 0. 
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Resetting Particles on Unmeasured State 
There are, as earlier mentioned, tendencies of particles drifting away from the lane 
estimate over time because of the noise and random component of the particle 
update both being pronounced compared to the tiny nudges towards the position 
within the lane. It is therefore motivated to reset the filter regularly to avoid the 
information contained being completely lost.  

The reset is performed as using the lane estimates of all particles to compute 
a mean, the lane state variables are then assigned new values according to a 
Gaussian distribution around the computed mean and with the same variance as 
the initial proposed distribution. The particles could be said to be re-initialized 
regularly around the current estimate. This gives a much more robust filter, even 
though this is only done about every 30 seconds of simulation data, which 
corresponds to about every 400th filter update of camera data. Looking at Figure 
22, one can notice the resets as small quirks on the lane estimate, most clearly 
around time 180 seconds. 

Also, at identified lane changes the distribution is reset, the motivation is to 
keep the appearance of the particle distribution over time, compare again Figure 
16 after a lane change with a reset and Figure 19 where no resetting of the 
particles was made. In this case, the reset is triggered if a sufficient amount of 
particles change value simultaneously in the same direction, this change is 
detected and the particles reset around the new lane estimate. This will put off the 
regular reset to avoid resetting more often than necessary. 

For clarity, this reset is only for the lane estimate state, the other states get 
continuous feedback from measured values and do therefore not experience the 
same kind of complications. The resetting greatly improves the robustness of the 
filter.

Performance
The performance of the filter will be exemplified with some plots from the 
simulations. The first more detailed example will show more of the different 
aspects considered during the development, and then some more result-oriented 
examples follow. For all of these cases the initial lane guess is set to 0 and there 
are no limitations on lane changes with respect to number of available lanes, that 
is, there is no assumption of absolute position knowledge. 

The most central plot is of course the overview of the states, the estimates 
and the measured signals. Figure 22 shows this overview for data set 8 in a typical 
simulation. This data set was recorded in a scenario where five lane changes 
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occur, which are all correctly identified below. Plotted as the filter estimates are 
the mean value of the particles per state in red dotted lines and the blue lines are 
the measurements. 

Figure 22 LCI PF Estimate Overview – Data Set 8. Lane changes indicated by steps 
in the l state are correctly identified by the n state on the top. 

The most interesting to notice in this plot are the step changes in the offset to 
the left lane marking, ll, which directly matches the changes in the lane estimate in 
time. The strange look of the w signal at times 120 and 170 are from low quality 
data from the measurement to the right side of the road, and at time 180 where 
both wl and ll are affected the low quality is on the left marking distance signal. 
Here the filter is not updated. Also worth noting is that the signals in general are 
very nice and smooth, the exceptions is the acceleration signal which is accounted 
for with the implemented noise levels and weighting function as mentioned 
earlier.

As a complement to the plot above, some of the statistics for the filter can be 
seen in Figure 23. The top part shows the effective number of samples, see 
description page 32, and can be read out to be kept above 7000 in most cases. 
Frequently in theory, in the case of SIS filters when resampling is not done every 
time step, the threshold for resampling is set to around two thirds of the total 



66

number of particles, this was used as an approximate goal to stay above in tuning 
the filter and conform to good filter performance. The time instants where the 
effective sample size is low corresponds to the time instants where the lane change 
takes place. This is a natural consequence, since the large change on the offset 
state will only be followed by a smaller number of particles that will all be 
weighted high compared to all others. Looking at the second plot indicates that 
there are still a large enough variety of particles at the lane change instants as the 
most frequent particle at the resampling step only occurs a few hundred times. 

Figure 23 LCI PF Filter Statistics. The effective sample size rarely drops below 7000 
particles. The most frequent particles in the resampling step do not occur more than a few 
hundred times, except for the problematic situation at time 340 seconds. 

Something that is much more alarming here what happens around time 340 
seconds; here one particle is used about 4000 times in the resampling. This is an 
extreme case of a problematic situation. It is caused by the large change in the 
acceleration signal, even though this signal is weighted less than the others. Again, 
this is an extreme case of this kind of situation, where all random noise seem to 
have increased this effect. In this particular example the lane state was not 
affected, but it could have been. This is how disturbances can negatively affect the 
performance, and it is very hard to avoid. 
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The next figure, see Figure 24 below, visualizes the changes on the lane state, 
and more or less indicates that the filter tuning is good as these changes are very 
clear.

Figure 24 LCI PF Particle Statistics. The changes and direction of change is clearly 
indicated by the filter, hinting that the tuning of the filter is good. 

Even though the changes are clear, it is only a minority of the particles that 
are affected. This is maybe the clearest motivation for resetting the particles, while 
keeping the number of particles affected on this quite low level, these signals very 
clearly indicate the change and there is little room for misinterpretation of the 
information. 

For the other data sets, only the lane estimate, the road width and the lane 
offset are presented, as two first also correspond to the filter output used for 
calculating the final estimate and the last makes it possible to verify the lane 
estimate.

Problematic Situations 
The next example is from data set 5, in which there is a road segment where no 
lane markings are available, approximately from time 130 to 140 seconds. This 
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comes from new asphalt on this particular lane, where no new marking have been 
painted yet. The estimate overview can be seen in Figure 25 below. 

Figure 25 LCI PF Estimate Overview - Data Set 5. The time period 130-140 seconds 
has very poor camera signals because there are no lane markings during this period. This 
causes the filter to wrongly identify a lane change at the end of this period. 

The camera can, during this unmarked section, find some markings, possibly 
from the next lanes further out, which are identified with reasonably high quality. 
This confuses the lane estimate, which first shows a hint of indicating a lane 
change left, but not enough to reset the particles. Instead, in the end of the 
unmarked section, a lane change to the right is wrongly identified. This kind of 
situation is hard to compensate for by this filter. 

Another situation where a lane change is identified when it should not be is in 
data set 4. In this data set a small number of camera signals with seeming low 
quality are confusing the lane estimate at time 310 seconds, causing it to find a 
lane change where there is none. 
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Figure 26 LCI PF Estimate Overview – Data Set 4. A small number of low quality 
camera signals are here used to update the filter at time 310 seconds. This wrongly makes 
the filter identify a lane change. 

Why this data is labelled with a higher quality than it should have is hard to 
know. There are some other indications of low quality data, which does not allow 
the filter to update. Identifying signals with a higher quality label than they should 
have is not something that has been implemented. 

For all of these data sets the filter correctly identifies all lane changes. In 
some cases there are disturbances that causes the filter to mistakenly identify 
additional lane changes. 

6.2   Road Edge Detection 
The implemented IKF for detecting and estimating the distances to the road edges 
performs well. Compared to the LCI, here the output estimates from the RED have 
a less stable look to them, much because the input data here is much more 
complicated to handle. 

Figure 27 below shows the filter estimates from data set 8, the same example 
as used in the previous section. 
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Figure 27 RED IKF Estimate Overview - Data Set 8. This plot shows the distances to 
the road edges left and right. It is quite clear when lane changes occur, this causes both 
estimates to change stepwise in the positive or negative direction. There are a total of five 
lane changes in the plot above; at 20, 120, 160, 320 and 350 seconds respectively. 

This shows the estimated distances to the road edges left and right, the last 
few data points indicating 0 is because of some length differences in the input 
signals. Knowing that this data shows the same data set as previously seen, one 
can guess where lane changes occur also from looking at the plot above. 

Looking at the lower plot and the distance to the right edge of the road, one 
can see some indications of the entrances and exits on this side of the road. The 
clear example is from time 170 to 200, where a small exit is followed by a small 
entrance. The estimate finds its way back to the actual road edge and the position 
of the guard rail between the exit and entrance even though they are very close to 
each other. 

There are some large variations in the top plot, this is due to the low number 
of available measurements for some periods of time, see Figure 28 below. This is 
typical since normally the vehicle travels on the right side of the road in the slower 
lanes, and both distance to the left guard rail and other vehicles covers the view to 
some extent. Especially during the time periods between 50 and 100 seconds and 
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around 300 the number of measurements are very low. The resulting estimate is at 
these times very noisy and the plotted standard deviation is naturally also larger. 

Figure 28 RED IKF Number of Filter Updates per State. This is an overview of the 
total number of radar detections used for updating the IKF at each time step. 

As mentioned in the implementation section, when the identified 
measurements are zero or one, the covariance matrix is manipulated to increase 
the variance faster. Another manipulation is to decrease the covariance between 
the states, this is described in detail on page 51. An overview of the changes in the 
covariance matrix over time can be seen in Figure 29 below. 
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Figure 29 RED IKF Covariance Matrix. This shows the changes in the covariance 
matrix over time. The high peaks on the variance diagonal come from manipulation; if the 
detected number of measurements is low the variance is increased by a factor. 

The large increases in the state variances occurs at the times where the 
measurements are low. The covariance is not set to zero, but smaller than the 
variance terms at all times. The levels of the manipulation of the covariance 
matrix was determined empirically with simulations on all data sets. 

For all data sets these plots have similar characteristics. 
The assumption made about the road being straight does not seem to have 

negatively affected the results, as there are curved sections in all of the used data 
sets, which cannot be noticed in these plots. 

Problematic Situations 
Large exits and entrances disturb the estimate and will make it hard to find the 
guard rail in between, instead estimating a very large distance to the right road 
edge for this time. Even the attempts of manually increasing the variance to better 
be able to handle these situations have not been able to successfully compensate 
for this undesired behavior in all cases. An example of this can be seen below in 
Figure 30. 
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Figure 30 RED IKF Estimate Overview - Data Set 2. Simultaneous changes on the 
two estimates indicate a lane change at time 20 and 50 seconds. At time 70 second very few 
detections seem to be found on the left side of the road, causing a fast increase of the 
standard deviation. At time 170 seconds a medium sized exit on the right side of the road is 
passed, but the estimate finds its way back to the guard rail after passing. At time 280 a 
larger exit is passed, this time the estimate does not find the actual guard rail until the 
entrance brings back the estimate with an entering guard rail at time 330 seconds. 

The large exit and following entrance leading back the estimate can be seen 
at time 280 and 330, between which the distance to the right road edge is around 5 
meters rather than the 15 indicated above. Looking instead at time 180 seconds, a 
smaller, but still quite large exit can be noted. However, here the estimate can in 
this case find its way back to the actual value. 

The top part of Figure 30, showing the distance to the left road edge, also has 
a noticeable trait. At time 70 seconds the standard deviation increases rapidly over 
a very short time, this is because very few radar measurements are found to update 
the filter with during this time. 



74

6.3   Lane Association 
The first step to get the final lane estimate is to calculate the absolute position on 
the road. There are different time scales on the filter output, because the camera 
and radar have different measurement frequencies. For this purpose, the values are 
simply linear interpolated to make the different values comparable at every time, 
both are scaled to the higher frequency. 

The offset parameter is found to be slightly too large if calculated the 
proposed way, this value is decreased by half to shift the absolute lane estimate 
closer to the expected values. 

Continuing on the previous sections, the data set 8 is the base for the 
following figures. Firstly, Figure 31 shows the absolute position on the road. With 
the mentioned tweak on the offset, the figure shows that the position matches the 
lane numbers on the y-axis well. 

Figure 31 Absolut Position on Road - Data Set 8. The calculated absolute lane 
estimate in blue and the standard deviation in red. Also the Savitzky-Golay filtered signal in 
cyan and the lagging moving average signal in magenta are plotted. The signal gives the 
expected value, except for the first 20 seconds where the indication for lane index 1 is not 
clearly indicated.
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The propagated uncertainty is also plotted as the standard deviation of the 
calculated lane value. Except for some noise, the signal gives a pretty clear image 
of the position on the road. Filtered signals, both a Savitzky-Golay and a lagging 
moving average, are plotted as well. 

The next step, to compare this absolute position with the relative position 
with the CUSUM algorithm, can be visualized as in Figure 32. 

Figure 32 CUSUM Offset Calculation. The CUSUM algorithm compares the 
calculated and Savitzky-Golay filtered absolute signal in green and the relative lane 
estimate from the LCI and calculated the offset signal required to make them match. This 
offset is plotted as a green dotted line, which quickly finds the desired value 1 and keeps it 
during the entire data set as expected. 

Here the green line represents the Savitzky-Golay filtered absolute position 
signal shown above. The cyan line shows the relative estimate and the CUSUM 
algorithm compares absolute and relative signal to compute the offset between 
them as a natural number, where the dotted line is this offset over time. The offset 
quickly finds the correct value and keeps it for the whole period. 

Experiments using the unfiltered signal and a lagging moving average filter 
has also been done. All give comparable results, but the lagging moving average is 
lagging a bit in changes and the unfiltered absolute estimate introduces a 
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disturbance that is affecting the offset calculated from it. The Savitzky-Golay 
filtered signal is the most stable, and is therefore the one selected to be visualized. 

Adding the offset to the relative signal and comparing to the alternative 
where the absolute signal and the relative signal plus offset signal are weighted 
together, the result can be seen in Figure 33 below. 

Figure 33 Final Lane Estimate – Data Set 8. The red line shows the LCI lane estimate 
with the added CUSUM offset, it closely follows the expected value. The blue line is a 
weighted combination, see Equation 1, of the red signal and the previously calculated 
absolute lane estimate, and the cyan dotted line is the standard deviation of the weighted 
value.

Both alternatives give very similar and correct results in this case where there 
are no errors made. However, the weighted versions are approximating the lane 
estimate from the particle filter as a Gaussian and thereby dropping some of the 
information. 

The CUSUM can compensate for the rare mistakes made in the LCI, such as 
in data set 4 illustrated in Figure 26. The final estimate will still be reliable after a 
short period of adjustment, see Figure 34 below, as the CUSUM algorithm notices 
the large and unexpected deviation between the two positional estimates and 
compensates for it. 
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Figure 34 Final Lane Estimate – Data Set 4. The actual lane is during this entire data 
set indexed 1. At time 310 seconds the LCI mistakenly identifies a lane change, which is 
compensated for by the CUSUM within 10 seconds. 

The adaption to errors is fast, it takes less than 10 seconds to again output the 
correct value after the LCI mistake. 

Another data set that is interesting to look at is data set 2, where there was a 
problematic situation for the road edge detection at a large exit, see Figure 30. 
Looking at the final lane estimate in Figure 35, it can be concluded that the 
estimate is not disturbed by the problematic situation. 
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Figure 35 Final Lane Estimate – Data Set 2. After some initial adjustment, the correct 
lane is correctly identified, even during the time around 300 seconds where the RED has 
some problems correctly finding the right road edge because of a large exit. 

In the example above, it takes the estimate slightly more than 10 seconds to 
find the correct value, which is 2 until the lane change left at time 20 seconds. 
This is one of the slower examples, but is still considered acceptable, given that as 
a part of a future application this would be used in a real-time application and with 
no reason to restart regularly. 

Another problematic situation is a road segment where no lane markings are 
available, such as a part of data set 5, mentioned earlier and LCI estimated plotted 
in Figure 25. This mistake is also successfully compensated for, the final lane 
estimate is shown in



79

Figure 36 Final Lane Estimate – Data Set 5. The expected output of indicating lane 2 
is interrupted by a camera disturbance at about 140 seconds, it is compensated for by the 
CUSUM algorithm within 10 seconds. 

The disturbance from the camera is introduced at 140 seconds, after which 
the lane estimate is corrected by the CUSUM after about 10 seconds. 

For most part, the final estimate is very reliable, and is able to compensate for 
errors made by the LCI or the RED. 

6.4   Final Performance 
This is absolutely a feasible strategy extracting the information about in which 
lane the vehicle is currently driving. It is quite computationally heavy itself, and as 
the implementation focus has been on results rather than achieving a fast, light-
weight method of getting to this result, there is room for plenty of improvement 
here. For example, the radar detections are stored in the source data mat-files with 
their numbered id in the name. These data fields are read in MATLAB with an 
extremely time-consuming combination of string formatting and variable name 
generating from the formed strings. This kind of handling in the data severely 
increases the total runtime. 



80

Knowing the current implementation has not focused on speed at all, some 
reference values for will be mentioned, but these should not be given too much 
attention. The total time from reading in the values from the mat-files to plotting 
the final lane estimate is approximately 190 seconds on a reasonably fast 
computer. Of this time, 120 seconds are spent by the particle filter, and 60 seconds 
by the iterated Kalman filter where the mentioned unreasonably complicated 
reading of data takes place. This gives an indication of the internal ratios of the 
time spent. 
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7. Discussion 
The overall result is good, the possibilities of performing a lane association with 
this method has been explored and results of high quality are found.  

This setup can with high precision extract the specified information from the 
supplied data. Some problematic situations are encountered, which are not 
optimally handled along the way, but still do not affect the results for more than 
short isolated periods of time. Even though these problematic situations have 
received quite a lot of attention in the report for discussing weaknesses in the 
implementation, they are quite rare in the large number of simulations that have 
been performed in total. 

All MATLAB implementations have been done from a very low level to have 
full freedom to manipulate and tweak all parts of the implementation for as good 
performance as possible.

This approach of solving the given problem has to some extent ideas in 
common with the literature mentioned in chapter 2. Compared to what is 
presented there, this implementation is fairly simple. The information is not used 
in quite the same way, and this approach is somewhat more straight-forward. The 
outcome here is still good results, but this is just one of many different ways of 
solving the problem, and possibly many of the others are better or more efficient. 

7.1   Model Critique
All models are simplifications of the real world, but the ones used in this project 
seem to be scraped down to the bare essentials. Completely ignoring longitudinal 
movement intuitively feels strange considering that for a truck, longitudinal 
movement is one of the first associations one make. Even these simplifications 
seem to fulfill the purpose in most cases. Also, looking at the distances to the road 
edges only as constants seems to be too simple. 
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The complete problem is very complex, and this is considered a reasonable 
first step. Since the output closely resembles the expected lane index it is hard to 
motivate a more complex model at this very early stage of development, where 
exploring possibilities was the focus.  

Another aspect, related to the final lane association part as an example, is the 
general discussion about what data is given the most importance. Here the 
calculated absolute position on the road is mostly relying on radar detections on 
the left side of the road, as the offset is calculated from this side. The distance to 
the right side of the road is only used, together with the distance to the left, to 
calculate the total road width. Still, it is generally easier to detect right side of the 
road, because of the positioning is more often close to the right side of the road 
giving more detections from this side of the road. However, the left side distance 
is generally more stable, with no exits or entrances disturbing the estimate. 
Possibly this kind of arguments could have been given more attention in the 
development.

7.2   Filter Critique 
The main functionality of the filters has been determined to be good in general, 
but there are some problems that has been pointed out in the results section. There 
is also some general thoughts that will be presented below, per filter. 

It should also be mentioned that the other filters mentioned on page 26 could 
be used in different combinations, not all alternatives with this filtering approach 
has been investigated. One could also consider some kind of machine learning 
approach, considering the large amounts of data available, but this is outside the 
scope of this project. 

Particle Filter 
There is some critique in [33] on using PFs on systems of high dimensionality and 
highly dynamic states, such as accelerations and unmeasured velocities. High 
dimensionality is not clearly defined, but can be interpreted as more than three, 
where six definitely is high dimensionality. The main issue is that the particle 
representation would be too sparse to represent the posterior distribution in a 
meaningful way. This application could be a typical example where the 
performance is at risk, but the relatively large number of particles seems to 
compensate for this and the filter obviously produces meaningful output. 
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As been shown in the results section, the implemented filter heavily relies on 
the high quality of the camera signal. It will be prone to make mistakes if the 
signal does not reach the expected quality, but this is rare in the data used during 
the development. Fortunately, if an error occurs, it will be compensated for later 
on and will not be affecting the final lane estimate for more than a short time. 

There is a restriction on the filter update, which is completely skipped if the 
camera signals for the particular time step is if too low quality, only noise will be 
added in this case. This is realized to be naïve, but it works for all data sets that 
has been used during development. Most certainly there are data sets where this is 
a too strong simplification, it will probably be most sensitive to this kind of 
disturbance when it occurs at the same time as a lane change. 

Iterated Kalman Filter 
The IKF is, according to theory, sensitive to deviations in the model and noise 
covariance matrix to the real situation. The implemented filter seems to perform 
well, even with the very simplified model and the ad-hoc chosen noise covariance.

The problem is, however, for the filter to find its way back to the correct 
estimate after large exits. Even though this problem is not affecting the final lane 
estimate, this is undesired behavior by the filter. A more sophisticated model or a 
different approach to the problem may handle this kind of problem better. 

7.3   Data Selection 
Since the development has been tightly intertwined with available data, the data 
itself and the selection process will be elaborated further in a critical manner. The 
selection of data was made by looking at the logged video files, in a completely 
unstructured manner. A data set was considered interesting if it was recorded 
completely on a highway, and preferably contained one or more situations 
including lane changes, exits of varying sizes or other challenges for the filters. 

Some sets were further discarded when some of the used data had not been 
logged at that particular time for some reason. Large amounts of logged data was 
available, the actual selection process was quite random. 

A wider range of data could be interesting to look at in the future, even 
though, within the case of highway scenarios, a large variation of situations has 
been examined. 
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7.4   Structure of Computations 
The structure and manner in which the calculations are carried out is also worth 
mentioning. The final structure in Figure 7 was something that evolved over time, 
and was not set from the beginning. 

It has been considered to be of importance that data is only used once, and no 
information is being reused in a way that could cause loops, increasing importance 
of faulty assumptions which might compromise the ability of the filters. The small 
exception is that both the lane width and the LCI lane estimate both are based on 
the same camera data to some extent, and these are later merged in the final step 
of the lane association, LA. The total number of lanes from the map data is more 
or less considered an at all times perfect constant in this case. 

7.5   Computational Complexity 
This implementation is rather computationally heavy, and is in its current form not 
suitable for use in a vehicle. Even though the purpose here is to investigate 
possibilities and methods, some thought should be put to this practical issue for 
potential future implementations. The most resource demanding part is the particle 
filter.

There are examples of implementations of particle filters in embedded 
systems in literature, where different variants making the filter better suited for the 
limited environment an embedded system provides compared to a desktop 
computer. As an example, there is a variant called a mean shift embedded particle 
filter used for visual pattern recognition, which claims to reduce the number of 
required particles with 85 % [45]. Other examples are [46], [47] and [48], where a 
hardware-close implementations are suggested. 

It is considered that there are good possibilities to implement particle filters, 
also for this application, in embedded systems given the research on the area. 

7.6   Conclusion 
Essentially, this project shows that the data chosen as input here can easily be used 
to extract information about which lane a vehicle is currently driving in. The 
implemented filters and algorithms does the job, but are computationally heavy 
and there is room for improvement here. 
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Knowing the current lane index is not in itself revolutionary in any way, but 
for future applications it could be an important component.  

7.7   Future Research 
This project opens for many future possibilities. A first experiment could be 
adapting the current implementation for real-time use and test it in a real truck. 

As mentioned earlier in this chapter, looking at more advanced models could 
give opportunities of predicting lane indices and lane changes further ahead in 
time. One example is the current assumption that the road in front of the vehicle is 
straight, this in combination with looking at the movement on the road in a more 
complex way could open for the prediction further ahead in time. 

Another possibility is looking at data in a more clever way. For example, to 
look at guard rail detection as an object instead of individual detections which can 
be assumed to be a guard rail. This could increase the understanding for when an 
exit is coming up or other problematic situations. 

Looking at a wider range of situations could also be an interesting future 
extension. Other situations than highways, where maybe the availability of guard 
rails are not as certain, poses other difficulties,  

The two filters could, with some benefits, exchange more information, giving 
the final estimate in a one step process possibly. It could be of interest to look at 
possibilities on implementing one larger, maybe a marginalized particle filter, 
instead of the two smaller ones, directly sharing and using the information 
extracted. This could increase the complexity and the benefits with modularization 
would be lost. 

As the purpose of this project is to extract information about lane association 
to make it possible for other future systems and applications necessary for 
automated driving to function, these should be the main priority in the future. It 
must be further investigated whether or not the extracted information is of high 
enough quality for these systems, but at this point this is difficult. In any case, this 
is one step in the right direction. 
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